1
|
Tabassum S, Saqib M, Batool M, Sharif F, Gilani MA, Huck O. Eco-friendly synthesis of mesoporous bioactive glass ceramics and functionalization for drug delivery and hard tissue engineering applications. Biomed Mater 2024; 19:035014. [PMID: 38387057 DOI: 10.1088/1748-605x/ad2c19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Hard tissue regenerative mesoporous bioactive glass (MBG) has traditionally been synthesized using costly and toxic alkoxysilane agents and harsh conditions. In this study, MBG was synthesized using the cheaper reagent SiO2by using a co-precipitation approach. The surface properties of MBG ceramic were tailored by functionalizing with amino and carboxylic groups, aiming to develop an efficient drug delivery system for treating bone infections occurring during or after reconstruction surgeries. The amino groups were introduced through a salinization reaction, while the carboxylate groups were added via a chain elongation reaction. The MBG, MBG-NH2, and MBG-NH-COOH were analyzed by using various techniques: x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), scanning electron microscopy and energy-dispersive x-ray spectroscopy. The XRD results confirmed the successful preparation of MBG, and the FTIR results indicated successful functionalization. BET analysis revealed that the prepared samples were mesoporous, and functionalization tuned their surface area and surface properties. Cefixime, an antibiotic, was loaded onto MBG, MBG-NH2, and MBG-NH-COOH to test their drug-carrying capacity. Comparatively, MBG-NH-COOH showed good drug loading and sustained release behavior. The release of the drug followed the Fickian diffusion mechanism. All prepared samples displayed favorable biocompatibility at higher concentration in the Alamar blue assay with MC3T3 cells and exhibited the good potential for hard tissue regeneration, as carbonated hydroxyapatite formed on their surfaces in simulated body fluid.
Collapse
Affiliation(s)
- Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54600, Pakistan
| | - Muhammad Saqib
- Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Madeeha Batool
- Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54600, Pakistan
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54600, Pakistan
| | - Olivier Huck
- Université de Strasbourg, Dental Faculty, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
2
|
Wenxiu L, Guojiang H, Liying Q, Wenli D, Baoqin H, Liming J, Yan Y. Fabrication of bioactive glass/phosphorylated chitosan composite scaffold and its effects on MC3T3-E1 cells. Biomed Mater 2024; 19:025002. [PMID: 38181446 DOI: 10.1088/1748-605x/ad1bb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
This study aimed to synthesize bioactive glass (BG) and phosphorylated chitosan (PCS), and fabricate a BG/PCS composite scaffold. The physical properties (mechanical strength, swelling degree, and degradation rate) of the BG/PCS scaffold were tested. Thein vitromineralization properties of composite scaffolds in simulated body fluid were investigated. MC3T3-E1 cell responses with the BG/PCS scaffold were investigated using live/dead cell staining, actin staining, alkaline phosphatase (ALP) activity, and Alizarin red staining. Our results showed that the scaffold had an inner porous structure, good swelling properties, and good degradation rate. After immersion in SBF, the scaffolds demonstrated high properties in inducing mineralization. Leaching solutions of the composite scaffolds exhibited good cytocompatibility. MC3T3-E1 cells adhered, spread, and proliferated on the scaffold. The BG/PCS composite scaffold showed osteo-inductive activity by increasing ALP activity and calcium deposition. Our results indicated that the BG/PCS scaffold had potential applications as a bone-defect repair biomaterial.
Collapse
Affiliation(s)
- Liu Wenxiu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Han Guojiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qin Liying
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dong Wenli
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Han Baoqin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jin Liming
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116600, People's Republic of China
| | - Yang Yan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
3
|
Murugan SS, Dalavi PA, Surya S, Anil S, Gupta S, Shetty R, Venkatesan J. Fabrication and characterizations of simvastatin-containing mesoporous bioactive glass and molybdenum disulfide scaffold for bone tissue engineering. APL Bioeng 2023; 7:046115. [PMID: 38058994 PMCID: PMC10697724 DOI: 10.1063/5.0172002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
Due to the limitations of the current treatment approaches of allograft and autograft techniques, treating bone disorders is a significant challenge. To address these shortcomings, a novel biomaterial composite is required. This study presents the preparation and fabrication of a novel biomaterial composite scaffold that combines poly (D, L-lactide-co-glycolide) (PLGA), mesoporous bioactive glass (MBG), molybdenum disulfide (MoS2), and simvastatin (Sim) to address the limitations of current bone grafting techniques of autograft and allograft. The fabricated scaffold of PLGA-MBG-MoS2-Sim composites was developed using a low-cost hydraulic press and salt leaching method, and scanning electron microscopy (SEM) analysis confirmed the scaffolds have a pore size between 143 and 240 μm. The protein adsorption for fabricated scaffolds was increased at 24 h. The water adsorption and retention studies showed significant results on the PLGA-MBG-MoS2-Sim composite scaffold. The biodegradation studies of the PLGA-MBG-MoS2-Sim composite scaffold have shown 54% after 28 days. In vitro, bioactivity evaluation utilizing simulated body fluid studies confirmed the development of bone mineral hydroxyapatite on the scaffolds, which was characterized using x-ray diffraction, Fourier transform infrared, and SEM analysis. Furthermore, the PLGA-MBG-MoS2-Sim composite scaffold is biocompatible with C3H10T1/2 cells and expresses more alkaline phosphatase and mineralization activity. Additionally, in vivo research showed that PLGA-MBG-MoS2-Sim stimulates a higher rate of bone regeneration. These findings highlight the fabricated PLGA-MBG-MoS2-Sim composite scaffold presents a promising solution for the limitations of current bone grafting techniques.
Collapse
Affiliation(s)
- Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Suprith Surya
- Advancement Surgical Skill Enhancement Division, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, College of Dental Medicine, Qatar University, Doha, Qatar
| | - Sebanti Gupta
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Mangalore, Karnataka, India
| | - Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
4
|
彭 雨, 兰 梁, 穆 君, 侯 沙, 程 丽. [Research progress on biocomposites based on bioactive glass]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:805-811. [PMID: 37666773 PMCID: PMC10477385 DOI: 10.7507/1001-5515.202202016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/25/2023] [Indexed: 09/06/2023]
Abstract
Bioactive glass (BG) has been widely used in the preparation of artificial bone scaffolds due to its excellent biological properties and non-cytotoxicity, which can promote bone and soft tissue regeneration. However, due to the brittleness, poor mechanical strength, easy agglomeration and uncontrollable structure of glass material, its application in various fields is limited. In this regard, most current researches mainly focus on mixing BG with organic or inorganic materials by freeze-drying method, sol-gel method, etc., to improve its mechanical properties and brittleness, so as to increase its clinical application and expand its application field. This review introduces the combination of BG with natural organic materials, metallic materials and non-metallic materials, and demonstrates the latest technology and future prospects of BG composite materials through the development of scaffolds, injectable fillers, membranes, hydrogels and coatings. The previous studies show that the addition of BG improves the mechanical properties, biological activity and regeneration potential of the composites, and broadens the application of BG in the field of bone tissue engineering. By reviewing the recent BG researches on bone regeneration, the research potential of new materials is demonstrated, in order to provide a reference for future related research.
Collapse
Affiliation(s)
- 雨 彭
- 成都大学 基础医学院(成都 610106)Basic Medical School, Chengdu University, Chengdu 610106, P. R. China
| | - 梁 兰
- 成都大学 基础医学院(成都 610106)Basic Medical School, Chengdu University, Chengdu 610106, P. R. China
| | - 君宇 穆
- 成都大学 基础医学院(成都 610106)Basic Medical School, Chengdu University, Chengdu 610106, P. R. China
| | - 沙 侯
- 成都大学 基础医学院(成都 610106)Basic Medical School, Chengdu University, Chengdu 610106, P. R. China
| | - 丽佳 程
- 成都大学 基础医学院(成都 610106)Basic Medical School, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
5
|
Awad K, Ahuja N, Yacoub AS, Brotto L, Young S, Mikos A, Aswath P, Varanasi V. Revolutionizing bone regeneration: advanced biomaterials for healing compromised bone defects. FRONTIERS IN AGING 2023; 4:1217054. [PMID: 37520216 PMCID: PMC10376722 DOI: 10.3389/fragi.2023.1217054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
In this review, we explore the application of novel biomaterial-based therapies specifically targeted towards craniofacial bone defects. The repair and regeneration of critical sized bone defects in the craniofacial region requires the use of bioactive materials to stabilize and expedite the healing process. However, the existing clinical approaches face challenges in effectively treating complex craniofacial bone defects, including issues such as oxidative stress, inflammation, and soft tissue loss. Given that a significant portion of individuals affected by traumatic bone defects in the craniofacial area belong to the aging population, there is an urgent need for innovative biomaterials to address the declining rate of new bone formation associated with age-related changes in the skeletal system. This article emphasizes the importance of semiconductor industry-derived materials as a potential solution to combat oxidative stress and address the challenges associated with aging bone. Furthermore, we discuss various material and autologous treatment approaches, as well as in vitro and in vivo models used to investigate new therapeutic strategies in the context of craniofacial bone repair. By focusing on these aspects, we aim to shed light on the potential of advanced biomaterials to overcome the limitations of current treatments and pave the way for more effective and efficient therapeutic interventions for craniofacial bone defects.
Collapse
Affiliation(s)
- Kamal Awad
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Neelam Ahuja
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
| | - Ahmed S. Yacoub
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Leticia Brotto
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonios Mikos
- Center for Engineering Complex Tissues, Center for Excellence in Tissue Engineering, J.W. Cox Laboratory for Biomedical Engineering, Rice University, Houston, TX, United States
| | - Pranesh Aswath
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Venu Varanasi
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
6
|
Almasri D, Dahman Y. Prosthetic Joint Infections: Biofilm Formation, Management, and the Potential of Mesoporous Bioactive Glass as a New Treatment Option. Pharmaceutics 2023; 15:pharmaceutics15051401. [PMID: 37242643 DOI: 10.3390/pharmaceutics15051401] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Infection of prosthetic joints is one of the biggest challenges to a successful replacement of the joint after a total joint arthroplasty. Such infections are caused by bacterial colonies that are difficult to treat by systemic delivery of antibiotics. Local delivery of antibiotics can prove to be the solution to such a devastating outcome that impacts patients' health and ability to regain function in their joints as well as costs the healthcare system millions of dollars every year. This review will discuss prosthetic joint infections in detail with a focus on the development, management, and diagnosis of the infections. Surgeons often opt to use polymethacrylate cement locally to deliver antibiotics; however, due to the rapid release of antibiotics, non-biodegradability, and high chance of reinfection, the search for alternatives is in high demand. One of the most researched alternatives to current treatments is the use of biodegradable and highly compatible bioactive glass. The novelty of this review lies in its focus on mesoporous bioactive glass as a potential alternative to current treatments for prosthetic joint infection. Mesoporous bioactive glass is the focus of this review because it has a higher capacity to deliver biomolecules, stimulate bone growth, and treat infections after prosthetic joint replacement surgeries. The review also examines different synthesis methods, compositions, and properties of mesoporous bioactive glass, highlighting its potential as a biomaterial for the treatment of joint infections.
