1
|
Sheikhi K, Ghaderi S, Firouzi H, Rahimibarghani S, Shabani E, Afkhami H, Yarahmadi A. Recent advances in mesenchymal stem cell therapy for multiple sclerosis: clinical applications and challenges. Front Cell Dev Biol 2025; 13:1517369. [PMID: 39963155 PMCID: PMC11830822 DOI: 10.3389/fcell.2025.1517369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS), is characterized by inflammation, demyelination, and neurodegeneration, leading to diverse clinical manifestations such as fatigue, sensory impairment, and cognitive dysfunction. Current pharmacological treatments primarily target immune modulation but fail to arrest disease progression or entirely reverse CNS damage. Mesenchymal stem cell (MSC) therapy offers a promising alternative, leveraging its immunomodulatory, neuroprotective, and regenerative capabilities. This review provides an in-depth analysis of MSC mechanisms of action, including immune system regulation, promotion of remyelination, and neuroregeneration. It examines preclinical studies and clinical trials evaluating the efficacy, safety, and limitations of MSC therapy in various MS phenotypes. Special attention is given to challenges such as delivery routes, dosing regimens, and integrating MSCs with conventional therapies. By highlighting advancements and ongoing challenges, this review underscores the potential of MSCs to revolutionize MS treatment, paving the way for personalized and combinatory therapeutic approaches.
Collapse
Affiliation(s)
- Kamran Sheikhi
- Kurdistan University of Medical Sciences, Kurdistan, Iran
| | | | - Hassan Firouzi
- Department of Medical Laboratory, Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Sarvenaz Rahimibarghani
- Department of Physical Medicine and Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| |
Collapse
|
2
|
Qi L, Hu L, Qian R, Ye B, Feng Y, Deng Y, Wang C, Zhou C, Liu G, Gao X, Lin C, Ding Q, Song C, Zhao Z, Lin Z, Zhu J, Zhang M. Advances in mesenchymal stem cell-centered stem cell therapy in the treatment of hypoxic-ischemic injury. Int Immunopharmacol 2024; 143:113430. [PMID: 39437489 DOI: 10.1016/j.intimp.2024.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal death and neurological dysfunction for which no particularly effective treatment is available. Stem cells possess multi-directional differentiation potential and can secrete a variety of cytokines. They not only have the ability to replace tissue and repair lesions but also improve neurological damage caused by HIBD through paracrine mechanisms, including anti-apoptosis, reduction of inflammation, and promotion of endogenous repair. Recently, as research on stem cells, particularly mesenchymal stem cells, has deepened, the application of stem cells in treating HIBD has become a prominent research topic, yielding fruitful results, particularly regarding the neuroprotective effects and mechanisms of the stem cell paracrine pathway. With advances in stem cell injection, distribution, and biomaterial incorporation, applications of stem cells have become more widespread and comprehensive. This review summarizes and discusses the research progress on stem cells in HIBD treatment to provide theoretical support for HIBD treatment and enhance the feasibility of clinical translation.
Collapse
Affiliation(s)
- Lixin Qi
- Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Hu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rengcheng Qian
- Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bangming Ye
- Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yani Feng
- Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixuan Deng
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenyi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunting Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guanhao Liu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuying Gao
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congying Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiang Ding
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunyu Song
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziming Zhao
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jianghu Zhu
- Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Min Zhang
- Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Silva RCMC. The dichotomic role of cytokines in aging. Biogerontology 2024; 26:17. [PMID: 39621124 DOI: 10.1007/s10522-024-10152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The chronic inflammation present in aged individuals is generally depicted as a detrimental player for longevity. Here, it is discussed several beneficial effects associated with the cytokines that are chronically elevated in inflammaging. These cytokines, such as IL-1β, type I interferons, IL-6 and TNF positively regulate macroautophagy, mitochondrial function, anti-tumor immune responses and skeletal muscle biogenesis, possibly contributing to longevity. On the other side, the detrimental and antagonistic role of these cytokines including the induction of sarcopenia, tissue damage and promotion of tumorigenesis are also discussed, underscoring the dichotomy associated with inflammaging and its players. In addition, it is discussed the role of the anti-inflammatory cytokine IL-10 and other cytokines that affect aging in a more linear way, such as IL-11, which promotes senescence, and IL-4 and IL-15, which promotes longevity. It is also discussed more specific regulators of aging that are downstream cytokines-mediated signaling.
Collapse
|
4
|
Kerkis I, da Silva ÁP, Araldi RP. The impact of interleukin-6 (IL-6) and mesenchymal stem cell-derived IL-6 on neurological conditions. Front Immunol 2024; 15:1400533. [PMID: 39015561 PMCID: PMC11249726 DOI: 10.3389/fimmu.2024.1400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/04/2024] [Indexed: 07/18/2024] Open
Abstract
Interleukin-6 (IL-6) is a versatile cytokine crucial for immune response modulation, inflammation regulation, and various physiological processes in the body. Its wide-ranging functions underscore its importance in maintaining health. Dysregulated IL-6 is closely associated with many diseases, making it a key research and therapeutic target. Elevated IL-6 levels in the central nervous system worsen neuroinflammation in neurodegenerative diseases by activating microglia and astrocytes and releasing pro-inflammatory cytokines and neurotoxic molecules. Moreover, dysregulated IL-6 weakens the blood-brain barrier, exacerbating neuroinflammation and neuronal damage by allowing peripheral immune cells and inflammatory mediators to enter the brain. Mesenchymal stem cells (MSCs) show promise in modulating neuroinflammation by regulating IL-6 levels. They effectively suppress pro-inflammatory cytokines, including IL-6, while promoting anti-inflammatory factors. This therapeutic approach highlights the importance of targeting IL-6 and other inflammatory mediators to alleviate neuroinflammation and its adverse effects on neurological disorders. This review provides a comprehensive overview of IL-6's involvement in neurological disorders, examining endogenous IL-6 and IL-6 derived from MSCs. We explore IL-6's mechanisms affecting neuronal function, survival, and immune modulation in the central nervous system. Additionally, we discuss the potential of MSC-derived IL-6 in neuroregeneration and neuroprotection. By elucidating IL-6's interplay with neurological pathologies, this review offers insights into novel therapeutic strategies targeting IL-6 signaling pathways for neurological disorders.
Collapse
Affiliation(s)
- Irina Kerkis
- Genetics Laboratory, Center of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - Álvaro Prieto da Silva
- Genetics Laboratory, Center of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - Rodrigo Pinheiro Araldi
- BioDecision Analytics Ltda., São Paulo, Brazil
- Post-graduation Program in Structural and Functional Biology, Paulista School of Medicine Escola Paulista de Medicina (EPM), Federal University of São Paulo Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
5
|
Shan C, Zhang C, Zhang C. The Role of IL-6 in Neurodegenerative Disorders. Neurochem Res 2024; 49:834-846. [PMID: 38227113 DOI: 10.1007/s11064-023-04085-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
"Neurodegenerative disorder" is an umbrella term for a group of fatal progressive neurological illnesses characterized by neuronal loss and inflammation. Interleukin-6 (IL-6), a pleiotropic cytokine, significantly affects the activities of nerve cells and plays a pivotal role in neuroinflammation. Furthermore, as high levels of IL-6 have been frequently observed in association with several neurodegenerative disorders, it may potentially be used as a biomarker for the progression and prognosis of these diseases. This review summarizes the production and function of IL-6 as well as its downstream signaling pathways. Moreover, we make a comprehensive review on the roles of IL-6 in neurodegenerative disorders and its potential clinical application.
Collapse
Affiliation(s)
- Chen Shan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Atallah M, Yamashita T, Hu X, Hu X, Abe K. Edaravone Confers Neuroprotective, Anti-inflammatory, and Antioxidant Effects on the Fetal Brain of a Placental-ischemia Mouse Model. J Neuroimmune Pharmacol 2023; 18:640-656. [PMID: 37924374 DOI: 10.1007/s11481-023-10095-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
Reduced uterine perfusion pressure (RUPP) is a well-established model which mimics many clinical features of preeclampsia (PE). Edaravone is a free radical scavenger with neuroprotective, antioxidant and anti-inflammatory effects against different models of cerebral ischemia. Therefore, we aimed to elucidate the different potential mechanisms through which PE affects fetal brain development using our previously established RUPP-placental ischemia mouse model. In addition, we investigated the neuroprotective effect of edaravone against the RUPP-induced fetal brain development alterations. On gestation day (GD) 13, pregnant mice were divided into four groups; sham (SV), edaravone (SE), RUPP (RV), and RUPP+edaravone (RE). SV and SE groups underwent sham surgeries, however, RV and RE groups were subjected to RUPP surgery via bilateral uterine ligation. Edaravone (3mg/kg) was injected via tail i.v. injection from GD 14-18. The fetal brains from different groups were collected on GD 18 and subjected to further investigations. The results showed that RUPP altered the structure of fetal brain cortex, induced neurodegeneration, increased the expression of the investigated pro-inflammatory markers; TNF-α, IL-6, IL-1β, and MMP-9. RUPP resulted in microglial and astrocyte activation in the fetal brains, in addition to upregulation of Hif-1α and iNOS. Edaravone conferred a neuroprotective effect via alleviating the inflammatory response, restoring the neuronal structure and decreasing oxidative stress in the developing fetal brain. In conclusion, RUPP-placental ischemia mouse model could be a useful tool to further understand the underlying mechanisms of PE-induced child neuronal alterations. Edaravone could be a potential adjuvant therapy during PE to protect the developing fetal brain. The current study investigated the effects of a placenta-induced ischemia mouse model using reduced uterine perfusion pressure (RUPP) surgery on the fetal brain development and the potential neuroprotective effects of the drug edaravone. The study found that the RUPP model caused neurodegeneration and a pro-inflammatory response in the developing fetal brain, as well as hypoxia and oxidative stress. However, maternal injection of edaravone showed a strong ability to protect against these detrimental effects and target multiple pathways associated with neuronal damage. The current study suggests that the RUPP model could be useful for further study of the impact of preeclampsia on fetal brain development and that edaravone may have potential as a therapy for protecting against this damage.
