1
|
Hashimura H, Kuwana S, Nakagawa H, Abe K, Adachi T, Sugita T, Fujishiro S, Honda G, Sawai S. Multi-color fluorescence live-cell imaging in Dictyostelium discoideum. Cell Struct Funct 2024; 49:135-153. [PMID: 39631875 DOI: 10.1247/csf.24065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cellular slime mold Dictyostelium discoideum, a member of the Amoebozoa, has been extensively studied in cell and developmental biology. D. discoideum is unique in that they are genetically tractable, with a wealth of data accumulated over half a century of research. Fluorescence live-cell imaging of D. discoideum has greatly facilitated studies on fundamental topics, including cytokinesis, phagocytosis, and cell migration. Additionally, its unique life cycle places Dictyostelium at the forefront of understanding aggregative multicellularity, a recurring evolutionary trait found across the Opisthokonta and Amoebozoa clades. The use of multiple fluorescent proteins (FP) and labels with separable spectral properties is critical for tracking cells in aggregates and identifying co-occurring biomolecular events and factors that underlie the dynamics of the cytoskeleton, membrane lipids, second messengers, and gene expression. However, in D. discoideum, the number of frequently used FP species is limited to two or three. In this study, we explored the use of new-generation FP for practical 4- to 5-color fluorescence imaging of D. discoideum. We showed that the yellow fluorescent protein Achilles and the red fluorescent protein mScarlet-I both yield high signals and allow sensitive detection of rapid gene induction. The color palette was further expanded to include blue (mTagBFP2 and mTurquosie2), large Stoke-shift LSSmGFP, and near-infrared (miRFP670nano3) FPs, in addition to the HaloTag ligand SaraFluor 650T. Thus, we demonstrated the feasibility of deploying 4- and 5- color imaging of D. discoideum using conventional confocal microscopy.Key words: fluorescence imaging, organelle, cytoskeleton, small GTPase, Dictyostelium.
Collapse
Affiliation(s)
| | - Satoshi Kuwana
- Graduate School of Arts and Sciences, The University of Tokyo
| | - Hibiki Nakagawa
- Graduate School of Arts and Sciences, The University of Tokyo
| | - Kenichi Abe
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo
| | - Tomoko Adachi
- Graduate School of Arts and Sciences, The University of Tokyo
| | - Toyoko Sugita
- Graduate School of Arts and Sciences, The University of Tokyo
| | - Shoko Fujishiro
- Graduate School of Arts and Sciences, The University of Tokyo
| | - Gen Honda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, The University of Tokyo
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo
| |
Collapse
|
2
|
Dey P, Santra S, Ghosh D. Effect of the protein environment on the excited state phenomena in a bacteriophytochrome. Phys Chem Chem Phys 2024; 26:20875-20882. [PMID: 39044617 DOI: 10.1039/d4cp02112f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The excited state processes of a bacteriophytochrome are studied using high-level multireference methods. The various non-radiative channels of deactivation are identified for the chromophore. The effects of the protein environment and substituents are elucidated for these excited state processes. It is observed that while the excited states are completely delocalized in the Franck-Condon (FC) region, they acquire significant charge transfer character near the conical intersections. Earlier studies have emphasized the delocalized nature of the excited states in the FC region, which leads to absorption spectra with minimal Stokes shift [Rumyantsev et al., Sci. Rep., 2015, 5, 18348]. The effect of the protein environment on the vertical excitation energies was minimal, while that on the conical intersection (CI) energetics was significant. This may lead one to believe that it is charge transfer driven. However, energy decomposition analysis shows that it is the effect of the dispersion of nearby residues and the steric effect on the rings and substituents that lead to the large effect of proteins on the energetics of the CIs.
Collapse
Affiliation(s)
- Pradipta Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
3
|
Jiang XX, Hou YN, Lu LW, Zhao KH. Monomeric Far-red and Near-infrared Fluorescent Biliproteins of Ultrahigh Brightness. Chembiochem 2024:e202400068. [PMID: 38623786 DOI: 10.1002/cbic.202400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Far-red and near-infrared fluorescent proteins have regions of maximum transmission in most tissues and can be widely used as fluorescent biomarkers. We report that fluorescent phycobiliproteins originating from the phycobilisome core subunit ApcF2 can covalently bind biliverdin, named BDFPs. To further improve BDFPs, we conducted a series of studies. Firstly, we mutated K53Q and T144A of BDFPs to increase their effective brightness up to 190 % in vivo. Secondly, by homochromatic tandem fusion of high-brightness BDFPs to achieve monomerization, which increases the effective brightness by up to 180 % in vivo, and can effectively improve the labeling effect. By combining the above two approaches, the brightness of the tandem BDFPs was much improved compared with that of the previously reported fluorescent proteins in a similar spectral range. The tandem BDFPs were expressed stably while maintaining fluorescence in mammalian cells and Caenorhabditis elegans. They were also photostable and resistant to high temperature, low pH, and chemical denaturation. The tandem BDFPs advantages were proved in applications as biomarkers for imaging in super-resolution microscopy.
Collapse
Affiliation(s)
- Xiang-Xiang Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ya-Nan Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li-Wen Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
4
|
Tchagang CF, Mah TF, Campbell-Valois FX. Anaerobic fluorescent reporters for live imaging of Pseudomonas aeruginosa. Front Microbiol 2023; 14:1245755. [PMID: 37928662 PMCID: PMC10623331 DOI: 10.3389/fmicb.2023.1245755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Pseudomonas aeruginosa thrives in the airways of individuals with cystic fibrosis, in part by forming robust biofilms that are resistant to immune clearance or antibiotic treatment. In the cystic fibrosis lung, the thickened mucus layers create an oxygen gradient, often culminating with the formation of anoxic pockets. In this environment, P. aeruginosa can use nitrate instead of oxygen to grow. Current fluorescent reporters for studying P. aeruginosa are limited to the GFP and related analogs. However, these reporters require oxygen for the maturation of their chromophore, making them unsuitable for the study of anaerobically grown P. aeruginosa. To overcome this limitation, we evaluated seven alternative fluorescent proteins, including iLOV, phiLOV2.1, evoglow-Bs2, LucY, UnaG, Fluorescence-Activating and Absorption-Shifting Tag (FAST), and iRFP670, which have been reported to emit light under oxygen-limiting conditions. We generated a series of plasmids encoding these proteins and validated their fluorescence using plate reader assays and confocal microscopy. Six of these proteins successfully labeled P. aeruginosa in anoxia. In particular, phiLOV2.1 and FAST provided superior fluorescence stability and enabled dual-color imaging of both planktonic and biofilm cultures. This study provides a set of fluorescent reporters for monitoring P. aeruginosa under low-oxygen conditions. These reporters will facilitate studies of P. aeruginosa in biofilms or other contexts relevant to its pathogenesis, such as those found in cystic fibrosis airways. Due to the broad host range of our expression vector, the phiLOV2.1 and FAST-based reporters may be applicable to the study of other Gram-negative bacteria that inhabit similar low-oxygen niches.