Collapse
Affiliation(s)
- Dana Almasri
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Yaser Dahman
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
7
|
Tomasina C, Montalbano G, Fiorilli S, Quadros P, Azevedo A, Coelho C, Vitale-Brovarone C, Camarero-Espinosa S, Moroni L. Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration. BIOMATERIALS ADVANCES 2023; 149:213406. [PMID: 37054582 DOI: 10.1016/j.bioadv.2023.213406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The combination of biomaterials and bioactive particles has shown to be a successful strategy to fabricate electrospun scaffolds for bone tissue engineering. Among the range of bioactive particles, hydroxyapatite and mesoporous bioactive glasses (MBGs) have been widely used for their osteoconductive and osteoinductive properties. Yet, the comparison between the chemical and mechanical characteristics as well as the biological performances of these particle-containing scaffolds have been characterized to a limited extent. In this work, we fabricated PEOT/PBT-based composite scaffolds incorporating either nanohydroxyapatite (nHA), strontium-containing nanohydroxyapatite (nHA_Sr) or MBGs doped with strontium ions up to 15 wt./vol% and 12,5 wt./vol% for nHA and MBG, respectively. The composite scaffolds presented a homogeneous particle distribution. Morphological, chemical and mechanical analysis revealed that the introduction of particles into the electrospun meshes caused a decrease in the fiber diameter and mechanical properties, yet maintaining the hydrophilic nature of the scaffolds. The Sr2+ release profile differed according to the considered system, observing a 35-day slowly decreasing release from strontium-containing nHA scaffolds, whereas MBG-based scaffolds showed a strong burst release in the first week. In vitro, culture of human bone marrow-derived mesenchymal stromal cells (hMSCs) on composite scaffolds demonstrated excellent cell adhesion and proliferation. In maintenance and osteogenic media, all composite scaffolds showed high mineralization as well as expression of Col I and OCN compared to PEOT/PBT scaffolds, suggesting their ability to boost bone formation even without osteogenic factors. The presence of strontium led to an increase in collagen secretion and matrix mineralization in osteogenic medium, while gene expression analysis showed that hMSCs cultured on nHA-based scaffolds had a higher expression of OCN, ALP and RUNX2 compared to cells cultured on nHA_Sr scaffolds in osteogenic medium. Yet, cells cultured on MBGs-based scaffolds showed a higher gene expression of COL1, ALP, RUNX2 and BMP2 in osteogenic medium compared to nHA-based scaffolds, which is hypothesized to lead to high osteoinductivity in long term cultures.
Collapse
|
8
|
Thangavel M, Elsen Selvam R. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:5060-5093. [PMID: 36415173 DOI: 10.1021/acsbiomaterials.2c00793] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review focuses on the advancements in additive manufacturing techniques that are utilized for fabricating bioceramic scaffolds and their characterizations leading to bone tissue regeneration. Bioscaffolds are made by mimicking the human bone structure, material composition, and properties. Calcium phosphate apatite materials are the most commonly used scaffold materials as they closely resemble live bone in their inorganic composition. The functionally graded scaffolds are fabricated by utilizing the right choice of the 3D printing method and material combinations to achieve the requirement of the bioscaffold. To tailor the physical, mechanical, and biological properties of the scaffold, certain materials are reinforced, doped, or coated to incorporate the functionality. The biomechanical loading conditions that involve flexion, torsion, and tension exerted on the implanted scaffold are discussed. The finite element analysis (FEA) technique is used to investigate the mechanical property of the scaffold before fabrication. This helps in reducing the actual number of samples used for testing. The FEA simulated results and the experimental result are compared. This review also highlights some of the challenges associated while processing the scaffold such as shrinkage, mechanical instability, cytotoxicity, and printability. In the end, the new materials that are evolved for tissue engineering applications are compiled and discussed.
Collapse
Affiliation(s)
- Mahendran Thangavel
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
9
|
3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering. Int J Biol Macromol 2022; 217:979-997. [PMID: 35908677 DOI: 10.1016/j.ijbiomac.2022.07.202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
In the recent years, bone tissue engineering is regarded as the promising solution for treatment of bone defects which arises due to trauma, infection and surgical intervention. In view of this, several polymer or ceramic based constructs are envisaged for bone tissue engineering potential. However, scaffolds based on pure polymeric materials suffer from slow bioactivity characteristics. On the other hand, scaffolds based on ceramic materials do not offer sufficient strength for load bearing applications. In order to overcome these drawbacks, the current work aims to develop mixed matrix scaffolds based on poly (L-lactic acid)/mesoporous bioactive glass composite with the formulation of 30:70 weight ratio, which mimics the natural bone composition. In the current work, PLA/MBG (30:70) composite based bioink suitable for 3D bioprinting is indigenously developed and its rheological characteristics are evaluated. The 3D architecture for PLA/MBG composite scaffold is designed using Solidworks CAD 2015 and the scaffolds are fabricated using pneumatic based 3D bioprinting technology, which has not been documented earlier for this formulation in view of bone tissue engineering to the best of our knowledge. Followed by this, optimization of printing parameters in order to develop 3D PLA/MBG composite constructs with hierarchical pore architecture suitable for bone tissue engineering is performed. The SEM analysis confirmed that the pore size of the 3D printed PLA/MBG composite scaffolds falls in the range of 500-700 μm, which corresponds to the macroporous nature of the scaffolds useful for bone cell growth. The mechanical analysis confirmed the superior compressive modulus and yield strength for PLA/MBG composite scaffold in comparison to neat PLA. The in-vitro bioactivity assessment showed rapid apatite crystallization by attaining Ca/P ratio of 1.66 equivalent to natural bone mineral within 3rd day of SBF treatment for PLA/MBG composite scaffold, thus indicating the excellent bioactivity behaviour. The 3D bioprinted PLA/MBG composite scaffold showed promising response in terms of cell attachment and proliferation, mineralization as well as gene expression characteristics while assessed through of in-vitro biological assessment using MG-63 osteosarcoma cells. In this regard, the 3D bioprinted PLA/MBG scaffold could be applied as potential implant for bone tissue engineering application.
Collapse
|
10
|
Structural design and performance study of primitive triply periodic minimal surfaces Ti6Al4V biomimetic scaffold. Sci Rep 2022; 12:12759. [PMID: 35882907 PMCID: PMC9325729 DOI: 10.1038/s41598-022-17066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
This paper comprehensively evaluated the static mechanical compressive properties, permeability, and cell adhesion effect on the inner wall of the Primitive triply periodic minimal surface Ti6Al4V bionic scaffolds with different axial diameter ratios through numerical simulation and experiments. The results show that when the axial diameter ratio is 1:2, the elastic modulus of the scaffold is about 1.25 and the yield strength is about 1.36. The scaffold's longitudinal and transverse mechanical properties align with human bone tissue. Its permeability is also better than that of circular pores. The scaffold with an axial diameter ratio of 1:3 has the best permeability, ranging from 1.28e−8 to 1.60e−8 m2, which is more conducive to the adsorption of cells on the inner wall of the scaffold. These results show that the scaffold structure with an axial diameter ratio of not 1:1 has more advantages than the ordinary uniform scaffold structure with an axial diameter ratio of 1:1. This is of great significance to the optimal design of scaffold.
