1
|
Li S, Zeng F, Zhou Q, Li L, Lo H, Chen J, Fan Z, Huang G, Nie L. NIR-II Photoacoustic Imaging-Guided Chemo-Photothermal Therapy Using PA1094T Combined with Anti-CD47 Antibody: Activating Pyroptosis against Orthotopic Glioblastoma. Adv Healthc Mater 2024:e2403108. [PMID: 39614708 DOI: 10.1002/adhm.202403108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/08/2024] [Indexed: 12/01/2024]
Abstract
Treating glioblastoma (GBM) with single-agent chemotherapy is often ineffective due to inefficient drug delivery and the immunosuppressive tumor microenvironment, which leads to drug resistance. Strategies that activate programmed cell death mechanisms and repolarized tumor-associated macrophages toward an antitumoral M1-like phenotype can help reverse the immunosuppressive tumor microenvironment. In this study, a novel approach using NIR-II (1000-1700 nm) photoacoustic imaging (PAI)-guided chemo-photothermal therapy is presented. NIR-II imaging, with its superior tissue penetration and reduced background noise, enables precise tumor targeting. A targeted nano prodrug is developed using poly (lactic-co-glycolic acid) nanoparticles loaded with A1094 dye and temozolomide (TMZ), coupled with an anti-CD47 antibody. This system employs synergistic chemo-photothermal therapy activated by NIR-II light, inducing apoptosis, pyroptosis, and T-cell activation. PAI provides rapid, point-of-care GBM diagnosis, and highlighted the effective targeting of the PA1094T nanoplatform. In a recurrent GBM model, the combination of PA1094T and anti-CD47 antibody significantly enhances cancer cell phagocytosis and effectively remodels the immunosuppressive microenvironment, resulting in better therapeutic outcomes compared to conventional therapies. These results indicate that this NIR-II PAI-guided drug cocktail therapy is a promising strategy for treating GBM, potentially addressing drug resistance and improving treatment efficacy through enhanced targeting and immunomodulation.
Collapse
Affiliation(s)
- Shiying Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Fanchu Zeng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qi Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Lanqing Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hsuan Lo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jiali Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhijin Fan
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guojia Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Liming Nie
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
2
|
Chen H, Koul D, Zhang Y, Ghobadi SN, Zhu Y, Hou Q, Chang E, Habte FG, Paulmurugan R, Khan S, Zheng Y, Graeber MB, Herschmann I, Lee KS, Wintermark M. Pulsed focused ultrasound alters the proteomic profile of the tumor microenvironment in a syngeneic mouse model of glioblastoma. J Neurooncol 2024; 170:347-361. [PMID: 39180641 DOI: 10.1007/s11060-024-04801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Glioblastoma (GBM), a lethal primary adult malignancy, is difficult to treat because of the restrictive nature of the blood-brain barrier (BBB), blood-tumor barrier (BTB), and the immunosuppressive tumor microenvironment (TME). Since pulsed focused ultrasound (pFUS) is currently used to improve therapeutic deliveries across these barriers, this study aims to characterize the impact of pFUS on the TME proteomics upon opening the BBB and BTB. METHODS We utilized MRI-guided, pFUS with ultrasound contrast microbubbles (termed 'pFUS' herein) to selectively and transiently open the BBB and BTB investigating proteomic modifications in the TME. Utilizing an orthotopically-allografted mouse GL26 GBM model (Ccr2RFP/wt - Cx3cr1GFP/wt), pFUS's effect on glioma proteomics was evaluated using a Luminex 48-plex assay. RESULTS pFUS treated tumors exhibited increases in pro-inflammatory cytokines, chemokines, and trophic factors (CCTFs). Proteomic changes in tumors tend to peak at 24 h after single pFUS session (1x), with levels then plateauing or declining over the subsequent 24 h. Tumors receiving three pFUS sessions (3x) showed elevated CCTFs levels peaking as early as 6 h after the third session. CONCLUSIONS pFUS together with microbubbles induces a sterile inflammatory response in the TME of a mouse GBM tumor. Moreover, this proinflammatory shift can be sustained and perhaps primed for more rapid responses upon multiple sessions of pFUS. These findings raise the intriguing potential that pFUS-induced BBB and BTB opening may not only be effective in facilitating the therapeutic agent delivery, but also be harnessed to modify the TME to assist immunotherapies in overcoming immune evasion in GBM.
