1
|
Nakagawa T, Horiuchi K, Kagami K, Kondo S, Isaji M, Matsuhashi Y, Kitamura K, Adachi T, Chiba K. The alteration of LBX1 expression is associated with changes in parameters related to energy metabolism in mice. PLoS One 2024; 19:e0308445. [PMID: 39110747 PMCID: PMC11305531 DOI: 10.1371/journal.pone.0308445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The LBX1 gene is located near a single nucleotide polymorphism that is highly associated with susceptibility to adolescent idiopathic scoliosis and is considered one of the strongest candidate genes involved in the pathogenesis of this condition. We have previously found that loss of LBX1 from skeletal muscle results not only in spinal deformity but also in lean body mass, suggesting a potential role for LBX1 in energy metabolism. The purpose of the present study was to test this hypothesis by analyzing the phenotype of mice lacking LBX1 in skeletal muscle with a focus on energy metabolism. We found that loss of LBX1 rendered mice more resistant to high-fat diet-induced obesity, despite comparable food intake between mutant and control mice. Notably, the mutant mice exhibited improved glucose tolerance, increased maximal aerobic capacity, and higher core body temperature compared to control mice. In addition, we found that overexpression of LBX1 decreased glucose uptake in cultured cells. Taken together, our data show that LBX1 functions as a negative regulator of energy metabolism and that loss of LBX1 from skeletal muscle increases systemic energy expenditure resulting in lean body mass. The present study thus suggests a potential association between LBX1 dysfunction and lean body mass in patients with adolescent idiopathic scoliosis.
Collapse
Affiliation(s)
- Takahiro Nakagawa
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuki Kagami
- Division of Cardiovascular Medicine, Department of Internal Medicine I, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Shinya Kondo
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masashi Isaji
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yusuke Matsuhashi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuya Kitamura
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takeshi Adachi
- Division of Cardiovascular Medicine, Department of Internal Medicine I, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
2
|
Roggio F, Trovato B, Sortino M, Onesta MP, Petrigna L, Musumeci G. The Role of Muscle Biomarkers in Adolescent Idiopathic Scoliosis. J Clin Med 2023; 12:7616. [PMID: 38137689 PMCID: PMC10743897 DOI: 10.3390/jcm12247616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the predominant orthopedic disorder in children, affecting 1-3% of the global population. Research in this field has tried to delineate the genetic factors behind scoliosis and its association with heredity since AIS is considered a polygenic disease and has different genetic and epigenetic factors. The current study conducted a narrative review of the literature, focusing on biomarkers in the pathophysiology of muscle in AIS patients. Articles were collected from Scopus, Pubmed, and Web of Science. The key screening parameters were scoliosis classification, sampling, and the biomarkers evaluated. This review emphasizes potential key mechanisms and molecular regulators in muscle tissue. While there has been limited focus on the proteins contributing to muscle changes in AIS, significant attention has been given to genomic studies of single-nucleotide polymorphisms, particularly in LBX1. Despite these efforts, the exact causes of AIS remain elusive, with several theories suggesting genetic and hormonal factors. This review identified critical protein biomarkers such as Gi-protein alpha subunits, fibrillin-1 and -2, and various differentially expressed proteins, which may be linked to muscle alterations in AIS. This field of research is still limited due to a lack of homogeneity in the distinction of patients by groups and curve severity. Although the pathophysiology of AIS is still unclear, molecular research is important to guide the treatment of AIS before achieving skeletal maturity, thus avoiding serious problems associated with posture changes and low quality of life. In the future, a more comprehensive synergy between orthopedic and molecular research might ameliorate the diagnosis and treatment of AIS patients.
Collapse
Affiliation(s)
- Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n 97, 95123 Catania, Italy; (F.R.); (B.T.); (M.S.); (L.P.)
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Bruno Trovato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n 97, 95123 Catania, Italy; (F.R.); (B.T.); (M.S.); (L.P.)
| | - Martina Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n 97, 95123 Catania, Italy; (F.R.); (B.T.); (M.S.); (L.P.)
| | | | - Luca Petrigna
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n 97, 95123 Catania, Italy; (F.R.); (B.T.); (M.S.); (L.P.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n 97, 95123 Catania, Italy; (F.R.); (B.T.); (M.S.); (L.P.)