Collapse
Affiliation(s)
- Caetanie F. Tchagang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Host-Microbe Interactions Laboratory, Center for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - François-Xavier Campbell-Valois
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Host-Microbe Interactions Laboratory, Center for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Risser DD. Hormogonium Development and Motility in Filamentous Cyanobacteria. Appl Environ Microbiol 2023; 89:e0039223. [PMID: 37199640 PMCID: PMC10304961 DOI: 10.1128/aem.00392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Filamentous cyanobacteria exhibit some of the greatest developmental complexity observed in the prokaryotic domain. This includes the ability to differentiate nitrogen-fixing cells known as heterocysts, spore-like akinetes, and hormogonia, which are specialized motile filaments capable of gliding on solid surfaces. Hormogonia and motility play critical roles in several aspects of the biology of filamentous cyanobacteria, including dispersal, phototaxis, the formation of supracellular structures, and the establishment of nitrogen-fixing symbioses with plants. While heterocyst development has been investigated extensively at the molecular level, much less is known about akinete or hormogonium development and motility. This is due, in part, to the loss of developmental complexity during prolonged laboratory culture in commonly employed model filamentous cyanobacteria. In this review, recent progress in understanding the molecular level regulation of hormogonium development and motility in filamentous cyanobacteria is discussed, with a focus on experiments performed using the genetically tractable model filamentous cyanobacterium Nostoc punctiforme, which retains the developmental complexity of field isolates.
Collapse
Affiliation(s)
- Douglas D. Risser
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado, USA
| |
Collapse
|
6
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
7
|
Hou YN, Ding WL, Jiang XX, Hu JL, Tan ZZ, Zhao KH. New Far-Red and Near-Infrared Fluorescent Phycobiliproteins with Excellent Brightness and Photostability. Chembiochem 2022; 23:e202200267. [PMID: 35811374 DOI: 10.1002/cbic.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/10/2022] [Indexed: 11/11/2022]
Abstract
Far-red and near-infrared fluorescent proteins can be used as fluorescence biomarkers in the region of maximal transmission of most tissues and facilitate multiplexing. Recently, we reported the generation and properties of far-red and near-infrared fluorescent phycobiliproteins, termed BeiDou Fluorescent Proteins (BDFPs), which can covalently bind the more readily accessible biliverdin. Far-red BDFPs maximally fluoresce at ∼670 nm, while near-infrared BDFPs fluoresce at ∼710 nm. In this work, we molecularly evolved BDFPs as follows: (a) mutations L58Q, S68R and M81K of BDFPs, which can maximally enhance the effective brightness in vivo by 350 %; (b) minimization and monomerization of far-red BDFPs 2.1, 2.2, 2.3, and near-infrared BDFPs 2.4, 2.5 and 2.6. These newly developed BDFPs are remarkably brighter than the formerly reported far-red and near-infrared fluorescent proteins. Their advantages are demonstrated by biolabeling in mammalian cells using super-resolution microscopy.
Collapse
Affiliation(s)
- Ya-Nan Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Ji-Ling Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zi-Zhu Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
8
|
Liu F, Hu H, Deng M, Xiang Z, Guo Y, Guan X, Li D, Hu Q, Lei W, Peng H, Chu J. A Bright Monomeric Near-Infrared Fluorescent Protein with an Excitation Peak at 633 nm for Labeling Cellular Protein and Reporting Protein-Protein Interaction. ACS Sens 2022; 7:1855-1866. [PMID: 35775925 DOI: 10.1021/acssensors.2c00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bright monomeric near-infrared fluorescent proteins (NIR-FPs) are useful as markers for labeling proteins and cells and as sensors for reporting molecular activities in living cells and organisms. However, current monomeric NIR-FPs are dim under excitation with common 633/635/640 nm lasers, limiting their broad use in cellular/subcellular level imaging. Here, we report a bright monomeric NIR-FP with maximum excitation at 633 nm, named mIFP663, engineered from Xanthomonas campestris pv Campestris phytochrome (XccBphP). mIFP663 has high molecular brightness with a large extinction coefficient (86,600 M-1 cm-1) and a decent quantum yield (19.4%), and high cellular brightness that is 3-6 times greater than those of spectrally similar NIR-FPs in HEK293T cells in the presence of exogenous BV. Moreover, we demonstrate that mIFP663 is able to label critical cellular and viral proteins without perturbing subcellular localization and virus replication, respectively. Finally, with mIFP663, we engineer improved bimolecular fluorescence complementation (BiFC) and new bioluminescent resonance energy transfer (BRET) systems to detect protein-protein interactions in living cells.
Collapse
Affiliation(s)
- Feng Liu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengying Deng
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zongqin Xiang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Yuting Guo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinmeng Guan
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, United Kingdom
| | - Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510630, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
9
|
A Ubiquitously Conserved Cyanobacterial Protein Phosphatase Essential for High Light Tolerance in a Fast-Growing Cyanobacterium. Microbiol Spectr 2022; 10:e0100822. [PMID: 35727069 PMCID: PMC9430166 DOI: 10.1128/spectrum.01008-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synechococcus elongatus UTEX 2973, the fastest-growing cyanobacterial strain known, optimally grows under extreme high light (HL) intensities of 1,500-2,500 μmol photons m-2 s-1, which is lethal to most other photosynthetic microbes. We leveraged the few genetic differences between Synechococcus 2973 and the HL sensitive strain Synechococcus elongatus PCC 7942 to unravel factors essential for the high light tolerance. We identified a novel protein in Synechococcus 2973 that we have termed HltA for High light tolerance protein A. Using bioinformatic tools, we determined that HltA contains a functional PP2C-type protein phosphatase domain. Phylogenetic analysis showed that the PP2C domain belongs to the bacterial-specific Group II family and is closely related to the environmental stress response phosphatase RsbU. Additionally, we showed that unlike any previously described phosphatases, HltA contains a single N-terminal regulatory GAF domain. We found hltA to be ubiquitous throughout cyanobacteria, indicative of its potentially important role in the photosynthetic lifestyle of these oxygenic phototrophs. Mutations in the hltA gene resulted in severe defects specific to high light growth. These results provide evidence that hltA is a key factor in the tolerance of Synechococcus 2973 to high light and will open new insights into the mechanisms of cyanobacterial light stress response. IMPORTANCE Cyanobacteria are a diverse group of photosynthetic prokaryotes. The cyanobacterium Synechococcus 2973 is a high light tolerant strain with industrial promise due to its fast growth under high light conditions and the availability of genetic modification tools. Currently, little is known about the high light tolerance mechanisms of Synechococcus 2973, and there are many unknowns overall regarding high light tolerance of cyanobacteria. In this study, a comparative genomic analysis of Synechococcus 2973 identified a single nucleotide polymorphism in a locus encoding a serine phosphatase as a key factor for high light tolerance. This novel GAF-containing phosphatase was found to be the sole Group II metal-dependent protein phosphatase that is evolutionarily conserved throughout cyanobacteria. These results shed new light on the light response mechanisms of Synechococcus 2973, improving our understanding of environmental stress response. Additionally, this work will help facilitate the development of Synechococcus 2973 as an industrially useful organism.