Collapse
Affiliation(s)
- Hui Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1482, Houston, TX, 77030, USA
| | - Dimpy Koul
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1482, Houston, TX, 77030, USA
| | - Yanrong Zhang
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Sara Natasha Ghobadi
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Yayu Zhu
- Salpointe Catholic High School, Tucson, AZ, USA
| | - Qingyi Hou
- Department of Radiology, Neuroradiology Division, Stanford University, Stanford, CA, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Frezghi G Habte
- Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuqi Zheng
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Manuel B Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- University of Sydney Association of Professors (USAP), University of Sydney, Camperdown, NSW, 2006, Australia
| | - Iris Herschmann
- The Human Immune Monitoring Center (HIMC), Stanford University, Stanford, CA, USA
| | - Kevin S Lee
- Departments of Neuroscience and Neurosurgery, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, 409 Lane Road, MR4 Building, PO Box 801392, Charlottesville, VA, 22903, USA.
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1482, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Rosas-Alonso R, Colmenarejo-Fernández J, Pernía O, Burdiel M, Rodríguez-Antolín C, Losantos-García I, Rubio T, Moreno-Velasco R, Esteban-Rodríguez I, Martínez-Marín V, Yubero P, Costa-Fraga N, Díaz-Lagares A, López-López R, Díaz-Martin E, García JF, Sánchez CV, Gandía-González ML, Moreno-Bueno G, de Castro J, de Cáceres II. Evaluation of the clinical use of MGMT methylation in extracellular vesicle-based liquid biopsy as a tool for glioblastoma patient management. Sci Rep 2024; 14:11398. [PMID: 38762534 PMCID: PMC11102540 DOI: 10.1038/s41598-024-62061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Glioblastoma (GB) is a devastating tumor of the central nervous system characterized by a poor prognosis. One of the best-established predictive biomarker in IDH-wildtype GB is O6-methylguanine-DNA methyltransferase (MGMT) methylation (mMGMT), which is associated with improved treatment response and survival. However, current efforts to monitor GB patients through mMGMT detection have proven unsuccessful. Small extracellular vesicles (sEVs) hold potential as a key element that could revolutionize clinical practice by offering new possibilities for liquid biopsy. This study aimed to determine the utility of sEV-based liquid biopsy as a predictive biomarker and disease monitoring tool in patients with IDH-wildtype GB. Our findings show consistent results with tissue-based analysis, achieving a remarkable sensitivity of 85.7% for detecting mMGMT in liquid biopsy, the highest reported to date. Moreover, we suggested that liquid biopsy assessment of sEV-DNA could be a powerful tool for monitoring disease progression in IDH-wildtype GB patients. This study highlights the critical significance of overcoming molecular underdetection, which can lead to missed treatment opportunities and misdiagnoses, possibly resulting in ineffective therapies. The outcomes of our research significantly contribute to the field of sEV-DNA-based liquid biopsy, providing valuable insights into tumor tissue heterogeneity and establishing it as a promising tool for detecting GB biomarkers. These results have substantial implications for advancing predictive and therapeutic approaches in the context of GB and warrant further exploration and validation in clinical settings.
Collapse
Affiliation(s)
- Rocío Rosas-Alonso
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain.
