1
|
Patra S, Kar S, Gopal Bag B. First Vesicular Self-Assembly of an Apocarotenoid Bixin in Aqueous Liquids and Its Antibacterial Activity. Chem Asian J 2024:e202400361. [PMID: 39331573 DOI: 10.1002/asia.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Bixin 1 is the major constituent of the reddish carotenoids present in the seed-coat of Bixa orellana. The use of the extract of the seed-coat of Bixa orellana in food, cosmetics and garments is well known. The nano-sized long 24 C chain molecule has nine conjugated double bonds having extended conjugation with the '-COOH' and '-COOMe' groups present at the two ends of the molecule. Herein, we report the first self-assembly of bixin in several aqueous liquids. The molecule undergoes spontaneous self-assembly in several liquids yielding vesicular self-assembly. Characterizations of the self-assemblies of bixin were carried out by various microscopic techniques, X-ray diffraction and FTIR studies. The critical vesicular concentrations (CVCs) of the compound carried out in DMSO-water in three different solvent ratios as 2: 1 (v/v), 1: 1 (v/v) and 1: 4 (v/v) were determined to be 100 μM, 90 μM and 60 μM respectively indicating lower CVC values at higher proportion of water. Utilization of the vesicular self-assemblies of bixin have been demonstrated in the entrapment and release of fluorophores including the anticancer drugs doxorubicin and curcumin. Self-assembled bixin and curcumin loaded self-assembled bixin showed significant antibacterial activity with both Gram positive as well as Gram negative bacteria.
Collapse
Affiliation(s)
- Soumen Patra
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sukhendu Kar
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Braja Gopal Bag
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| |
Collapse
|
2
|
Sahni A, Ritchey JL, Qian Z, Pei D. Cell-Penetrating Peptides Translocate across the Plasma Membrane by Inducing Vesicle Budding and Collapse. J Am Chem Soc 2024; 146:25371-25382. [PMID: 39221867 DOI: 10.1021/jacs.4c10533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cell-penetrating peptides (CPPs) enter the cell by two different mechanisms-endocytosis followed by endosomal escape and direct translocation at the plasma membrane. The mechanism of direct translocation remains unresolved. In this work, the direct translocation of nonaarginine (R9) and two cyclic CPPs (CPP12 and CPP17) into Jurkat cells was monitored by time-lapse confocal microscopy. Our results provide direct evidence that all three CPPs translocate across the plasma membrane by a recently discovered vesicle budding-and-collapse (VBC) mechanism. Membrane translocation is preceded by the formation of nucleation zones. Up to four different types of nucleation zones and three variations of the VBC mechanism were observed. The VBC mechanism reconciles the enigmatic and conflicting observations in the literature.
Collapse
Affiliation(s)
- Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Jeremy L Ritchey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Ziqing Qian
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Tomecki R, Drazkowska K, Madaj R, Mamot A, Dunin-Horkawicz S, Sikorski PJ. Expanding the Available RNA Labeling Toolbox With CutA Nucleotidyltransferase for Efficient Transcript Labeling with Purine and Pyrimidine Nucleotide Analogs. Chembiochem 2024; 25:e202400202. [PMID: 38818670 DOI: 10.1002/cbic.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
RNA labeling is an invaluable tool for investigation of the function and localization of nucleic acids. Labels are commonly incorporated into 3' end of RNA and the primary enzyme used for this purpose is RNA poly(A) polymerase (PAP), which belongs to the class of terminal nucleotidyltransferases (NTases). However, PAP preferentially adds ATP analogs, thus limiting the number of available substrates. Here, we report the use of another NTase, CutA from the fungus Thielavia terrestris. Using this enzyme, we were able to incorporate into the 3' end of RNA not only purine analogs, but also pyrimidine analogs. We engaged strain-promoted azide-alkyl cycloaddition (SPAAC) to obtain fluorescently labeled or biotinylated transcripts from RNAs extended with azide analogs by CutA. Importantly, modified transcripts retained their biological properties. Furthermore, fluorescently labeled mRNAs were suitable for visualization in cultured mammalian cells. Finally, we demonstrate that either affinity studies or molecular dynamic (MD) simulations allow for rapid screening of NTase substrates, what opens up new avenues in the search for the optimal substrates for this class of enzymes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Rafal Madaj
- Laboratory of Structural Bioinformatics, Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Adam Mamot
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Pawel J Sikorski
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
4
|
Górecka Ż, Idaszek J, Heljak M, Martinez DC, Choińska E, Kulas Z, Święszkowski W. Indocyanine green and iohexol loaded hydroxyapatite in poly(L-lactide-co-caprolactone)-based composite for bimodal near-infrared fluorescence- and X-ray-based imaging. J Biomed Mater Res B Appl Biomater 2024; 112:e35313. [PMID: 37596854 DOI: 10.1002/jbm.b.35313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
This study aimed to develop material for multimodal imaging by means of X-ray and near-infrared containing FDA- and EMA-approved iohexol and indocyanine green (ICG). The mentioned contrast agents (CAs) are hydrophilic and amphiphilic, respectively, which creates difficulties in fabrication of functional polymeric composites for fiducial markers (FMs) with usage thereof. Therefore, this study exploited for the first time the possibility of enhancing the radiopacity and introduction of the NIR fluorescence of FMs by adsorption of the CAs on hydroxyapatite (HAp) nanoparticles. The particles were embedded in the poly(L-lactide-co-caprolactone) (P[LAcoCL]) matrix resulting in the composite material for bimodal near-infrared fluorescence- and X-ray-based imaging. The applied method of material preparation provided homogenous distribution of both CAs with high iohexol loading efficiency and improved fluorescence signal due to hindered ICG aggregation. The material possessed profound contrasting properties for both imaging modalities. Its stability was evaluated during in vitro experiments in phosphate-buffered saline (PBS) and foetal bovine serum (FBS) solutions. The addition of HAp nanoparticles had significant effect on the fluorescence signal. The X-ray radiopacity was stable within minimum 11 weeks, even though the addition of ICG contributed to a faster release of iohexol. The stiffness of the material was not affected by iohexol or ICG, but incorporation of HAp nanoparticles elevated the values of bending modulus by approximately 70%. Moreover, the performed cell study revealed that all tested materials were not cytotoxic. Thus, the developed material can be successfully used for fabrication of FMs.