Collapse
Affiliation(s)
- Marwa Atallah
- Vertebrates Comparative Anatomy and Embryology, Zoology Department, Faculty of Science, Menoufia University, Shibin El-Koom, Egypt.
| | - Toru Yamashita
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Xiao Hu
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Xinran Hu
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
- National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Zhang M, Liu Z, Zhou W, Shen M, Mao N, Xu H, Wang Y, Xu Z, Li M, Jiang H, Chen Y, Zhu J, Lin W, Yuan J, Lin Z. Ferrostatin-1 attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting ferroptosis. Transl Pediatr 2023; 12:1944-1970. [PMID: 38130589 PMCID: PMC10730959 DOI: 10.21037/tp-23-189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Background Hypoxic-ischemic brain damage (HIBD) is a type of brain damage that is caused by perinatal asphyxia and serious damages the central nervous system. At present, there is no effective drug for the treatment of this disease. Besides, the pathogenesis of HIBD remains elusive. While studies have shown that ferroptosis plays an important role in HIBD, its role and mechanism in HIBD are yet to be fully understood. Methods The HIBD model of neonatal rats was established using the Rice-Vannucci method. A complete medium of PC12 cells was adjusted to a low-sugar medium, and the oxygen-glucose deprivation model was established after continuous hypoxia for 12 h. Laser Doppler blood flow imaging was used to detect the blood flow intensity after modeling. 2,3,5-triphenyl tetrazolium chloride staining was employed to detect ischemic cerebral infarction in rat brain tissue, and hematoxylin and eosin staining and transmission electron microscopy were used to observe brain injury and mitochondrial damage. Immunofluorescence was applied to monitor the expression of GFAP. Real-time quantitative polymerase chain reaction, western blot, and immunofluorescence were utilized to detect the expression of messenger RNA and protein. The level of reactive oxygen species (ROS) in cells was detected using the ROS detection kit. Results The results showed that ferrostatin-1 (Fer-1) significantly alleviated the brain injury caused by hypoxia and ischemia. Fer-1 significantly increased the expression of SLC3A2, SLC7A11, ACSL3, GSS, and GPX4 (P<0.05) and dramatically decreased the expressions of GFAP, ACSL4, TFRC, FHC, FLC, 4-HNE, HIF-1α, and ROS (P<0.05). Conclusions Fer-1 inhibits ferroptosis and alleviates HIBD by potentially targeting the GPX4/ACSL3/ACSL4 axis; however, its specific mechanism warrants further exploration.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiming Liu
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Zhou
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Shen
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Niping Mao
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianghu Zhu
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junhui Yuan
- Department of Neonatology, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenlang Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Arakawa M, Sakamoto Y, Miyagawa Y, Nito C, Takahashi S, Nitahara-Kasahara Y, Suda S, Yamazaki Y, Sakai M, Kimura K, Okada T. iPSC-derived mesenchymal stem cells attenuate cerebral ischemia-reperfusion injury by inhibiting inflammatory signaling and oxidative stress. Mol Ther Methods Clin Dev 2023; 30:333-349. [PMID: 37637385 PMCID: PMC10448333 DOI: 10.1016/j.omtm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/11/2023] [Indexed: 08/29/2023]
Abstract
Induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) hold great promise as a cell source for transplantation into injured tissues to alleviate inflammation. However, the therapeutic efficacy of iMSC transplantation for ischemic stroke remains unknown. In this study, we evaluated the therapeutic effects of iMSC transplantation on brain injury after ischemia-reperfusion using a rat transient middle cerebral artery occlusion model and compared its therapeutic efficacy with that of bone marrow mesenchymal stem cells (BMMSCs). We showed that iMSCs and BMMSCs reduced infarct volumes after reperfusion and significantly improved motor function on days 3, 7, 14, 28, and 56 and cognitive function on days 28 and 56 after reperfusion compared with the vehicle group. Furthermore, immunological analyses revealed that transplantation of iMSCs and BMMSCs inhibited microglial activation and expression of proinflammatory cytokines and suppressed oxidative stress and neuronal cell death in the cerebral cortex at the ischemic border zone. No difference in therapeutic effect was observed between the iMSC and BMMSC groups. Taken together, our results demonstrate that iMSC therapy can be a practical alternative as a cell source for attenuation of brain injury and improvement of neurological function because of the unlimited supply of uniform therapeutic cells.
Collapse
Affiliation(s)
- Masafumi Arakawa
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuki Sakamoto
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Shiro Takahashi
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Vargas-Rodríguez P, Cuenca-Martagón A, Castillo-González J, Serrano-Martínez I, Luque RM, Delgado M, González-Rey E. Novel Therapeutic Opportunities for Neurodegenerative Diseases with Mesenchymal Stem Cells: The Focus on Modulating the Blood-Brain Barrier. Int J Mol Sci 2023; 24:14117. [PMID: 37762420 PMCID: PMC10531435 DOI: 10.3390/ijms241814117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.
Collapse
Affiliation(s)
- Pablo Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Alejandro Cuenca-Martagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| |
Collapse
|
10
|
Gholami Farashah MS, Mohammadi A, Javadi M, Soleimani Rad J, Shakouri SK, Meshgi S, Roshangar L. Bone marrow mesenchymal stem cells' osteogenic potential: superiority or non-superiority to other sources of mesenchymal stem cells? Cell Tissue Bank 2023; 24:663-681. [PMID: 36622494 DOI: 10.1007/s10561-022-10066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
Skeletal problems are an increasing issue due to the increase in the global aging population. Different statistics reports show that today, the global population is aging that results in skeletal problems, increased health system costs, and even higher mortality associated with skeletal problems. Common treatments such as surgery and bone grafts are not always effective and in some cases, they can even cause secondary problems such as infections or improper repair. Cell therapy is a method that can be utilized along with common treatments independently. Mesenchymal stem cells (MSCs) are a very important and efficient source in terms of different diseases, especially bone problems. These cells are present in different tissues such as bone marrow, adipose tissue, umbilical cord, placenta, dental pulp, peripheral blood, amniotic fluid and others. Among the types of MSCs, bone marrow mesenchymal stem cells (BMMSCs) are the most widely used source of these cells, which have appeared to be very effective and promising in terms of skeletal diseases, especially compared to the other sources of MSCs. This study focuses on the specific potential and content of BMMSCs from which the specific capacity of these cells originates, and compares their osteogenic potential with other types of MSCs, and also the future directions in the application of BMMSCs as a source for cell therapy.
Collapse
Affiliation(s)
- Mohammad Sadegh Gholami Farashah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Li Y, Liu T, Li X, Yang M, Liu T, Bao J, Jiang M, Hu L, Wang Y, Shao P, Jiang J. Combined surface functionalization of MSC membrane and PDA inhibits neurotoxicity induced by Fe 3O 4 in mice based on apoptosis and autophagy through the ASK1/JNK signaling pathway. Aging (Albany NY) 2023; 15:6933-6949. [PMID: 37470690 PMCID: PMC10415563 DOI: 10.18632/aging.204884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
The extensive utilization of iron oxide nanoparticles in medical and life science domains has led to a substantial rise in both occupational and public exposure to these particles. The potential toxicity of nanoparticles to living organisms, their impact on the environment, and the associated risks to human health have garnered significant attention and come to be a prominent area in contemporary research. The comprehension of the potential toxicity of nanoparticles has emerged as a crucial concern to safeguard human health and facilitate the secure advancement of nanotechnology. As nanocarriers and targeting agents, the biocompatibility of them determines the use scope and application prospects, meanwhile surface modification becomes an important measure to improve the biocompatibility. Three different types of iron oxide nanoparticles (Fe3O4, Fe3O4@PDA and MSCM-Fe3O4@PDA) were injected into mice through the tail veins. The acute neurotoxicity of them in mice was evaluated by measuring the levels of autophagy and apoptosis in the brain tissues. Our data revealed that iron oxide nanoparticles could cause nervous system damage by regulating the ASK1/JNK signaling pathway. Apoptosis and autophagy may play potential roles in this process. Exposure to combined surface functionalization of mesenchymal stem cell membrane and polydopamine showed the neuroprotective effect and may alleviate brain nervous system disorders.
Collapse
Affiliation(s)
- Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China
| | - Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Tianxin Liu
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Jindian Bao
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Miao Jiang
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Lingling Hu
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Yuzhuo Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Pu Shao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Théron A, Maumus M, Bony-Garayt C, Sirvent N, Biron-Andreani C, Jorgensen C, Noël D. Mesenchymal Stromal Cells Prevent Blood-induced Degeneration of Chondrocytes in a New Model of Murine Hemarthrosis. Hemasphere 2023; 7:e924. [PMID: 37388924 PMCID: PMC10306440 DOI: 10.1097/hs9.0000000000000924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Hemophilia is a rare congenital bleeding disorder caused by deficiency in coagulation factors VIII or IX, which is treated with prophylactic clotting factor concentrates. Nevertheless despite prophylaxis, spontaneous joint bleedings or hemarthroses still occur. The recurrent hemarthroses lead to progressive degradation of the joints and severe hemophilic arthropathy (HA) in patients with moderate and even mild forms of the disease. In absence of disease modifying treatment to stop or even delay HA progression, we aimed at evaluating the therapeutic potential of mesenchymal stromal cells (MSCs)-based therapy. We first developed a relevant and reproducible in vitro model of hemarthrosis relying on blood exposure of primary murine chondrocytes. We found that 30% whole blood for 4 days allowed to induce the characteristic features of hemarthrosis including low survival of chondrocytes, apoptosis induction, and dysregulation of chondrocyte markers in favor of a catabolic and inflammatory phenotype. We then evaluated the potential therapeutic effects of MSCs in this model using different conditions of coculture. Addition of MSCs improved the survival of chondrocytes when added either during the resolution or the acute phases of hemarthrosis and exerted a chondroprotective effect by enhancing the expression of anabolic markers, and reducing the expression of catabolic and inflammatory markers. We here provide the first proof-of-concept that MSCs may exert a therapeutic effect on chondrocytes under hemarthrosis conditions using a relevant in vitro model, thereby confirming a potential therapeutic interest for patients with recurrent joint bleedings.
Collapse
Affiliation(s)
- Alexandre Théron
- IRMB, University of Montpellier, INSERM, Montpellier, France
- Resources and Competence Center for hereditary hemorrhagic diseases, CHU Montpellier, France
- Department of Pediatric Oncology and Hematology, CHU Montpellier, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | | | - Nicolas Sirvent
- Department of Pediatric Oncology and Hematology, CHU Montpellier, France
| | | | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, France
| |
Collapse
|
13
|
Cheng M, Liang X, Shi L, Zhang Q, Zhang L, Gong Z, Luo S, Wang X, Zhang X. Folic acid deficiency exacerbates the inflammatory response of astrocytes after ischemia-reperfusion by enhancing the interaction between IL-6 and JAK-1/pSTAT3. CNS Neurosci Ther 2023; 29:1537-1546. [PMID: 36794521 PMCID: PMC10173718 DOI: 10.1111/cns.14116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
AIM To demonstrate the role of IL-6 and pSTAT3 in the inflammatory response to cerebral ischemia/reperfusion following folic acid deficiency (FD). METHODS The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in adult male Sprague-Dawley rats in vivo, and cultured primary astrocytes were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to emulate ischemia/reperfusion injury in vitro. RESULTS Glial fibrillary acidic protein (GFAP) expression significantly increased in astrocytes of the brain cortex in the MCAO group compared to the SHAM group. Nevertheless, FD did not further promote GFAP expression in astrocytes of rat brain tissue after MCAO. This result was further confirmed in the OGD/R cellular model. In addition, FD did not promote the expressions of TNF-α and IL-1β but raised IL-6 (Peak at 12 h after MCAO) and pSTAT3 (Peak at 24 h after MCAO) levels in the affected cortices of MCAO rats. In the in vitro model, the levels of IL-6 and pSTAT3 in astrocytes were significantly reduced by treatment with Filgotinib (JAK-1 inhibitor) but not AG490 (JAK-2 inhibitor). Moreover, the suppression of IL-6 expression reduced FD-induced increases in pSTAT3 and pJAK-1. In turn, inhibited pSTAT3 expression also depressed the FD-mediated increase in IL-6 expression. CONCLUSIONS FD led to the overproduction of IL-6 and subsequently increased pSTAT3 levels via JAK-1 but not JAK-2, which further promoted increased IL-6 expression, thereby exacerbating the inflammatory response of primary astrocytes.