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia n 97, 95123 Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
3
|
Aboushaala K, Wong AYL, Barajas JN, Lim P, Al-Harthi L, Chee A, Forsyth CB, Oh CD, Toro SJ, Williams FMK, An HS, Samartzis D. The Human Microbiome and Its Role in Musculoskeletal Disorders. Genes (Basel) 2023; 14:1937. [PMID: 37895286 PMCID: PMC10606932 DOI: 10.3390/genes14101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Musculoskeletal diseases (MSDs) are characterized as injuries and illnesses that affect the musculoskeletal system. MSDs affect every population worldwide and are associated with substantial global burden. Variations in the makeup of the gut microbiota may be related to chronic MSDs. There is growing interest in exploring potential connections between chronic MSDs and variations in the composition of gut microbiota. The human microbiota is a complex community consisting of viruses, archaea, bacteria, and eukaryotes, both inside and outside of the human body. These microorganisms play crucial roles in influencing human physiology, impacting metabolic and immunological systems in health and disease. Different body areas host specific types of microorganisms, with facultative anaerobes dominating the gastrointestinal tract (able to thrive with or without oxygen), while strict aerobes prevail in the nasal cavity, respiratory tract, and skin surfaces (requiring oxygen for development). Together with the immune system, these bacteria have coevolved throughout time, forming complex biological relationships. Changes in the microbial ecology of the gut may have a big impact on health and can help illnesses develop. These changes are frequently impacted by lifestyle choices and underlying medical disorders. The potential for safety, expenses, and efficacy of microbiota-based medicines, even with occasional delivery, has attracted interest. They are, therefore, a desirable candidate for treating MSDs that are chronic and that may have variable progression patterns. As such, the following is a narrative review to address the role of the human microbiome as it relates to MSDs.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnold Y. L. Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Juan Nicolas Barajas
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Perry Lim
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sheila J. Toro
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Danielewicz A, Wójciak M, Sowa I, Kusz M, Wessely-Szponder J, Dresler S, Latalski M. Metabolic Imbalances and Bone Remodeling Agents in Adolescent Idiopathic Scoliosis: A Study in Postmenarcheal Girls. Int J Mol Sci 2023; 24:13286. [PMID: 37686090 PMCID: PMC10487495 DOI: 10.3390/ijms241713286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The causes and mechanisms underlying adolescent idiopathic scoliosis (AIS) remain unclear, and the available information regarding metabolic imbalances in AIS is still insufficient. This investigation aimed to evaluate the concentrations of specific bone remodeling-related agents in postmenarcheal girls diagnosed with AIS. The study encompassed thirty-six scoliosis patients and eighteen age-matched healthy individuals assigned to the control group. The patients underwent clinical and radiological examinations to assess the degree of the spinal deformity, type of curvature, and skeletal maturity. Blood and urine samples were collected from all participants and serological markers were measured using an enzyme-linked immunosorbent assay. Our study results demonstrated that the balance of phosphate-calcium and parathormone levels seems normal in individuals with AIS. Furthermore, no statistically significant differences were observed in the content of Klotho protein, osteocalcin, osteoprotegerin, C-terminal telopeptide of type I collagen (CTX), sclerostin, and alkaline phosphatase. Nevertheless, the serum levels of vitamin D (25-OH-D) were lowered, while N-terminal propeptide of type I procollagen (PINP), and fibroblast growth factor-23 (FGF23) were increased in the AIS group, with p-values of 0.044, 0.001, and 0.022, respectively. This finding indicates the potential involvement of these factors in the progression of AIS, which necessitates further studies to uncover the fundamental mechanisms underlying idiopathic scoliosis.
Collapse
Affiliation(s)
- Anna Danielewicz
- Paediatric Orthopaedic Department, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (I.S.); (S.D.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (I.S.); (S.D.)
| | - Monika Kusz
- Department of Pediatric Nephrology, Childrens’ University Hospital in Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland;
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.W.); (I.S.); (S.D.)
| | - Michał Latalski
- Paediatric Orthopaedic Department, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| |
Collapse
|
5
|
Darbinian N, Sparks EC, Darbinyan A, Merabova N, Tatevosian-Geller T, Calaku K, Bachman S, Zhao H, Amini S, Goetzl L, Samuel SP, Samdani A, Selzer ME. Exosomal Lipid Biomarkers of Oligodendrocyte Pathology to Predict Scoliosis in Children with Cerebral Palsy. OBSTETRICS AND GYNECOLOGY RESEARCH 2023; 6:160-170. [PMID: 37538811 PMCID: PMC10399299 DOI: 10.26502/ogr0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Introduction Cerebral Palsy (CP), the most common cause of disability in children, is phenotypically heterogeneous. Approximately 20% of cases develop severe scoliosis. A pathological hallmark of CP is periventricular leukomalacia (PVL), which is due to dysmyelination, suggesting the possibility of a lipidomic abnormality. Risk factors for CP include perinatal hypoxia, prematurity, multiple gestation, ischemia, infection, and maternal alcohol consumption. There is evidence for low serum levels of omega-3 (ω-3) fatty acids in CP patients, and separately in idiopathic scoliosis. Many effects of free fatty acids (FFAs) are mediated via specific G protein-coupled free fatty acid receptors (FFARs), which play essential roles as nutritional and signaling molecules. FFAs, including ω-3, and their receptors are involved in the