Collapse
Affiliation(s)
- Żaneta Górecka
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, Poland
| | - Joanna Idaszek
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Heljak
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Diana C Martinez
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Emilia Choińska
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Zbigniew Kulas
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Wojciech Święszkowski
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
5
|
Zhu Y, Cui M, Liu Y, Ma Z, Xi J, Tian Y, Hu J, Song C, Fan L, Li Q. Uptake Quantification of Antigen Carried by Nanoparticles and Its Impact on Carrier Adjuvanticity Evaluation. Vaccines (Basel) 2023; 12:28. [PMID: 38250841 PMCID: PMC10818693 DOI: 10.3390/vaccines12010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Nanoparticles have been identified in numerous studies as effective antigen delivery systems that enhance immune responses. However, it remains unclear whether this enhancement is a result of increased antigen uptake when carried by nanoparticles or the adjuvanticity of the nanoparticle carriers. Consequently, it is important to quantify antigen uptake by dendritic cells in a manner that is free from artifacts in order to analyze the immune response when antigens are carried by nanoparticles. In this study, we demonstrated several scenarios (antigens on nanoparticles or inside cells) that are likely to contribute to the generation of artifacts in conventional fluorescence-based quantification. Furthermore, we developed the necessary assay for accurate uptake quantification. PLGA NPs were selected as the model carrier system to deliver EsxB protein (a Staphylococcus aureus antigen) in order to testify to the feasibility of the established method. The results showed that for the same antigen uptake amount, the antigen delivered by PLGA nanoparticles could elicit 3.6 times IL-2 secretion (representative of cellular immune response activation) and 1.5 times IL-12 secretion (representative of DC maturation level) compared with pure antigen feeding. The findings above give direct evidence of the extra adjuvanticity of PLGA nanoparticles, except for their delivery functions. The developed methodology allows for the evaluation of immune cell responses on an antigen uptake basis, thus providing a better understanding of the origin of the adjuvanticity of nanoparticle carriers. Ultimately, this research provides general guidelines for the formulation of nano-vaccines.
Collapse
Affiliation(s)
- Yupu Zhu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Minxuan Cui
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Yutao Liu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Zhengjun Ma
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Jiayue Xi
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Yi Tian
- Department of Oncology, Airforce Medical Center of PLA, 30th Fu Cheng Road, Beijing 100142, China;
| | - Jinwei Hu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Chaojun Song
- School of Life Science, Northwestern Polytechnical University, 127th Youyi West Road, Xi’an 710072, China;
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Airforce Medical University, 169th Changle West Road, Xi’an 710032, China; (Y.Z.); (M.C.); (Y.L.); (Z.M.); (J.X.); (J.H.)
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
6
|
Kim J, Archer PA, Manspeaker MP, Avecilla ARC, Pollack BP, Thomas SN. Sustained release hydrogel for durable locoregional chemoimmunotherapy for BRAF-mutated melanoma. J Control Release 2023; 357:655-668. [PMID: 37080489 PMCID: PMC10328138 DOI: 10.1016/j.jconrel.2023.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
The wide prevalence of BRAF mutations in diagnosed melanomas drove the clinical advancement of BRAF inhibitors in combination with immune checkpoint blockade for treatment of advanced disease. However, deficits in therapeutic potencies and safety profiles motivate the development of more effective strategies that improve the combination therapy's therapeutic index. Herein, we demonstrate the benefits of a locoregional chemoimmunotherapy delivery system, a novel thermosensitive hydrogel comprised of gelatin and Pluronic® F127 components already widely used in humans in both commercial and clinical products, for the co-delivery of a small molecule BRAF inhibitor with immune checkpoint blockade antibody for the treatment of BRAF-mutated melanoma. In vivo evaluation of administration route and immune checkpoint target effects revealed intratumoral administration of antagonistic programmed cell death protein 1 antibody (aPD-1) lead to potent antitumor therapy in combination with BRAF inhibitor vemurafenib. The thermosensitive F127-g-Gelatin hydrogel that was evaluated in multiple murine models of BRAF-mutated melanoma that facilitated prolonged local drug release within the tumor (>1 week) substantially improved local immunomodulation, tumor control, rates of tumor response, and animal survival. Thermosensitive F127-g-Gelatin hydrogels thus improve upon the clinical benefits of vemurafenib and aPD-1 in a locoregional chemoimmunotherapy approach for the treatment of BRAF-mutated melanoma.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Division of Biological Science and Technology, Yonsei University, Wonju 26493, South Korea
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Margaret P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Alexa R C Avecilla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, Georgia 30332, USA and Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Brian P Pollack
- Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, GA 30322, USA; Departments of Dermatology and Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, Georgia 30332, USA and Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, GA 30322, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA.
| |
Collapse
|
7
|
Le Jeune M, Secret E, Trichet M, Michel A, Ravault D, Illien F, Siaugue JM, Sagan S, Burlina F, Ménager C. Conjugation of Oligo-His Peptides to Magnetic γ-Fe 2O 3@SiO 2 Core-Shell Nanoparticles Promotes Their Access to the Cytosol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15021-15034. [PMID: 35319860 DOI: 10.1021/acsami.2c01346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The endosomal entrapment of functional nanoparticles is a severe limitation to their use for biomedical applications. In the case of magnetic nanoparticles (MNPs), this entrapment leads to poor heating efficiency for magnetic hyperthermia and suppresses the possibility to manipulate them in the cytosol. Current strategies to limit their entrapment include functionalization with cell-penetrating peptides to promote translocation directly across the cell membrane or facilitate endosomal escape. However, these strategies suffer from the potential release of free peptides in the cell, and to the best of our knowledge, there is currently a lack of effective methods for the cytosolic delivery of MNPs after incubation with cells. Herein, we report the conjugation of fluorescently labeled cationic peptides to γ-Fe2O3@SiO2 core-shell nanoparticles by click chemistry to improve MNP access to the cytosol. We compare the effect of Arg9 and His4 peptides. On the one hand, Arg9 is a classical cell-penetrating peptide able to enter cells by direct translocation, and on the other hand, it has been demonstrated that sequences rich in histidine residues can promote endosomal escape, possibly by the proton sponge effect. The methodology developed here allows a high colocalization of the peptides and core-shell nanoparticles in cells and confirms that grafting peptides rich in histidine residues onto nanoparticles promotes NPs' access to the cytosol. Endosomal escape was confirmed by a calcein leakage assay and by ultrastructural analysis in transmission electron microscopy. No toxicity was observed for the peptide-nanoparticles conjugates. We also show that our conjugation strategy is compatible with the addition of multiple substrates and can thus be used for the delivery of cytoplasm-targeted therapeutics.