Collapse
|
10
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Zahradník J, Dey D, Marciano S, Kolářová L, Charendoff CI, Subtil A, Schreiber G. A Protein-Engineered, Enhanced Yeast Display Platform for Rapid Evolution of Challenging Targets. ACS Synth Biol 2021; 10:3445-3460. [PMID: 34809429 PMCID: PMC8689690 DOI: 10.1021/acssynbio.1c00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Here, we enhanced the popular yeast display method by multiple rounds of DNA and protein engineering. We introduced surface exposure-tailored reporters, eUnaG2 and DnbALFA, creating a new platform of C and N terminal fusion vectors. The optimization of eUnaG2 resulted in five times brighter fluorescence and 10 °C increased thermostability than UnaG. The optimized DnbALFA has 10-fold the level of expression of the starting protein. Following this, different plasmids were developed to create a complex platform allowing a broad range of protein expression organizations and labeling strategies. Our platform showed up to five times better separation between nonexpressing and expressing cells compared with traditional pCTcon2 and c-myc labeling, allowing for fewer rounds of selection and achieving higher binding affinities. Testing 16 different proteins, the enhanced system showed consistently stronger expression signals over c-myc labeling. In addition to gains in simplicity, speed, and cost-effectiveness, new applications were introduced to monitor protein surface exposure and protein retention in the secretion pathway that enabled successful protein engineering of hard-to-express proteins. As an example, we show how we optimized the WD40 domain of the ATG16L1 protein for yeast surface and soluble bacterial expression, starting from a nonexpressing protein. As a second example, we show how using the here-presented enhanced yeast display method we rapidly selected high-affinity binders toward two protein targets, demonstrating the simplicity of generating new protein-protein interactions. While the methodological changes are incremental, it results in a qualitative enhancement in the applicability of yeast display for many applications.
Collapse
Affiliation(s)
- Jiří Zahradník
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| | - Debabrata Dey
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| | - Shir Marciano
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| | - Lucie Kolářová
- Institute
of Biotechnology, CAS v.v.i., Prumyslova 595, Vestec 252 50 Prague region, Czech Republic
| | - Chloé I. Charendoff
- Institut
Pasteur, Unité de Biologie cellulaire de l’infection
microbienne, 25 rue du Dr Roux, Paris 75015, France
| | - Agathe Subtil
- Institut
Pasteur, Unité de Biologie cellulaire de l’infection
microbienne, 25 rue du Dr Roux, Paris 75015, France
| | - Gideon Schreiber
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| |
Collapse
|
12
|
Sakai K, Kondo Y, Fujioka H, Kamiya M, Aoki K, Goto Y. Near-infrared imaging in fission yeast using a genetically encoded phycocyanobilin biosynthesis system. J Cell Sci 2021; 134:273759. [PMID: 34806750 DOI: 10.1242/jcs.259315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Near-infrared fluorescent protein (iRFP) is a bright and stable fluorescent protein with near-infrared excitation and emission maxima. Unlike the other conventional fluorescent proteins, iRFP requires biliverdin (BV) as a chromophore. Here, we report that phycocyanobilin (PCB) functions as a brighter chromophore for iRFP than BV, and that biosynthesis of PCB allows live-cell imaging with iRFP in the fission yeast Schizosaccharomyces pombe. We initially found that fission yeast cells did not produce BV and therefore did not show any iRFP fluorescence. The brightness of iRFP-PCB was higher than that of iRFP-BV both in vitro and in fission yeast. We introduced SynPCB2.1, a PCB biosynthesis system, into fission yeast, resulting in the brightest iRFP fluorescence. To make iRFP readily available in fission yeast, we developed an endogenous gene tagging system with iRFP and all-in-one integration plasmids carrying the iRFP-fused marker proteins together with SynPCB2.1. These tools not only enable the easy use of multiplexed live-cell imaging in fission yeast with a broader color palette, but also open the door to new opportunities for near-infrared fluorescence imaging in a wider range of living organisms. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
13
|
Shcherbakova DM. Near-infrared and far-red genetically encoded indicators of neuronal activity. J Neurosci Methods 2021; 362:109314. [PMID: 34375713 PMCID: PMC8403644 DOI: 10.1016/j.jneumeth.2021.109314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/15/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022]
Abstract
Genetically encoded fluorescent indicators of neuronal activity are ultimately developed to dissect functions of neuronal ensembles during behavior in living animals. Recent development of near-infrared shifted calcium and voltage indicators moved us closer to this goal and enabled crosstalk-free combination with blue light-controlled optogenetic tools for all-optical control and readout. Here I discuss designs of recent near-infrared and far-red calcium and voltage indicators, compare their properties and performance, and overview their applications to spectral multiplexing and in vivo imaging. I also provide perspectives for further development.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
14
|
Subach OM, Subach FV. GAF-CaMP3-sfGFP, An Enhanced Version of the Near-Infrared Genetically Encoded Positive Phytochrome-Based Calcium Indicator for the Visualization of Neuronal Activity. Int J Mol Sci 2020; 21:ijms21186883. [PMID: 32961791 PMCID: PMC7555670 DOI: 10.3390/ijms21186883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
The first generation of near-infrared, genetically encoded calcium indicators (NIR-GECIs) was developed from bacterial phytochrome-based fluorescent proteins that utilize biliverdin (BV) as the chromophore moiety. However, NIR-GECIs have some main drawbacks such as either an inverted response to calcium ions (in the case of NIR-GECO1) or a limited dynamic range and a lack of data about their application in neurons (in the case of GAF-CaMP2–superfolder green fluorescent protein (sfGFP)). Here, we developed an enhanced version of the GAF-CaMP2–sfGFP indicator, named GAF-CaMP3–sfGFP. The GAF-CaMP3–sfGFP demonstrated spectral characteristics, molecular brightness, and a calcium affinity similar to the respective characteristics for its progenitor, but a 2.9-fold larger ΔF/F response to calcium ions. As compared to GAF-CaMP2–sfGFP, in cultured HeLa cells, GAF-CaMP3–sfGFP had similar brightness but a 1.9-fold larger ΔF/F response to the elevation of calcium ions levels. Finally, we successfully utilized the GAF-CaMP3–sfGFP for the monitoring of the spontaneous and stimulated activity of neuronal cultures and compared its performance with the R-GECO1 indicator using two-color confocal imaging. In the cultured neurons, GAF-CaMP3–sfGFP showed a linear ΔF/F response in the range of 0–20 APs and in this range demonstrated a 1.4-fold larger ΔF/F response but a 1.3- and 2.4-fold slower rise and decay kinetics, respectively, as compared to the same parameters for the R-GECO1 indicator.
Collapse
Affiliation(s)
- Oksana M. Subach
- Correspondence: (O.M.S.); (F.V.S.); Tel.: +07-499-196 7100-3389 (O.M.S. & F.V.S.)
| | - Fedor V. Subach
- Correspondence: (O.M.S.); (F.V.S.); Tel.: +07-499-196 7100-3389 (O.M.S. & F.V.S.)
| |
Collapse
|
15
|
Broch F, Gautier A. Illuminating Cellular Biochemistry: Fluorogenic Chemogenetic Biosensors for Biological Imaging. Chempluschem 2020; 85:1487-1497. [PMID: 32644262 DOI: 10.1002/cplu.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Cellular activity is defined by the precise spatiotemporal regulation of various components, such as ions, small molecules, or proteins. Studying cell physiology consequently requires the optical recording of these processes, notably by using fluorescent biosensors. The recent development of various fluorogenic systems greatly expanded the palette of reporters to be included in these sensors design. Fluorogenic reporters consist of a protein or RNA tag that can complex either an endogenous or a synthetic fluorogenic dye (so-called fluorogen). The intrinsic nature of these tags, along with the high tunability of their cognate chromophore provide interesting features such as far-red to near-infrared emission, oxygen independence, or unprecedented color versatility. These engineered photoreceptors, self-labelling proteins, or noncovalent aptamers and protein tags were rapidly identified as promising reporters to observe biological events. This Minireview focuses on the new perspectives they offer to design unique and innovative biosensors, thus pushing the boundaries of cellular imaging.