Collapse
Affiliation(s)
- Man Cheng
- Department of Nutrition and Food Science, School of Public HealthTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public HealthTianjin Medical UniversityTianjinChina
| | - Xiaoshan Liang
- Department of Nutrition and Food Science, School of Public HealthTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public HealthTianjin Medical UniversityTianjinChina
| | - Linran Shi
- Department of Nutrition and Food Science, School of Public HealthTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public HealthTianjin Medical UniversityTianjinChina
| | - Qiang Zhang
- Department of Occupational and Environmental HealthSchool of Public Health, Tianjin Medical UniversityTianjinChina
| | - Liwen Zhang
- Department of Occupational and Environmental HealthSchool of Public Health, Tianjin Medical UniversityTianjinChina
| | - Zhongying Gong
- Department of NeurologyTianjin First Center Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Suhui Luo
- Department of Nutrition and Food Science, School of Public HealthTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public HealthTianjin Medical UniversityTianjinChina
| | - Xuan Wang
- Department of Nutrition and Food Science, School of Public HealthTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public HealthTianjin Medical UniversityTianjinChina
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public HealthTianjin Medical UniversityTianjinChina
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public HealthTianjin Medical UniversityTianjinChina
| |
Collapse
|
14
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
15
|
Yang X, Liao K, Deng IB, Zhang L. Knockdown of interleukin-6 plays a neuroprotective role against hypoxia-ischemia in neonatal rats via inhibition of caspase 3 and Bcl-2-associated X protein signaling pathway. IBRAIN 2022; 8:413-428. [PMID: 37786746 PMCID: PMC10529178 DOI: 10.1002/ibra.12067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/04/2023]
Abstract
This study aimed to investigate the role of interleukin-6 (IL-6) in the pathogenesis of neonatal hypoxic-ischemic encephalopathy (NHIE). Sprague-Dawley (SD) rats were used for the establishment of hypoxic-ischemic (HI) model. The Zea-Longa scoring was used to evaluate the extent of the neurological deficits. Triphenyl tetrazolium chloride (TTC) staining was used to measure the volume of infarction in the brain following HI protocol. The expression of IL-6 in the cortex and/or hippocampus at multiple time points after HI was examined by immunohistochemistry, western blotting and immunofluorescence. Moreover, small interfering RNAs (siRNA) were used to inhibit the expression of IL-6 in-vitro and in-vivo, and the concomitant expression of the Bcl-2 associated X protein (BAX) and caspase 3 was also measured. HI induced a significant brain damage, and these pathological changes were accompanied by IL-6 upregulation which was found localized in cortical neurons. The inhibition of IL-6 expression fostered neuronal and axonal growth, and a reduction in cellular apoptosis in cortical neuronal cultures, and cortex and hippocampus of neonatal rats. The expression of apoptotic markers such as BAX and caspase 3 was closely associated with IL-6. Downregulation of IL-6 could ameliorate HI-induced deficiencies by mediating the expression of caspase 3 and BAX.
Collapse
Affiliation(s)
- Xiu Yang
- Animal Model Research Center of Human DiseaseKunming Medical UniversityKunmingChina
| | - Ke‐Han Liao
- School of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Isaac B. Deng
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Lan‐Chun Zhang
- Animal Model Research Center of Human DiseaseKunming Medical UniversityKunmingChina
| |
Collapse
|
16
|
Insight into the Effects of High-Altitude Hypoxic Exposure on Learning and Memory. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4163188. [PMID: 36160703 PMCID: PMC9492407 DOI: 10.1155/2022/4163188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The earth land area is heterogeneous in terms of elevation; about 45% of its land area belongs to higher elevation with altitude above 500 meters compared to sea level. In most cases, oxygen concentration decreases as altitude increases. Thus, high-altitude hypoxic stress is commonly faced by residents in areas with an average elevation exceeding 2500 meters and those who have just entered the plateau. High-altitude hypoxia significantly affects advanced neurobehaviors including learning and memory (L&M). Hippocampus, the integration center of L&M, could be the most crucial target affected by high-altitude hypoxia exposure. Based on these points, this review thoroughly discussed the relationship between high-altitude hypoxia and L&M impairment, in terms of hippocampal neuron apoptosis and dysfunction, neuronal oxidative stress disorder, neurotransmitters and related receptors, and nerve cell energy metabolism disorder, which is of great significance to find potential targets for medical intervention. Studies illustrate that the mechanism of L&M damaged by high-altitude hypoxia should be further investigated based on the entire review of issues related to this topic.
Collapse
|
17
|
Neuroprotection of Bone Marrow-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicle-Enclosed miR-410 Correlates with HDAC4 Knockdown in Hypoxic-Ischemic Brain Damage. Neurochem Res 2022; 47:3150-3166. [PMID: 36028735 DOI: 10.1007/s11064-022-03670-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 10/15/2022]
Abstract
Evidence exists reporting that miR-410 may rescue neurological deficits, neuronal injury, and neuronal apoptosis after experimental hypoxic ischemia. This study aimed to explore the mechanism by which miR-410 transferred by bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) may alleviate hypoxic-ischemic brain damage (HIBD) in newborn mice. BMSCs were isolated from total bone marrow cells of femur and tibia of newborn mice, and primary neurons were extracted from the cerebral cortex of newborn mice within 24 h of birth. EVs were extracted from BMSCs transfected with the mimic or inhibitor of miR-410. Primary neurons were subjected to hypoxia and treated with overexpression (oe)-HDAC4, small interfering RNA (siRNA)-β-catenin, or Wnt pathway inhibitor and/or EV (miR-410 mimic) or EV (miR-410 inhibitor). A neonatal mouse HIBD model was established and treated with EVs. When BMSC-EVs were endocytosed by primary neurons, miR-410 was upregulated, neuronal viability was elevated, and apoptosis was inhibited. miR-410 in BMSC-EVs targeted HDAC4, thus increasing neuronal viability and reducing apoptosis. Conversely, overexpression of HDAC4 activated the Wnt pathway and enhanced the nuclear translocation of β-catenin. Treatment with miR-410-containing BMSC-EVs improved learning and memory abilities of HIBD mice while attenuating apoptosis by inactivating the Wnt pathway via targeting HDAC4. Taken together, the findings suggest that miR-410 delivered by BMSC-EVs alleviates HIBD by inhibiting HDAC4-dependent Wnt pathway activation.
Collapse
|
18
|
Ma X, Wang Y, Shi Y, Li S, Liu J, Li X, Zhong W, Pan Q. Exosomal miR-132-3p from mesenchymal stromal cells improves synaptic dysfunction and cognitive decline in vascular dementia. Stem Cell Res Ther 2022; 13:315. [PMID: 35841005 PMCID: PMC9284820 DOI: 10.1186/s13287-022-02995-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
Background/aims Vascular dementia (VD) results in cognition and memory deficit. Exosomes and their carried microRNAs (miRs) contribute to the neuroprotective effects of mesenchymal stromal cells, and miR-132-3p plays a key role in neuron plasticity. Here, we investigated the role and underlying mechanism of MSC EX and their miR-132-3p cargo in rescuing cognition and memory deficit in VD mice. Methods Bilateral carotid artery occlusion was used to generate a VD mouse model. MiR-132-3p and MSC EX levels in the hippocampus and cortex were measured. At 24-h post-VD induction, mice were administered with MSC EX infected with control lentivirus (EXCon), pre-miR-132-3p-expressing lentivirus (EXmiR-132-3p), or miR-132-3p antago lentivirus (EXantagomiR-132-3p) intravenously. Behavioral and cognitive tests were performed, and the mice were killed in 21 days after VD. The effects of MSC EX on neuron number, synaptic plasticity, dendritic spine density, and Aβ and p-Tau levels in the hippocampus and cortex were determined. The effects of MSC EX on oxygen–glucose deprivation (OGD)-injured neurons with respect to apoptosis, and neurite elongation and branching were determined. Finally, the expression levels of Ras, phosphorylation of Akt, GSK-3β, and Tau were also measured. Results Compared with normal mice, VD mice exhibited significantly decreased miR-132-3p and MSC EX levels in the cortex and hippocampus. Compared with EXCon treatment, the infusion of EXmiR-132-3p was more effective at improving cognitive function and increasing miR-132-3p level, neuron number, synaptic plasticity, and dendritic spine density, while decreasing Aβ and p-Tau levels in the cortex and hippocampus of VD mice. Conversely, EXantagomiR-132-3p treatment significantly decreased miR-132-3p expression in cortex and hippocampus, as well as attenuated EXmiR-132-3p treatment-induced functional improvement. In vitro, EXmiR-132-3p treatment inhibited RASA1 protein expression, but increased Ras and the phosphorylation of Akt and GSK-3β, and decreased p-Tau levels in primary neurons by delivering miR-132-3p, which resulted in reduced apoptosis, and increased neurite elongation and branching in OGD-injured neurons. Conclusions Our studies suggest that miR-132-3p cluster-enriched MSC EX promotes the recovery of cognitive function by improving neuronal and synaptic dysfunction through activation of the Ras/Akt/GSK-3β pathway induced by downregulation of RASA1. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02995-w.
Collapse
Affiliation(s)
- Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yan Wang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524001, China
| | - Yumeng Shi
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Suqing Li
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jinhua Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524001, China
| | - Wangtao Zhong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
19
|
Shi X, Zhong X, Deng L, Wu X, Zhang P, Zhang X, Wang G. Mesenchymal stem cell-derived extracellular vesicle-enclosed miR-93 prevents hypoxic-ischemic brain damage in rats. Neuroscience 2022; 500:12-25. [PMID: 35803492 DOI: 10.1016/j.neuroscience.2022.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) usually induces chronic neurological disorder and even acute death, but effective neuroprotective strategy is still limited. Herein, we performed this study to clarify the mechanism of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) containing microRNA-93 (miR-93) in influencing this damage via regulation of the histone deacetylase 4 (HDAC4)/B-cell lymphoma-2 (Bcl-2) axis. Initially, differentially expressed Bcl-2 was identified in middle cerebral artery occlusion (MCAO), and the upstream regulatory miR-93 and its potential target HDAC4 were also predicted through bioinformatics analysis. HIBD was modeled in vitro by exposing hippocampal neurons to oxygen-glucose deprivation (OGD) and in vivo by MCAO in rats. EVs were isolated from the bone marrow MSCs of well-grown rats. Our experimental data validated that HDAC4 was highly expressed while miR-93 and Bcl-2 were poorly expressed in MCAO rats. Furthermore, HDAC4 overexpression, through inhibiting Bcl-2 via deacetylation, promoted the infarct volume and pathological changes in hippocampal tissues and neuron apoptosis, and impaired neurobehavioral ability of MCAO rats. Of note, miR-93 was found to target HDAC4. Importantly, MSC-derived EVs overexpressing miR-93 suppressed HDAC4 expression and subsequently impeded the apoptosis of OGD-exposed hippocampal neurons in vitro, and also ameliorated HIBD in vivo. Taken together, miR-93 delivered by MSC-derived EVs can ameliorate HIBD by suppressing hippocampal neuron apoptosis through targeting the HDAC4/Bcl-2 axis, a finding which may be of great significance in the treatment of HIBD.
Collapse
Affiliation(s)
- Xiaoding Shi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Xuelai Zhong
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Lin Deng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Xiaohong Wu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Pinyi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Xin Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin 150001, P. R. China.
| |
Collapse
|
20
|
Pang QM, Chen SY, Fu SP, Zhou H, Zhang Q, Ao J, Luo XP, Zhang T. Regulatory Role of Mesenchymal Stem Cells on Secondary Inflammation in Spinal Cord Injury. J Inflamm Res 2022; 15:573-593. [PMID: 35115806 PMCID: PMC8802142 DOI: 10.2147/jir.s349572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Hui Zhou
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jun Ao
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiao-Ping Luo
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Correspondence: Tao Zhang; Qian Zhang, Email ;
| |
Collapse
|
21
|
Pang QM, Chen SY, Xu QJ, Fu SP, Yang YC, Zou WH, Zhang M, Liu J, Wan WH, Peng JC, Zhang T. Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar. Front Immunol 2021; 12:751021. [PMID: 34925326 PMCID: PMC8674561 DOI: 10.3389/fimmu.2021.751021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Transected axons are unable to regenerate after spinal cord injury (SCI). Glial scar is thought to be responsible for this failure. Regulating the formation of glial scar post-SCI may contribute to axonal regrow. Over the past few decades, studies have found that the interaction between immune cells at the damaged site results in a robust and persistent inflammatory response. Current therapy strategies focus primarily on the inhibition of subacute and chronic neuroinflammation after the acute inflammatory response was executed. Growing evidences have documented that mesenchymal stem cells (MSCs) engraftment can be served as a promising cell therapy for SCI. Numerous studies have shown that MSCs transplantation can inhibit the excessive glial scar formation as well as inflammatory response, thereby facilitating the anatomical and functional recovery. Here, we will review the effects of inflammatory response and glial scar formation in spinal cord injury and repair. The role of MSCs in regulating neuroinflammation and glial scar formation after SCI will be reviewed as well.