Collapse
Affiliation(s)
- Mathilde Le Jeune
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Emilie Secret
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - Michaël Trichet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), 9 quai Saint Bernard, F-75005 Paris, France
| | - Aude Michel
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - Delphine Ravault
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Françoise Illien
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Jean-Michel Siaugue
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Fabienne Burlina
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Christine Ménager
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| |
Collapse
|
8
|
Reiche MA, Aaron JS, Boehm U, DeSantis MC, Hobson CM, Khuon S, Lee RM, Chew TL. When light meets biology - how the specimen affects quantitative microscopy. J Cell Sci 2022; 135:274812. [PMID: 35319069 DOI: 10.1242/jcs.259656] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fluorescence microscopy images should not be treated as perfect representations of biology. Many factors within the biospecimen itself can drastically affect quantitative microscopy data. Whereas some sample-specific considerations, such as photobleaching and autofluorescence, are more commonly discussed, a holistic discussion of sample-related issues (which includes less-routine topics such as quenching, scattering and biological anisotropy) is required to appropriately guide life scientists through the subtleties inherent to bioimaging. Here, we consider how the interplay between light and a sample can cause common experimental pitfalls and unanticipated errors when drawing biological conclusions. Although some of these discrepancies can be minimized or controlled for, others require more pragmatic considerations when interpreting image data. Ultimately, the power lies in the hands of the experimenter. The goal of this Review is therefore to survey how biological samples can skew quantification and interpretation of microscopy data. Furthermore, we offer a perspective on how to manage many of these potential pitfalls.
Collapse
Affiliation(s)
- Michael A Reiche
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Ulrike Boehm
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Michael C DeSantis
- Light Microscopy Facility, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147,USA
| | - Chad M Hobson
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Satya Khuon
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA.,Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Rachel M Lee
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA.,Light Microscopy Facility, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147,USA
| |
Collapse
|
9
|
Mohale M, Gundampati RK, Krishnaswamy Suresh Kumar T, Heyes CD. Site-specific labeling and functional efficiencies of human fibroblast growth Factor-1 with a range of fluorescent Dyes in the flexible N-Terminal region and a rigid β-turn region. Anal Biochem 2022; 640:114524. [PMID: 34933004 DOI: 10.1016/j.ab.2021.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 11/01/2022]
Abstract
Human fibroblast growth factor-1 (hFGF1) binding to its receptor and heparin play critical roles in cell proliferation, angiogenesis and wound healing but is also implicated in cancer. Fluorescence imaging is a powerful approach to study such protein interactions, but it is not always obvious if the site chosen will be efficiently labeled, often relying on trial-and-error. To provide a more systematic approach towards an efficient site-specific labeling strategy, we labeled two structurally distinct regions of the protein - the flexible N-terminus and a rigid loop. Several dyes were chosen to cover the visible region and to investigate how the structure of the dye affects the labeling efficiency. Flexibility in either the protein labeling site or the dye structure was found to result in high labeling efficiency, but flexibility in both resulted in a significant decrease in labeling efficiency. Conversely, too much rigidity in both can result in dye-protein interactions that can aggregate the protein. Importantly, site-specifically labeling hFGF1 in these regions maintained biological activity. These results could be applicable to other proteins by considering the flexibility of both the protein labeling site and the dye structure.
Collapse
Affiliation(s)
- Mamello Mohale
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA
| | | | - Colin D Heyes
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA.
| |
Collapse
|
10
|
Górecka Ż, Grzelecki D, Paskal W, Choińska E, Gilewicz J, Wrzesień R, Macherzyński W, Tracz M, Budzińska-Wrzesień E, Bedyńska M, Kopka M, Jackowska-Tracz A, Świątek-Najwer E, Włodarski PK, Jaworowski J, Święszkowski W. Biodegradable Fiducial Markers for Bimodal Near-Infrared Fluorescence- and X-ray-Based Imaging. ACS Biomater Sci Eng 2022; 8:859-870. [PMID: 35020357 DOI: 10.1021/acsbiomaterials.1c01259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study aimed to evaluate, for the first time, implantable, biodegradable fiducial markers (FMs), which were designed for bimodal, near-infrared fluorescence-based (NIRF) and X-ray-based imaging. The developed FMs had poly(l-lactide-co-caprolactone)-based core-shell structures made of radiopaque (core) and fluorescent (shell) composites with a poly(l-lactide-co-caprolactone) matrix. The approved for human use contrast agents were utilized as fillers. Indocyanine green was applied to the shell material, whereas in the core materials, iohexol and barium sulfate were compared. Moreover, the possibility of tailoring the stability of the properties of the core materials by the addition of hydroxyapatite (HAp) was examined. The performed in situ (porcine tissue) and in vivo experiment (rat model) confirmed that the developed FMs possessed pronounced contrasting properties in NIRF and X-ray imaging. The presence of HAp improved the radiopacity of FMs at the initial state. It was also proved that, in iohexol-containing FMs, the presence of HAp slightly decreased the stability of contrasting properties, while in BaSO4-containing ones, changes were less pronounced. A comprehensive material analysis explaining the differences in the stability of the contrasting properties was also presented. The tissue response around the FMs with composite cores was comparable to that of the FMs with a pristine polymeric core. The developed composite FMs did not cause serious adverse effects on the surrounding tissues even when irradiated in vivo. The developed FMs ensured good visibility for NIRF image-supported tumor surgery and the following X-ray image-guided radiotherapy. Moreover, this study replenishes a scanty report regarding similar biodegradable composite materials with a high potential for application.
Collapse
Affiliation(s)
- Żaneta Górecka
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland.,Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Dariusz Grzelecki
- Department of Applied Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland.,Department of Orthopedics and Rheumoorthopedics, Professor Adam Gruca Teaching Hospital, Centre of Postgraduate Medical Education, 05-400 Otwock, Poland
| | - Wiktor Paskal
- Centre for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Emilia Choińska
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| | - Joanna Gilewicz
- Department of Applied Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Robert Wrzesień
- Central Laboratory of Experimental Animal, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wojciech Macherzyński
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, 50-372 Wroclaw, Poland
| | - Michał Tracz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | | | - Maria Bedyńska
- Department of Applied Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michał Kopka
- Centre for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Agnieszka Jackowska-Tracz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Ewelina Świątek-Najwer
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-371 Wroclaw, Poland
| | - Paweł K Włodarski
- Centre for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Janusz Jaworowski
- Department of Applied Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wojciech Święszkowski
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| |
Collapse
|
11
|
Larsen JB, Taebnia N, Dolatshahi-Pirouz A, Eriksen AZ, Hjørringgaard C, Kristensen K, Larsen NW, Larsen NB, Marie R, Mündler AK, Parhamifar L, Urquhart AJ, Weller A, Mortensen KI, Flyvbjerg H, Andresen TL. Imaging therapeutic peptide transport across intestinal barriers. RSC Chem Biol 2021; 2:1115-1143. [PMID: 34458827 PMCID: PMC8341777 DOI: 10.1039/d1cb00024a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Oral delivery is a highly preferred method for drug administration due to high patient compliance. However, oral administration is intrinsically challenging for pharmacologically interesting drug classes, in particular pharmaceutical peptides, due to the biological barriers associated with the gastrointestinal tract. In this review, we start by summarizing the pharmacological performance of several clinically relevant orally administrated therapeutic peptides, highlighting their low bioavailabilities. Thus, there is a strong need to increase the transport of peptide drugs across the intestinal barrier to realize future treatment needs and further development in the field. Currently, progress is hampered by a lack of understanding of transport mechanisms that govern intestinal absorption and transport of peptide drugs, including the effects of the permeability enhancers commonly used to mediate uptake. We describe how, for the past decades, mechanistic insights have predominantly been gained using functional assays with end-point read-out capabilities, which only allow indirect study of peptide transport mechanisms. We then focus on fluorescence imaging that, on the other hand, provides opportunities to directly visualize and thus follow peptide transport at high spatiotemporal resolution. Consequently, it may provide new and detailed mechanistic understanding of the interplay between the physicochemical properties of peptides and cellular processes; an interplay that determines the efficiency of transport. We review current methodology and state of the art in the field of fluorescence imaging to study intestinal barrier transport of peptides, and provide a comprehensive overview of the imaging-compatible in vitro, ex vivo, and in vivo platforms that currently are being developed to accelerate this emerging field of research.