Collapse
|
11
|
Zhu H, Monavari M, Zheng K, Distler T, Ouyang L, Heid S, Jin Z, He J, Li D, Boccaccini AR. 3D Bioprinting of Multifunctional Dynamic Nanocomposite Bioinks Incorporating Cu-Doped Mesoporous Bioactive Glass Nanoparticles for Bone Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104996. [PMID: 35102718 DOI: 10.1002/smll.202104996] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Bioprinting has seen significant progress in recent years for the fabrication of bionic tissues with high complexity. However, it remains challenging to develop cell-laden bioinks exhibiting superior physiochemical properties and bio-functionality. In this study, a multifunctional nanocomposite bioink is developed based on amine-functionalized copper (Cu)-doped mesoporous bioactive glass nanoparticles (ACuMBGNs) and a hydrogel formulation relying on dynamic covalent chemistry composed of alginate dialdehyde (oxidized alginate) and gelatin, with favorable rheological properties, improved shape fidelity, and structural stability for extrusion-based bioprinting. The reversible dynamic microenvironment in combination with the impact of cell-adhesive ligands introduced by aminated particles enables the rapid spreading (within 3 days) and high survival (>90%) of embedded human osteosarcoma cells and immortalized mouse bone marrow-derived stroma cells. Osteogenic differentiation of primary mouse bone marrow stromal stem cells (BMSCs) and angiogenesis are promoted in the bioprinted alginate dialdehyde-gelatin (ADA-GEL or AG)-ACuMBGN scaffolds without additional growth factors in vitro, which is likely due to ion stimulation from the incorporated nanoparticles and possibly due to cell mechanosensing in the dynamic matrix. In conclusion, it is envisioned that these nanocomposite bioinks can serve as promising platforms for bioprinting complex 3D matrix environments providing superior physiochemical and biological performance for bone tissue engineering.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
- Department of Materials Science and Engineering Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Mahshid Monavari
- Department of Materials Science and Engineering Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Kai Zheng
- Department of Materials Science and Engineering Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Thomas Distler
- Department of Materials Science and Engineering Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Liliang Ouyang
- Department of Mechanical Engineering, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Tsinghua University, Beijing, 100084, P. R. China
| | - Susanne Heid
- Department of Materials Science and Engineering Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Zhaorui Jin
- Department of Materials Science and Engineering Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, 91058, Erlangen, Germany
| |
Collapse
|
12
|
Fang H, Zhu D, Yang Q, Chen Y, Zhang C, Gao J, Gao Y. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. J Nanobiotechnology 2022; 20:26. [PMID: 34991600 PMCID: PMC8740479 DOI: 10.1186/s12951-021-01228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the most sophisticated and dynamic tissues in the human body, and is characterized by its remarkable potential for regeneration. In most cases, bone has the capacity to be restored to its original form with homeostatic functionality after injury without any remaining scarring. Throughout the fascinating processes of bone regeneration, a plethora of cell lineages and signaling molecules, together with the extracellular matrix, are precisely regulated at multiple length and time scales. However, conditions, such as delayed unions (or nonunion) and critical-sized bone defects, represent thorny challenges for orthopedic surgeons. During recent decades, a variety of novel biomaterials have been designed to mimic the organic and inorganic structure of the bone microenvironment, which have tremendously promoted and accelerated bone healing throughout different stages of bone regeneration. Advances in tissue engineering endowed bone scaffolds with phenomenal osteoconductivity, osteoinductivity, vascularization and neurotization effects as well as alluring properties, such as antibacterial effects. According to the dimensional structure and functional mechanism, these biomaterials are categorized as zero-dimensional, one-dimensional, two-dimensional, three-dimensional, and four-dimensional biomaterials. In this review, we comprehensively summarized the astounding advances in emerging biomaterials for bone regeneration by categorizing them as zero-dimensional to four-dimensional biomaterials, which were further elucidated by typical examples. Hopefully, this review will provide some inspiration for the future design of biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
13
|
Boswellia sacra Extract-Loaded Mesoporous Bioactive Glass Nano Particles: Synthesis and Biological Effects. Pharmaceutics 2022; 14:pharmaceutics14010126. [PMID: 35057022 PMCID: PMC8779989 DOI: 10.3390/pharmaceutics14010126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Bioactive glasses (BGs) are being increasingly considered for numerous biomedical applications. The loading of natural compounds onto BGs to increase the BG biological activity is receiving increasing attention. However, achieving efficient loading of phytotherapeutic compounds onto the surface of bioactive glass is challenging. The present work aimed to prepare novel amino-functionalized mesoporous bioactive glass nanoparticles (MBGNs) loaded with the phytotherapeutic agent Boswellia sacra extract. The prepared amino-functionalized MBGNs showed suitable loading capacity and releasing time. MBGNs (nominal composition: 58 wt% SiO2, 37 wt% CaO, 5 wt% P2O5) were prepared by sol-gel-modified co-precipitation method and were successfully surface-modified by using 3-aminopropyltriethoxysilane (APTES). In order to evaluate MBGNs loaded with Boswellia sacra, morphological analysis, biological studies, physico-chemical and release studies were performed. The successful functionalization and loading of the natural compound were confirmed with FTIR, zeta-potential measurements and UV-Vis spectroscopy, respectively. Structural and morphological evaluation of MBGNs was done by XRD, SEM and BET analyses, whereas the chemical analysis of the plant extract was done using GC/MS technique. The functionalized MBGNs showed high loading capacity as compared to non-functionalized MBGNs. The release studies revealed that Boswellia sacra molecules were released via controlled diffusion and led to antibacterial effects against S. aureus (Gram-positive) bacteria. Results of cell culture studies using human osteoblastic-like cells (MG-63) indicated better cell viability of the Boswellia sacra-loaded MBGNs as compared to the unloaded MBGNs. Therefore, the strategy of combining the properties of MBGNs with the therapeutic effects of Boswellia sacra represents a novel, convenient step towards the development of phytotherapeutic-loaded antibacterial, inorganic materials to improve tissue healing and regeneration.
Collapse
|
14
|
Ding X, Shi J, Wei J, Li Y, Wu X, Zhang Y, Jiang X, Zhang X, Lai H. A biopolymer hydrogel electrostatically reinforced by amino-functionalized bioactive glass for accelerated bone regeneration. SCIENCE ADVANCES 2021; 7:eabj7857. [PMID: 34890238 PMCID: PMC8664252 DOI: 10.1126/sciadv.abj7857] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Composite hydrogels incorporating natural polymers and bioactive glass (BG) are promising materials for bone regeneration. However, their applications are compromised by the poor interfacial compatibility between organic and inorganic phases. In this study, we developed an electrostatically reinforced hydrogel (CAG) with improved interfacial compatibility by introducing amino-functionalized 45S5 BG to the alginate/gellan gum (AG) matrix. BAG composed of AG and unmodified BG (10 to 100 μm in size) was prepared as a control. Compared with BAG, CAG had a more uniform porous structure with a pore size of 200 μm and optimal compressive strength of 66 kPa. Furthermore, CAG promoted the M2 phenotype transition of macrophages and up-regulated the osteogenic gene expression of stem cells. The new bone formation in vivo was also accelerated due to the enhanced biomineralization of CAG. Overall, this work suggests CAG with improved interfacial compatibility is an ideal material for bone regeneration application.
Collapse
|
15
|
Gao K, Wang X, Wang Z, He L, Lin J, Bai Z, Jiang K, Huang S, Zheng W, Liu L. Design of novel functionalized collagen-chitosan-MBG scaffolds for enhancing osteoblast differentiation in BMSCs. Biomed Mater 2021; 16. [PMID: 34670204 DOI: 10.1088/1748-605x/ac3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022]
Abstract
Collagen and chitosan are two different kinds of natural biodegradable polymers commonly used in the regeneration of bone defects. Mesoporous bioactive glass (MBG) is a type of favorable bone filler which can effectively constitute an enlarged microenvironment to facilitate an exchange of important factors between the cells and scaffolds. Here we prepared a collagen-chitosan-MBG (C-C-MBG) scaffold which displayed significantly increased proliferation, differentiation and mineralization in bone mesenchymal stem cells (BMSCs). Additionally, we found that the scaffold can stimulate extra-cellular signal regulated kinase 1/2 (Erk1/2) activated Runx2 pathway, which is the predominant signaling pathway involved in osteoblast differentiation. Consistently, we observed that the scaffold can markedly enhance the expression ofType I collagen, Osteopontin(Opn), andRunx2, which are important osteoblastic marker genes implicated in the process of osteoblast differentiation. Therefore, we conclude that the composite scaffold can significantly promote the differentiation of BMSCs into osteoblasts by activating Erk1/2-Runx2 pathway. Our finding thereby implies that the C-C-MBG scaffold can possibly act as a potential biomaterial in the bone regeneration.
Collapse
Affiliation(s)
- Kai Gao
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China.,Kunming Sanatorium, Kunming, Yunnan 650000, People's Republic of China
| | - Xiaoyan Wang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Zhonghua Wang
- Kunming Sanatorium, Kunming, Yunnan 650000, People's Republic of China
| | - Lijiao He
- Army Medical University, Chongqing 400038, People's Republic of China
| | | | | | - Kai Jiang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Shan Huang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Weijia Zheng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Long Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| |
Collapse
|
16
|
Pérez Sayans M, Rivas Mundiña B, Chamorro Petronacci CM, García García A, Gómez García FJ, Crecente Campo J, Yañez Vilar S, Piñeiro Redondo Y, Rivas J, López Jornet P. Effect of mesoporous silica and its combination with hydroxyapatite on the regeneration of rabbit's bone defects: A pilot study. Biomed Mater Eng 2021; 32:281-294. [PMID: 33780356 DOI: 10.3233/bme-201144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bone volume augmentation is a routine technique used in oral implantology and periodontology. Advances in the surgical techniques and the biomaterials field have allowed a greater accessibility to these treatments. Nevertheless, dehiscence and fenestrations incidence during dental implant procedures are still common in patients with bone loss. OBJECTIVE The main objective is to evaluate in a pilot experimental study the biological response to mesoporous silica (MS) hybrid scaffolds and its regenerative capacity in different formulations. METHODS Two defects per rabbit tibia were performed (one for control and other for test) and the biomaterials tested in this study have been used to fill the bone defects, prepared in two different formulations (3D hybrid scaffolds or powdered material, in 100% pure MS form, or 50% MS with 50% hydroxyapatite (HA). Euthanasia was performed 4 months after surgery for bone histopathological study and radiographic images were acquired by computerized microtomography. RESULTS Results showed that radiographically and histopathologically pure MS formulations lead to a lower biological response, e.g when formulated with HA, the osteogenic response in terms of osteoconduction was greater. CONCLUSIONS We observed tolerance and lack of toxicity of the MS and HA, without registering any type of local or systemic allergic reaction.
Collapse
Affiliation(s)
- Mario Pérez Sayans
- Unit of Oral Medicine, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Berta Rivas Mundiña
- Pathology and Therapeutic Unit, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cintia M Chamorro Petronacci
- Unit of Oral Medicine, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Abel García García
- Unit of Oral Medicine, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco José Gómez García
- The Murcia Institute of Biomedical Research (Instituto Murciano de Investigación Biomédica, IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain
| | - José Crecente Campo
- MJ ALONSO LAB, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida Avenida Barcelona, Santiago de Compostela, Spain
| | - Susana Yañez Vilar
- Department of Applied Physics, Faculty of Physics, Lab of Nanotechnology and Magnetism (NANOMAG), Ceramic Institute of Galicia ICG, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yolanda Piñeiro Redondo
- Department of Applied Physics, Faculty of Physics, Lab of Nanotechnology and Magnetism (NANOMAG), Ceramic Institute of Galicia ICG, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Rivas
- Department of Applied Physics, Faculty of Physics, Lab of Nanotechnology and Magnetism (NANOMAG), Ceramic Institute of Galicia ICG, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pía López Jornet
- The Murcia Institute of Biomedical Research (Instituto Murciano de Investigación Biomédica, IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain
| |
Collapse
|
17
|
Chotchindakun K, Pekkoh J, Ruangsuriya J, Zheng K, Unalan I, Boccaccini AR. Fabrication and Characterization of Cinnamaldehyde-Loaded Mesoporous Bioactive Glass Nanoparticles/PHBV-Based Microspheres for Preventing Bacterial Infection and Promoting Bone Tissue Regeneration. Polymers (Basel) 2021; 13:1794. [PMID: 34072334 PMCID: PMC8198921 DOI: 10.3390/polym13111794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is considered a suitable polymer for drug delivery systems and bone tissue engineering due to its biocompatibility and biodegradability. However, the lack of bioactivity and antibacterial activity hinders its biomedical applications. In this study, mesoporous bioactive glass nanoparticles (MBGN) were incorporated into PHBV to enhance its bioactivity, while cinnamaldehyde (CIN) was loaded in MBGN to introduce antimicrobial activity. The blank (PHBV/MBGN) and the CIN-loaded microspheres (PHBV/MBGN/CIN5, PHBV/MBGN/CIN10, and PHBV/MBGN/CIN20) were fabricated by emulsion solvent extraction/evaporation method. The average particle size and zeta potential of all samples were investigated, as well as the morphology of all samples evaluated by scanning electron microscopy. PHBV/MBGN/CIN5, PHBV/MBGN/CIN10, and PHBV/MBGN/CIN20 significantly exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli in the first 3 h, while CIN releasing behavior was observed up to 7 d. Human osteosarcoma cell (MG-63) proliferation and attachment were noticed after 24 h cell culture, demonstrating no adverse effects due to the presence of microspheres. Additionally, the rapid formation of hydroxyapatite on the composite microspheres after immersion in simulated body fluid (SBF) during 7 d revealed the bioactivity of the composite microspheres. Our findings indicate that this system represents an alternative model for an antibacterial biomaterial for potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Kittipat Chotchindakun
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jetsada Ruangsuriya
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Functional Food Research Unit, Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (K.Z.); (I.U.)