Collapse
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi-Jing Xu
- Department of Human Anatomy, Zunyi Medical University, Zunyi, China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi-Chun Yang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wang-Hui Zou
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Liu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei-Hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia-Chen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
22
|
Ahmadi F, Salmasi Z, Mojarad M, Eslahi A, Tayarani-Najaran Z. G-CSF augments the neuroprotective effect of conditioned medium of dental pulp stem cells against hypoxic neural injury in SH-SY5Y cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1743-1752. [PMID: 35432810 PMCID: PMC8976909 DOI: 10.22038/ijbms.2021.60217.13344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Objective(s): Dental pulp stem cells (DPSCs) can differentiate into functional neurons and have the potential for cell therapy in neurological diseases. Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein family shown neuroprotective effect in models of nerve damage. we evaluated the protective effects of G-CSF, conditioned media from DPSCs (DPSCs-CM) and conditioned media from transfected DPSCs with plasmid encoding G-CSF (DPSC-CMT) on SH-SY5Y exposed to CoCl2 as a model of hypoxia-induced neural damage. Materials and Methods: SH-SY5Y exposed to CoCl2 were treated with DPSCs-CM, G-CSF, simultaneous combination of DPSCs-CM and G-CSF and finally DPSC-CMT. Cell viability and apoptosis were determined by resazurin (or lactate dehydrogenase (LDH) assay alternatively) and propidium iodide (PI) staining. Western blot analysis was performed to detect changes in apoptotic protein levels. The interleukin-6 and interleukin-10 IL6/IL10 levels were measured with Enzyme-Linked Immunosorbent Assay (ELISA). Results: DPSCs-CM and G-CSF were able to significantly protect SH-SY5Y against neural cell damage caused by CoCl2 according to resazurin and LDH analysis. Also, the percentage of apoptotic cells decreased when SH-SY5Y were treated with DPSCs-CM and G-CSF simultaneously. After transfection of DPSCs with G-CSF plasmid, DPSC-CMT could significantly improve the protection. The amount of β-catenin, cleaved PARP and caspase-3 were significantly decreased and the expression of survivin was considerably increased when hypoxic SH-SY5Y treated with DPSCs-CM plus G-CSF according to Western blot. Decreased level of IL-6/IL-10, which exposed to CoCl2, after treatment with DPSCs-CM indicated the suppression of inflammatory mediators. Conclusion: Combination therapy of G-CSF and DPSCs-CM improved the protective activity.
Collapse
Affiliation(s)
- Farahnaz Ahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Eslahi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Zahra Tayarani-Najaran. Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Mashhad, Iran. Tel: +98-51-31801178;
| |
Collapse
|
23
|
Do PT, Wu CC, Chiang YH, Hu CJ, Chen KY. Mesenchymal Stem/Stromal Cell Therapy in Blood-Brain Barrier Preservation Following Ischemia: Molecular Mechanisms and Prospects. Int J Mol Sci 2021; 22:ijms221810045. [PMID: 34576209 PMCID: PMC8468469 DOI: 10.3390/ijms221810045] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is the leading cause of mortality and long-term disability worldwide. Disruption of the blood-brain barrier (BBB) is a prominent pathophysiological mechanism, responsible for a series of subsequent inflammatory cascades that exacerbate the damage to brain tissue. However, the benefit of recanalization is limited in most patients because of the narrow therapeutic time window. Recently, mesenchymal stem cells (MSCs) have been assessed as excellent candidates for cell-based therapy in cerebral ischemia, including neuroinflammatory alleviation, angiogenesis and neurogenesis promotion through their paracrine actions. In addition, accumulating evidence on how MSC therapy preserves BBB integrity after stroke may open up novel therapeutic targets for treating cerebrovascular diseases. In this review, we focus on the molecular mechanisms of MSC-based therapy in the ischemia-induced prevention of BBB compromise. Currently, therapeutic effects of MSCs for stroke are primarily based on the fundamental pathogenesis of BBB breakdown, such as attenuating leukocyte infiltration, matrix metalloproteinase (MMP) regulation, antioxidant, anti-inflammation, stabilizing morphology and crosstalk between cellular components of the BBB. We also discuss prospective studies to improve the effectiveness of MSC therapy through enhanced migration into defined brain regions of stem cells. Targeted therapy is a promising new direction and is being prioritized for extensive research.
Collapse
Affiliation(s)
- Phuong Thao Do
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Pediatrics, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Chung-Che Wu
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan; (C.-C.W.); (Y.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan; (C.-C.W.); (Y.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Chaur-Jong Hu
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Neurology and Stroke Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Correspondence: (C.-J.H.); (K.-Y.C.); Tel.: +886-227361661 (ext. 3032) (C.-J.H.); +886-227361661 (ext. 7602) (K.-Y.C.)
| | - Kai-Yun Chen
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-J.H.); (K.-Y.C.); Tel.: +886-227361661 (ext. 3032) (C.-J.H.); +886-227361661 (ext. 7602) (K.-Y.C.)
| |
Collapse
|
24
|
Parsons AM, Darling EM. Temporal responsiveness of adipose-derived stem/stromal cell immune plasticity. Exp Cell Res 2021; 406:112738. [PMID: 34270981 DOI: 10.1016/j.yexcr.2021.112738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/29/2022]
Abstract
We determined the role of time in adipose-derived stem/stromal cell (ASC) response to a model inflammatory environment. ASCs and other mesenchymal stem/stromal cells exhibit immune plasticity. We evaluated the persistence of pro- and anti-inflammatory phenotypes for ASCs exposed to a sustained or pulse inflammatory stimulus. Using qPCR, flow cytometry, and immunocytochemistry, we monitored the temporal expression and up-regulation patterns of a pro-inflammatory gene (caspase 1), a pleiotropic gene/protein (interleukin 6, IL-6), and an anti-inflammatory gene/protein (indoleamine 2, 3-dioxygenase, IDO1) after exposing ASCs to the cytokines tumor necrosis factor-α and interferon-γ. In response to sustained cytokine stimulation, we discovered that time played a role in the balance of pro- and anti-inflammatory ASC phenotypes. IL-6 was present at all time points for both cytokine-stimulated and non-stimulated conditions, whereas IDO1 was heterogeneously up-regulated in stimulated conditions at later time points. After a pulse stimulus, ASC immunoresponse remained consistent for 96-168 h. As a final measure of immune plasticity, we cultured cytokine-stimulated ASCs with blood-derived macrophages to observe macrophage polarization. While the presence of ASCs altered macrophage phenotype, there was no dependency on the length of ASC cytokine exposure time.
Collapse
Affiliation(s)
| | - Eric M Darling
- Department of Pathology and Laboratory Medicine, Brown University, United States; Center for Biomedical Engineering, Brown University, United States; School of Engineering, Brown University, United States; Department of Orthopaedics, Brown University, United States.
| |
Collapse
|
25
|
Hickson LJ, Eirin A, Conley SM, Taner T, Bian X, Saad A, Herrmann SM, Mehta RA, McKenzie TJ, Kellogg TA, Kirkland JL, Tchkonia T, Saadiq IM, Tang H, Jordan KL, Zhu X, Griffin MD, Rule AD, van Wijnen AJ, Textor SC, Lerman LO. Diabetic Kidney Disease Alters the Transcriptome and Function of Human Adipose-Derived Mesenchymal Stromal Cells but Maintains Immunomodulatory and Paracrine Activities Important for Renal Repair. Diabetes 2021; 70:1561-1574. [PMID: 33858824 PMCID: PMC8336004 DOI: 10.2337/db19-1268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/03/2021] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) facilitate repair in experimental diabetic kidney disease (DKD). However, the hyperglycemic and uremic milieu may diminish regenerative capacity of patient-derived therapy. We hypothesized that DKD reduces human MSC paracrine function. Adipose-derived MSC from 38 participants with DKD and 16 control subjects were assessed for cell surface markers, trilineage differentiation, RNA sequencing (RNA-seq), in vitro function (coculture or conditioned medium experiments with T cells and human kidney cells [HK-2]), secretome profile, and cellular senescence abundance. The direction of association between MSC function and patient characteristics were also tested. RNA-seq analysis identified 353 differentially expressed genes and downregulation of several immunomodulatory genes/pathways in DKD-MSC versus Control-MSC. DKD-MSC phenotype, differentiation, and tube formation capacity were preserved, but migration was reduced. DKD-MSC with and without interferon-γ priming inhibited T-cell proliferation greater than Control-MSC. DKD-MSC medium contained higher levels of anti-inflammatory cytokines (indoleamine 2,3-deoxygenase 1 and prostaglandin-E2) and prorepair factors (hepatocyte growth factor and stromal cell-derived factor 1) but lower IL-6 versus control-MSC medium. DKD-MSC medium protected high glucose plus transforming growth factor-β-exposed HK-2 cells by reducing apoptotic, fibrotic, and inflammatory marker expression. Few DKD-MSC functions were affected by patient characteristics, including age, sex, BMI, hemoglobin A1c, kidney function, and urine albumin excretion. However, senescence-associated β-galactosidase activity was lower in DKD-MSC from participants on metformin therapy. Therefore, while DKD altered the transcriptome and migratory function of culture-expanded MSCs, DKD-MSC functionality, trophic factor secretion, and immunomodulatory activities contributing to repair remained intact. These observations support testing of patient-derived MSC therapy and may inform preconditioning regimens in DKD clinical trials.
Collapse
Affiliation(s)
- LaTonya J Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Timucin Taner
- Department of Surgery, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Xiaohui Bian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ahmed Saad
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Ramila A Mehta
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | | | | | - James L Kirkland
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
- Department of Physiology and Engineering, Mayo Clinic, Rochester, MN
| | - Tamar Tchkonia
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
- Department of Physiology and Engineering, Mayo Clinic, Rochester, MN
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Hui Tang
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mathew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Andrew D Rule
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Stephen C Textor
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
26
|
Xiaoqin Z, Jia L, Mengjie D, Jialu G, Yang B, Yuting W, Huajian H, Bo L, Xiaojun Z, Zhongyue L, Jie C, Tingyu L, Xue Z. Dedifferentiated human umbilical cord mesenchymal stem cell reprogramming of endogenous hSDF-1α expression participates in neural restoration in hypoxic-ischemic brain damage rats. Genes Dis 2021; 8:331-343. [PMID: 33997180 PMCID: PMC8093640 DOI: 10.1016/j.gendis.2020.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) can promote hypoxic-ischemic brain damage (HIBD) nerve repair, but finding suitable seed cells to optimize transplantation and improve treatment efficiency is an urgent problem to be solved. In this study, we induced hUC-MSCs into dedifferentiated hUC-MSCs (De-hUC-MSCs), and the morphology, stem cell surface markers, proliferation and tri-directional differentiation ability of the De-hUC-MSCs and hUC-MSCs were detected. A whole-gene chip was utilized for genome cluster, gene ontology and KEGG pathway analyses of differentially expressed genes. De-hUC-MSCs were transplanted into HIBD rats, and behavioral experiments and immunofluorescence assays were used to assess the therapeutic effect. A lentivirus vector for human stromal cell-derived factor-1 (hSDF-1α) was constructed, and the role of hSDF-1α in the neuroprotective effect and mechanism of De-hUC-MSCs was verified. De-hUC-MSCs displayed similar cell morphology, stem cell surface marker expression, cell proliferation and even three-dimensional differentiation ability as hUC-MSCs but exhibited greater treatment potential in vivo. The reprogramming mechanism of hSDF-1α participated in the dedifferentiation process. By successfully constructing a stable hSDF-1α cell line, we found that De-hUC-MSCs might participate in nerve repair through the hSDF-1α/CXCR4/PI3K/Akt pathway. De-hUC-MSCs reprogramming of endogenous hSDF-1α expression may mediate the hSDF-1α/CXCR4/PI3K/Akt pathway involved in nerve repair in HIBD rats.