Collapse
Affiliation(s)
- Jannik Bruun Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Alireza Dolatshahi-Pirouz
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Anne Zebitz Eriksen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Claudia Hjørringgaard
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kasper Kristensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nanna Wichmann Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Niels Bent Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Rodolphe Marie
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ann-Kathrin Mündler
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ladan Parhamifar
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Andrew James Urquhart
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Arjen Weller
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kim I Mortensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Henrik Flyvbjerg
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Thomas Lars Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| |
Collapse
|
12
|
Simonsen JB, Kromann EB. Pitfalls and opportunities in quantitative fluorescence-based nanomedicine studies - A commentary. J Control Release 2021; 335:660-667. [PMID: 34089794 DOI: 10.1016/j.jconrel.2021.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Fluorescence-based techniques are prevalent in studies of nanomedicine-targeting to cells and tissues. However, fluorescence-based studies are rarely quantitative, thus prohibiting direct comparisons of nanomedicine-performance across studies. With this Commentary, we aim to provoke critical thinking about experimental design by treating some often-overlooked pitfalls in 'quantitative' fluorescence-based experimentation. Focusing on fluorescence-labeled nanoparticles, we cover mechanisms like solvent-interactions and fluorophore-dissociation, which disqualify the assumption that 'a higher fluorescence readout' translates directly to 'a better targeting efficacy'. With departure in recent literature, we propose guidelines for circumventing these pitfalls in studies of tissue-accumulation and cell-uptake, thus covering fluorescence-based techniques like bulk solution fluorescence measurements, fluorescence microscopy, flow cytometry, and infrared fluorescence imaging. With this, we hope to lay a foundation for more 'quantitative thinking' during experimental design, enabling (for example) the estimation and reporting of actual numbers of fluorescent nanoparticles accumulated in cells and organs.
Collapse
Affiliation(s)
- Jens B Simonsen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark.
| | - Emil B Kromann
- Department of Health Technology, Section for Biomimetics, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Acid-Sphingomyelinase Triggered Fluorescently Labeled Sphingomyelin Containing Liposomes in Tumor Diagnosis after Radiation-Induced Stress. Int J Mol Sci 2021; 22:ijms22083864. [PMID: 33917976 PMCID: PMC8068344 DOI: 10.3390/ijms22083864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
In liposomal delivery, a big question is how to release the loaded material into the correct place. Here, we will test the targeting and release abilities of our sphingomyelin-consisting liposome. A change in release parameters can be observed when sphingomyelin-containing liposome is treated with sphingomyelinase enzyme. Sphingomyelinase is known to be endogenously released from the different cells in stress situations. We assume the effective enzyme treatment will weaken the liposome making it also leakier. To test the release abilities of the SM-liposome, we developed several fluorescence-based experiments. In in vitro studies, we used molecular quenching to study the sphingomyelinase enzyme-based release from the liposomes. We could show that the enzyme treatment releases loaded fluorescent markers from sphingomyelin-containing liposomes. Moreover, the release correlated with used enzymatic activities. We studied whether the stress-related enzyme expression is increased if the cells are treated with radiation as a stress inducer. It appeared that the radiation caused increased enzymatic activity. We studied our liposomes’ biodistribution in the animal tumor model when the tumor was under radiation stress. Increased targeting of the fluorescent marker loaded to our liposomes could be found on the site of cancer. The liposomal targeting in vivo could be improved by radiation. Based on our studies, we propose sphingomyelin-containing liposomes can be used as a controlled release system sensitive to cell stress.
Collapse
|
14
|
Bae W, Yoon TY, Jeong C. Direct evaluation of self-quenching behavior of fluorophores at high concentrations using an evanescent field. PLoS One 2021; 16:e0247326. [PMID: 33606817 PMCID: PMC7895399 DOI: 10.1371/journal.pone.0247326] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/04/2021] [Indexed: 01/09/2023] Open
Abstract
The quantum yield of a fluorophore is reduced when two or more identical fluorophores are in close proximity to each other. The study of protein folding or particle aggregation is can be done based on this above-mentioned phenomenon—called self-quenching. However, it is challenging to characterize the self-quenching of a fluorophore at high concentrations because of the inner filter effect, which involves depletion of excitation light and re-absorption of emission light. Herein, a novel method to directly evaluate the self-quenching behavior of fluorophores was developed. The evanescent field from an objective-type total internal reflection fluorescence (TIRF) microscope was used to reduce the path length of the excitation and emission light to ~100 nm, thereby supressing the inner filter effect. Fluorescence intensities of sulforhodamine B, fluorescein isothiocyanate (FITC), and calcein solutions with concentrations ranging from 1 μM to 50 mM were directly measured to evaluate the concentration required for 1000-fold degree of self-quenching and to examine the different mechanisms through which the fluorophores undergo self-quenching.