| | - Irem Unalan
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (K.Z.); (I.U.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (K.Z.); (I.U.)
| |
Collapse
|
18
|
Wan M, Liu S, Huang D, Qu Y, Hu Y, Su Q, Zheng W, Dong X, Zhang H, Wei Y, Zhou W. Biocompatible heterogeneous bone incorporated with polymeric biocomposites for human bone repair by
3D
printing technology. J Appl Polym Sci 2021. [DOI: 10.1002/app.50114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Meiling Wan
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Shuifeng Liu
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Da Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou China
| | - Yang Qu
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Yang Hu
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Qisheng Su
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Wenxu Zheng
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Xianming Dong
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| | - Hongwu Zhang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research Tsinghua University Beijing P. R. China
| | - Wuyi Zhou
- Research Center of Biomass 3D printing materials, College of Materials and Energy South China Agricultural University Guangzhou China
| |
Collapse
|
19
|
Zhu Y, Goh C, Shrestha A. Biomaterial Properties Modulating Bone Regeneration. Macromol Biosci 2021; 21:e2000365. [PMID: 33615702 DOI: 10.1002/mabi.202000365] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Biomaterial scaffolds have been gaining momentum in the past several decades for their potential applications in the area of tissue engineering. They function as three-dimensional porous constructs to temporarily support the attachment of cells, subsequently influencing cell behaviors such as proliferation and differentiation to repair or regenerate defective tissues. In addition, scaffolds can also serve as delivery vehicles to achieve sustained release of encapsulated growth factors or therapeutic agents to further modulate the regeneration process. Given the limitations of current bone grafts used clinically in bone repair, alternatives such as biomaterial scaffolds have emerged as potential bone graft substitutes. This review summarizes how physicochemical properties of biomaterial scaffolds can influence cell behavior and its downstream effect, particularly in its application to bone regeneration.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, 80 George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Materials Science and Engineering, University of Toronto, 84 College Street, Suite 140, Toronto, Ontario, M5S 3E4, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
20
|
Salètes M, Vartin M, Mocquot C, Chevalier C, Grosgogeat B, Colon P, Attik N. Mesoporous Bioactive Glasses Cytocompatibility Assessment: A Review of In Vitro Studies. Biomimetics (Basel) 2021; 6:9. [PMID: 33498616 PMCID: PMC7839003 DOI: 10.3390/biomimetics6010009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Thanks to their high porosity and surface area, mesoporous bioactive glasses (MBGs) have gained significant interest in the field of medical applications, in particular, with regards to enhanced bioactive properties which facilitate bone regeneration. The aim of this article is to review the state of the art regarding the biocompatibility evaluation of MBGs and provide a discussion of the various approaches taken. The research was performed using PubMed database and covered articles published in the last five years. From a total of 91 articles, 63 were selected after analyzing them according to our inclusion and exclusion criteria. In vitro methodologies and techniques used for biocompatibility assessment were investigated. Among the biocompatibility assessment techniques, scanning electron microscopy (SEM) has been widely used to study cell morphology and adhesion. Viability and proliferation were assessed using different assays including cell counting and/or cell metabolic activity measurement. Finally, cell differentiation tests relied on the alkaline phosphatase assay; however, these were often complemented by specific bimolecular tests according to the exact application of the mesoporous bioactive glass. The standardization and validation of all tests performed for MBG cytocompatibility is a key aspect and crucial point and should be considered in order to avoid inconsistencies, bias between studies, and unnecessary consumption of time. Therefore, introducing standard tests would serve an important role in the future assessment and development of MBG materials.
Collapse
Affiliation(s)
- Margaux Salètes
- CPE Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France; (M.S.); (M.V.)
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université de Lyon—Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France; (C.M.); (C.C.); (B.G.); (P.C.)
| | - Marta Vartin
- CPE Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France; (M.S.); (M.V.)
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université de Lyon—Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France; (C.M.); (C.C.); (B.G.); (P.C.)
| | - Caroline Mocquot
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université de Lyon—Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France; (C.M.); (C.C.); (B.G.); (P.C.)
- Assistance Publique-Hôpitaux de Paris, Hôpital Rothschild, Service D’odontologie, Faculté Dentaire, Université de Paris, 75012 Paris, France
| | - Charlène Chevalier
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université de Lyon—Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France; (C.M.); (C.C.); (B.G.); (P.C.)
| | - Brigitte Grosgogeat
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université de Lyon—Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France; (C.M.); (C.C.); (B.G.); (P.C.)
- Faculté d’Odontologie, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- Hospices Civils de Lyon, Service D’odontologie, 69007 Lyon, France
| | - Pierre Colon
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université de Lyon—Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France; (C.M.); (C.C.); (B.G.); (P.C.)
- Assistance Publique-Hôpitaux de Paris, Hôpital Rothschild, Service D’odontologie, Faculté Dentaire, Université de Paris, 75012 Paris, France
| | - Nina Attik
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université de Lyon—Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France; (C.M.); (C.C.); (B.G.); (P.C.)
- Faculté d’Odontologie, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| |
Collapse
|
21
|
Mei S, Wang F, Hu X, Yang K, Xie D, Yang L, Wu Z, Wei J. Construction of a hierarchical micro & nanoporous surface for loading genistein on the composite of polyetheretherketone/tantalum pentoxide possessing antibacterial activity and accelerated osteointegration. Biomater Sci 2021; 9:167-185. [PMID: 33165465 DOI: 10.1039/d0bm01306d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoporous tantalum pentoxide (NTP) particles with a pore size of about 10 nm were synthesized and blended with polyetheretherketone (PEEK) to fabricate a PEEK/NTP composite (PN). Subsequently, PN was treated by concentrated sulfuric acid to create a microporous surface (pore size of around 2 μm) on sulfonated PN (SPN), which formed a hierarchical micro & nanoporous surface. Compared with PN, the porous surface of SPN exhibited higher roughness, hydrophilicity, and surface energy. In addition, genistein (GT) was loaded into the porous surface of SPN (SPNG), which showed high GT loading capacity and sustained release of GT into phosphate buffered saline (PBS). Moreover, SPNG revealed excellent antibacterial activity, which inhibited bacterial (E. coli and S. aureus) growth in vitro due to the synergistic effects of both sulfonic acid (SO3H) groups and the sustained release of GT. Compared with PN, SPN significantly improved the adhesion, proliferation, and osteogenic differentiation of bone mesenchymal stem cells in vitro. Moreover, compared with SPN, SPNG further enhances the cell responses. Compared with PN, SPN remarkably improved bone formation and osteointegration in vivo. Furthermore, compared with SPN, SPNG further enhanced the osteointegration. In short, SPNG with a micro & nanoporous surface, SO3H groups, and the sustained release of GT exhibited antibacterial activity and accelerated osteointegration, which would have tremendous potential as drug-loaded implants for bone substitute.
Collapse
Affiliation(s)
- Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Casarrubios L, Gómez-Cerezo N, Feito MJ, Vallet-Regí M, Arcos D, Portolés MT. Ipriflavone-Loaded Mesoporous Nanospheres with Potential Applications for Periodontal Treatment. NANOMATERIALS 2020; 10:nano10122573. [PMID: 33371499 PMCID: PMC7767486 DOI: 10.3390/nano10122573] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
The incorporation and effects of hollow mesoporous nanospheres in the system SiO2-CaO (nanoMBGs) containing ipriflavone (IP), a synthetic isoflavone that prevents osteoporosis, were evaluated. Due to their superior porosity and capability to host drugs, these nanoparticles are designed as a potential alternative to conventional bioactive glasses for the treatment of periodontal defects. To identify the endocytic mechanisms by which these nanospheres are incorporated within the MC3T3-E1 cells, five inhibitors (cytochalasin B, cytochalasin D, chlorpromazine, genistein and wortmannin) were used before the addition of these nanoparticles labeled with fluorescein isothiocyanate (FITC-nanoMBGs). The results indicate that nanoMBGs enter the pre-osteoblasts mainly through clathrin-dependent mechanisms and in a lower proportion by macropinocytosis. The present study evidences the active incorporation of nanoMBG-IPs by MC3T3-E1 osteoprogenitor cells that stimulate their differentiation into mature osteoblast phenotype with increased alkaline phosphatase activity. The final aim of this study is to demonstrate the biocompatibility and osteogenic behavior of IP-loaded bioactive nanoparticles to be used for periodontal augmentation purposes and to shed light on internalization mechanisms that determine the incorporation of these nanoparticles into the cells.
Collapse
Affiliation(s)
- Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (L.C.); (M.J.F.)
| | - Natividad Gómez-Cerezo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (L.C.); (M.J.F.)
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (M.V.-R.); (D.A.); (M.T.P.)
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (M.V.-R.); (D.A.); (M.T.P.)