Collapse
Affiliation(s)
- Zhou Xiaoqin
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Liu Jia
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Dai Mengjie
- Department of Neonatology, Chongqing Health Center for Women and Children, 400021, PR China
| | - Gu Jialu
- Child Health Centre of Northwest Women and Children's Hospital, USA
| | - Bi Yang
- Department of Pediatric Research Institute, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Wang Yuting
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Hu Huajian
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Liu Bo
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Zhang Xiaojun
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Li Zhongyue
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Chen Jie
- Department of Pediatric Research Institute, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Li Tingyu
- Department of Pediatric Research Institute, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Zhan Xue
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| |
Collapse
|
27
|
Satani N, Zhang X, Giridhar K, Wewior N, Cai C, Aronowski J, Savitz SI. A Combination of Atorvastatin and Aspirin Enhances the Pro-Regenerative Interactions of Marrow Stromal Cells and Stroke-Derived Monocytes In Vitro. Front Pharmacol 2021; 12:589418. [PMID: 33959001 PMCID: PMC8093790 DOI: 10.3389/fphar.2021.589418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background and Purpose: Marrow stromal cells (MSCs) are being tested in clinical trials for stroke patients. MSCs appear to promote recovery through secretomes that promote modulation of immune cells, including myeloid phagocytes. Many stroke patients have comorbidities such as metabolic syndrome, hypertension, hypercholesterolemia, and diabetes for which they are prescribed medications that might affect the function of MSCs and monocytes (Mo) when they are administered in stroke patients. We studied the effects of the two most commonly prescribed stroke medications, statin and statin plus aspirin, on the secretomes of MSCs and their modulation of Mo derived from stroke patients. Methods: Human MSCs, Mo and their co-cultures were exposed to atorvastatin or atorvastatin plus aspirin followed by secretome analysis at 24 h. Monocytes were isolated from healthy controls as well as stroke patients with NIHSS ranging from 11 to 20. Secretome composition was measured using multiplex immunoassay. We used MTT assay to measure proliferation of monocytes. The mixed model was used to analyze experimental data. p-values less than 0.05 were considered significant. Results: Atorvastatin and aspirin combination increased the release of IL-1RA from stroke Mo. In MSCs, atorvastatin and aspirin combination reduced the release of pro-inflammatory cytokines such as IL-6, IL-8, MCP-1 and IFN-γ. Atorvastatin alone reduced the release of IL-6, IL-8 and MCP-1 from co-cultures of stroke monocytes and MSCs. Combination of atorvastatin and aspirin had additive effect on reducing the secretion of IL-6 from co-cultures of stroke Mo and MSCs. Conclusion: Atorvastatin, alone and in combination with aspirin can promote anti-inflammatory effect by modulating the secretome profile of Mo and MSCs. Our results suggest that stroke trials involving the use of intravenous MSCs should consider the effect of aspirin and atorvastatin, both of which are administered to the majority of hospitalized ischemic stroke patients.
Collapse
Affiliation(s)
- Nikunj Satani
- Department of Neurology, Institute for Stroke and Cerebrovascular Disease, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Xu Zhang
- Center for Clinical and Translational Sciences, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Kaavya Giridhar
- Department of Neurology, Institute for Stroke and Cerebrovascular Disease, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Natalia Wewior
- Department of Neurology, Institute for Stroke and Cerebrovascular Disease, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Chunyan Cai
- Center for Clinical and Translational Sciences, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, Institute for Stroke and Cerebrovascular Disease, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Sean I Savitz
- Department of Neurology, Institute for Stroke and Cerebrovascular Disease, McGovern Medical School at UTHealth, Houston, TX, United States
| |
Collapse
|
28
|
Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy: A Systematic Review of Preclinical Studies. Int J Mol Sci 2021; 22:ijms22063142. [PMID: 33808671 PMCID: PMC8003344 DOI: 10.3390/ijms22063142] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is an important cause of mortality and morbidity in the perinatal period. This condition results from a period of ischemia and hypoxia to the brain of neonates, leading to several disorders that profoundly affect the daily life of patients and their families. Currently, therapeutic hypothermia (TH) is the standard of care in developing countries; however, TH is not always effective, especially in severe cases of HIE. Addressing this concern, several preclinical studies assessed the potential of stem cell therapy (SCT) for HIE. With this systematic review, we gathered information included in 58 preclinical studies from the last decade, focusing on the ones using stem cells isolated from the umbilical cord blood, umbilical cord tissue, placenta, and bone marrow. Outstandingly, about 80% of these studies reported a significant improvement of cognitive and/or sensorimotor function, as well as decreased brain damage. These results show the potential of SCT for HIE and the possibility of this therapy, in combination with TH, becoming the next therapeutic approach for HIE. Nonetheless, few preclinical studies assessed the combination of TH and SCT for HIE, and the existent studies show some contradictory results, revealing the need to further explore this line of research.
Collapse
|
29
|
Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics? Biochem Pharmacol 2021; 186:114461. [PMID: 33571501 DOI: 10.1016/j.bcp.2021.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Acquired perinatal brain injuries are a set of conditions that remains a key challenge for neonatologists and that have significant social, emotional and financial implications for our communities. In our perspective article, we will introduce perinatal brain injury focusing specifically on the events leading to brain damage in preterm born infants and outcomes for these infants. Then we will summarize and discuss the preclinical and clinical studies testing the efficacy of stem cells as neuroprotectants in the last ten years in perinatal brain injury. There are no therapies to treat brain damage in preterm born infants and a primary finding from this review is that there is a scarcity of stem cell trials focused on overcoming brain injuries in these infants. Overall, across all forms of perinatal brain injury there is a remarkable heterogeneity in previous and on-going preclinical and clinical studies in terms of the stem cell type, animal models/patient selection, route and time of administration. Despite the quality of many of the studies this variation makes it difficult to reach a valid consensus for future developments. However, it is clear that stem cells (and stem cell derived exosomes) can reduce perinatal brain injury and our field needs to work collectively to refine an effective protocol for each type of injury. The use of standardized stem cell products and testing these products across multiple models of injury will provide a stronger framework for clinical trials development.
Collapse
|
30
|
Perinatal Brain Injury and Inflammation: Lessons from Experimental Murine Models. Cells 2020; 9:cells9122640. [PMID: 33302543 PMCID: PMC7764185 DOI: 10.3390/cells9122640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Perinatal brain injury or neonatal encephalopathy (NE) is a state of disturbed neurological function in neonates, caused by a number of different aetiologies. The most prominent cause of NE is hypoxic ischaemic encephalopathy, which can often induce seizures. NE and neonatal seizures are both associated with poor neurological outcomes, resulting in conditions such as cerebral palsy, epilepsy, autism, schizophrenia and intellectual disability. The current treatment strategies for NE and neonatal seizures have suboptimal success in effectively treating neonates. Therapeutic hypothermia is currently used to treat NE and has been shown to reduce morbidity and has neuroprotective effects. However, its success varies between developed and developing countries, most likely as a result of lack of sufficient resources. The first-line pharmacological treatment for NE is phenobarbital, followed by phenytoin, fosphenytoin and lidocaine as second-line treatments. While these drugs are mostly effective at halting seizure activity, they are associated with long-lasting adverse neurological effects on development. Over the last years, inflammation has been recognized as a trigger of NE and seizures, and evidence has indicated that this inflammation plays a role in the long-term neuronal damage experienced by survivors. Researchers are therefore investigating the possible neuroprotective effects that could be achieved by using anti-inflammatory drugs in the treatment of NE. In this review we will highlight the current knowledge of the inflammatory response after perinatal brain injury and what we can learn from animal models.
Collapse
|
31
|
In Vitro Oxygen-Glucose Deprivation-Induced Stroke Models with Human Neuroblastoma Cell- and Induced Pluripotent Stem Cell-Derived Neurons. Stem Cells Int 2020; 2020:8841026. [PMID: 33178286 PMCID: PMC7647751 DOI: 10.1155/2020/8841026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Stroke is a devastating neurological disorder and one of the leading causes of mortality and disability. To understand the cellular and molecular mechanisms of stroke and to develop novel therapeutic approaches, two different in vitro human cell-based stroke models were established using oxygen-glucose deprivation (OGD) conditions. In addition, the effect of adipose stem cells (ASCs) on OGD-induced injury was studied. In the present study, SH-SY5Y human neuroblastoma cells and human induced pluripotent stem cells (hiPSCs) were differentiated into neurons, cultured under OGD conditions (1% O2) for 24 h, and subjected to a reperfusion period for 24 or 72 h. After OGD, ASCs were cocultured with neurons on inserts for 24 or 72 h to study the neuroprotective potential of ASCs. The effect of OGD and ASC coculture on the viability, apoptosis, and proliferation of and axonal damage to neuronal cells was studied. The results showed that OGD conditions induced cytotoxicity and apoptosis of SH-SY5Y- and hiPSC-derived neurons, although more severe damage was detected in SH-SY5Y-derived neurons than in hiPSC-derived neurons. Coculture with ASCs was protective for neurons, as the number of dead ASC-cocultured neurons was lower than that of control cells, and coculture increased the proliferation of both cell types. To conclude, we developed in vitro human cell-based stroke models in SH-SY5Y- and hiPSC-derived neurons. This was the first time hiPSCs were used to model stroke in vitro. Since OGD had different effects on the studied cell types, this study highlights the importance of using several cell types in in vitro studies to confirm the outcomes of the study. Here, ASCs exerted a neuroprotective effect by increasing the proliferation and decreasing the death of SH-SY5Y- and hiPSC-derived neurons after OGD.