Collapse
Affiliation(s)
- Wooli Bae
- Imperial College Centre for Synthetic Biology and Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
- * E-mail: (WB); (CJ)
| | - Tae-Young Yoon
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Cherlhyun Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU‑KIST Department of Converging Science and Technology, Kyunghee University, Seoul, Republic of Korea
- * E-mail: (WB); (CJ)
| |
Collapse
|
15
|
Garcia J, Fernández‐Pradas JM, Lladó A, Serra P, Zalvidea D, Kogan MJ, Giralt E, Sánchez‐Navarro M. The Combined Use of Gold Nanoparticles and Infrared Radiation Enables Cytosolic Protein Delivery. Chemistry 2021; 27:4670-4675. [DOI: 10.1002/chem.202005000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Josep Garcia
- Institute for Research in Biomedicine Barcelona Institute of, Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - J. Marcos Fernández‐Pradas
- Department of Applied Physics University of Barcelona Martí i Franquès 1 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) University of Barcelona Av. Diagonal 645 08028 Barcelona Spain
| | - Anna Lladó
- Institute for Research in Biomedicine Barcelona Institute of, Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - Pere Serra
- Department of Applied Physics University of Barcelona Martí i Franquès 1 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) University of Barcelona Av. Diagonal 645 08028 Barcelona Spain
| | - Dobryna Zalvidea
- Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Technology (BIST) Barcelona Spain
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica Facultad de Ciencias Químicas y Farmacéuticas Universidad de Chile Santiago Chile
- Advanced Center for Chronic Diseases (ACCDiS) Sergio Livingstone 1007, Independencia Santiago Chile
| | - Ernest Giralt
- Institute for Research in Biomedicine Barcelona Institute of, Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
- Department of Inorganic and Organic Chemistry University of Barcelona Martí i Franquès 1–11 08028 Barcelona Spain
| | - Macarena Sánchez‐Navarro
- Institute for Research in Biomedicine Barcelona Institute of, Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| |
Collapse
|
16
|
Lv W, Champion JA. Demonstration of intracellular trafficking, cytosolic bioavailability, and target manipulation of an antibody delivery platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102315. [PMID: 33065253 DOI: 10.1016/j.nano.2020.102315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Intracellular antibody delivery into live cells has significant implications for research and therapeutic applications. However, many delivery systems lack potency due to low uptake and/or endosomal entrapment and understanding of intracellular delivery processes is lacking. Herein, we studied the cellular uptake, intracellular trafficking and targeting of antibodies using our previously developed Hex antibody nanocarrier. We demonstrated Hex-antibodies were internalized through multiple endocytic routes into lysosomes and provide evidence of endo/lysosomal disruption and Hex-antibody release to the cytosol. Cytosolic antibodies retained their bioactivity for at least 24 h. Functional effect of Hex delivered anti-STAT3 antibodies was evidenced by inhibition of nuclear translocation of cytosolic transcription factor STAT3. This study has generated understanding of key steps in the Hex intracellular antibody delivery system and will facilitate the development of effective cytosolic antibody delivery and applications in both the therapeutic and research domains.
Collapse
Affiliation(s)
- Wei Lv
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
17
|
Ahoulou EO, Drinkard KK, Basnet K, St. Lorenz A, Taratula O, Henary M, Grant KB. DNA Photocleavage in the Near-Infrared Wavelength Range by 2-Quinolinium Dicarbocyanine Dyes. Molecules 2020; 25:molecules25122926. [PMID: 32630496 PMCID: PMC7355653 DOI: 10.3390/molecules25122926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Here, we report the syntheses of two pentamethine cyanine dyes containing quinolinium rings and substituted with either hydrogen (3) or bromine (4) at the meso carbon. The electron withdrawing bromine atom stabilizes dye 4 in aqueous buffer, allowing complex formation to occur between the dye and double-helical DNA. UV–visible, CD, and fluorescence spectra recorded at low DNA concentrations suggest that dye 4 initially binds to the DNA as a high-order aggregate. As the ratio of DNA to dye is increased, the aggregate is converted to monomeric and other low-order dye forms that interact with DNA in a non-intercalative fashion. The brominated dye 4 is relatively unreactive in the dark, but, under 707–759 nm illumination, generates hydroxyl radicals that cleave DNA in high yield (pH 7.0, 22 °C). Dye 4 is also taken up by ES2 ovarian carcinoma cells, where it is non-toxic under dark conditions. Upon irradiation of the ES2 cells at 694 nm, the brominated cyanine reduces cell viability from 100 ± 10% to 14 ± 1%. Our results suggest that 2-quinolinium-based carbocyanine dyes equipped with stabilizing electron withdrawing groups may have the potential to serve as sensitizing agents in long-wavelength phototherapeutic applications.
Collapse
Affiliation(s)
- Effibe O. Ahoulou
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (E.O.A.); (K.K.D.); (K.B.)
| | - Kaitlyn K. Drinkard
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (E.O.A.); (K.K.D.); (K.B.)
| | - Kanchan Basnet
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (E.O.A.); (K.K.D.); (K.B.)
| | - Anna St. Lorenz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; (A.S.L.); (O.T.)
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; (A.S.L.); (O.T.)
| | - Maged Henary
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (E.O.A.); (K.K.D.); (K.B.)
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Correspondence: (M.H.); (K.B.G.); Tel.: +1-404-413-5566 (M.H.); +1-404-413-5522 (K.B.G.)
| | - Kathryn B. Grant
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (E.O.A.); (K.K.D.); (K.B.)
- Correspondence: (M.H.); (K.B.G.); Tel.: +1-404-413-5566 (M.H.); +1-404-413-5522 (K.B.G.)
| |
Collapse
|
18
|
Shuma ML, Moghal MMR, Yamazaki M. Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles. Biochemistry 2020; 59:1780-1790. [DOI: 10.1021/acs.biochem.0c00102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Madhabi Lata Shuma
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md. Mizanur Rahman Moghal
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
19
|
Reo YJ, Jun YW, Cho SW, Jeon J, Roh H, Singha S, Dai M, Sarkar S, Kim HR, Kim S, Jin Y, Jung YL, Yang YJ, Ban C, Joo J, Ahn KH. A systematic study on the discrepancy of fluorescence properties between in solutions and in cells: super-bright, environment-insensitive benzocoumarin dyes. Chem Commun (Camb) 2020; 56:10556-10559. [DOI: 10.1039/d0cc03586f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The benzocoumarins show distinctive emission behaviour from some commonly-used dyes in organic, aqueous buffer, and cellular media, which compels us to recognize the cellular environment as the third space for fluorophores.
Collapse
|
20
|
Oddone N, Pederzoli F, Duskey JT, De Benedictis CA, Grabrucker AM, Forni F, Angela Vandelli M, Ruozi B, Tosi G. ROS-responsive “smart” polymeric conjugate: Synthesis, characterization and proof-of-concept study. Int J Pharm 2019; 570:118655. [DOI: 10.1016/j.ijpharm.2019.118655] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023]
|
21
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Tsai ES, Himmelstoß SF, Wiesholler LM, Hirsch T, Hall EAH. Upconversion nanoparticles for sensing pH. Analyst 2019; 144:5547-5557. [PMID: 31403643 DOI: 10.1039/c9an00236g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Upconversion nanoparticles (UCNPs) can provide a vehicle for chemical imaging by coupling chemically sensitive dyes and quenchers. The mechanism for coupling of two anthraquinone dyes, Calcium Red and Alizarin Red S, was investigated as a function of pH. The green emission band of the UCNPs was quenched by a pH-dependent inner filter effect (IFE) while the red emission band remained unchanged and acted as the reference signal for ratiometric pH measurements. Contrary to previous expectation, there was little evidence for a resonance energy transfer (RET) mechanism even when the anthraquinones were attached onto the UCNPs through electrostatic attraction. Since the UCNPs are point emitters, only emitters close to the surface of the UCNP are within the expected Förster distance and UC-RET is <10%. The theoretical and experimental analysis of the interaction between UCNPs and pH-sensitive quenchers will allow the design of UCNP pH sensors for determination of pH via IFE.