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (L.C.); (M.J.F.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (M.V.-R.); (D.A.); (M.T.P.)
| |
Collapse
|
23
|
Westhauser F, Wilkesmann S, Nawaz Q, Hohenbild F, Rehder F, Saur M, Fellenberg J, Moghaddam A, Ali MS, Peukert W, Boccaccini AR. Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles. J Biomed Mater Res A 2020; 109:1457-1467. [PMID: 33289275 DOI: 10.1002/jbm.a.37136] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Mesoporous bioactive glass nanoparticles (MBGNs) have demonstrated promising properties for the local delivery of therapeutically active ions with the aim to improve their osteogenic properties. Manganese (Mn), zinc (Zn), and copper (Cu) ions have already shown promising pro-osteogenic properties. Therefore, the concentration-dependent impact of MBGNs (composition in mol%: 70 SiO2 , 30 CaO) and MBGNs containing 5 mol% of either Mn, Zn, or Cu (composition in mol%: 70 SiO2 , 25 CaO, 5 MnO/ZnO/CuO) on the viability and osteogenic differentiation of human marrow-derived mesenchymal stromal cells (BMSCs) was assessed in this study. Mn-doped MBGNs (5Mn-MBGNs) showed a small "therapeutic window" with a dose-dependent negative impact on cell viability but increasing pro-osteogenic features alongside increasing Mn concentrations. Due to a constant release of Zn, 5Zn-MBGNs showed good cytocompatibility and upregulated the expression of genes encoding for relevant members of the osseous extracellular matrix during the later stages of cultivation. In contrast to all other groups, BMSC viability increased with increasing concentration of Cu-doped MBGNs (5Cu-MBGNs). Furthermore, 5Cu-MBGNs induced an increase in alkaline phosphatase activity. In conclusion, doping with Mn, Zn, or Cu can enhance the biological properties of MBGNs in different ways for their potential use in bone regeneration approaches.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Wilkesmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Qaisar Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Frederike Hohenbild
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Rehder
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Merve Saur
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Jörg Fellenberg
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany.,ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Muhammad S Ali
- Institute of Particle Technology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
24
|
Heras C, Jiménez-Holguín J, Doadrio AL, Vallet-Regí M, Sánchez-Salcedo S, Salinas AJ. Multifunctional antibiotic- and zinc-containing mesoporous bioactive glass scaffolds to fight bone infection. Acta Biomater 2020; 114:395-406. [PMID: 32717329 DOI: 10.1016/j.actbio.2020.07.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/18/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022]
Abstract
Bone regeneration is a clinical challenge which requires multiple approaches. Sometimes, it also includes the development of osteogenic and antibacterial biomaterials to treat the emergence of possible infection processes arising from surgery. This study evaluates the antibacterial properties of gelatin-coated meso-macroporous scaffolds based on the bioactive glass 80%SiO2-15%CaO-5%P2O5 (mol-%) before (BL-GE) and after being doped with 4% of ZnO (4ZN-GE) and loaded with both saturated and the minimal inhibitory concentrations of one of the antibiotics: levofloxacin (LEVO), vancomycin (VANCO), rifampicin (RIFAM) or gentamicin (GENTA). After physical-chemical characterization of materials, release studies of inorganic ions and antibiotics from the scaffolds were carried out. Moreover, molecular modelling allowed determining the electrostatic potential density maps and the hydrogen bonds of antibiotics and the glass matrix. Antibacterial in vitro studies (in planktonic, inhibition halos and biofilm destruction) with S. aureus and E. coli as bacteria models showed a synergistic effect of zinc ions and antibiotics. The effect was especially noticeable in planktonic cultures of S. aureus with 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and in E. coli cultures with LEVO or GENTA. Moreover, S. aureus biofilms were completely destroyed by 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and the E. coli biofilm total destruction was accomplished with 4ZN-GE scaffolds loaded with GENTA or LEVO. This approach could be an important step in the fight against microbial resistance and provide needed options for bone infection treatment. STATEMENT OF SIGNIFICANCE: Antibacterial capabilities of scaffolds based on mesoporous bioactive glasses before and after adding a 4% ZnO and loading with saturated and minimal inhibitory concentrations of levofloxacin, vancomycin, gentamicin or rifampicin were evaluated. Staphylococcus aureus and Escherichia coli were the infection model strains for the performed assays of inhibition zone, planktonic growth and biofilm. Good inhibition results and a synergistic effect of zinc ions released from scaffolds and antibiotics were observed. Thus, the amount of antibiotic required to inhibit the bacterial planktonic growth was substantially reduced with the ZnO inclusion in the scaffold. This study shows that the ZnO-MBG osteogenic scaffolds are multifunctional tools in bone tissue engineering because they are able to fight bacterial infections with lower antibiotic dosage.
Collapse
Affiliation(s)
- C Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain
| | - J Jiménez-Holguín
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain
| | - A L Doadrio
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - S Sánchez-Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | - A J Salinas
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
25
|
Frassica MT, Grunlan MA. Perspectives on Synthetic Materials to Guide Tissue Regeneration for Osteochondral Defect Repair. ACS Biomater Sci Eng 2020; 6:4324-4336. [PMID: 33455185 DOI: 10.1021/acsbiomaterials.0c00753] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative engineering holds the potential to treat clinically pervasive osteochondral defects (OCDs). In a synthetic materials-guided approach, the scaffold's chemical and physical properties alone instruct cellular behavior in order to effect regeneration, referred to herein as "instructive" properties. While this alleviates the costs and off-target risks associated with exogenous growth factors, the scaffold must be potently instructive to achieve tissue growth. Moreover, toward achieving functionality, such a scaffold should also recapitulate the spatial complexity of the osteochondral tissues. Thus, in addition to the regeneration of the articular cartilage and underlying cancellous bone, the complex osteochondral interface, composed of calcified cartilage and subchondral bone, should also be restored. In this Perspective, we highlight recent synthetic-based, instructive osteochondral scaffolds that have leveraged new material chemistries as well as innovative fabrication strategies. In particular, scaffolds with spatially complex chemical and morphological features have been prepared with electrospinning, solvent-casting-particulate-leaching, freeze-drying, and additive manufacturing. While few synthetic scaffolds have advanced to clinical studies to treat OCDs, these recent efforts point to the promising use of the chemical and physical properties of synthetic materials for regeneration of osteochondral tissues.
Collapse
Affiliation(s)
- Michael T Frassica
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States.,Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
26
|
Foroutan F, Kyffin BA, Abrahams I, Knowles JC, Sogne E, Falqui A, Carta D. Mesoporous Strontium-Doped Phosphate-Based Sol-Gel Glasses for Biomedical Applications. Front Chem 2020; 8:249. [PMID: 32391313 PMCID: PMC7191082 DOI: 10.3389/fchem.2020.00249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Mesoporous phosphate-based glasses have great potential as biomedical materials being able to simultaneously induce tissue regeneration and controlled release of therapeutic molecules. In the present study, a series of mesoporous phosphate-based glasses in the P2O5-CaO-Na2O system, doped with 1, 3, and 5 mol% of Sr2+, were prepared using the sol-gel method combined with supramolecular templating. A sample without strontium addition was prepared for comparison. The non-ionic triblock copolymer EO20PO70EO20 (P123) was used as a templating agent. Scanning electron microscopy (SEM) images revealed that all synthesized glasses have an extended porous structure. This was confirmed by N2 adsorption-desorption analysis at 77 K that shows a porosity typical of mesoporous materials. 31P magic angle spinning nuclear magnetic resonance (31P MAS-NMR) and Fourier transform infrared (FTIR) spectroscopies have shown that the glasses are mainly formed by Q1 and Q2 phosphate groups. Degradation of the glasses in deionized water assessed over a 7-day period shows that phosphate, Ca2+, Na+, and Sr2+ ions can be released in a controlled manner over time. In particular, a direct correlation between strontium content and degradation rate was observed. This study shows that Sr-doped mesoporous phosphate-based glasses have great potential in bone tissue regeneration as materials for controlled delivery of therapeutic ions.
Collapse
Affiliation(s)
- Farzad Foroutan
- Department of Chemistry, University of Surrey, Guildford, United Kingdom
| | | | - Isaac Abrahams
- School of Biological and Chemical Sciences, Materials Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, University College London, Eastman Dental Institute, London, United Kingdom
- The Discoveries Centre for Regenerative and Precision Medicine, London, United Kingdom
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan-si, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan-si, South Korea
| | - Elisa Sogne
- NABLA Lab, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrea Falqui
- NABLA Lab, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniela Carta
- Department of Chemistry, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
27
|
Foroutan F, Kyffin BA, Abrahams I, Corrias A, Gupta P, Velliou E, Knowles JC, Carta D. Mesoporous Phosphate-Based Glasses Prepared via Sol–Gel. ACS Biomater Sci Eng 2020; 6:1428-1437. [DOI: 10.1021/acsbiomaterials.9b01896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Farzad Foroutan
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, U.K
| | | | - Isaac Abrahams
- Materials Research Institute, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Anna Corrias
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, U.K
| | - Priyanka Gupta
- Department of Chemical and Process Engineering, Bioprocess and Biochemical Engineering group (BioProChem), University of Surrey, Guildford GU2 7XH, U.K
| | - Eirini Velliou
- Department of Chemical and Process Engineering, Bioprocess and Biochemical Engineering group (BioProChem), University of Surrey, Guildford GU2 7XH, U.K
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, University College London, Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, U.K
- The Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London WC1E 6BT, U.K
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31114, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31114, Republic of Korea
| | - Daniela Carta
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, U.K
| |
Collapse
|
28
|
Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T, Pola J. Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Adv 2020; 10:33782-33835. [PMID: 35519068 PMCID: PMC9056785 DOI: 10.1039/d0ra04287k] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Sol–gel derived bioactive glasses have been extensively explored as a promising and highly porous scaffold materials for bone tissue regeneration applications owing to their exceptional osteoconductivity, osteostimulation and degradation rates.