Collapse
|
32
|
Gou Z, Su X, Hu X, Zhou Y, Huang L, Fan Y, Li J, Lu L. Melatonin improves hypoxic-ischemic brain damage through the Akt/Nrf2/Gpx4 signaling pathway. Brain Res Bull 2020; 163:40-48. [DOI: 10.1016/j.brainresbull.2020.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/08/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
|
33
|
Intranasal administration of Cytoglobin modifies human umbilical cord‑derived mesenchymal stem cells and improves hypoxic‑ischemia brain damage in neonatal rats by modulating p38 MAPK signaling‑mediated apoptosis. Mol Med Rep 2020; 22:3493-3503. [PMID: 32945464 PMCID: PMC7453519 DOI: 10.3892/mmr.2020.11436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic‑ischemic brain damage (HIBD) is a common clinical syndrome in newborns. Hypothermia is the only approved therapy for the clinical treatment; however, the therapeutic window of hypothermia is confined to 6 h after birth and even then, >40% of the infants either die or survive with various impairments, including cerebral palsy, seizure disorder and intellectual disability following hypothermic treatment. The aim of the present study was to determine whether nasal transplantation of Cytoglobin (CYGB) genetically modified human umbilical cord‑derived mesenchymal stem cells (CYGB‑HuMSCs) exhibited protective effects in neonatal rats with HIBD compared with those treated without genetically modified CYGB. A total of 120 neonatal Sprague‑Dawley rats (postnatal day 7) were assigned to either a Sham, HIBD, HuMSCs or CYGB‑HuMSCs group (n = 30 rats/group). For HIBD modeling, rats underwent left carotid artery ligation and were exposed to 8% oxygen for 2.5 h. A total of 30 min after HI, HuMSCs (or CYGB‑HuMSCs) labeled with enhanced‑green fluorescent protein (eGFP) were intranasally administered. After modeling for 3, 14 and 29 days, five randomly selected rats were sacrificed in each group, and the expression levels of CYGB, ERK, JNK and p38 in brain tissues were determined. Nissl staining of the cortex and hippocampal Cornu Ammonis 1 area of rats in each group were compared after 3 days of modeling. TUNEL assay and immunofluorescence were performed 3 days after modeling. Long term memory in rats was assessed using a Morris‑water maze 29 days after modeling. The HIBD group demonstrated significant deficiencies compared with the Sham group based on Nissl staining, TUNEL assay and the Morris‑water maze test. HuMSC treated rats exhibited improvement on in all the tests, and CYGB‑HuMSCs treatment resulted in further improvements. PCR and western blotting results indicated that the CYGB mRNA and protein levels were increased from day 3 to day 29 after transplantation of CYGB‑HuMSCs. Furthermore, it was identified that CYGB‑HuMSC transplantation suppressed p38 signaling at all experimental time points. Immunofluorescence indicated the scattered presence of HuMSCs or CYGB‑HuMSCs in damaged brain tissue. No eGFP and glial fibrillary acidic protein or eGFP and neuron‑specific enolase double‑stained positive cells were found in the brain tissues. Therefore, CYGB‑HuMSCs may serve as a gene transporter, as well as exert a neuroprotective and antiapoptotic effect in HIBD, potentially via the p38 mitogen‑activated protein kinase signaling pathway.
Collapse
|
34
|
Taghavi-Farahabadi M, Mahmoudi M, Rezaei N, Hashemi SM. Wharton's Jelly Mesenchymal Stem Cells Exosomes and Conditioned Media Increased Neutrophil Lifespan and Phagocytosis Capacity. Immunol Invest 2020; 50:1042-1057. [PMID: 32777963 DOI: 10.1080/08820139.2020.1801720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neutrophils are the first cells involved in inflammation and pathogen elimination, but they have a short lifespan. So, strategies for enhancing neutrophil lifespan and activities can be useful in many situations such as patients with immunodeficiencies. Previous researches demonstrated that mesenchymal stem cell (MSC) has anti-apoptotic effects on neutrophils. These multipotent cells have immunomodulatory properties and can be isolated from different tissues. MSCs isolated from Wharton's jelly (WJ-MSCs), a mucosal connective tissue of the umbilical cord, may be better candidates than MSCs obtained from bone marrow or adipose tissue, because WJ-MSCs are younger and protected from damages that are resulted from aging, environmental toxins, and diseases. In addition, they have high proliferative capacity, easier accessibility, and more abundance. It was shown that following in vitro expansion, they are more effective than other sources of MSCs. Cell to cell contact or secretion of soluble factors and exosomes are the main approaches of MSCs in applying their effects. Exosomes and conditioned media (CM) were prepared from WJ-MSCs. Then, neutrophils were isolated and cultured with medium, CM, or exosomes. Then, neutrophil respiratory burst, apoptosis, and phagocytosis capacity were assessed by NBT assay, Annexin V-PI method, and Giemsa staining, respectively. Both treatments improved neutrophil lifespan and phagocytosis. Only MSC-CM could enhance neutrophil respiratory burst. This research demonstrated that MSC-exosomes and CM have protective effects on neutrophil function and lifespan. It can be concluded that MSC mediators can be responsible factors for protective functions of MSCs on neutrophils.
Collapse
Affiliation(s)
- Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Medications for Hypertension Change the Secretome Profile from Marrow Stromal Cells and Peripheral Blood Monocytes. Stem Cells Int 2020; 2020:8894168. [PMID: 32802081 PMCID: PMC7416264 DOI: 10.1155/2020/8894168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023] Open
Abstract
Marrow stromal cells (MSCs) are in different stages of clinical trials for stroke patients. MSCs are proposed to promote recovery through the release of secretomes that modulate the function of beneficial immune cells. The majority of stroke patients have comorbidities including hypertension, for which they are prescribed antihypertensive medications that might affect the function of MSCs, when they are administered in stroke patients. Here, we studied the effects of common antihypertensive medications on the secretomes of human MSCs and their modulation of human monocytes (Mo) derived from stroke patients. MTT assay was used to assess the proliferation of MSCs after they were exposed to increased levels of antihypertensive medications. MSCs were exposed to the following medications: atenolol, captopril, and losartan. Monocytes were isolated from stroke patients with NIHSS ranging from 11 to 20 and from healthy controls. MSC-Mo cocultures were established, and a secretome profile was analyzed using the Magpix Multiplex cytokine array from Luminex technology. The linear mixed-effect model was used for statistical analysis. All analyses were performed using SAS 9.4, and p values less than 0.05 were considered significant. At clinically relevant levels, there was no change in MSC proliferation after exposure to atenolol, captopril, or losartan. Atenolol increased IL-1RA in stroke-Mo and decreased IL-8 secretion from MSCs indicating an anti-inflammatory effect of atenolol on secretomes of these cells. Captopril increased IL-8 from stroke-Mo and increased IL-6, IL-8, and MCP-1 secretions from MSCs. Captopril also increased IL-6 secretion from cocultures of stroke-Mo and MSCs indicating a strong proinflammatory effect on MSCs and their interaction with Mo. Atenolol increased the secretion of IL-8 and MCP-1 while captopril increased the secretion of IL-6 and MCP-1 from MSCs. Losartan decreased the release of IL-6 from MSCs. Losartan reduced MCP-1 and TNF-α from stroke-Mo and reduced IL-8 from cocultures of stroke-Mo and MSCs. Our results show that antihypertensive medications such as atenolol, captopril, and losartan, at concentrations comparable to doses prescribed for patients hospitalized for acute stroke, modulate the secretome profile of MSCs and their modulatory effects on target immune cells. Our results suggest that stroke trials involving the use of intravenous MSCs should consider the effect of these antihypertensive drugs administered to stroke patients.
Collapse
|
36
|
Li F, Zhang K, Liu H, Yang T, Xiao DJ, Wang YS. The neuroprotective effect of mesenchymal stem cells is mediated through inhibition of apoptosis in hypoxic ischemic injury. World J Pediatr 2020; 16:193-200. [PMID: 31535281 DOI: 10.1007/s12519-019-00310-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neonatal hypoxia ischemia causes severe brain damage. Stem cell therapy is a promising method for treating neuronal diseases. Clinical translation of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) for the recovery of neurons after hypoxic ischemic encephalopathy (HIE) may represent an effective therapy. METHODS Primary neurons were exposed to oxygen-glucose deprivation (OGD) and subsequently cocultured with UC-MSCs. Apoptosis was examined by Annexin V-FITC-PI. Genes related to apoptosis were detected using RT-PCR and western-blot analyses. Using an in vivo model, HIE was induced in postnatal day 7 mice, and UC-MSCs were transplanted via the intraventricular route. UC-MSC migration was investigated by immunofluorescence, and lesion volumes were measured by TTC staining. Apoptosis in injured brain cells was detected by the TUNEL assay. RT-PCR and ELISA were used to detect the expression of inflammatory factors in cells and animal tissues. RESULTS Flow cytometry analysis revealed that apoptosis in injured neurons was inhibited by UC-MSCs. The RT-PCR and western blot results indicated that coculture inhibited the expression of proapoptotic genes and upregulated expression of antiapoptotic genes. In the animal model, transplanted UC-MSCs migrated toward the cerebral lesion site and decreased the lesion extent in HIE. TUNEL staining showed that the MSC group exhibited significantly reduced numbers of TUNEL-positive cells. RT-PCR and ELISA showed that UC-MSCs inhibited the upregulation of TNF-α and IL-1β in response to hypoxic ischemic injury. CONCLUSION These results indicate that UC-MSCs exert neuroprotective effects against hypoxic ischemic injury by inhibiting apoptosis, and the mechanism appears to be through alleviating the inflammatory response.
Collapse
Affiliation(s)
- Fang Li
- Laboratory of Cell Therapy and Translational Medicine, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan, 250013, China
| | - Kun Zhang
- Laboratory of Cell Therapy and Translational Medicine, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan, 250013, China
| | - Hua Liu
- Laboratory of Cell Therapy and Translational Medicine, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, 250013, China. .,Shandong Research Center of Transplantation and Tissue, Jinan, 250013, China.
| | - Tan Yang
- Clinical Laboratory, The People's Hospital of Bozhou, Bozhou, 236800, China
| | - Dong-Jie Xiao
- Laboratory of Cell Therapy and Translational Medicine, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan, 250013, China
| | - Yun-Shan Wang
- Laboratory of Cell Therapy and Translational Medicine, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan, 250013, China
| |
Collapse
|
37
|
Wang X, Zhou H, Cheng R, Zhou X, Hou X, Chen J, Qiu J. Role of miR-326 in neonatal hypoxic-ischemic brain damage pathogenesis through targeting of the δ-opioid receptor. Mol Brain 2020; 13:51. [PMID: 32228617 PMCID: PMC7104519 DOI: 10.1186/s13041-020-00579-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxic-ischemic brain damage (HIBD) is a relatively common malignant complication that occurs in newborn infants, but promising therapies remain limited. In this study, we focused on the role of miR-326 and its target gene δ-opioid receptor (DOR) in the pathogenesis of neonatal HIBD. The expression levels of miR-326 and DOR after hypoxic-ischemic injury were examined both in vivo and in vitro. The direct relationship between miR-326 and DOR was confirmed by a dual-luciferase reporter assay. Further, effects of miR-326 on cell viability and apoptosis levels under oxygen glucose deprivation (OGD) were analyzed. The expression levels of miR-326 were significantly lower and DOR levels were significantly higher in the HIBD group than the control group both in vivo and in vitro. Overexpression of miR-326 downregulated the expression of DOR, while suppression of miR-326 upregulated the expression of DOR. The dual-luciferase reporter assay further confirmed that DOR could be directly targeted and regulated by miR-326. MiR-326 knockdown improved cell survival and decreased cell apoptosis by decreasing the expression levels of Caspase-3 and Bax and increasing Bcl-2 expression in PC12 cells after exposure to OGD. Moreover, DOR knockdown rescued the effect of the improved cell survival and suppressed cell apoptosis induced by silencing miR-326. Our findings indicated that inhibition of miR-326 may improve cell survival and decrease cell apoptosis in neonatal HIBD through the target gene DOR.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Han Zhou
- Department of Paediatrics, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Rui Cheng
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Xiaoguang Zhou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Xuewen Hou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Jun Chen
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| | - Jie Qiu
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
38
|
Ninkina N. Stem cell therapy and FUS[1-359]-transgenic mice: A recent study highlighting a promising ALS model and a promising therapy. CNS Neurosci Ther 2020; 26:502-503. [PMID: 32181601 PMCID: PMC7163729 DOI: 10.1111/cns.13302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Natalia Ninkina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
39
|
Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. eNeuro 2020; 7:ENEURO.0474-19.2020. [PMID: 32046974 PMCID: PMC7070447 DOI: 10.1523/eneuro.0474-19.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
Post-stroke functional recovery can occur spontaneously during the subacute phase; however, how post-stroke fibrotic repair affects functional recovery is highly debated. Platelet-derived growth factor receptor β (PDGFRβ)-expressing pericytes are responsible for post-stroke fibrotic repair within infarct areas; therefore, we examined peri-infarct neural reorganization and functional recovery after permanent middle cerebral artery occlusion (pMCAO) using pericyte-deficient Pdgfrb+/- mice. Time-dependent reduction of infarct area sizes, i.e., repair, was significantly impaired in Pdgfrb+/- mice with recovery of cerebral blood flow (CBF) in ischemic areas attenuated by defective leptomeningeal arteriogenesis and intrainfarct angiogenesis. Peri-infarct astrogliosis, accompanied by increased STAT3 phosphorylation, was attenuated in Pdgfrb+/- mice. Pericyte-conditioned medium (PCM), particularly when treated with platelet-derived growth factor subunit B (PDGFB) homodimer (PDGF-BB; PCM/PDGF-BB), activated STAT3 and enhanced the proliferation and activity of cultured astrocytes. Although peri-infarct proliferation of oligodendrocyte (OL) precursor cells (OPCs) was induced promptly after pMCAO regardless of intrainfarct repair, OPC differentiation and remyelination were significantly attenuated in Pdgfrb+/- mice. Consistently, astrocyte-CM (ACM) promoted OPC differentiation and myelination, which were enhanced remarkably by adding PCM/PDGF-BB to the medium. Post-stroke functional recovery correlated well with the extent and process of intrainfarct repair and peri-infarct oligodendrogenesis. Overall, pericyte-mediated intrainfarct fibrotic repair through PDGFRβ may promote functional recovery through enhancement of peri-infarct oligodendrogenesis as well as astrogliosis after acute ischemic stroke.