Collapse
Affiliation(s)
- Evaline S Tsai
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | | | | | | | | |
Collapse
|
23
|
Mathematical modeling of drug-induced receptor internalization in the HER2-positive SKBR3 breast cancer cell-line. Sci Rep 2019; 9:12709. [PMID: 31481718 PMCID: PMC6722142 DOI: 10.1038/s41598-019-49019-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
About 20% of breast cancer tumors over-express the HER2 receptor. Trastuzumab, an approved drug to treat this type of breast cancer, is a monoclonal antibody directly binding at the HER2 receptor and ultimately inhibiting cancer cell growth. The goal of our study was to understand the early impact of trastuzumab on HER2 internalization and recycling in the HER2-overexpressing breast cancer cell line SKBR3. To this end, fluorescence microscopy, monitoring the amount of HER2 expression in the plasma membrane, was combined with mathematical modeling to derive the flux of HER2 receptors from and to the membrane. We constructed a dynamic multi-compartment model based on ordinary differential equations. To account for cancer cell heterogeneity, a first, dynamic model was expanded to a second model including two distinct cell phenotypes, with implications for different conformational states of HER2, i.e. monomeric or homodimeric. Our mathematical model shows that the hypothesis of fast constitutive HER2 recycling back to the plasma membrane does not match the experimental data. It conclusively describes the experimental observation that trastuzumab induces sustained receptor internalization in cells with membrane ruffles. It is also concluded that for rare, non-ruffled (flat) cells, HER2 internalization occurs three orders of magnitude slower than for the bulk, ruffled cell population.
Collapse
|
24
|
Tsai HY, Kim H, Massey M, Krause KD, Algar WR. Concentric FRET: a review of the emerging concept, theory, and applications. Methods Appl Fluoresc 2019; 7:042001. [DOI: 10.1088/2050-6120/ab2b2f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
How to evaluate the cellular uptake of CPPs with fluorescence techniques: Dissecting methodological pitfalls associated to tryptophan-rich peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1533-1545. [PMID: 31283917 DOI: 10.1016/j.bbamem.2019.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/10/2019] [Accepted: 06/27/2019] [Indexed: 11/21/2022]
Abstract
Cell-penetrating peptides (CPP) are broadly recognized as efficient non-viral vectors for the internalization of compounds such as peptides, oligonucleotides or proteins. Characterizing these carriers requires reliable methods to quantify their intracellular uptake. Flow cytometry on living cells is a method of choice but is not always applicable (e.g. big or polarized cells), so we decided to compare it to fluorescence spectroscopy on cell lysates. Surprisingly, for the internalization of a series of TAMRA-labeled conjugates formed of either cationic or amphipathic CPPs covalently coupled to a decamer peptide, we observed important differences in internalization levels between both methods. We partly explained these discrepancies by analyzing the effect of buffer conditions (pH, detergents) and peptide sequence/structure on TAMRA dye accessibility. Based on this analysis, we calculated a correction coefficient allowing a better coherence between both methods. However, an overestimated signal was still observable for both amphipathic peptides using the spectroscopic detection, which could be due to their localization at the cell membrane. Based on several in vitro experiments modeling events at the plasma membrane, we hypothesized that fluorescence of peptides entrapped in the membrane bilayer could be quenched by the tryptophan residues of close transmembrane proteins. During cell lysis, cell membranes are disintegrated liberating the entrapped peptides and restoring the fluorescence, explaining the divergences observed between flow cytometry and spectroscopy on lysates. Overall, our results highlighted major biases in the fluorescently-based quantification of internalized fluorescently-labeled CPP conjugates, which should be considered for accurate uptake quantification.
Collapse
|
26
|
Kilchrist KV, Dimobi SC, Jackson MA, Evans BC, Werfel TA, Dailing EA, Bedingfield SK, Kelly IB, Duvall CL. Gal8 Visualization of Endosome Disruption Predicts Carrier-Mediated Biologic Drug Intracellular Bioavailability. ACS NANO 2019; 13:1136-1152. [PMID: 30629431 PMCID: PMC6995262 DOI: 10.1021/acsnano.8b05482] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Endolysosome entrapment is one of the key barriers to the therapeutic use of biologic drugs that act intracellularly. The screening of prospective nanoscale endosome-disrupting delivery technologies is currently limited by methods that are indirect and cumbersome. Here, we statistically validate Galectin 8 (Gal8) intracellular tracking as a superior approach that is direct, quantitative, and predictive of therapeutic cargo intracellular bioactivity through in vitro high-throughput screening and in vivo validation. Gal8 is a cytosolically dispersed protein that, when endosomes are disrupted, redistributes by binding to glycosylation moieties selectively located on the inner face of endosomal membranes. The quantitative redistribution of a Gal8 fluorescent fusion protein from the cytosol into endosomes is demonstrated as a real-time, live-cell assessment of endosomal integrity that does not require labeling or modification of either the carrier or the biologic drug and that allows quantitative distinction between closely related, endosome-disruptive drug carriers. Through screening two families of siRNA polymeric carrier compositions at varying dosages, we show that Gal8 endosomal recruitment correlates strongly ( r = 0.95 and p < 10-4) with intracellular siRNA bioactivity. Through this screen, we gathered insights into how composition and molecular weight affect endosome disruption activity of poly[(ethylene glycol)- b-[(2-(dimethylamino)ethyl methacrylate)- co-(butyl methacrylate)]] [PEG-(DMAEMA- co-BMA)] siRNA delivery systems. Additional studies showed that Gal8 recruitment predicts intracellular bioactivity better than current standard methods such as Lysotracker colocalization ( r = 0.35, not significant), pH-dependent hemolysis (not significant), or cellular uptake ( r = 0.73 and p < 10-3). Importantly, the Gal8 recruitment method is also amenable to fully objective high-throughput screening using automated image acquisition and quantitative image analysis, with a robust estimated Z' of 0.6 (whereas assays with Z' > 0 have high-throughput screening utility). Finally, we also provide measurements of in vivo endosomal disruption based on Gal8 visualization ( p < 0.03) of a nanocarrier formulation confirmed to produce significant cytosolic delivery and bioactivity of siRNA within tumors ( p < 0.02). In sum, this report establishes the utility of Gal8 subcellular tracking for the rapid optimization and high-throughput screening of the endosome disruption potency of intracellular delivery technologies.