Collapse
Affiliation(s)
- Kalim Deshmukh
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Tomáš Kovářík
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Tomáš Křenek
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Denitsa Docheva
- Experimental Trauma Surgery
- Department of Trauma Surgery
- University Regensburg Medical Centre
- Regensburg
- Germany
| | - Theresia Stich
- Experimental Trauma Surgery
- Department of Trauma Surgery
- University Regensburg Medical Centre
- Regensburg
- Germany
| | - Josef Pola
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| |
Collapse
|
29
|
Wang X, Chen W, Liu Q, Liu L. Genistein adsorbed mesoporous bioactive glass with enhanced osteogenesis properties. Biotechnol Lett 2019; 42:321-328. [PMID: 31776752 DOI: 10.1007/s10529-019-02773-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/22/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Mesoporous bioactive glass (MBG) has good biocompatibility without immune reaction after implanting into tissue as biomaterial which was used in the treatment of bone defect. Genistein (G), a phytoestrogen, could be used in the treatment of osteoporosis in postmenopausal women. RESULTS Here, we report that MBG with large pores (MBG-L) and MBG-L adsorbed with G (MBG-L/G) sustained-release G could enhance osteoblast differentiation and matrix mineralization. Interestingly, we observed that MBG-L enhanced the formation of bone-like deposit and Ca deposition in vitro. In the other side, we also found that MBG-L/G substrate could promote osteoblast differentiation and matrix mineralization through Erk activated Runx2 pathway. Interestingly, the expression of osteoblast-specific marker gene Osteopontin (Opn) was also increased in MC3T3-E1 cells cultured on MBG-L/G substrate. CONCLUSIONS We conclude that MBG-L/G is a potential biomaterial for the treatment of bone defect.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, People's Republic of China.
| | - Wei Chen
- Shaoyang No. 11 Middle School, Shaoyang, 422000, Hunan, People's Republic of China
| | - Qianqian Liu
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Long Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, People's Republic of China
| |
Collapse
|
30
|
Dong R, Ma PX, Guo B. Conductive biomaterials for muscle tissue engineering. Biomaterials 2019; 229:119584. [PMID: 31704468 DOI: 10.1016/j.biomaterials.2019.119584] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022]
Abstract
Muscle tissues are soft tissues that are of great importance in force generation, body movements, postural support and internal organ function. Muscle tissue injuries would not only result in the physical and psychological pain and disability to the patient, but also become a severe social problem due to the heavy financial burden they laid on the governments. Current treatments for muscle tissue injuries all have their own severe limitations and muscle tissue engineering has been proposed as a promising therapeutic strategy to treat with this problem. Conductive biomaterials are good candidates as scaffolds in muscle tissue engineering due to their proper conductivity and their promotion on muscle tissue formation. However, a review of conductive biomaterials function in muscle tissue engineering, including the skeletal muscle tissue, cardiac muscle tissue and smooth muscle tissue regeneration is still lacking. Here we reviewed the recent progress of conductive biomaterials for muscle regeneration. The recent synthesis and fabrication methods of conductive scaffolds containing conductive polymers (mainly polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene), carbon-based nanomaterials (mainly graphene and carbon nanotube), and metal-based biomaterials were systematically discussed, and their application in a variety of forms (such as hydrogels, films, nanofibers, and porous scaffolds) for different kinds of muscle tissues formation (skeletal muscle, cardiac muscle and smooth muscle) were summarized. Furthermore, the mechanism of how the conductive biomaterials affect the muscle tissue formation was discussed and the future development directions were included.
Collapse
Affiliation(s)
- Ruonan Dong
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peter X Ma
- Macromolecular Science and Engineering Center, Department of Materials Science and Engineering, Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
31
|
Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Tzetzis D, Bikiaris D. Composite Membranes of Poly(ε-caprolactone) with Bisphosphonate-Loaded Bioactive Glasses for Potential Bone Tissue Engineering Applications. Molecules 2019; 24:E3067. [PMID: 31450742 PMCID: PMC6749304 DOI: 10.3390/molecules24173067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester with numerous biomedical applications. PCL membranes show great potential in guided tissue regeneration because they are biocompatible, occlusive and space maintaining, but lack osteoconductivity. Therefore, two different types of mesoporous bioactive glasses (SiO2-CaO-P2O5 and SiO2-SrO-P2O5) were synthesized and incorporated in PCL thin membranes by spin coating. To enhance the osteogenic effect of resulting membranes, the bioglasses were loaded with the bisphosphonate drug ibandronate prior to their incorporation in the polymeric matrix. The effect of the composition of the bioglasses as well as the presence of absorbed ibandronate on the physicochemical, cell attachment and differentiation properties of the PCL membranes was evaluated. Both fillers led to a decrease of the crystallinity of PCL, along with an increase in its hydrophilicity and a noticeable increase in its bioactivity. Bioactivity was further increased in the presence of a Sr substituted bioglass loaded with ibandronate. The membranes exhibited excellent biocompatibility upon estimation of their cytotoxicity on Wharton's Jelly Mesenchymal Stromal Cells (WJ-SCs), while they presented higher osteogenic potential in comparison with neat PCL after WJ-SCs induced differentiation towards bone cells, which was enhanced by a possible synergistic effect of Sr and ibandronate.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece.
| | - Diana Baciu
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Eleni Gounari
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR57001 Thessaloniki, Central Macedonia, Greece
| | - Theodore Steriotis
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Georgia Charalambopoulou
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Dimitrios Tzetzis
- School of Science and Technology, International Hellenic University, GR57001 Thermi, Central Macedonia, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
32
|
Moonesi Rad R, Atila D, Akgün EE, Evis Z, Keskin D, Tezcaner A. Evaluation of human dental pulp stem cells behavior on a novel nanobiocomposite scaffold prepared for regenerative endodontics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:928-948. [DOI: 10.1016/j.msec.2019.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
|
33
|
Xie P, Du J, Li Y, Wu J, He H, Jiang X, Liu C. Robust hierarchical porous MBG scaffolds with promoted biomineralization ability. Colloids Surf B Biointerfaces 2019; 178:22-31. [DOI: 10.1016/j.colsurfb.2019.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
|
34
|
Chitra S, Bargavi P, Balakumar S. Effect of microwave and probe sonication processes on sol–gel‐derived bioactive glass and its structural and biocompatible investigations. J Biomed Mater Res B Appl Biomater 2019; 108:143-155. [DOI: 10.1002/jbm.b.34373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 11/06/2022]
Affiliation(s)
- S. Chitra
- National Centre for Nanoscience and NanotechnologyUniversity of Madras Chennai 600025 Tamil Nadu India
| | - P. Bargavi
- National Centre for Nanoscience and NanotechnologyUniversity of Madras Chennai 600025 Tamil Nadu India
| | - S. Balakumar
- National Centre for Nanoscience and NanotechnologyUniversity of Madras Chennai 600025 Tamil Nadu India
| |
Collapse
|
35
|
Lowe B, Ottensmeyer MP, Xu C, He Y, Ye Q, Troulis MJ. The Regenerative Applicability of Bioactive Glass and Beta-Tricalcium Phosphate in Bone Tissue Engineering: A Transformation Perspective. J Funct Biomater 2019; 10:E16. [PMID: 30909518 PMCID: PMC6463135 DOI: 10.3390/jfb10010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
The conventional applicability of biomaterials in the field of bone tissue engineering takes into consideration several key parameters to achieve desired results for prospective translational use. Hence, several engineering strategies have been developed to model in the regenerative parameters of different forms of biomaterials, including bioactive glass and β-tricalcium phosphate. This review examines the different ways these two materials are transformed and assembled with other regenerative factors to improve their application for bone tissue engineering. We discuss the role of the engineering strategy used and the regenerative responses and mechanisms associated with them.
Collapse
Affiliation(s)
- Baboucarr Lowe
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA 02114, USA.
| | - Mark P Ottensmeyer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Yan He
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Brisbane, Herston 4006, Queensland, Australia.
| | - Maria J Troulis
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Pourshahrestani S, Kadri NA, Zeimaran E, Towler MR. Well-ordered mesoporous silica and bioactive glasses: promise for improved hemostasis. Biomater Sci 2019; 7:31-50. [DOI: 10.1039/c8bm01041b] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesoporous silica and bioactive glasses with unique textural properties are new generations of inorganic hemostats with efficient hemostatic ability.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Ehsan Zeimaran
- School of Engineering
- Monash University
- 47500 Bandar Sunway
- Malaysia
| | - Mark R. Towler
- Department of Mechanical & Industrial Engineering
- Ryerson University
- Toronto M5B 2K3
- Canada
| |
Collapse
|
37
|
Woźniak MJ, Chlanda A, Oberbek P, Heljak M, Czarnecka K, Janeta M, John Ł. Binary bioactive glass composite scaffolds for bone tissue engineering-Structure and mechanical properties in micro and nano scale. A preliminary study. Micron 2018; 119:64-71. [PMID: 30682529 DOI: 10.1016/j.micron.2018.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Composite scaffolds of bioactive glass (SiO2-CaO) and bioresorbable polyesters: poly-l-lactic acid (PLLA) and polycaprolactone (PCL) were produced by polymer coating of porous foams. Their structure and mechanical properties were investigated in micro and nanoscale, by the means of scanning electron microscopy, PeakForce Quantitative Nanomechanical Property Mapping (PF-QNM) atomic force microscopy, micro-computed tomography and contact angle measurements. This is one of the first studies in which the nanomechanical properties (elastic modulus, adhesion) were measured and mapped simultaneously with topography imaging (PF-QNM AFM) for bioactive glass and bioactive glass - polymer coated scaffolds. Our findings show that polymer coated scaffolds had higher average roughness and lower stiffness in comparison to pure bioactive glass scaffolds. Such coating-dependent scaffold properties may promote different cells-scaffold interaction.
Collapse
Affiliation(s)
- Michał J Woźniak
- University Research Center - Functional Materials, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; MJW RnD, Nowy Swiat 33/13, 00-029 Warsaw, Poland.
| | - Adrian Chlanda
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Przemysław Oberbek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; Central Institute for Labour Protection - National Research Institute, Czerniakowska, 16, 00-701 Warsaw, Poland
| | - Marcin Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Katarzyna Czarnecka
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego, 5B, 02-106 Warsaw, Poland
| | - Mateusz Janeta
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Łukasz John
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
38
|
Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 2018; 3:278-314. [PMID: 29744467 PMCID: PMC5935790 DOI: 10.1016/j.bioactmat.2017.10.001] [Citation(s) in RCA: 584] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.