Collapse
Affiliation(s)
- Fanny Broch
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France.,Institut Universitaire de France, France
| |
Collapse
|
16
|
Matlashov ME, Shcherbakova DM, Alvelid J, Baloban M, Pennacchietti F, Shemetov AA, Testa I, Verkhusha VV. A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nat Commun 2020; 11:239. [PMID: 31932632 PMCID: PMC6957686 DOI: 10.1038/s41467-019-13897-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/03/2019] [Indexed: 11/09/2022] Open
Abstract
Bright monomeric near-infrared (NIR) fluorescent proteins (FPs) are in high demand as protein tags for multicolor microscopy and in vivo imaging. Here we apply rational design to engineer a complete set of monomeric NIR FPs, which are the brightest genetically encoded NIR probes. We demonstrate that the enhanced miRFP series of NIR FPs, which combine high effective brightness in mammalian cells and monomeric state, perform well in both nanometer-scale imaging with diffraction unlimited stimulated emission depletion (STED) microscopy and centimeter-scale imaging in mice. In STED we achieve ~40 nm resolution in live cells. In living mice we detect ~105 fluorescent cells in deep tissues. Using spectrally distinct monomeric NIR FP variants, we perform two-color live-cell STED microscopy and two-color imaging in vivo. Having emission peaks from 670 nm to 720 nm, the next generation of miRFPs should become versatile NIR probes for multiplexed imaging across spatial scales in different modalities.
Collapse
Affiliation(s)
- Mikhail E Matlashov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Jonatan Alvelid
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Francesca Pennacchietti
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anton A Shemetov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA. .,Medicum, Faculty of Medicine, University of Helsinki, 00029, Helsinki, Finland.
| |
Collapse
|
17
|
Hou YN, Ding WL, Hu JL, Jiang XX, Tan ZZ, Zhao KH. Very Bright Phycoerythrobilin Chromophore for Fluorescence Biolabeling. Chembiochem 2019; 20:2777-2783. [PMID: 31145526 DOI: 10.1002/cbic.201900273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 11/07/2022]
Abstract
Biliproteins have extended the spectral range of fluorescent proteins into the far-red (FR) and near-infrared (NIR) regions. These FR and NIR fluorescent proteins are suitable for the bioimaging of mammalian tissues and are indispensable for multiplex labeling. Their application, however, presents considerable challenges in increasing their brightness, while maintaining emission in FR regions and oligomerization of monomers. Two fluorescent biliprotein triads, termed BDFP1.2/1.6:3.3:1.2/1.6, are reported. In mammalian cells, these triads not only have extremely high brightness in the FR region, but also have monomeric oligomerization. The BDFP1.2 and BDFP1.6 domains covalently bind to biliverdin, which is accessible in most cells. The BDFP3.3 domain noncovalently binds phycoerythrobilin that is added externally. A new method of replacing phycoerythrobilin with proteolytically digested BDFP3.3 facilitates this labeling. BDFP3.3 has a very high fluorescence quantum yield of 66 %, with maximal absorbance at λ=608 nm and fluorescence at λ=619 nm. In BDFP1.2/1.6:3.3:1.2/1.6, the excitation energy that is absorbed in the red region by phycoerythrobilin in the BDFP3.3 domain is transferred to biliverdin in the two BDFP1.2 or BDFP1.6 domains and fluoresces at λ≈670 nm. The combination of BDFP3.3 and BDFP1.2/1.6:3.3:1.2/1.6 can realize dual-color labeling. Labeling various proteins by fusion to these new fluorescent biliproteins is demonstrated in prokaryotic and mammalian cells.
Collapse
Affiliation(s)
- Ya-Nan Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Ji-Ling Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zi-Zhu Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
18
|
Fuenzalida Werner JP, Mishra K, Huang Y, Vetschera P, Glasl S, Chmyrov A, Richter K, Ntziachristos V, Stiel AC. Structure-Based Mutagenesis of Phycobiliprotein smURFP for Optoacoustic Imaging. ACS Chem Biol 2019; 14:1896-1903. [PMID: 31389680 DOI: 10.1021/acschembio.9b00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photo- or optoacoustics (OA) imaging is increasingly being used as a non-invasive imaging method that can simultaneously reveal structure and function in deep tissue. However, the most frequent transgenic OA labels are current fluorescent proteins that are not optimized for OA imaging. Thus, they lack OA signal strength, and their absorption maxima are positioned at short wavelengths, thus giving small penetration depths and strong background signals. Here, we apply insights from our recent determination of the structure of the fluorescent phycobiliprotein smURFP to mutate a range of residues to promote the nonradiative decay pathway that generates the OA signal. We identified hydrophobic and aromatic substitutions within the chromophore-binding pocket that substantially increase the intensity of the OA signal and red-shift the absorption. Our results demonstrate the feasibility of structure-based mutagenesis to repurpose fluorescent probes for OA imaging, and they may provide structure-function insights for de novo engineering of transgenic OA probes.
Collapse
Affiliation(s)
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Yuanhui Huang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Paul Vetschera
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Andriy Chmyrov
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technische Universität München, D-81675 Munich, Germany
| | - Klaus Richter
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technische Universität München, D-81675 Munich, Germany
| | - Andre C. Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
19
|
Gourinchas G, Etzl S, Winkler A. Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology. Curr Opin Struct Biol 2019; 57:72-83. [PMID: 30878713 PMCID: PMC6625962 DOI: 10.1016/j.sbi.2019.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
Abstract
Bacteriophytochromes are a subfamily of the diverse light responsive phytochrome photoreceptors. Considering their preferential interaction with biliverdin IXα as endogenous cofactor, they have recently been used for creating optogenetic tools and engineering fluorescent probes. Ideal absorption characteristics for the activation of bacteriophytochrome-based systems in the therapeutic near-infrared window as well the availability of biliverdin in mammalian tissues have resulted in tremendous progress in re-engineering bacteriophytochromes for diverse applications. At the same time, both the structural analysis and the functional characterization of diverse naturally occurring bacteriophytochrome systems have unraveled remarkable differences in signaling mechanisms and have so far only touched the surface of the evolutionary diversity within the family of bacteriophytochromes. This review highlights recent findings and future challenges.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Stefan Etzl
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
20
|
Subach OM, Barykina NV, Anokhin KV, Piatkevich KD, Subach FV. Near-Infrared Genetically Encoded Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome. Int J Mol Sci 2019; 20:ijms20143488. [PMID: 31315229 PMCID: PMC6678319 DOI: 10.3390/ijms20143488] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 02/01/2023] Open
Abstract
A variety of genetically encoded calcium indicators are currently available for visualization of calcium dynamics in cultured cells and in vivo. Only one of them, called NIR-GECO1, exhibits fluorescence in the near-infrared region of the spectrum. NIR-GECO1 is engineered based on the near-infrared fluorescent protein mIFP derived from bacterial phytochromes. However, NIR-GECO1 has an inverted response to calcium ions and its excitation spectrum is not optimal for the commonly used 640 nm lasers. Using small near-infrared bacterial phytochrome GAF-FP and calmodulin/M13-peptide pair, we developed a near-infrared calcium indicator called GAF-CaMP2. In vitro, GAF-CaMP2 showed a positive response of 78% and high affinity (Kd of 466 nM) to the calcium ions. It had excitation and emission maxima at 642 and 674 nm, respectively. GAF-CaMP2 had a 2.0-fold lower brightness, 5.5-fold faster maturation and lower pH stability compared to GAF-FP in vitro. GAF-CaMP2 showed 2.9-fold higher photostability than smURFP protein. The GAF-CaMP2 fusion with sfGFP demonstrated a ratiometric response with a dynamic range of 169% when expressed in the cytosol of mammalian cells in culture. Finally, we successfully applied the ratiometric version of GAF-CaMP2 for the simultaneous visualization of calcium transients in three organelles of mammalian cells using four-color fluorescence microscopy.