development and metabolism of oligodendrocytes (OLs), and are critical to myelination. Thus, the cases of CP that will develop severe scoliosis might be those in which there is a deficiency of ω-3, FFARs, or other lipidomic abnormality that is detectable early in the plasma. If so, we might be able to predict scoliosis and prevent it with dietary supplementation. Methods Blood samples were collected from four groups of patients at the Philadelphia Shriners Children's Hospital (SCH-P): 1) patients with CP; 2) severe scoliosis (>40o); 3) CP plus scoliosis; and 4) non-impaired controls stratified by age (2-18 yrs), gender, and race/ethnicity, under an IRB-approved protocol. Serum proteins and RNA were purified, and OL-derived exosomes (OL-Es) isolated, using myelin basic protein (MBP) as a late OL marker. Protein was used for the detection of MBP and FFAR by enzyme-linked immunosorbent assays (ELISAs), and by flow cytometry. RNA was assayed by digital droplet polymerase chain reaction (ddPCR) for OL markers and FFAR expression. Results FFAR and MBP proteins were downregulated in each of the three patient groups compared to controls, and this difference was greatest in both patients with CP plus scoliosis. Conclusion Altogether, MBP and FFAR levels were reduced in OL-Es from both children with CP plus scoliosis. The lipid abnormalities specific to CP with scoliosis were concentrated in OLs. Our data might i) suggest therapeutic targets to reduce dysmyelination and scoliosis in CP, ii) predict which children are at risk for developing scoliosis, iii) lead to therapeutic trials of fatty acids for CP and other dysmyelinating neurological disorders.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Emily C Sparks
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Tamara Tatevosian-Geller
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Katie Calaku
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah Bachman
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA
| | | | - Amer Samdani
- Shriners Hospital FOR Children, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140 USA
| |
Collapse
|
6
|
Lin X, He S, Wu S, Zhang T, Gong S, Minjie T, Gao Y. Diagnostic biomarker panels of osteoarthritis: UPLC-QToF/MS-based serum metabolic profiling. PeerJ 2023; 11:e14563. [PMID: 36655043 PMCID: PMC9841907 DOI: 10.7717/peerj.14563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease in the world, characterized by pain and loss of joint function, which has led to a serious reduction in the quality of patients' lives. In this work, ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QToF/MS) in conjunction with multivariate pattern recognition methods and an univariate statistical analysis scheme were applied to explore the serum metabolic signatures within OA group (n = 31), HC (healthy controls) group (n = 57) and non-OA group (n = 19) for early diagnosis and differential diagnosis of OA. Based on logistic regression analysis and receiver operating characteristic (ROC) curve analysis, seven metabolites, including phosphatidylcholine (18:0/22:6), p-cresol sulfate and so on, were identified as critical metabolites for the diagnosis of OA and HC and yielded an area under the curve (AUC) of 0.978. The other panel of unknown m/z 239.091, phosphatidylcholine (18:0/18:0) and phenylalanine were found to distinguish OA from non-OA and achieved an AUC of 0.888. These potential biomarkers are mainly involved in lipid metabolism, glucose metabolism and amino acid metabolism. It is expected to reveal new insight into OA pathogenesis from changed metabolic pathways.
Collapse
Affiliation(s)
- Xinxin Lin
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Shiqi He
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Suyu Wu
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Tianwen Zhang
- Fujian Fishery Resources Monitoring Center, Fuzhou, China
| | - Sisi Gong
- Department of Laboratory Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tang Minjie
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yao Gao
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Normand E, Franco A, Alos N, Parent S, Moreau A, Marcil V. Circulatory Adipokines and Incretins in Adolescent Idiopathic Scoliosis: A Pilot Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1619. [PMID: 36360347 PMCID: PMC9688531 DOI: 10.3390/children9111619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/26/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a three-dimensional malformation of the spine of unknown cause that develops between 10 and 18 years old and affects 2-3% of adolescents, mostly girls. It has been reported that girls with AIS have a taller stature, lower body mass index (BMI), and bone mineral density (BMD) than their peers, but the causes remain unexplained. Energy metabolism discrepancies, including alterations in adipokine and incretin circulatory levels, could influence these parameters and contribute to disease pathophysiology. This pilot study aims to compare the anthropometry, BMD, and metabolic profile of 19 AIS girls to 19 age-matched healthy controls. Collected data include participants' fasting metabolic profile, anthropometry (measurements and DXA scan), nutritional intake, and physical activity level. AIS girls (14.8 ± 1.7 years, Cobb angle 27 ± 10°), compared to controls (14.8 ± 2.1 years), were leaner (BMI-for-age z-score ± SD: -0.59 ± 0.81 vs. 0.09 ± 1.11, p = 0.016; fat percentage: 24.4 ± 5.9 vs. 29.2 ± 7.2%, p = 0.036), had lower BMD (total body without head z-score ± SD: -0.6 ± 0.83 vs. 0.23 ± 0.98, p = 0.038; femoral neck z-score: -0.54 ± 1.20 vs. 0.59 ± 1.59, p = 0.043), but their height was similar. AIS girls had higher adiponectin levels [56 (9-287) vs. 32 (7-74) μg/mL, p = 0.005] and lower leptin/adiponectin ratio [0.042 (0.005-0.320) vs. 0.258 (0.024-1.053), p = 0.005]. AIS participants with a Cobb angle superior to 25° had higher resistin levels compared to controls [98.2 (12.8-287.2) vs. 32.1 (6.6-73.8), p = 0.0013]. This pilot study suggests that adipokines are implicated in AIS development and/or progression, but more work is needed to confirm their role in the disease.