Collapse
Affiliation(s)
- Gareth Turnbull
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Jon Clarke
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Frédéric Picard
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Philip Riches
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| | - Luanluan Jia
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Wenmiao Shu
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| |
Collapse
|
39
|
Gómez-Cerezo N, Casarrubios L, Morales I, Feito MJ, Vallet-Regí M, Arcos D, Portolés MT. Effects of a mesoporous bioactive glass on osteoblasts, osteoclasts and macrophages. J Colloid Interface Sci 2018; 528:309-320. [PMID: 29859456 DOI: 10.1016/j.jcis.2018.05.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 11/19/2022]
Abstract
A mesoporous bioactive glass (MBG) of molar composition 75SiO2-20CaO-5P2O5 (MBG-75S) has been synthetized as a potential bioceramic for bone regeneration purposes. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption studies and transmission electron microscopy (TEM) demonstrated that MBG-75S possess a highly ordered mesoporous structure with high surface area and porosity, which would explain the high ionic exchange rate (mainly calcium and silicon soluble species) with the surrounded media. MBG-75S showed high biocompatibility in contact with Saos-2 osteoblast-like cells. Concentrations up to 1 mg/ml did not lead to significant alterations on either morphology or cell cycle. Regarding the effects on osteoclasts, MBG-75S allowed the differentiation of RAW-264.7 macrophages into osteoclast-like cells but exhibiting a decreased resorptive activity. These results point out that MBG-75S does not inhibit osteoclastogenesis but reduces the osteoclast bone-resorbing capability. Finally, in vitro studies focused on the innate immune response, evidenced that MBG-75S allows the proliferation of macrophages without inducing their polarization towards the M1 pro-inflammatory phenotype. This in vitro behavior is indicative that MBG-75S would just induce the required innate immune response without further inflammatory complications under in vivo conditions. The overall behavior respect to osteoblasts, osteoclasts and macrophages, makes this MBG a very interesting candidate for bone grafting applications in osteoporotic patients.
Collapse
Affiliation(s)
- N Gómez-Cerezo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - L Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - I Morales
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - M J Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - D Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - M T Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
40
|
Chowdhury MA. Silica Materials for Biomedical Applications in Drug Delivery, Bone Treatment or Regeneration, and MRI Contrast Agent. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s2079978018020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Hossain KMZ, Patel U, Kennedy AR, Macri-Pellizzeri L, Sottile V, Grant DM, Scammell BE, Ahmed I. Porous calcium phosphate glass microspheres for orthobiologic applications. Acta Biomater 2018; 72:396-406. [PMID: 29604438 DOI: 10.1016/j.actbio.2018.03.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/07/2018] [Accepted: 03/22/2018] [Indexed: 01/07/2023]
Abstract
Orthobiologics is a rapidly advancing field utilising cell-based therapies and biomaterials to enable the body to repair and regenerate musculoskeletal tissues. This paper reports on a cost-effective flame spheroidisation process for production of novel porous glass microspheres from calcium phosphate-based glasses to encapsulate and deliver stem cells. Careful selection of the glass and pore-forming agent, along with a manufacturing method with the required processing window enabled the production of porous glass microspheres via a single-stage manufacturing process. The morphological and physical characterisation revealed porous microspheres with tailored surface and interconnected porosity (up to 76 ± 5%) with average pore size of 55 ± 8 µm and surface areas ranging from 0.34 to 0.9 m2 g-1. Furthermore, simple alteration of the processing parameters produced microspheres with alternate unique morphologies, such as with solid cores and surface porosity only. The tuneable porosity enabled control over their surface area, degradation profiles and hence ion release rates. Furthermore, cytocompatibility of the microspheres was assessed using human mesenchymal stem cells via direct cell culture experiments and analysis confirmed that they had migrated to within the centre of the microspheres. The novel microspheres developed have huge potential for tissue engineering and regenerative medicine applications. STATEMENT OF SIGNIFICANCE This manuscript highlights a simple cost-effective one-step process for manufacturing porous calcium phosphate-based glass microspheres with varying control over surface pores and fully interconnected porosity via a flame spheroidisation process. Moreover, a simple alteration of the processing parameters can produce microspheres which have a solid core with surface pores only. The tuneable porosity enabled control over their surface area, degradation profiles and hence ion release rates. The paper also shows that stem cells not only attach and proliferate but more importantly migrate to within the core of the porous microspheres, highlighting applications for bone tissue engineering and regenerative medicine.
Collapse
|
42
|
Wang X, Zeng D, Weng W, Huang Q, Zhang X, Wen J, Wu J, Jiang X. Alendronate delivery on amino modified mesoporous bioactive glass scaffolds to enhance bone regeneration in osteoporosis rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:171-181. [PMID: 29688044 DOI: 10.1080/21691401.2018.1453825] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The regeneration capacity of osteoporotic bones is generally lower than that of normal bones. Nowadays, alendronate (AL) are orally administrated for osteoporosis due to the inhibition of bone resorption. However, systemic administration of AL is characterized by extremely low bioavailability and high toxicity. In this study, the amino-modified mesoporous bioactive glass scaffolds (N-MBGS) were fabricated by a simple powder processing technique as a novel drug-delivery system for AL. The effects of AL on the osteogenic differentiation of bone mesenchymal stem cells derived from ovariectomized rats (rBMSCs-OVX) were first estimated. The loading efficiency and release kinetics of AL on N-MBGS were investigated in vitro and the osteogenesis of AL-loaded N-MBGS in rat calvarial defect model was detected by micro-CT measurements and the histological assay. Our results revealed that proper concentration of AL significantly promoted osteogenic differentiation of rBMSCs-OVX. The amount and delivery rate of AL were greatly improved through amino modification. Additionally, scaffolds with AL showed better bone formation in vivo, especially for the N-MBGS group. Our results suggest that the novel amino-modified MBGS are promising drug-delivery system for osteoporotic bone defect repairing or regeneration. The experimental schematic of the novel amino-modified MBGS as a promising drug-delivery system for osteoporotic bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , China
| | - Deliang Zeng
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , China
| | - Weimin Weng
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Qinfeng Huang
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiangkai Zhang
- b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , China
| | - Jin Wen
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , China
| | - Jiannan Wu
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , China
| | - Xinquan Jiang
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , China
| |
Collapse
|
43
|
Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Bikiaris D. Biocompatible Nanobioglass Reinforced Poly(ε-Caprolactone) Composites Synthesized via In Situ Ring Opening Polymerization. Polymers (Basel) 2018; 10:polym10040381. [PMID: 30966416 PMCID: PMC6415238 DOI: 10.3390/polym10040381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester widely studied as a biomaterial for tissue engineering and controlled release applications, but its low bioactivity and weak mechanical performance limits its applications. In this work, nanosized bioglasses with two different compositions (SiO2–CaO and SiO2–CaO–P2O5) were synthesized with a hydrothermal method, and each one was used as filler in the preparation of PCL nanocomposites via the in situ ring opening polymerization of ε-caprolactone. The effect of the addition of 0.5, 1 and 2.5 wt % of the nanofillers on the molecular weight, structural, mechanical and thermal properties of the polymer nanocomposites, as well as on their enzymatic hydrolysis rate, bioactivity and biocompatibility was systematically investigated. All nanocomposites exhibited higher molecular weight values in comparison with neat PCL, and mechanical properties were enhanced for the 0.5 and 1 wt % filler content, which was attributed to extensive interactions between the filler and the matrix, proving the superiority of in situ polymerization over solution mixing and melt compounding. Both bioglasses accelerated the enzymatic degradation of PCL and induced bioactivity, since apatite was formed on the surface of the nanocomposites after soaking in simulated body fluid. Finally, all samples were biocompatible as Wharton jelly-derived mesenchymal stem cells (WJ-MSCs) attached and proliferated on their surfaces.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Polymers Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| | - Diana Baciu
- National Center for Scientific Research "Demokritos", Ag. Paraskevi Attikis, Athens GR15341, Greece.
| | - Eleni Gounari
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR57001 Thessaloniki, Greece.
| | - Theodore Steriotis
- National Center for Scientific Research "Demokritos", Ag. Paraskevi Attikis, Athens GR15341, Greece.
| | - Georgia Charalambopoulou
- National Center for Scientific Research "Demokritos", Ag. Paraskevi Attikis, Athens GR15341, Greece.
| | - Dimitrios Bikiaris
- Laboratory of Polymers Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| |
Collapse
|
44
|
Galarraga-Vinueza ME, Mesquita-Guimarães J, Magini RS, Souza JCM, Fredel MC, Boccaccini AR. Mesoporous bioactive glass embedding propolis and cranberry antibiofilm compounds. J Biomed Mater Res A 2018; 106:1614-1625. [DOI: 10.1002/jbm.a.36352] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/10/2017] [Accepted: 01/19/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Maria Elisa Galarraga-Vinueza
- Department of Dentistry (ODT), Center for Education and Research on Dental Implants (CEPID), Post-Graduation Program in Dentistry (PPGO); Federal University of Santa Catarina (UFSC); Florianopolis Santa Catarina 88040-900 Brazil
| | - Joana Mesquita-Guimarães
- Department of Mechanical Engineering (EMC); Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina; Florianopolis Santa Catarina 88040-900 Brazil
| | - Ricardo S. Magini
- Department of Dentistry (ODT), Center for Education and Research on Dental Implants (CEPID), Post-Graduation Program in Dentistry (PPGO); Federal University of Santa Catarina (UFSC); Florianopolis Santa Catarina 88040-900 Brazil
| | - Júlio C. M. Souza
- Department of Dentistry (ODT), Center for Education and Research on Dental Implants (CEPID), Post-Graduation Program in Dentistry (PPGO); Federal University of Santa Catarina (UFSC); Florianopolis Santa Catarina 88040-900 Brazil
- Department of Mechanical Engineering (EMC); Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina; Florianopolis Santa Catarina 88040-900 Brazil
| | - Marcio C. Fredel
- Department of Mechanical Engineering (EMC); Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina; Florianopolis Santa Catarina 88040-900 Brazil
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg; 91058 Erlangen Germany
| |
Collapse
|
45
|
Kang MS, Lee NH, Singh RK, Mandakhbayar N, Perez RA, Lee JH, Kim HW. Nanocements produced from mesoporous bioactive glass nanoparticles. Biomaterials 2018; 162:183-199. [PMID: 29448144 DOI: 10.1016/j.biomaterials.2018.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022]
Abstract
Biomedical cements are considered promising injectable materials for bone repair and regeneration. Calcium phosphate composition sized with tens of micrometers is currently one of the major powder forms. Here we report a unique cement form made from mesoporous bioactive glass nanoparticles (BGn). The nanopowder could harden in reaction with aqueous solution at powder-to-liquid ratios as low as 0.4-0.5 (vs. 2.0-3.0 for conventional calcium phosphate cement CPC). The cementation mechanism investigated from TEM, XRD, FT-IR, XPS, and NMR analyses was demonstrated to be the ionic (Si and Ca) dissolution and then reprecipitation to form Si-Ca-(P) based amorphous nano-islands that could network the particles. The nanopowder-derived nanocement exhibited high surface area (78.7 m2/g); approximately 9 times higher than conventional CPC. The immersion of nanocement in simulated body fluid produced apatite nanocrystallites with ultrafine size of 10 nm (vs. 55 nm in CPC). The ultrafine nanocement adsorbed protein molecules (particularly positive charged proteins) at substantial levels; approximately 160 times higher than CPC. The nanocement released Si and Ca ions continuously over the test period of 2 weeks; the Si release was unique in nanocement whereas the Ca release was in a similar range to that observed in CPC. The release of ions significantly stimulated the responses of cells studied (rMSCs and HUVECs). The viability and osteogenesis of rMSCs were significantly enhanced by the nanocement ionic extracts. Furthermore, the in vitro tubular networking of HUVECs was improved by the nanocement ionic extracts. The in vivo neo-blood vessel formation in CAM model was significantly higher by the nanocement implant when compared with the CPC counterpart, implying the Si ion release might play a significant role in pro-angiogenesis. Furthermore, the early bone forming response of the nanocement, based on the implantation in a rat calvarial bone defect, demonstrated a sign of osteoinductivity along with excellent osteocondution and bone matrix formation. Although more studies remain to confirm the potential of nanocement, some of the intriguing physico-chemical properties and the biological responses reported herein support the promise of the new 'nanopowder-based nanocement' for hard tissue repair and regeneration.