Collapse
Affiliation(s)
- Oksana M Subach
- National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | | | - Konstantin V Anokhin
- P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - Kiryl D Piatkevich
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Fedor V Subach
- National Research Center "Kurchatov Institute", Moscow 123182, Russia.
| |
Collapse
|
21
|
Karasev MM, Stepanenko OV, Rumyantsev KA, Turoverov KK, Verkhusha VV. Near-Infrared Fluorescent Proteins and Their Applications. BIOCHEMISTRY (MOSCOW) 2019; 84:S32-S50. [PMID: 31213194 DOI: 10.1134/s0006297919140037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High transparency, low light-scattering, and low autofluorescence of mammalian tissues in the near-infrared (NIR) spectral range (~650-900 nm) open a possibility for in vivo imaging of biological processes at the micro- and macroscales to address basic and applied problems in biology and biomedicine. Recently, probes that absorb and fluoresce in the NIR optical range have been engineered using bacterial phytochromes - natural NIR light-absorbing photoreceptors that regulate metabolism in bacteria. Since the chromophore in all these proteins is biliverdin, a natural product of heme catabolism in mammalian cells, they can be used as genetically encoded fluorescent probes, similarly to GFP-like fluorescent proteins. In this review, we discuss photophysical and biochemical properties of NIR fluorescent proteins, reporters, and biosensors and analyze their characteristics required for expression of these molecules in mammalian cells. Structural features and molecular engineering of NIR fluorescent probes are discussed. Applications of NIR fluorescent proteins and biosensors for studies of molecular processes in cells, as well as for tissue and organ visualization in whole-body imaging in vivo, are described. We specifically focus on the use of NIR fluorescent probes in advanced imaging technologies that combine fluorescence and bioluminescence methods with photoacoustic tomography.
Collapse
Affiliation(s)
- M M Karasev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Medicum, University of Helsinki, Helsinki, 00290, Finland
| | - O V Stepanenko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | - K A Rumyantsev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
| | - K K Turoverov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - V V Verkhusha
- Medicum, University of Helsinki, Helsinki, 00290, Finland. .,Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
22
|
A genetically encoded fluorescent temperature sensor derived from the photoactive Orange Carotenoid Protein. Sci Rep 2019; 9:8937. [PMID: 31222180 PMCID: PMC6586625 DOI: 10.1038/s41598-019-45421-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 11/09/2022] Open
Abstract
The heterogeneity of metabolic reactions leads to a non-uniform distribution of temperature in different parts of the living cell. The demand to study normal functioning and pathological abnormalities of cellular processes requires the development of new visualization methods. Previously, we have shown that the 35-kDa photoswitchable Orange Carotenoid Protein (OCP) has a strong temperature dependency of photoconversion rates, and its tertiary structure undergoes significant structural rearrangements upon photoactivation, which makes this protein a nano-sized temperature sensor. However, the determination of OCP conversion rates requires measurements of carotenoid absorption, which is not suitable for microscopy. In order to solve this problem, we fused green and red fluorescent proteins (TagGFP and TagRFP) to the structure of OCP, producing photoactive chimeras. In such chimeras, electronic excitation of the fluorescent protein is effectively quenched by the carotenoid in OCP. Photoactivation of OCP-based chimeras triggers rearrangements of complex geometry, permitting measurements of the conversion rates by monitoring changes of fluorescence intensity. This approach allowed us to determine the local temperature of the microenvironment. Future directions to improve the OCP-based sensor are discussed.
Collapse
|
23
|
Lanin AA, Chebotarev AS, Barykina NV, Subach FV, Zheltikov AM. The whither of bacteriophytochrome-based near-infrared fluorescent proteins: Insights from two-photon absorption spectroscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800353. [PMID: 30414251 DOI: 10.1002/jbio.201800353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 06/08/2023]
Abstract
We present one- and two-photon-absorption fluorescence spectroscopic analysis of biliverdin (BV) chromophore-based single-domain near-infrared fluorescent proteins (iRFPs). The results of these studies are used to estimate the internal electric fields acting on BV inside iRFPs and quantify the electric dipole properties of this chromophore, defining the red shift of excitation and emission spectra of BV-based iRFPs. The iRFP studied in this work is shown to fit well the global diagram of the red-shift tunability of currently available BV-based iRFPs as dictated by the quadratic Stark effect, suggesting the existence of the lower bound for the strongest red shifts attainable within this family of fluorescent proteins. The absolute value of the two-photon absorption (TPA) cross section of a fluorescent calcium sensor based on the studied iRFP is found to be significantly larger than the TPA cross sections of other widely used genetically encodable fluorescent calcium sensors.
Collapse
Affiliation(s)
- Aleksandr A Lanin
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Russia
| | - Artem S Chebotarev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia V Barykina
- INBICST, Moscow Institute of Physics and Technology, Moscow, Russia
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Fedor V Subach
- INBICST, Moscow Institute of Physics and Technology, Moscow, Russia
- Kurchatov Institute National Research Center, Moscow, Russia
| | - Aleksei M Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas
- Russian Quantum Center, Skolkovo, Russia
- Kurchatov Institute National Research Center, Moscow, Russia
| |
Collapse
|
24
|
Advances in Engineering and Application of Optogenetic Indicators for Neuroscience. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our ability to investigate the brain is limited by available technologies that can record biological processes in vivo with suitable spatiotemporal resolution. Advances in optogenetics now enable optical recording and perturbation of central physiological processes within the intact brains of model organisms. By monitoring key signaling molecules noninvasively, we can better appreciate how information is processed and integrated within intact circuits. In this review, we describe recent efforts engineering genetically-encoded fluorescence indicators to monitor neuronal activity. We summarize recent advances of sensors for calcium, potassium, voltage, and select neurotransmitters, focusing on their molecular design, properties, and current limitations. We also highlight impressive applications of these sensors in neuroscience research. We adopt the view that advances in sensor engineering will yield enduring insights on systems neuroscience. Neuroscientists are eager to adopt suitable tools for imaging neural activity in vivo, making this a golden age for engineering optogenetic indicators.