Collapse
Affiliation(s)
- Kameron V. Kilchrist
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Somtochukwu C. Dimobi
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Meredith A. Jackson
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Brian C. Evans
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | | | - Eric A. Dailing
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Sean K. Bedingfield
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Isom B. Kelly
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, PMB 351634, Nashville, Tennessee 37235, United States
| |
Collapse
|
27
|
Snoussi M, Talledo JP, Del Rosario NA, Mohammadi S, Ha BY, Košmrlj A, Taheri-Araghi S. Heterogeneous absorption of antimicrobial peptide LL37 in Escherichia coli cells enhances population survivability. eLife 2018; 7:e38174. [PMID: 30560784 PMCID: PMC6298785 DOI: 10.7554/elife.38174] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/13/2018] [Indexed: 01/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are broad spectrum antibiotics that selectively target bacteria. Here we investigate the activity of human AMP LL37 against Escherichia coli by integrating quantitative, population and single-cell level experiments with theoretical modeling. We observe an unexpected, rapid absorption and retention of a large number of LL37 peptides by E. coli cells upon the inhibition of their growth, which increases population survivability. This transition occurs more likely in the late stage of cell division cycles. Cultures with high cell density exhibit two distinct subpopulations: a non-growing population that absorb peptides and a growing population that survive owing to the sequestration of the AMPs by others. A mathematical model based on this binary picture reproduces the rather surprising observations, including the increase of the minimum inhibitory concentration with cell density (even in dilute cultures) and the extensive lag in growth introduced by sub-lethal dosages of LL37 peptides.
Collapse
Affiliation(s)
- Mehdi Snoussi
- Department of BiologyCalifornia State UniversityNorthridgeUnited States
| | - John Paul Talledo
- Department of PhysicsCalifornia State UniversityNorthridgeUnited States
| | | | - Salimeh Mohammadi
- Department of PhysicsCalifornia State UniversityNorthridgeUnited States
| | - Bae-Yeun Ha
- Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUnited States
- Princeton Institute for the Science and Technology of MaterialsPrinceton UniversityPrincetonUnited States
| | | |
Collapse
|
28
|
Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Where in the Cell Is our Cargo? Methods Currently Used To Study Intracellular Cytosolic Localisation. Chembiochem 2018; 20:488-498. [PMID: 30178574 DOI: 10.1002/cbic.201800390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Indexed: 12/14/2022]
Abstract
The internalisation and delivery of active substances into cells is a field of growing interest for chemical biology and therapeutics. As we move from small-molecule-based drugs towards bigger cargos, such as antibodies, enzymes, nucleases or nucleic acids, the development of efficient delivery systems becomes critical for their practical application. Different strategies and synthetic carriers have been developed; these include cationic lipids, gold nanoparticles, polymers, cell-penetrating peptides (CPPs), protein surface modification etc. However, all of these methodologies still present limitations relating to the precise targeting of the different intracellular compartments and, in particular, difficulties in access to the cellular cytosol. Additionally, the precise quantification of the cellular uptake of a compound is not enough to demonstrate delivery and/or functional activity. Therefore, methods to determine cellular distributions of cargos and carriers are of critical importance for identifying the barriers that are blocking the activity. Herein we survey the different techniques that can currently be used to track and to monitor the subcellular localisation of the synthetic compounds that we deliver inside cells.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
29
|
Hostachy S, Masuda M, Miki T, Hamachi I, Sagan S, Lequin O, Medjoubi K, Somogyi A, Delsuc N, Policar C. Graftable SCoMPIs enable the labeling and X-ray fluorescence imaging of proteins. Chem Sci 2018; 9:4483-4487. [PMID: 29896390 PMCID: PMC5958345 DOI: 10.1039/c8sc00886h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
Bio-imaging techniques alternative to fluorescence microscopy are gaining increasing interest as complementary tools to visualize and analyze biological systems. Among them, X-ray fluorescence microspectroscopy provides information on the local content and distribution of heavy elements (Z ≥ 14) in cells or biological samples. In this context, similar tools to those developed for fluorescence microscopy are desired, including chemical probes or tags. In this work, we study rhenium complexes as a convenient and sensitive probe for X-ray fluorescence microspectroscopy. We demonstrate their ability to label and sense exogenously incubated or endogenous proteins inside cells.
Collapse
Affiliation(s)
- Sarah Hostachy
- Laboratoire des Biomolécules, LBM , Département de Chimie , École Normale Supérieure , PSL University , Sorbonne Université , CNRS , 75005 Paris , France .
| | - Marie Masuda
- Department of Synthetic Chemistry and Biological Chemistry , Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Takayuki Miki
- Department of Synthetic Chemistry and Biological Chemistry , Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry , Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Sandrine Sagan
- Sorbonne Université , École Normale Supérieure , PSL University , CNRS , Laboratoire des Biomolécules, LBM , 75005 Paris , France
| | - Olivier Lequin
- Sorbonne Université , École Normale Supérieure , PSL University , CNRS , Laboratoire des Biomolécules, LBM , 75005 Paris , France
| | - Kadda Medjoubi
- Nanoscopium Synchrotron SOLEIL Saint-Aubin , 91192 , Gif-sur-Yvette Cedex , France
| | - Andrea Somogyi
- Nanoscopium Synchrotron SOLEIL Saint-Aubin , 91192 , Gif-sur-Yvette Cedex , France
| | - Nicolas Delsuc
- Laboratoire des Biomolécules, LBM , Département de Chimie , École Normale Supérieure , PSL University , Sorbonne Université , CNRS , 75005 Paris , France .
| | - Clotilde Policar
- Laboratoire des Biomolécules, LBM , Département de Chimie , École Normale Supérieure , PSL University , Sorbonne Université , CNRS , 75005 Paris , France .
| |
Collapse
|
30
|
Yarani R, Shiraishi T, Nielsen PE. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity. Sci Rep 2018; 8:638. [PMID: 29330463 PMCID: PMC5766568 DOI: 10.1038/s41598-017-18947-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginine peptide nucleic acid (PNA) conjugates were investigated in terms of PCI assisted cellular activity. It is found that tetramethylrhodamine and Alexa Fluor 555 conjugated octaarginine PNA upon irradiation exhibit more than ten-fold increase in antisense activity in the HeLa pLuc705 luciferase splice correction assay. An analogous fluorescein conjugate did not show any significant enhancement due to photobleaching, and neither did an Alexa Fluor 488 conjugate. Using fluorescence microscopy a correlation between endosomal escape and antisense activity was demonstrated, and in parallel a correlation to localized formation of ROS assigned primarily to singlet oxygen was also observed. The results show that tetramethylrhodamine (and to lesser extent Alexa Fluor 555) conjugated octaarginine PNAs are as effectively delivered to the cytosol compartment by PCI as by chloroquine assisted delivery and also indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore.