Collapse
Affiliation(s)
- Emilie Normand
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Anita Franco
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Viscogliosi Laboratory in Molecular Genetics and Musculoskeletal Diseases, Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Nathalie Alos
- Endocrine Service, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC H3T 1J4, Canada
| | - Stefan Parent
- Department of Surgery, CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics and Musculoskeletal Diseases, Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC H3A 1J4, Canada
| | - Valérie Marcil
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
8
|
Wang Y, Li M, Chan CO, Yang G, Lam JCK, Law BCS, Lam TP, Hung ALH, Cheng JCY, Mok DKW, Lee WYW. Biological effect of dysregulated LBX1 on adolescent idiopathic scoliosis through modulating muscle carbohydrate metabolism. Spine J 2022; 22:1551-1565. [PMID: 35460899 DOI: 10.1016/j.spinee.2022.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Abnormal energy metabolism such as lower body weight and body mass index (BMI) and less fat mass is widely reported in patients with adolescent idiopathic scoliosis (AIS) and has been implicated in deformity development. However, the underlying mechanism is largely unclear. LBX1 is one of the promising AIS predisposing genes validated by multicenter studies. PURPOSE This study aimed to identify differentially expressed proteins (DEPs) relating to energy metabolism in AIS by using proteomic and metabolic analysis and to explore if the expression of these DEPs is associated with clinical parameters and modulated by LBX1. STUDY DESIGN This is a cross-sectional study using clinical data and biological samples followed by basic study using a cellular model. PATIENT SAMPLE Plasma samples were collected from Chinese girls with nonprogressive and progressive AIS (N=7 and 8, respectively) and age-matched healthy girls (N=50). Paraspinal muscle tissues were collected intraoperatively from concave and convex side of the apex of the major spinal curve in AIS (N=24) and either side from nonscoliosis patients (N=14). OUTCOME MEASURES Radiological Cobb angle and basic anthropometric data of recruited subjects were measured. The DEPs and metabolites were compared in plasma using proteomics and metabolomics technique. The relative expression of selected genes was measured in muscles. METHODS Plasma samples from AIS were collected at first clinical visit and were further divided into nonprogressive or progressive groups according to Cobb angle changes in 6-year follow-up. Age-matched healthy girls were recruited as control. High-performance liquid chromatography-mass spectrometry based proteomic analysis was carried out in three groups to identify DEPs and their annotated metabolic pathways. An independent cohort was used for validation by gas chromatography-mass spectrometry based metabolomic analysis. Paraspinal muscles were subjected to quantitative polymerase chain reaction (qPCR) followed by correlation analysis. Human skeletal muscle myoblast (HSMM) was used as the cellular model. RESULTS The likelihood of aberrant galactose metabolism and glycolysis was found to be associated with AIS curve progression as evidenced by the thirteen DEPs and seven related metabolites according to proteomic and metabolomic analysis. Some of the DEPs showed significantly altered expression in AIS concave and convex sides paraspinal muscles compared with those in nonscoliosis control. Four DEPs were found significantly and negatively correlated with LBX1 in AIS convex side paraspinal muscles. Overexpressing LBX1 in HSMM cells led to increased expression of three DEPs and decreased expression of three DEPs, respectively. CONCLUSIONS This is the first integrated proteomic and metabolomic analysis on AIS. Our findings show dysregulated galactose metabolism and glycolysis pathways in progressive group of AIS, suggesting the presence of abnormal energy metabolism at early stage of this disease, and their association with higher risk of progressing into more severe curvature. Evidence from ex vivo study with human muscle biopsies and in vitro study with human myoblast cells propose the possible effect of LBX1 on these two pathways in skeletal muscles. The present study provides new evidence of LBX1 function in AIS via modulating effect on the expression of energy metabolism related genes. This study might provide new insights into etiopathogenesis and development of novel treatment strategy targeting on abnormal body weight and BMI in patients with AIS. Additionally, the plasma proteomic and metabolomic studies suggested new candidates as biomarkers for establishing predictive model for AIS onset/progression.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mengheng Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chi-On Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Guangpu Yang
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacky Chun-Kit Lam
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brian Chun-Sum Law
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsz-Ping Lam
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alec Lik-Hang Hung
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jack Chun-Yiu Cheng
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Daniel Kam-Wah Mok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
10
|
Dai Z, Xue B, Xu L, Feng Z, Wu Z, Qiu Y, Zhu Z. Dipeptidyl peptidase-4 is associated with myogenesis in patients with adolescent idiopathic scoliosis possibly via mediation of insulin sensitivity. J Orthop Surg Res 2022; 17:82. [PMID: 35139864 PMCID: PMC8827187 DOI: 10.1186/s13018-022-02978-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/26/2022] [Indexed: 11/14/2022] Open
Abstract
Background Abnormal metabolic features have been previously described in adolescent idiopathic scoliosis (AIS) patients. As an important regulator involved in energy metabolism, DPP-4 activity was reported to be remarkably decreased in osteoblasts of AIS patients. To date, there was still a lack of knowledge concerning the role of DPP-4 in the myogenesis of AIS. Methods Circulation DPP-4 level was assessed in the serum of 80 AIS girls and 50 healthy controls by ELISA. Myoblasts were purified from muscle specimens of AIS patients and LDH controls, and then treated with metabolic effectors including glucose and insulin. CCK-8 assay was used to assess the cell viability and myotube fusion index was calculated to evaluate myogenesis ability. Gene expressions of downstream signals of DPP-4 were evaluated by RT-qPCR and Western blot respectively. Results AIS girls had remarkably down-expressed DPP-4 in both serum level (0.76 fold) and tissue (0.68 fold) level. Treatment with metabolic effectors led to significantly increased DPP-4 expression in the control cells, while there was no increase of DPP-4 in AIS cells. CCK-8 assay showed that the proliferation rate of control cells was significantly increased after being treated. Remarkably higher fusion index was also observed in the treated control cells. By contrast, the fusion index and cell proliferation rate were comparable between the treated and the untreated AIS cells. Conclusions Our study suggested a potential role of DPP-4 in abnormal metabolic condition of AIS patients. Compared with control cells, AIS myoblasts presented obviously impaired sensitivity to the treatment of glucose and insulin. Aberrant DPP-4 expression could lead to impaired insulin sensitivity in myoblasts and further influence the cell viability during myogenesis. The molecular mechanism connecting DPP-4 and insulin-related signaling in AIS is worthy of further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-02978-w.