Collapse
|
25
|
Oliinyk OS, Shemetov AA, Pletnev S, Shcherbakova DM, Verkhusha VV. Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing. Nat Commun 2019; 10:279. [PMID: 30655515 PMCID: PMC6336887 DOI: 10.1038/s41467-018-08050-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/12/2018] [Indexed: 01/07/2023] Open
Abstract
From a single domain of cyanobacteriochrome (CBCR) we developed a near-infrared (NIR) fluorescent protein (FP), termed miRFP670nano, with excitation at 645 nm and emission at 670 nm. This is the first CBCR-derived NIR FP evolved to efficiently bind endogenous biliverdin chromophore and brightly fluoresce in mammalian cells. miRFP670nano is a monomer with molecular weight of 17 kDa that is 2-fold smaller than bacterial phytochrome (BphP)-based NIR FPs and 1.6-fold smaller than GFP-like FPs. Crystal structure of the CBCR-based NIR FP with biliverdin reveals a molecular basis of its spectral and biochemical properties. Unlike BphP-derived NIR FPs, miRFP670nano is highly stable to denaturation and degradation and can be used as an internal protein tag. miRFP670nano is an effective FRET donor for red-shifted NIR FPs, enabling engineering NIR FRET biosensors spectrally compatible with GFP-like FPs and blue-green optogenetic tools. miRFP670nano unlocks a new source of diverse CBCR templates for NIR FPs.
Collapse
Affiliation(s)
- Olena S Oliinyk
- Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Anton A Shemetov
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sergei Pletnev
- Basic Science Program, Macromolecular Crystallography Laboratory, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
26
|
Sheehan MM, Magaraci MS, Kuznetsov IA, Mancini JA, Kodali G, Moser CC, Dutton PL, Chow BY. Rational Construction of Compact de Novo-Designed Biliverdin-Binding Proteins. Biochemistry 2018; 57:6752-6756. [PMID: 30468389 PMCID: PMC6293442 DOI: 10.1021/acs.biochem.8b01076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the rational construction of de novo-designed biliverdin-binding proteins by first principles of protein design, informed by energy minimization modeling in Rosetta. The self-assembling tetrahelical bundles bind biliverdin IXa (BV) cofactor autocatalytically in vitro, like photosensory proteins that bind BV (and related bilins or linear tetrapyrroles) despite lacking sequence and structural homology to the natural counterparts. Upon identification of a suitable site for ligation of the cofactor to the protein scaffold, stepwise placement of residues stabilized BV within the hydrophobic core. Rosetta modeling was used in the absence of a high-resolution structure to inform the structure-function relationships of the cofactor binding pocket. Holoprotein formation stabilized BV, resulting in increased far-red BV fluorescence. Via removal of segments extraneous to cofactor stabilization or bundle stability, the initial 15 kDa de novo-designed fluorescence-activating protein was truncated without any change to its optical properties, down to a miniature 10 kDa "mini", in which the protein scaffold extends only a half-heptad repeat beyond the hypothetical position of the bilin D-ring. This work demonstrates how highly compact holoprotein fluorochromes can be rationally constructed using de novo protein design technology and natural cofactors.
Collapse
|
27
|
Riley KW, Gonzalez A, Risser DD. A partner-switching regulatory system controls hormogonium development in the filamentous cyanobacterium Nostoc punctiforme. Mol Microbiol 2018; 109:555-569. [PMID: 29995991 DOI: 10.1111/mmi.14061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 11/29/2022]
Abstract
Filamentous cyanobacteria exhibit developmental complexity, including the transient differentiation of motile hormogonia in many species. Using a forward genetic approach, a trio of genes unique to filamentous cyanobacteria encoding a putative Rsb-like partner-switching regulatory system (PSRS) was implicated in regulating hormogonium development in the model filamentous cyanobacterium Nostoc punctiforme. Analysis of in-frame deletion strains indicated that HmpU (putative serine phosphatase) and HmpV (STAS domain) enhance, while HmpW (putative serine kinase) represses motility and persistence of the hormogonium state. Protein-protein interaction studies demonstrated specificity between HmpW and HmpV. Epistasis analysis between hmpW and hmpV was consistent with HmpV acting as the downstream effector of the system, rather than regulation of a sigma factor by HmpW. Deletion of hmpU or hmpV reduced accumulation of extracellular PilA and hormogonium polysaccharide (HPS), and expression of type IV pilus- and HPS-specific genes was reduced in the ΔhmpV strain. Expression of the Hmp PSRS is induced in hormogonia, and the cytoplasmic localization of HmpV-GFPuv implies that its downstream target is probably cytoplasmic as well. Collectively, these results support a model where HmpU and HmpW antagonistically regulate the phosphorylation state of HmpV, and subsequently, unphosphorylated HmpV positively regulates an undefined downstream target to affect hormogonium-specific gene expression.
Collapse
Affiliation(s)
- Kelsey W Riley
- Department of Biology, University of the Pacific, Stockton, CA, 95211, USA
| | - Alfonso Gonzalez
- Department of Biology, University of the Pacific, Stockton, CA, 95211, USA
| | - Douglas D Risser
- Department of Biology, University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
28
|
Hu P, Guo R, Zhou M, Gärtner W, Zhao K. The Red‐/Green‐Switching GAF3 of Cyanobacteriochrome Slr1393 from
Synechocystis
sp. PCC6803 Regulates the Activity of an Adenylyl Cyclase. Chembiochem 2018; 19:1887-1895. [DOI: 10.1002/cbic.201800323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ping‐Ping Hu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Rui Guo
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Ming Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Wolfgang Gärtner
- Institute for Analytical ChemistryUniversity of Leipzig Linnéstrasse 3 04103 Leipzig Germany
| | - Kai‐Hong Zhao
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
29
|
Mancini JA, Sheehan M, Kodali G, Chow BY, Bryant DA, Dutton PL, Moser CC. De novo synthetic biliprotein design, assembly and excitation energy transfer. J R Soc Interface 2018; 15:20180021. [PMID: 29618529 PMCID: PMC5938588 DOI: 10.1098/rsif.2018.0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022] Open
Abstract
Bilins are linear tetrapyrrole chromophores with a wide range of visible and near-visible light absorption and emission properties. These properties are tuned upon binding to natural proteins and exploited in photosynthetic light-harvesting and non-photosynthetic light-sensitive signalling. These pigmented proteins are now being manipulated to develop fluorescent experimental tools. To engineer the optical properties of bound bilins for specific applications more flexibly, we have used first principles of protein folding to design novel, stable and highly adaptable bilin-binding four-α-helix bundle protein frames, called maquettes, and explored the minimal requirements underlying covalent bilin ligation and conformational restriction responsible for the strong and variable absorption, fluorescence and excitation energy transfer of these proteins. Biliverdin, phycocyanobilin and phycoerythrobilin bind covalently to maquette Cys in vitro A blue-shifted tripyrrole formed from maquette-bound phycocyanobilin displays a quantum yield of 26%. Although unrelated in fold and sequence to natural phycobiliproteins, bilin lyases nevertheless interact with maquettes during co-expression in Escherichia coli to improve the efficiency of bilin binding and influence bilin structure. Bilins bind in vitro and in vivo to Cys residues placed in loops, towards the amino end or in the middle of helices but bind poorly at the carboxyl end of helices. Bilin-binding efficiency and fluorescence yield are improved by Arg and Asp residues adjacent to the ligating Cys on the same helix and by His residues on adjacent helices.
Collapse
Affiliation(s)
- Joshua A Mancini
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Molly Sheehan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Goryashchenko AS, Khrenova MG, Savitsky AP. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells. Methods Appl Fluoresc 2018; 6:022001. [DOI: 10.1088/2050-6120/aa9e47] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Khrenova MG, Kulakova AM, Nemukhin AV. Competition between two cysteines in covalent binding of biliverdin to phytochrome domains. Org Biomol Chem 2018; 16:7518-7529. [DOI: 10.1039/c8ob02262c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we disclose a mechanism of competing chemical reactions of protein assembly for a bacterial phytochrome using modern methods of molecular modeling.