Collapse
|
40
|
Gao J, Dai C, Yu X, Yin XB, Zhou F. Long noncoding RNA LINC00324 exerts protumorigenic effects on liver cancer stem cells by upregulating fas ligand via PU box binding protein. FASEB J 2020; 34:5800-5817. [PMID: 32128906 DOI: 10.1096/fj.201902705rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) represents a major cause of cancer death, but the molecular mechanism for its development has not yet been well characterized. Long noncoding RNAs (lncRNAs) are involved in a wide range of biological processes via their roles as oncogenes or tumor suppressor genes. The present study aimed to elucidate the role of LINC00324 in HCC through its interaction with Fas ligand (FasL). Initially, microarray-based gene expression profiling of HCC was employed to identify differentially expressed genes. Next, the expression of LINC00324 in HCC tissues and liver cancer stem cell (LCSC) lines was examined using RT-qPCR. Then, the interaction among LINC00324, PU box binding protein (PU.1) and FasL was identified with RIP, ChIP and dual-luciferase reporter gene assays. The effect of LINC00324 on viability, proliferation, migration, invasion, and apoptosis as well as the tumorigenesis of transfected cells was examined with gain- and loss-of-function experiments. LINC00324 and FasL were highly expressed in HCC. LINC00324 regulated FasL expression via interaction with PU.1. Silencing of LINC00324 or FasL suppressed expression of stemness-related genes, cell viability, proliferation, migration, invasion, self-renewal, and tumorigenesis, but enhanced cell apoptosis. Taken together, LINC00324 promotes the expression of FasL through the recruitment of PU.1, which ultimately maintains the biological properties of LCSCs, thus, highlighting LINC00324 as a promising therapeutic candidate for HCC.
Collapse
Affiliation(s)
- Jun Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Chao Dai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xin Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xiang-Bao Yin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Fan Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
41
|
Yang M, Sun W, Xiao L, He M, Gu Y, Yang T, Chen J, Liang X. Mesenchymal Stromal Cells Suppress Hippocampal Neuron Autophagy Stress Induced by Hypoxic-Ischemic Brain Damage: The Possible Role of Endogenous IL-6 Secretion. Neural Plast 2020; 2020:8822579. [PMID: 32908484 PMCID: PMC7474748 DOI: 10.1155/2020/8822579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Increasing evidence has revealed that mesenchymal stromal cell (MSC) transplantation alleviates hypoxic-ischemic brain damage (HIBD) induced neurological impairments via immunomodulating astrocyte antiapoptosis effects. However, it remains unclear whether MSCs regulate neuron autophagy following HIBD. RESULTS In the present study, MSC transplantation effectively ameliorated learning-memory function and suppressed stress-induced hippocampal neuron autophagy in HIBD rats. Moreover, the suppressive effects of MSCs on autophagy were significantly weakened following endogenous IL-6 silencing in MSCs. Suppressing IL-6 expression also significantly increased p-AMPK protein expression and decreased p-mTOR protein expression in injured hippocampal neurons. CONCLUSION Endogenous IL-6 in MSCs may reduce autophagy in hippocampal neurons partly through the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Miao Yang
- 1Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- 2Chongqing Key Laboratory of Child Nutrition and Health, Chongqing 400014, China
- 3Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 4China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Wuqing Sun
- 2Chongqing Key Laboratory of Child Nutrition and Health, Chongqing 400014, China
- 3Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 4China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- 5Information Technological Service Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lu Xiao
- 1Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- 2Chongqing Key Laboratory of Child Nutrition and Health, Chongqing 400014, China
- 3Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 4China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Mulan He
- 1Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- 2Chongqing Key Laboratory of Child Nutrition and Health, Chongqing 400014, China
- 3Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 4China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Yan Gu
- 1Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- 2Chongqing Key Laboratory of Child Nutrition and Health, Chongqing 400014, China
- 3Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 4China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Ting Yang
- 1Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- 2Chongqing Key Laboratory of Child Nutrition and Health, Chongqing 400014, China
- 3Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 4China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Jie Chen
- 1Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- 2Chongqing Key Laboratory of Child Nutrition and Health, Chongqing 400014, China
- 3Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 4China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Xiaohua Liang
- 1Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- 2Chongqing Key Laboratory of Child Nutrition and Health, Chongqing 400014, China
- 3Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- 4China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| |
Collapse
|
42
|
Sousa AR, Martins-Cruz C, Oliveira MB, Mano JF. One-Step Rapid Fabrication of Cell-Only Living Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906305. [PMID: 31769556 DOI: 10.1002/adma.201906305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Cellular aggregates are used as relevant regenerative building blocks, tissue models, and cell delivery platforms. Biomaterial-free structures are often assembled either as 2D cell sheets or spherical microaggregates, both incompatible with free-form deposition, and dependent on challenging processes for macroscale 3D upscaling. The continuous and elongated nature of fiber-shaped materials enables their deposition in unrestricted multiple directions. Cellular fiber fabrication has often required exogenously provided support proteins and/or the use of biomaterial-based sacrificial templates. Here, the rapid (<24 h) assembly of fiberoids is reported: living centimeter-long scaffold-free fibers of cells produced in the absence of exogenous materials or supplements. Adipose-derived mesenchymal stem cell fiberoids can be easily modulated into complex multidimensional geometries and show tissue-invasive properties while keeping the secretion of trophic factors. Proangiogenic properties studied on a chick chorioallantoic membrane in an ovo model are observed for heterotypic fiberoids containing endothelial cells. These micro-to-macrotissues may find application as morphogenic therapeutic and tissue-mimetic building blocks, with the ability to integrate 3D and 4D full biological materials.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
43
|
Neal EG, Acosta SA, Kaneko Y, Ji X, Borlongan CV. Regulatory T-cells within bone marrow-derived stem cells actively confer immunomodulatory and neuroprotective effects against stroke. J Cereb Blood Flow Metab 2019; 39:1750-1758. [PMID: 29569981 PMCID: PMC6727132 DOI: 10.1177/0271678x18766172] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/15/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
Abstract
Regulatory T-cells (Tregs) may exert a neuroprotective effect on ischemic stroke by inhibiting both inflammation and effector T-cell activation. Transplantation of human bone marrow-derived stem cells (BMSCs) in ischemic stroke affords neuroprotection that results in part from the cells' anti-inflammatory property. However, the relationship between Tregs and BMSCs in treatment of ischemic stroke has not been fully elucidated. Here, we tested the hypothesis that Tregs within the BMSCs represent active mediators of immunomodulation and neuroprotection in experimental stroke. Primary rat neuronal cells were subjected to an oxygen-glucose deprivation and reperfusion (OGD/R) condition. The cells were re-perfused and co-cultured with Tregs and/or BMSCs. We detected a minority population of Tregs within BMSCs with both immunocytochemistry (ICC) and flow cytometry identifying cells expressing phenotypic markers of CD4, CD25, and FoxP3 protein. BMSCs with the native population of Tregs conferred maximal neuroprotection compared to the treatment conditions containing 0%, 10%, and 100% relative ratio Tregs. Increasing the Treg population resulted in increased IL6 secretion and decreased FGF-β secretion by BMSCs. This study shows that a minority population of Tregs exists within the therapeutic BMSC population, which serves as robust mediators of the immunomodulatory and neuroprotective effect provided by BMSC transplantation.
Collapse
Affiliation(s)
- Elliot G Neal
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, USF Morsani College of Medicine, Tampa, FL, USA
| | - Sandra A Acosta
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, USF Morsani College of Medicine, Tampa, FL, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, USF Morsani College of Medicine, Tampa, FL, USA
| | - Xunming Ji
- Cerebrovascular Research Center, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, USF Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
44
|
Lan XB, Wang Q, Yang JM, Ma L, Zhang WJ, Zheng P, Sun T, Niu JG, Liu N, Yu JQ. Neuroprotective effect of Vanillin on hypoxic-ischemic brain damage in neonatal rats. Biomed Pharmacother 2019; 118:109196. [PMID: 31310955 DOI: 10.1016/j.biopha.2019.109196] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is a leading cause of death and perpetual neurological dysfunction in neonates. Vanillin (Van), a natural phenolic compound with neuroprotective properties, exerts neuroprotection on a gerbil model of global ischemia by inhibiting oxidative damage. This study aimed to explore the potential neuroprotective roles of Van in neonatal rats suffering from hypoxic-ischemic (HI). An HI model of 7-day-old SD rats was induced by left carotid artery ligation followed by exposure to 8% oxygen (balanced with nitrogen) for 2.5 h at 37 °C. At 48 h after intraperitoneal injection with Van (20, 40, and 80 mg/kg) or saline, neurobehavioral function, cerebral infract volume, brain water content, and histomorphological changes were performed to evaluate brain injury. Transmission electron microscopy and immunoglobulin G (IgG) staining were conducted to evaluate the integrity of the blood-brain barrier (BBB). The levels of oxidative stress and tight junction proteins, as well as the activities of matrix metalloproteinases (MMPs), were also determined in the ipsilateral hemisphere. Results showed that Van post-treatment significantly ameliorated early neurobehavioral deficits, decreased infarct volume and brain edema, as well as attenuated histopathologic injury and IgG extravasation. Furthermore, Van markedly increased the activities of endogenous antioxidant enzymes and decreased malondialdehyde content. Meanwhile, the activation of MMP-2 and MMP-9 induced by HI was partially blocked by Van. Finally, Van obviously increased the expression of ZO-1, Occludin, and Claudin-5 compared with the HI group. Collectively, Van can provide neuroprotective effects against neonatal HIBD possibly by attenuating oxidative damage and preserving BBB integrity.
Collapse
Affiliation(s)
- Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, People's Republic of China
| | - Qing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, People's Republic of China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, People's Republic of China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, People's Republic of China
| | - Wen-Jin Zhang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, People's Republic of China
| | - Ping Zheng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, People's Republic of China
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, People's Republic of China.