Collapse
Affiliation(s)
- Zhicheng Dai
- Department of Spine Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Zhongshan Road 321, Nanjing, 210008, China.,Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bingchuan Xue
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Leilei Xu
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenhua Feng
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhichong Wu
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Qiu
- Department of Spine Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Zhongshan Road 321, Nanjing, 210008, China.,Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zezhang Zhu
- Department of Spine Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Zhongshan Road 321, Nanjing, 210008, China. .,Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
11
|
Potential Muscle-Related Biomarkers in Predicting Curve Progression to the Surgical Threshold in Adolescent Idiopathic Scoliosis-A Pilot Proteomic Study Comparing Four Non-Progressive vs. Four Progressive Patients vs. A Control Cohort. J Clin Med 2021; 10:jcm10214927. [PMID: 34768447 PMCID: PMC8584606 DOI: 10.3390/jcm10214927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/17/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Previous studies have reported abnormal muscle morphology and functions in patients with adolescent idiopathic scoliosis (AIS). To answer whether such abnormalities could be reflected in their circulation and their clinical implication for predicting curve progression to the surgical threshold, this preliminary study explored the presence of baseline muscle-related proteins and their association with curve progression. Plasma samples were collected at the first clinical visit for AIS, with patients divided into non-progressive or progressive groups (N = four and four) according to their Cobb angle in six-year follow-ups, with age- and sex-matched healthy subjects (N = 50). Then, the samples were subjected to isobaric tags for relative and absolute quantitation (iTRAQ) for global comparison of untargeted protein expression. Seventy-one differentially expressed proteins (DEPs) were found elevated in progressive AIS. Functional analysis showed that 18 of these are expressed in muscles and play an essential role in muscle activities. Among the muscle-related DEPs, α-actin had the highest fold change in progressive/non-progressive groups. This preliminary study firstly suggested higher circulating levels of muscle structural proteins in progressive AIS, indicating the likelihood of structural damage at the microscopic level and its association with progression to the surgical threshold. Further studies with larger sample sizes are warranted to validate these novel candidates for early diagnosis and predicting progression.
Collapse
|
12
|
Nontargeted Metabolomic Analysis of Plasma Metabolite Changes in Patients with Adolescent Idiopathic Scoliosis. Mediators Inflamm 2021; 2021:5537811. [PMID: 34121924 PMCID: PMC8172289 DOI: 10.1155/2021/5537811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Objective Adolescent idiopathic scoliosis (AIS) is a relatively common spinal rotation deformity, and the pathogenesis of AIS is accompanied by metabolic dysfunction and changes in biochemical factors. In this study, plasma metabolite changes in AIS patients were analyzed based on nontargeted metabolomics to provide new insights for clarifying functional metabolic abnormalities in AIS patients. Methods Clinical indexes and blood samples were collected from 12 healthy subjects and 16 AIS patients. Metabolomics was used to analyze the changes in metabolites in plasma samples. The correlation between plasma metabolites and clinical indexes was analyzed by the Spearman rank correlation coefficient. Results Analysis of clinical data showed that the body weight, body mass index (BMI), and bone mineral density (BMD) index of the AIS group significantly decreased, while the blood phosphorus and Cobb angles increased significantly. Metabolomic analysis showed significant changes in 72 differential metabolites in the plasma of the AIS group, mainly including organooxygen compounds, carboxylic acids and derivatives, fatty acyls, steroids and steroid derivatives, and keto acids and derivatives. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway showed that arginine biosynthesis, D-glutamine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism, and citrate cycle (TCA cycle) were significantly enriched in the AIS and healthy groups. Spearman rank correlation coefficient analysis showed that the plasma metabolites C00026 (oxoglutarate), C00062 (L-arginine, arginine), C01042 (N-acetylaspartate), and C00158 (citrate) were significantly correlated with clinical indexes in AIS patients. In the healthy group, the plasma metabolites C00122 (fumarate), C00025 (glutamate and L-glutamic acid) and C00149 (malate, L-malic acid) were significantly correlated with clinical indexes, while C00624 (N-acetylglutamate) was not significantly correlated with the clinical indexes. Conclusion The occurrence of AIS led to changes in clinical indexes and plasma metabolites. Plasma biomarkers and functional metabolic pathways were correlated with clinical indexes, which might provide new insights for the diagnosis and treatment of AIS.