Collapse
Affiliation(s)
- Maria G. Khrenova
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
- Federal Research Center of Biotechnology
| | - Anna M. Kulakova
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
| | - Alexander V. Nemukhin
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russian Federation
- Emanuel Institute of Biochemical Physics
| |
Collapse
|
32
|
Piatkevich KD, Suk HJ, Kodandaramaiah SB, Yoshida F, DeGennaro EM, Drobizhev M, Hughes TE, Desimone R, Boyden ES, Verkhusha VV. Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes in Neuroimaging. Biophys J 2017; 113:2299-2309. [PMID: 29017728 DOI: 10.1016/j.bpj.2017.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 11/17/2022] Open
Abstract
Several series of near-infrared (NIR) fluorescent proteins (FPs) were recently engineered from bacterial phytochromes but were not systematically compared in neurons. To fluoresce, NIR FPs utilize an enzymatic derivative of heme, the linear tetrapyrrole biliverdin, as a chromophore whose level in neurons is poorly studied. Here, we evaluated NIR FPs of the iRFP protein family, which were reported to be the brightest in non-neuronal mammalian cells, in primary neuronal culture, in brain slices of mouse and monkey, and in mouse brain in vivo. We applied several fluorescence imaging modes, such as wide-field and confocal one-photon and two-photon microscopy, to compare photochemical and biophysical properties of various iRFPs. The iRFP682 and iRFP670 proteins exhibited the highest brightness and photostability under one-photon and two-photon excitation modes, respectively. All studied iRFPs exhibited efficient binding of the endogenous biliverdin chromophore in cultured neurons and in the mammalian brain and can be readily applied to neuroimaging.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- Media Lab, MIT, Cambridge, Massachusetts; MIT McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts
| | - Ho-Jun Suk
- Media Lab, MIT, Cambridge, Massachusetts; Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts
| | - Suhasa B Kodandaramaiah
- Media Lab, MIT, Cambridge, Massachusetts; MIT McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts
| | - Fumiaki Yoshida
- MIT McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts
| | - Ellen M DeGennaro
- MIT McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts
| | - Mikhail Drobizhev
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| | - Thomas E Hughes
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| | - Robert Desimone
- MIT McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts
| | - Edward S Boyden
- Media Lab, MIT, Cambridge, Massachusetts; MIT McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts; Department of Biological Engineering, MIT, Cambridge, Massachusetts; MIT Center for Neurobiological Engineering, MIT, Cambridge, Massachusetts.
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
33
|
Ding WL, Miao D, Hou YN, Jiang SP, Zhao BQ, Zhou M, Scheer H, Zhao KH. Small monomeric and highly stable near-infrared fluorescent markers derived from the thermophilic phycobiliprotein, ApcF2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1877-1886. [DOI: 10.1016/j.bbamcr.2017.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023]
|
34
|
Oliinyk OS, Chernov KG, Verkhusha VV. Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of Near-Infrared Fluorescent Probes. Int J Mol Sci 2017; 18:E1691. [PMID: 28771184 PMCID: PMC5578081 DOI: 10.3390/ijms18081691] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial photoreceptors absorb light energy and transform it into intracellular signals that regulate metabolism. Bacterial phytochrome photoreceptors (BphPs), some cyanobacteriochromes (CBCRs) and allophycocyanins (APCs) possess the near-infrared (NIR) absorbance spectra that make them promising molecular templates to design NIR fluorescent proteins (FPs) and biosensors for studies in mammalian cells and whole animals. Here, we review structures, photochemical properties and molecular functions of several families of bacterial photoreceptors. We next analyze molecular evolution approaches to develop NIR FPs and biosensors. We then discuss phenotypes of current BphP-based NIR FPs and compare them with FPs derived from CBCRs and APCs. Lastly, we overview imaging applications of NIR FPs in live cells and in vivo. Our review provides guidelines for selection of existing NIR FPs, as well as engineering approaches to develop NIR FPs from the novel natural templates such as CBCRs.
Collapse
Affiliation(s)
- Olena S Oliinyk
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Konstantin G Chernov
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Vladislav V Verkhusha
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
35
|
Stepanenko OV, Stepanenko OV, Bublikov G, Kuznetsova I, Verkhusha V, Turoverov K. Stabilization of structure in near-infrared fluorescent proteins by binding of biliverdin chromophore. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Baloban M, Shcherbakova DM, Pletnev S, Pletnev VZ, Lagarias JC, Verkhusha VV. Designing brighter near-infrared fluorescent proteins: insights from structural and biochemical studies. Chem Sci 2017; 8:4546-4557. [PMID: 28936332 PMCID: PMC5590093 DOI: 10.1039/c7sc00855d] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
Abstract
Brighter near-infrared (NIR) fluorescent proteins (FPs) are required for multicolor microscopy and deep-tissue imaging. Here, we present structural and biochemical analyses of three monomeric, spectrally distinct phytochrome-based NIR FPs, termed miRFPs. The miRFPs are closely related and differ by only a few amino acids, which define their molecular brightness, brightness in mammalian cells, and spectral properties. We have identified the residues responsible for the spectral red-shift, revealed a new chromophore bound simultaneously to two cysteine residues in the PAS and GAF domains in blue-shifted NIR FPs, and uncovered the importance of amino acid residues in the N-terminus of NIR FPs for their molecular and cellular brightness. The novel chromophore covalently links the N-terminus of NIR FPs with their C-terminal GAF domain, forming a topologically closed knot in the structure, and also contributes to the increased brightness. Based on our studies, we suggest a strategy to develop spectrally distinct NIR FPs with enhanced brightness.
Collapse
Affiliation(s)
- Mikhail Baloban
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center , Albert Einstein College of Medicine , Bronx , New York 10461 , USA .
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center , Albert Einstein College of Medicine , Bronx , New York 10461 , USA .
| | - Sergei Pletnev
- Macromolecular Crystallography Laboratory , National Cancer Institute , Leidos Biomedical Research Inc. , Basic Research Program , Argonne , Illinois 60439 , USA
| | - Vladimir Z Pletnev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow 117997 , Russian Federation
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology , University of California in Davis , California 95616 , USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center , Albert Einstein College of Medicine , Bronx , New York 10461 , USA .