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, People's Republic of China.
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, People's Republic of China.
| |
Collapse
|
45
|
Wu H, Liu G, Yang X, Liu Q, Li Z. Effect of mild hypothermia on the expression of IL-10 and IL-18 in neonates with hypoxic ischemic encephalopathy. Exp Ther Med 2019; 18:2194-2198. [PMID: 31410171 PMCID: PMC6676182 DOI: 10.3892/etm.2019.7768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
The effect of mild hypothermia on the expression of interleukin (IL)-10 and IL-18 in neonates with hypoxic ischemic encephalopathy was investigated. A retrospective analysis was performed on 97 neonates with hypoxic-ischemic encephalopathy (HIE) admitted to the neonatal intensive care unit of Xuzhou Children's Hospital, Xuzhou Medical University from September 2016 to August 2018. Of these patients, 54 with mild hypothermia were included in the experimental group (moderate + severe), and 43 patients who received conventional therapy were included in the control group (moderate + severe). The effect of mild hypothermia on IL-10 and IL-18 expression levels was analyzed, and the relationship between IL-10, IL-18 and disease severity in children with hypoxic ischemic encephalopathy was analyzed. The concentration of IL-10 in the experimental group was significantly lower than that in the control group at 1, 2, 3 and 5 days (P<0.05). The concentration of IL-18 in the experimental group was significantly lower than that in the control group at the 2, 3 and 5 days (P<0.05). NBNA scores of the experimental group were significantly higher than those of the control group at 14 and 28 days after birth (P<0.05). Before treatment, the expression levels of IL-10 and IL-18 in severe children were significantly higher than those in moderate children (P<0.05). IL-10 was positively correlated with the severity of the disease (r=0.521, P<0.05), and IL-18 was also positively correlated with the severity of the disease (r=0.616 P<0.05). Mild hypothermia treatment can effectively improve the neurological function of children with HIE, reduce the expression of IL-10 and IL-18 in serum, and inhibit the inflammatory response. Therefore, the expression of IL-10 and IL-18 was positively correlated with the severity of disease in children with HIE, and could be used as an indicator to judge the severity of HIE.
Collapse
Affiliation(s)
- Hongwei Wu
- Department of Newborn Medicine, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Gang Liu
- Department of Newborn Medicine, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Xia Yang
- Department of Newborn Medicine, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Qing Liu
- Department of Newborn Medicine, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Zhenguang Li
- Department of Newborn Medicine, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
46
|
Kozlowska U, Krawczenko A, Futoma K, Jurek T, Rorat M, Patrzalek D, Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells 2019; 11:347-374. [PMID: 31293717 PMCID: PMC6600850 DOI: 10.4252/wjsc.v11.i6.347] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application.
AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SM-MSCs), and skin (SK-MSCs).
METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc; 27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed.
RESULTS All MSCs showed the basic MSC phenotype; however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties; however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs.
CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.
Collapse
Affiliation(s)
- Urszula Kozlowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Agnieszka Krawczenko
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Katarzyna Futoma
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Tomasz Jurek
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw 50-345, Poland
| | - Marta Rorat
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw 50-345, Poland
| | - Dariusz Patrzalek
- Faculty of Health Science, Department of Physiotherapy, Wroclaw Medical University, Wroclaw 50-367, Poland
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| |
Collapse
|
47
|
Vaes JEG, Vink MA, de Theije CGM, Hoebeek FE, Benders MJNL, Nijboer CHA. The Potential of Stem Cell Therapy to Repair White Matter Injury in Preterm Infants: Lessons Learned From Experimental Models. Front Physiol 2019; 10:540. [PMID: 31143126 PMCID: PMC6521595 DOI: 10.3389/fphys.2019.00540] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Diffuse white matter injury (dWMI) is a major cause of morbidity in the extremely preterm born infant leading to life-long neurological impairments, including deficits in cognitive, motor, sensory, psychological, and behavioral functioning. At present, no treatment options are clinically available to combat dWMI and therefore exploration of novel strategies is urgently needed. In recent years, the pathophysiology underlying dWMI has slowly started to be unraveled, pointing towards the disturbed maturation of oligodendrocytes (OLs) as a key mechanism. Immature OL precursor cells in the developing brain are believed to be highly sensitive to perinatal inflammation and cerebral oxygen fluctuations, leading to impaired OL differentiation and eventually myelination failure. OL lineage development under normal and pathological circumstances and the process of (re)myelination have been studied extensively over the years, often in the context of other adult and pediatric white matter pathologies such as stroke and multiple sclerosis (MS). Various studies have proposed stem cell-based therapeutic strategies to boost white matter regeneration as a potential strategy against a wide range of neurological diseases. In this review we will discuss experimental studies focusing on mesenchymal stem cell (MSC) therapy to reduce white matter injury (WMI) in multiple adult and neonatal neurological diseases. What lessons have been learned from these previous studies and how can we translate this knowledge to application of MSCs for the injured white matter in the preterm infant? A perspective on the current state of stem cell therapy will be given and we will discuss different important considerations of MSCs including cellular sources, timing of treatment and administration routes. Furthermore, we reflect on optimization strategies that could potentially reinforce stem cell therapy, including preconditioning and genetic engineering of stem cells or using cell-free stem cell products, to optimize cell-based strategy for vulnerable preterm infants in the near future.
Collapse
Affiliation(s)
- Josine E G Vaes
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marit A Vink
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Caroline G M de Theije
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Freek E Hoebeek
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cora H A Nijboer
- NIDOD Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
48
|
Fang H, Li HF, Yang M, Liao R, Wang RR, Wang QY, Zheng PC, Zhang FX, Zhang JP. NF-κB signaling pathway inhibition suppresses hippocampal neuronal apoptosis and cognitive impairment via RCAN1 in neonatal rats with hypoxic-ischemic brain damage. Cell Cycle 2019; 18:1001-1018. [PMID: 30990350 PMCID: PMC6527272 DOI: 10.1080/15384101.2019.1608128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NF-κB is a core transcription factor, the activation of which can lead to hypoxic-ischemic brain damage (HIBD), while RCAN1 plays a protective role in HIBD. However, the relationship between NF-κB and RCAN1 in HIBD remains unclear. This study aimed to explore the mechanism of NF-κB signaling pathway in hippocampal neuron apoptosis and cognitive impairment of neonatal rats with HIBD in relation to RCAN1. Initially, microarray analysis was used to determine the differentially expressed genes related to HIBD. After the establishment of HIBD rat models, gain- or loss-of-function assay was performed to explore the functional role of NF-κB signaling pathway in HIBD. Then, the learning and memory ability of rats was evaluated. Expression of RCAN1, NF-κB signaling pathway-related genes and glial fibrillary acidic protein (GFAP), S-100β and acetylcholine (Ach) level, and acetylcholinesterase (AchE) activity were determined with neuron apoptosis detected to further explore the function of NF-κB signaling pathway. RCAN1 could influence the development of HIBD. In the HIBD model, the expression of RCAN1 and NF-κB-related genes increased, and NF-κB p65 showed a significant nuclear shift. By activation of NF-κB or overexpression of RCAN1, the number of neuronal apoptosis, S-100β protein level, and AchE level increased significantly, Ach activity decreased significantly, and GFAP positive cells increased. In addition, after the activation of NF-κB or overexpression of RCAN1, the learning and memory ability of HIBD rats was inhibited. All the results show that activation of NF-κB signaling pathway promotes RCAN1 expression, thus increasing neuronal apoptosis and aggravating cognitive impairment in HIBD rats.
Collapse
Affiliation(s)
- Hua Fang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Hua-Feng Li
- c Department of Anesthesiology, West China Second University Hospital , Sichuan University , Chengdu , P. R. China
| | - Miao Yang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Ren Liao
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Ru-Rong Wang
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Quan-Yun Wang
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Peng-Cheng Zheng
- e Guizhou University Research Center for Analysis of Drugs and Metabolites , Guizhou University , Chengdu , P. R. China
| | - Fang-Xiang Zhang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Jian-Ping Zhang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| |
Collapse
|
49
|
T-Regulatory Cells Confer Increased Myelination and Stem Cell Activity after Stroke-Induced White Matter Injury. J Clin Med 2019; 8:jcm8040537. [PMID: 31010132 PMCID: PMC6518209 DOI: 10.3390/jcm8040537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/29/2022] Open
Abstract
Stroke-induced hypoxia causes oligodendrocyte death due to inflammation, lack of oxygen and exacerbation of cell death. Bone marrow-derived stem cells (BMSCs) possess an endogenous population of T-regulatory cells (Tregs) which reduce secretion of pro-inflammatory cytokines that lead to secondary cell death. Here, we hypothesize that oligodendrocyte progenitor cells (OPCs) cultured with BMSCs containing their native Treg population show greater cell viability, less pro-inflammatory cytokine secretion and greater myelin production after exposure to oxygen-glucose deprivation and reoxygenation (OGD/R) than OPCs cultured without Tregs. OPCs were cultured and then exposed to OGD/R. BMSCs with or without Tregs were added to the co-culture immediately after ischemia. The Tregs were depleted by running the BMSCs through a column containing a magnetic substrate. Fibroblast growth factor beta (FGF-β) and interleukin 6 (IL-6) ELISAs determined BMSC activity levels. Immunohistochemistry assessed OPC differentiation. OPCs cultured with BMSCs containing their endogenous Tregs showed increased myelin production compared to the BMSCs with depleted Tregs. IL-6 and FGF-β were increased in the group cultured with Tregs. Collectively, these results suggest that BMSCs containing Tregs are more therapeutically active, and that Tregs have beneficial effects on OPCs subjected to ischemia. Tregs play an important role in stem cell therapy and can potentially treat white matter injury post-stroke.
Collapse
|
50
|
Zhou H, Wang X, Cheng R, Hou X, Chen Y, Feng Y, Qiu J. Analysis of long non-coding RNA expression profiles in neonatal rats with hypoxic-ischemic brain damage. J Neurochem 2019; 149:346-361. [PMID: 30802942 DOI: 10.1111/jnc.14689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/26/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) which is a common cause of acute mortality and neurological dysfunction in neonates still lacks effective therapeutic methods. Long non-coding RNAs (lncRNAs) were demonstrated to play a crucial role in many diseases. To give a foundation for subsequent functional studies of lncRNAs in HIBD, we investigated the profiling of lncRNAs and messenger RNAs (mRNAs) using neonatal HIBD rat model. Six neonatal rats were divided into sham-operated group (n = 3) and HIBD group (n = 3) randomly. Deep RNA sequencing was implemented to find out the meaningful lncRNAs and mRNAs. Quantitative real-time PCR was used to validate expressions of lncRNAs and mRNAs. The Gene Ontology (GO) and kyoto encyclopedia of genes a genomes (KEGG) database were used to predict functions of lncRNAs. A total of 328 differentially expressed lncRNAs (177 down-regulated vs 151 up-regulated) and 7157 differentially expressed mRNAs (2552 down-regulated vs 4605 up-regulated) were identified. The Quantitative real-time PCR results showed significant differential expressions of five lncRNAs and five mRNAs which were consistent with the RNA-Seq data. Gene ontology and KEGG analysis showed these lncRNAs and their expression-correlated mRNAs were closely related to the Janus tyrosine kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, calcium signaling pathway, Notch signaling pathway, mitogen activated protein kinase signaling pathway, neuroactive ligand-receptor interaction pathway and more. The results of our study identified the characterization and expression profiles of lncRNAs in neonatal HIBD and may be a basis for further therapeutic research. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/yf3da/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Han Zhou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Wang
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Cheng
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuewen Hou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Feng
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Qiu
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|