Collapse
|
13
|
Wang Q, Wang C, Liu J, Sun J, Wang C, Zhang X. Plasma proteomics analysis of adolescent idiopathic scoliosis patients revealed by Quadrupole-Orbitrap mass spectrometry. Proteomics Clin Appl 2021; 15:e2100002. [PMID: 33864425 DOI: 10.1002/prca.202100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We aim to investigate the changes of plasma proteome among mild, severe adolescent idiopathic scoliosis (AIS) patients and healthy controls. METHODS In this retrospective study, there were 84 individuals including 56 confirmed AIS patients (27 follow-up AIS patients and 29 surgical AIS patients) and another 28 healthy teenagers. Plasma samples were obtained and Quadrupole-Orbitrap Mass Spectrometer was performed to identify proteins in AIS patients and control group. T-test and ANOVA were performed to screen for differential proteins. GO and KEGG pathway, Pearson's correlation analysis and PLS model were applied to identify enriched proteins, investigate correlation between proteins and Cobb angles. ELISA was performed to further verify the quantitative proteomics results. RESULTS A total of 349 proteins were identified, among which 55 protein levels changed significantly in AIS group, compared with control group. Post hoc test indicated 36 proteins were significantly different between surgical and control group, 35 proteins between follow-up and control group. Fibronectin, fibrinogen and calmodulin were statistically different among three groups through mass spectrometry and were positively correlated with the Cobb angle. CONCLUSIONS We performed the proteomic study and revealed that fibronectin, fibrinogen and calmodulin might not only be considered as biomarkers for AIS but could be correlated with curve severity.
Collapse
Affiliation(s)
- Qi Wang
- Medical School of Chinese PLA General Hospital, Beijing, 100853, China.,Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chi Wang
- Department of Clinical Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiayu Liu
- Department of Clinical Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jingru Sun
- Qlife Lab Co., Ltd, Shenzhen, 518102, China
| | - Chengbin Wang
- Department of Clinical Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xuesong Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
14
|
Abstract
Etiology of adolescent idiopathic scoliosis (AIS), a complicated three-dimensional spinal deformity with early-onset, receives continuous attention but remains unclear. To gain an insight into AIS pathogenesis, this review searched PubMed database up to June 2019, using key words or medical subject headings terms including "adolescent idiopathic scoliosis," "scoliosis," "pathogenesis," "etiology," "genetics," "mesenchymal stem cells," and their combinations, summarized existing literatures and categorized the theories or hypothesis into nine aspects. These aspects include bone marrow mesenchymal stem cell studies, genetic studies, tissue analysis, spine biomechanics measurements, neurologic analysis, hormone studies, biochemical analysis, environmental factor analysis, and lifestyle explorations. These categories could be a guidance for further etiology or treatment researches to gain inspiration.
Collapse
|
15
|
Pérez-Machado G, Berenguer-Pascual E, Bovea-Marco M, Rubio-Belmar PA, García-López E, Garzón MJ, Mena-Mollá S, Pallardó FV, Bas T, Viña JR, García-Giménez JL. From genetics to epigenetics to unravel the etiology of adolescent idiopathic scoliosis. Bone 2020; 140:115563. [PMID: 32768685 DOI: 10.1016/j.bone.2020.115563] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Scoliosis is defined as the three-dimensional (3D) structural deformity of the spine with a radiological lateral Cobb angle (a measure of spinal curvature) of ≥10° that can be caused by congenital, developmental or degenerative problems. However, those cases whose etiology is still unknown, and affect healthy children and adolescents during growth, are the commonest form of spinal deformity, known as adolescent idiopathic scoliosis (AIS). In AIS management, early diagnosis and the accurate prediction of curve progression are most important because they can decrease negative long-term effects of AIS treatment, such as unnecessary bracing, frequent exposure to radiation, as well as saving the high costs of AIS treatment. Despite efforts made to identify a method or technique capable of predicting AIS progression, this challenge still remains unresolved. Genetics and epigenetics, and the application of machine learning and artificial intelligence technologies, open up new avenues to not only clarify AIS etiology, but to also identify potential biomarkers that can substantially improve the clinical management of these patients. This review presents the most relevant biomarkers to help explain the etiopathogenesis of AIS and provide new potential biomarkers to be validated in large clinical trials so they can be finally implemented into clinical settings.