Collapse
Affiliation(s)
- Reza Yarani
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Takehiko Shiraishi
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
|
32
|
Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity. J Control Release 2017; 256:68-78. [DOI: 10.1016/j.jconrel.2017.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/19/2022]
|
33
|
Rode S, Hayn M, Röcker A, Sieste S, Lamla M, Markx D, Meier C, Kirchhoff F, Walther P, Fändrich M, Weil T, Münch J. Generation and Characterization of Virus-Enhancing Peptide Nanofibrils Functionalized with Fluorescent Labels. Bioconjug Chem 2017; 28:1260-1270. [DOI: 10.1021/acs.bioconjchem.7b00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sascha Rode
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | - Manuel Hayn
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | - Annika Röcker
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | - Stefanie Sieste
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Markus Lamla
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Markx
- Institute
of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | | | - Frank Kirchhoff
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | | | - Marcus Fändrich
- Institute
of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jan Münch
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
- Core
Facility Functional Peptidomics, Ulm University Medical Center, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| |
Collapse
|
34
|
de Oliveira R, Durand M, Challier L, Messina P, Swiecicki JM, Di Pisa M, Chassaing G, Lavielle S, Buriez O, Labbé E. Electrochemical quenching of the fluorescence produced by NBD-labelled cell penetrating peptides: A contribution to the study of their internalization in large unilamellar vesicles. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Gao M, Su H, Lin Y, Ling X, Li S, Qin A, Tang BZ. Photoactivatable aggregation-induced emission probes for lipid droplets-specific live cell imaging. Chem Sci 2016; 8:1763-1768. [PMID: 29780451 PMCID: PMC5933432 DOI: 10.1039/c6sc04842k] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Photoactivatable probes for lipid droplets (LDs)-specific live-cell imaging are powerful tools for investigating their biological functions through precise spatial and temporal control.
Photoactivatable probes for lipid droplets (LDs)-specific live-cell imaging are powerful tools for investigating their biological functions through precise spatial and temporal control. Ideal photoactivatable probes for LDs imaging require high concentration accumulation of fluorophores in LDs, simple synthetic procedures, and excellent photoactivation efficiency. However, it is difficult to overcome these challenges by conventional fluorophores due to aggregation-caused quenching (ACQ). In this study, a new class of photoactivatable and LDs-specific fluorescent probes was developed based on dihydro-2-azafluorenones, which can easily undergo photooxidative dehydrogenation reaction to afford 2-azafluorenones with aggregation-induced emission (AIE) properties. Dihydro-2-azafluorenones as photoactivatable and LDs-specific probes display significant advantages of excellent photoactivation efficiency and lack of self-quenching in the aggregated state, and are expected to have broad applications in study of biological functions of LDs' through light-controlled spatiotemporal imaging.
Collapse
Affiliation(s)
- Meng Gao
- Guangdong Innovative Research Team , State Key Laboratory of Luminescent Materials & Devices , South China University of Technology , Guangzhou 510640 , China .
| | - Huifang Su
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Yuhan Lin
- Guangdong Innovative Research Team , State Key Laboratory of Luminescent Materials & Devices , South China University of Technology , Guangzhou 510640 , China .
| | - Xia Ling
- Guangdong Innovative Research Team , State Key Laboratory of Luminescent Materials & Devices , South China University of Technology , Guangzhou 510640 , China .
| | - Shiwu Li
- Guangdong Innovative Research Team , State Key Laboratory of Luminescent Materials & Devices , South China University of Technology , Guangzhou 510640 , China .
| | - Anjun Qin
- Guangdong Innovative Research Team , State Key Laboratory of Luminescent Materials & Devices , South China University of Technology , Guangzhou 510640 , China .
| | - Ben Zhong Tang
- Guangdong Innovative Research Team , State Key Laboratory of Luminescent Materials & Devices , South China University of Technology , Guangzhou 510640 , China . .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| |
Collapse
|
36
|
Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification. Sci Rep 2016; 6:36938. [PMID: 27841303 PMCID: PMC5107916 DOI: 10.1038/srep36938] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023] Open
Abstract
The mechanism of cell-penetrating peptides entry into cells is unclear, preventing the development of more efficient vectors for biotechnological or therapeutic purposes. Here, we developed a protocol relying on fluorometry to distinguish endocytosis from direct membrane translocation, using Penetratin, TAT and R9. The quantities of internalized CPPs measured by fluorometry in cell lysates converge with those obtained by our previously reported mass spectrometry quantification method. By contrast, flow cytometry quantification faces several limitations due to fluorescence quenching processes that depend on the cell line and occur at peptide/cell ratio >6.108 for CF-Penetratin. The analysis of cellular internalization of a doubly labeled fluorescent and biotinylated Penetratin analogue by the two independent techniques, fluorometry and mass spectrometry, gave consistent results at the quantitative and qualitative levels. Both techniques revealed the use of two alternative translocation and endocytosis pathways, whose relative efficacy depends on cell-surface sugars and peptide concentration. We confirmed that Penetratin translocates at low concentration and uses endocytosis at high μM concentrations. We further demonstrate that the hydrophobic/hydrophilic nature of the N-terminal extremity impacts on the internalization efficiency of CPPs. We expect these results and the associated protocols to help unraveling the translocation pathway to the cytosol of cells.
Collapse
|
37
|
Hostachy S, Swiecicki JM, Sandt C, Delsuc N, Policar C. Photophysical properties of single core multimodal probe for imaging (SCoMPI) in a membrane model and in cells. Dalton Trans 2016; 45:2791-5. [DOI: 10.1039/c5dt03819g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An unexpected strong luminescence enhancement of a bimodal ReCO probe grafted onto a CPP accurately characterized in a lipid environment.
Collapse
Affiliation(s)
- S. Hostachy
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| | - J.-M. Swiecicki
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| | - C. Sandt
- Synchrotron SOLEIL Saint-Aubin
- Gif-sur-Yvette Cedex
- France
| | - N. Delsuc
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| | - C. Policar
- Ecole Normale Supérieure-PSL Research University
- Département de Chimie
- Sorbonne Universités – UPMC Univ Paris 06
- UMR 7203 CNRS-ENS-UPMC LBM
- 75005 Paris
| |
Collapse
|