- Department of Biochemistry and Developmental Biology , Faculty of Medicine , University of Helsinki , Helsinki 00029 , Finland
| |
Collapse
|
37
|
Lu L, Zhao BQ, Miao D, Ding WL, Zhou M, Scheer H, Zhao KH. A Simple Preparation Method for Phytochromobilin. Photochem Photobiol 2017; 93:675-680. [DOI: 10.1111/php.12710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Lu Lu
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Bao-Qing Zhao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Dan Miao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Hugo Scheer
- Department Biologie I; Universität München; München Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
38
|
Chernov KG, Redchuk TA, Omelina ES, Verkhusha VV. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes. Chem Rev 2017; 117:6423-6446. [DOI: 10.1021/acs.chemrev.6b00700] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Konstantin G. Chernov
- Department
of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Taras A. Redchuk
- Department
of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Evgeniya S. Omelina
- Department
of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Vladislav V. Verkhusha
- Department
of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Department
of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
39
|
Liu C, Gong X, Lin R, Liu F, Chen J, Wang Z, Song L, Chu J. Advances in Imaging Techniques and Genetically Encoded Probes for Photoacoustic Imaging. Am J Cancer Res 2016; 6:2414-2430. [PMID: 27877244 PMCID: PMC5118604 DOI: 10.7150/thno.15878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/31/2016] [Indexed: 11/05/2022] Open
Abstract
Photoacoustic (PA) imaging is a rapidly emerging biomedical imaging modality that is capable of visualizing cellular and molecular functions with high detection sensitivity and spatial resolution in deep tissue. Great efforts and progress have been made on the development of various PA imaging technologies with improved resolution and sensitivity over the past two decades. Various PA probes with high contrast have also been extensively developed, with many important biomedical applications. In comparison with chemical dyes and nanoparticles, genetically encoded probes offer easier labeling of defined cells within tissues or proteins of interest within a cell, have higher stability in vivo, and eliminate the need for delivery of exogenous substances. Genetically encoded probes have thus attracted increasing attention from researchers in engineering and biomedicine. In this review, we aim to provide an overview of the existing PA imaging technologies and genetically encoded PA probes, and describe further improvements in PA imaging techniques and the near-infrared photochromic protein BphP1, the most sensitive genetically encoded probe thus far, as well as the potential biomedical applications of BphP1-based PA imaging in vivo.
Collapse
|
40
|
Rockwell NC, Martin SS, Lagarias JC. Identification of Cyanobacteriochromes Detecting Far-Red Light. Biochemistry 2016; 55:3907-19. [DOI: 10.1021/acs.biochem.6b00299] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| |
Collapse
|
41
|
Pandey N, Kuypers BE, Nassif B, Thomas EE, Alnahhas RN, Segatori L, Silberg JJ. Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation. Biochemistry 2016; 55:3763-73. [PMID: 27304983 DOI: 10.1021/acs.biochem.6b00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFPs to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified 27 circularly permuted iRFPs that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants that initiated translation within the PAS and GAF domains were discovered. Circularly permuted iRFPs retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a quantum yield similar to that of iRFPs but exhibited increased resistance to chemical denaturation, suggesting that the observed increase in the magnitude of the signal arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step toward the creation of near-infrared biosensors with expanded chemical sensing functions for in vivo imaging.
Collapse
Affiliation(s)
- Naresh Pandey
- Department of Biosciences, Rice University , Houston, Texas 77005, United States.,Biochemistry and Cell Biology Graduate Program, Rice University , Houston, Texas 77005, United States
| | - Brianna E Kuypers
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University , Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University , Houston, Texas 77005, United States
| | - Barbara Nassif
- Department of Biosciences, Rice University , Houston, Texas 77005, United States
| | - Emily E Thomas
- Department of Biosciences, Rice University , Houston, Texas 77005, United States.,Biochemistry and Cell Biology Graduate Program, Rice University , Houston, Texas 77005, United States
| | - Razan N Alnahhas
- Department of Biosciences, Rice University , Houston, Texas 77005, United States.,Biochemistry and Cell Biology Graduate Program, Rice University , Houston, Texas 77005, United States
| | - Laura Segatori
- Department of Biosciences, Rice University , Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University , Houston, Texas 77005, United States.,Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of Biosciences, Rice University , Houston, Texas 77005, United States.,Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
42
|
Champa D, Orlacchio A, Patel B, Ranieri M, Shemetov AA, Verkhusha VV, Cuervo AM, Di Cristofano A. Obatoclax kills anaplastic thyroid cancer cells by inducing lysosome neutralization and necrosis. Oncotarget 2016; 7:34453-71. [PMID: 27144341 PMCID: PMC5085168 DOI: 10.18632/oncotarget.9121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 12/03/2022] Open
Abstract
Poorly differentiated and anaplastic thyroid carcinomas are very aggressive, almost invariably lethal neoplasms for which no effective treatment exists. These tumors are intrinsically resistant to cell death, even when their driver oncogenic signaling pathways are inhibited.We have undertaken a detailed analysis, in mouse and human thyroid cancer cells, of the mechanism through which Obatoclax, a pan-inhibitor of the anti-apoptotic proteins of the BCL2 family, effectively reduces tumor growth in vitro and in vivo.We demonstrate that Obatoclax does not induce apoptosis, but rather necrosis of thyroid cancer cells, and that non-transformed thyroid cells are significantly less affected by this compound. Surprisingly, we show that Obatoclax rapidly localizes to the lysosomes and induces loss of acidification, block of lysosomal fusion with autophagic vacuoles, and subsequent lysosomal permeabilization. Notably, prior lysosome neutralization using different V-ATPase inhibitors partially protects cancer cells from the toxic effects of Obatoclax. Although inhibition of autophagy does not affect Obatoclax-induced cell death, selective down-regulation of ATG7, but not of ATG5, partially impairs Obatoclax effects, suggesting the existence of autophagy-independent functions for ATG7. Strikingly, Obatoclax killing activity depends only on its accumulation in the lysosomes, and not on its interaction with BCL2 family members.Finally, we show that also other lysosome-targeting compounds, Mefloquine and LLOMe, readily induce necrosis in thyroid cancer cells, and that Mefloquine significantly impairs tumor growth in vivo, highlighting a clear vulnerability of these aggressive, apoptosis-resistant tumors that can be therapeutically exploited.
Collapse
Affiliation(s)
- Devora Champa
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arturo Orlacchio
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bindi Patel
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michela Ranieri
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anton A Shemetov
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
43
|
Yuan C, Li HZ, Tang K, Gärtner W, Scheer H, Zhou M, Zhao KH. Near infrared fluorescent biliproteins generated from bacteriophytochrome AphB of Nostoc sp. PCC 7120. Photochem Photobiol Sci 2016; 15:546-53. [PMID: 27004456 DOI: 10.1039/c5pp00442j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The genome of the cyanobacterium Nostoc sp. PCC 7120 encodes a large number of putative bacteriophytochrome and cyanobacteriochrome photoreceptors that, due to their long-wavelength absorption and fluorescence emission, might serve as fluorescent tags in intracellular investigations. We show that the PAS-GAF domain of the bacteriophytochrome, AphB, binds biliverdin covalently and exhibits, besides its reversible photochemistry, a moderate fluorescence in the near infrared (NIR) spectral region. It was selected for further increasing the brightness while retaining the NIR fluorescence. In the first step, amino acids assumed to improve fluorescence were selectively mutated. The resulting variants were then subjected to several rounds of random mutagenesis and screened for enhanced fluorescence in the NIR. The brightness of optimized PAS-GAF variants increased more than threefold compared to that of wt AphB(1-321), with only insignificant spectral shifts (Amax around 695 nm, and Fmax around 720 nm). In general, the brightness increases with decreasing wavelengths, which allows for a selection of the fluorophore depending on the optical properties of the tissue. A spectral heterogeneity was observed when residue His260, located in close proximity to the chromophore, was mutated to Tyr, emphasizing the strong effects of the environment on the electronic properties of the bound biliverdin chromophore.
Collapse
Affiliation(s)
- Che Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | | | | | | | | | | | | |
Collapse
|