Collapse
Affiliation(s)
| | | | | | - Pedro Antonio Rubio-Belmar
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain; Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Eva García-López
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain
| | - María José Garzón
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain
| | - Salvador Mena-Mollá
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain
| | - Federico V Pallardó
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain; Consortium Center for Biomedical Network Research ISCIII. Instituto de Salud Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Teresa Bas
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain; Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Juan R Viña
- INCLIVA Health Research Institute, Valencia, Spain; Department of Biochemistry, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain
| | - José Luis García-Giménez
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain; Consortium Center for Biomedical Network Research ISCIII. Instituto de Salud Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain.
| |
Collapse
|
16
|
Shen N, Chen N, Zhou X, Zhao B, Huang R, Liang J, Yang X, Chen M, Song Y, Du Q. Alterations of the gut microbiome and plasma proteome in Chinese patients with adolescent idiopathic scoliosis. Bone 2019; 120:364-370. [PMID: 30481617 DOI: 10.1016/j.bone.2018.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022]
Abstract
The etiology of adolescent idiopathic scoliosis (AIS), the most common rotational deformity of the spine, is still unclear. Emerging evidence suggests that gut microbiota dysbiosis influences musculoskeletal diseases such as arthritis and osteoporosis. However, the alterations of the fecal microbiome in AIS remain unknown. Thus, the current study was conducted to explore the gut microbiota compositions of Chinese AIS patients. Microbiota communities in the feces of 51 AIS patients and 34 age- and sex-matched healthy individuals were investigated using 16S rRNA sequencing. Meanwhile, the changes in the plasma proteome were detected using tandem mass tag (TMT) labeling coupled with liquid chromatography-mass spectrometry (LC-MS). The relationship between gut microbiota and AIS clinical characteristics as well as the correlation between gut microbiota and the changes in plasma proteins were analyzed. The structure of the gut microbiota differed between the AIS and healthy groups, however, the richness was similar. The genera Prevotella, Gelria, and Desulfovibrio were enriched in the feces of AIS patients. In contrast, the abundance of Parasutterella, Tyzzerella, and Phascolarctobacterium was decreased in the AIS group. More remarkably, a positive correlation between the abundance of the fecal genera Prevotella and the Cobb angles of the AIS patients was observed. Moreover, the major differential plasma proteins related to AIS were Fibronectin 1 (FN1), voltage-dependent anion channel 1 (VDAC1), Ras homolog family member A (RHOA), and AHNAK nucleoprotein (AHNAK). Additionally, the positive correlations between fecal Prevotella and the expression of host plasma FN1 as well as the negative relationships between fecal Prevotella and the expression of host VDAC1 and AHNAK were confirmed. Elucidating these differences in the gut microbiota will provide a foundation to improve our understanding of the pathogenesis of AIS and to support potential therapeutic options based on modifying the gut microbiota.
Collapse
Affiliation(s)
- Nan Shen
- Department of Rehabilitation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Nan Chen
- Department of Rehabilitation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Rehabilitation, Xinhua Hospital (Chongming Branch), Shanghai Jiao Tong University School of Medicine, Shanghai 202150, China; School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xuan Zhou
- Department of Rehabilitation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Bing Zhao
- Department of Rehabilitation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Renxiu Huang
- Department of Rehabilitation, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, Guangxi 545001, China
| | - Juping Liang
- Department of Rehabilitation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Yang
- Department of Rehabilitation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Meijia Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yuanyuan Song
- Department of Rehabilitation, Xinhua Hospital (Chongming Branch), Shanghai Jiao Tong University School of Medicine, Shanghai 202150, China
| | - Qing Du
- Department of Rehabilitation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Rehabilitation, Xinhua Hospital (Chongming Branch), Shanghai Jiao Tong University School of Medicine, Shanghai 202150, China.
| |
Collapse
|
17
|
García-Giménez JL, Rubio-Belmar PA, Peiró-Chova L, Hervás D, González-Rodríguez D, Ibañez-Cabellos JS, Bas-Hermida P, Mena-Mollá S, García-López EM, Pallardó FV, Bas T. Circulating miRNAs as diagnostic biomarkers for adolescent idiopathic scoliosis. Sci Rep 2018; 8:2646. [PMID: 29422531 PMCID: PMC5805715 DOI: 10.1038/s41598-018-21146-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/31/2018] [Indexed: 11/09/2022] Open
Abstract
The aetiology of adolescent idiopathic scoliosis (AIS) has been linked to many factors, such as asymmetric growth, neuromuscular condition, bone strength and genetic background. Recently, epigenetic factors have been proposed as contributors of AIS physiopathology, but information about the molecular mechanisms and pathways involved is scarce. Regarding epigenetic factors, microRNAs (miRNAs) are molecules that contribute to gene expression modulation by regulating important cellular pathways. We herein used Next-Generation Sequencing to discover a series of circulating miRNAs detected in the blood samples of AIS patients, which yielded a unique miRNA biomarker signature that diagnoses AIS with high sensitivity and specificity. We propose that these miRNAs participate in the epigenetic control of signalling pathways by regulating osteoblast and osteoclast differentiation, thus modulating the genetic background of AIS patients. Our study yielded two relevant results: 1) evidence for the deregulated miRNAs that participate in osteoblast/osteoclast differentiation mechanisms in AIS; 2) this miRNA-signature can be potentially used as a clinical tool for molecular AIS diagnosis. Using miRNAs as biomarkers for AIS diagnostics is especially relevant since miRNAs can serve for early diagnoses and for evaluating the positive effects of applied therapies to therefore reduce the need of high-risk surgical interventions.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.
- Instituto de Investigación Sanitaria INCLIVA, Avenida de Menéndez y Pelayo, 4, 46010, Valencia, Spain.