Collapse
Affiliation(s)
- Min Sil Kang
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Roman A Perez
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Regenerative Medicine Research Institute, Universitat Internacional de Catalunya Barcelona 08017, Spain
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 330-714, Republic of Korea.
| |
Collapse
|
46
|
Kaur P, Singh KJ, Yadav AK, Sood H, Kaur S, Kaur R, Arora DS, Kaur S. Preliminary investigation of the effect of doping of copper oxide in CaO-SiO 2-P 2O 5-MgO bioactive composition for bone repair applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:177-186. [PMID: 29208277 DOI: 10.1016/j.msec.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/14/2017] [Accepted: 09/27/2017] [Indexed: 11/25/2022]
Abstract
A diopside based bioactive system with a nominal composition of xCuO-(45.55-x)CaO-29.44 SiO2-10.28P2O5-14.73 MgO (x=0,1,3 and 5mol%) has been prepared by sol gel technique in the laboratory. X-ray Diffraction, Fourier Transform Infra-Red and Raman Spectroscopy, Field Emission Scanning Electron Microscopy along with Energy Dispersive X-ray Analysis and pH studies have been undertaken on the prepared samples before and after dipping the samples in simulated body fluid. It has been observed that hydroxyapatite layer starts to form with in 24h during immersion in simulated body fluid. Degradation studies have also been employed to check the degradation behavior in Tris-HCl. Dynamic light scattering studies show that particles are mostly agglomerated and have an average size of 356nm. Zeta potential studies have been undertaken to check the surface charge and it has been estimated that samples carry negative charge when dipped in simulated body fluid. Negative surface charge may contribute to attachment and proliferation of osteoblasts. Samples have also shown the antimicrobial properties against the Vibro cholerae and Escherichia coli pathogens. To check the non-toxic nature of the samples, cell cytotoxic and cell culture studies have been undertaken using the MG-63 cell lines. Samples have shown good response with good percentage viability of the cells in the culture media and hence, provides friendly environment to the growth of cells. The particle size, bioactivity, negative values of zeta potential, antimicrobial properties and good cell viability indicate the potential of the synthesized compositions as possible candidates for bone repair applications.
Collapse
Affiliation(s)
- Pardeep Kaur
- Department of Physics, Guru Nanak Dev University, Amritsar 143005, India
| | - K J Singh
- Department of Physics, Guru Nanak Dev University, Amritsar 143005, India.
| | - Arun Kumar Yadav
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | - Henna Sood
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Sumanpreet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Ramandeep Kaur
- Department cum National center for Human Genome studies and Research, Panjab University, Chandigarh 160014, India
| | - Daljit Singh Arora
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
47
|
Wang S, Gu Z, Wang Z, Chen X, Cao L, Cai L, Li Q, Wei J, Shin JW, Su J. Influences of mesoporous magnesium calcium silicate on mineralization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites. Sci Rep 2018; 8:174. [PMID: 29317753 PMCID: PMC5760662 DOI: 10.1038/s41598-017-18660-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 11/09/2022] Open
Abstract
Macro-mesoporous scaffolds based on wheat gliadin (WG)/mesoporous magnesium calcium silicate (m-MCS) biocomposites (WMC) were developed for bone tissue regeneration. The increasing amount of m-MCS significantly improved the mesoporosity and water absorption of WMC scaffolds while slightly decreased their compressive strength. With the increase of m-MCS content, the degradability of WMC scaffolds was obviously enhanced, and the decrease of pH value could be slow down after soaking in Tris-HCl solution for different time. Moreover, the apatite mineralization ability of the WMC scaffolds in simulated body fluid (SBF) was obviously improved with the increase of m-MCS content, indicating good bioactivity. The macro-mesoporous WMC scaffolds containing m-MCS significantly stimulated attachment, proliferation and differentiation of MC3T3-E1 cells, indicating cytocompatibility. The WMC scaffold containing 40 w% m-MCS (WMC40) possessed the highest porosity (including macroporosity and mesoporosity), which loaded the highest amount of curcumin (CU) as well as displayed the slow release of CU. The results suggested that the incorporation of m-MCS into WG produced biocomposite scaffolds with macro-mesoporosity, which significantly improved water absorption, degradability, bioactivity, cells responses and load/sustained release of curcumin.
Collapse
Affiliation(s)
- Sicheng Wang
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Department of Orthopaedics, Zhongye Hospital, Shanghai, 200941, China
| | - Zhengrong Gu
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- The Department of Orthopaedics, Jing'an District Centre Hospital of Shanghai (Huashan Hospital, Fudan University Jing'An Branch), Shanghai, 200040, China
| | - Zhiwei Wang
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiao Chen
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Liehu Cao
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Liang Cai
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Quan Li
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, 621749, Republic of Korea
| | - Jiacan Su
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
48
|
Kim HD, Amirthalingam S, Kim SL, Lee SS, Rangasamy J, Hwang NS. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 29171714 DOI: 10.1002/adhm.201700612] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/09/2017] [Indexed: 01/14/2023]
Abstract
Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed.
Collapse
Affiliation(s)
- Hwan D. Kim
- School of Chemical and Biological Engineering; The Institute of Chemical Processes; Seoul National University; Seoul 151-742 Republic of Korea
| | | | - Seunghyun L. Kim
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Seunghun S. Lee
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine; Amrita University; Kochi 682041 India
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering; The Institute of Chemical Processes; Seoul National University; Seoul 151-742 Republic of Korea
- Interdisciplinary Program in Bioengineering; Seoul National University; Seoul 151-742 Republic of Korea
- The BioMax Institute of Seoul National University; Seoul 151-742 Republic of Korea
| |
Collapse
|
49
|
Zeng D, Zhang X, Wang X, Cao L, Zheng A, Du J, Li Y, Huang Q, Jiang X. Fabrication of large-pore mesoporous Ca-Si-based bioceramics for bone regeneration. Int J Nanomedicine 2017; 12:8277-8287. [PMID: 29180865 PMCID: PMC5695511 DOI: 10.2147/ijn.s144528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Our previous study revealed that mesoporous Ca-Si-based materials exhibited excellent osteoconduction because dissolved ions could form a layer of hydroxycarbonate apatite on the surface of the materials. However, the biological mechanisms underlying bone regeneration were largely unknown. The main aim of this study was to evaluate the osteogenic ability of large-pore mesoporous Ca-Si-based bioceramics (LPMSCs) by alkaline phosphatase assay, real-time PCR analysis, von Kossa, and alizarin red assay. Compared with large-pore mesoporous silica (LPMS), LPMSCs had a better effect on the osteogenic differentiation of dental pulp cells. LPMSC-2 and LPMSC-3 with higher calcium possessed better osteogenic abilities than LPMSC-1, which may be related to the calcium-sensing receptor pathway. Furthermore, the loading capacity for recombinant human platelet-derived growth factor-BB was satisfactory in LPMSCs. In vivo, the areas of new bone formation in the calvarial defect repair were increased in the LPMSC-2 and LPMSC-3 groups compared with the LPMSC-1 and LPMS groups. We concluded that LPMSC-2 and LPMSC-3 possessed both excellent osteogenic abilities and satisfactory loading capacities, which may be attributed to their moderate Ca/Si molar ratio. Therefore, LPMSCs with moderate Ca/Si molar ratio might be potential alterative grafts for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Deliang Zeng
- Department of Prosthodontics, School of Medicine, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, School of Medicine, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xingdi Zhang
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Xiao Wang
- Department of Prosthodontics, School of Medicine, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, School of Medicine, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lingyan Cao
- Department of Prosthodontics, School of Medicine, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ao Zheng
- Department of Prosthodontics, School of Medicine, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, School of Medicine, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiahui Du
- Department of Prosthodontics, School of Medicine, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, School of Medicine, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yongsheng Li
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Qingfeng Huang
- Department of Prosthodontics, School of Medicine, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xinquan Jiang
- Department of Prosthodontics, School of Medicine, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, School of Medicine, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
50
|
Ye X, Leeflang S, Wu C, Chang J, Zhou J, Huan Z. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity. MATERIALS 2017; 10:ma10111244. [PMID: 29077014 PMCID: PMC5706191 DOI: 10.3390/ma10111244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 01/17/2023]
Abstract
Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs) coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs) on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG)-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.
Collapse
Affiliation(s)
- Xiaotong Ye
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
- University of Chinese Academy of Sciences, No.19(A), Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Sander Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| |
Collapse
|