- Dept. Physiology. Faculty of Medicine and Dentistry, University of Valencia, Av/Blasco Ibañez, 15, 46010, Valencia, Spain.
| | - Pedro Antonio Rubio-Belmar
- Instituto de Investigación Sanitaria IISLAFE, Av/Fernando Abril Martorell, 106. Torre A 7, 46026, Valencia, Spain
- Unidad de Raquis. Hospital Universitari i Politècnic La Fe, Av/Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Lorena Peiró-Chova
- Instituto de Investigación Sanitaria INCLIVA, Avenida de Menéndez y Pelayo, 4, 46010, Valencia, Spain
| | - David Hervás
- Unidad de Bioestadística, Instituto de Investigación Sanitaria IISLAFE, Av/Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Daymé González-Rodríguez
- Instituto de Investigación Sanitaria INCLIVA, Avenida de Menéndez y Pelayo, 4, 46010, Valencia, Spain
| | - José Santiago Ibañez-Cabellos
- Instituto de Investigación Sanitaria INCLIVA, Avenida de Menéndez y Pelayo, 4, 46010, Valencia, Spain
- Dept. Physiology. Faculty of Medicine and Dentistry, University of Valencia, Av/Blasco Ibañez, 15, 46010, Valencia, Spain
| | - Paloma Bas-Hermida
- Instituto de Investigación Sanitaria IISLAFE, Av/Fernando Abril Martorell, 106. Torre A 7, 46026, Valencia, Spain
- Unidad de Raquis. Hospital Universitari i Politècnic La Fe, Av/Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Salvador Mena-Mollá
- Dept. Physiology. Faculty of Medicine and Dentistry, University of Valencia, Av/Blasco Ibañez, 15, 46010, Valencia, Spain
| | - Eva María García-López
- Instituto de Investigación Sanitaria INCLIVA, Avenida de Menéndez y Pelayo, 4, 46010, Valencia, Spain
- Dept. Physiology. Faculty of Medicine and Dentistry, University of Valencia, Av/Blasco Ibañez, 15, 46010, Valencia, Spain
| | - Federico V Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Avenida de Menéndez y Pelayo, 4, 46010, Valencia, Spain
- Dept. Physiology. Faculty of Medicine and Dentistry, University of Valencia, Av/Blasco Ibañez, 15, 46010, Valencia, Spain
| | - Teresa Bas
- Instituto de Investigación Sanitaria IISLAFE, Av/Fernando Abril Martorell, 106. Torre A 7, 46026, Valencia, Spain
- Unidad de Raquis. Hospital Universitari i Politècnic La Fe, Av/Fernando Abril Martorell, 106, 46026, Valencia, Spain
| |
Collapse
|
18
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Zhu Q, Wu N, Liu G, Zhou Y, Liu S, Chen J, Liu J, Zuo Y, Liu Z, Chen W, Chen Y, Chen J, Lin M, Zhao Y, Yang Y, Wang S, Yang X, Ma Y, Wang J, Chen X, Zhang J, Shen J, Wu Z, Qiu G. Comparative analysis of serum proteome in congenital scoliosis patients with TBX6 haploinsufficiency - a first report pointing to lipid metabolism. J Cell Mol Med 2017; 22:533-545. [PMID: 28944995 PMCID: PMC5742745 DOI: 10.1111/jcmm.13341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/24/2017] [Indexed: 12/17/2022] Open
Abstract
Congenital scoliosis (CS) is a three‐dimensional deformity of the spine affecting quality of life. We have demonstrated TBX6 haploinsufficiency is the most important contributor to CS. However, the pathophysiology at the protein level remains unclear. Therefore, this study was to explore the differential proteome in serum of CS patients with TBX6 haploinsufficiency. Sera from nine CS patients with TBX6 haploinsufficiency and nine age‐ and gender‐matched healthy controls were collected and analysed by isobaric tagged relative and absolute quantification (iTRAQ) labelling coupled with mass spectrometry (MS). In total, 277 proteins were detected and 20 proteins were designated as differentially expressed proteins, which were submitted to subsequent bioinformatics analysis. Gene Ontology classification analysis showed the biological process was primarily related to ‘cellular process’, molecular function ‘structural molecule activity’ and cellular component ‘extracellular region’. IPA analysis revealed ‘LXR/RXR activation’ was the top pathway, which is a crucial pathway in lipid metabolism. Hierarchical clustering analysis generated two clusters. In summary, this study is the first proteomic research to delineate the total and differential serum proteins in TBX6 haploinsufficiency‐caused CS. The proteins discovered in this experiment may serve as potential biomarkers for CS, and lipid metabolism might play important roles in the pathogenesis of CS.
Collapse
Affiliation(s)
- Qiankun Zhu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Research Center of Orthopedics/Rare Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Research Center of Orthopedics/Rare Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangzhong Zhou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua University Medical School, Beijing, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Research Center of Orthopedics/Rare Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Research Center of Orthopedics/Rare Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yixin Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Mao Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yanxue Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shensgru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yufen Ma
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Wang
- Department of Medical Genetics, Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoli Chen
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Research Center of Orthopedics/Rare Disease, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Research Center of Orthopedics/Rare Disease, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|