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain.
| | - Julian Colmenarejo-Fernández
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Olga Pernía
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Miranda Burdiel
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Carlos Rodríguez-Antolín
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | | | - Tania Rubio
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Rocío Moreno-Velasco
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Isabel Esteban-Rodríguez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Department of Pathology, La Paz University Hospital, Madrid, Spain
| | | | - Paloma Yubero
- Department of Medical Oncology, La Paz University Hospital, Madrid, Spain
| | - Nicolas Costa-Fraga
- Cancer Epigenomics Laboratory, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), IDIS, University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Angel Díaz-Lagares
- Cancer Epigenomics Laboratory, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), IDIS, University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael López-López
- Cancer Epigenomics Laboratory, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), IDIS, University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Oncology, University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Juan F García
- MD Anderson International Foundation, Madrid, Spain
- Department of Pathology, MD Anderson Cancer Center, Madrid, Spain
| | | | | | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- MD Anderson International Foundation, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Javier de Castro
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Department of Medical Oncology, La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Ibánez de Cáceres
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo La Castellana 261, Edificio Bloque Quirúrgico Planta-2, 28046, Madrid, Spain.
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain.
| |
Collapse
|
4
|
Satgunaseelan L, Lee M, Iannuzzi S, Hallal S, Deang K, Stanceski K, Wei H, Mason S, Shivalingam B, Sim HW, Buckland ME, Alexander KL. 'The Reports of My Death Are Greatly Exaggerated'-Evaluating the Effect of Necrosis on MGMT Promoter Methylation Testing in High-Grade Glioma. Cancers (Basel) 2024; 16:1906. [PMID: 38791984 PMCID: PMC11120496 DOI: 10.3390/cancers16101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: MGMT (O-6-methylguanine-DNA methyltransferase) promoter methylation remains an important predictive biomarker in high-grade gliomas (HGGs). The influence of necrosis on the fidelity of MGMT promoter (MGMTp) hypermethylation testing is currently unknown. Therefore, our study aims to evaluate the effect of varying degrees of necrosis on MGMTp status, as determined by pyrosequencing, in a series of primary and recurrent HGGs; (2) Methods: Within each case, the most viable blocks (assigned as 'true' MGMTp status) and the most necrotic block were determined by histopathology review. MGMTp status was determined by pyrosequencing. Comparisons of MGMTp status were made between the most viable and most necrotic blocks. (3) Results: 163 samples from 64 patients with HGGs were analyzed. MGMTp status was maintained in 84.6% of primary and 78.3% of recurrent HGGs between the most viable and necrotic blocks. A threshold of ≥60% tumor cellularity was established at which MGMTp status was unaltered, irrespective of the degree of necrosis. (4) Conclusions: MGMTp methylation status, as determined by pyrosequencing, does not appear to be influenced by necrosis in the majority of cases at a cellularity of at least 60%. Further investigation into the role of intratumoral heterogeneity on MGMTp status will increase our understanding of this predictive marker.
Collapse
Affiliation(s)
- Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Maggie Lee
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Sebastian Iannuzzi
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Susannah Hallal
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Kristine Deang
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Kristian Stanceski
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Heng Wei
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Sofia Mason
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.M.); (H.-W.S.)
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brindha Shivalingam
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Hao-Wen Sim
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.M.); (H.-W.S.)
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Kimberley L. Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| |
Collapse
|
5
|
Qu S, Xu R, Yi G, Li Z, Zhang H, Qi S, Huang G. Patient-derived organoids in human cancer: a platform for fundamental research and precision medicine. MOLECULAR BIOMEDICINE 2024; 5:6. [PMID: 38342791 PMCID: PMC10859360 DOI: 10.1186/s43556-023-00165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Cancer is associated with a high degree of heterogeneity, encompassing both inter- and intra-tumor heterogeneity, along with considerable variability in clinical response to common treatments across patients. Conventional models for tumor research, such as in vitro cell cultures and in vivo animal models, demonstrate significant limitations that fall short of satisfying the research requisites. Patient-derived tumor organoids, which recapitulate the structures, specific functions, molecular characteristics, genomics alterations and expression profiles of primary tumors. They have been efficaciously implemented in illness portrayal, mechanism exploration, high-throughput drug screening and assessment, discovery of innovative therapeutic targets and potential compounds, and customized treatment regimen for cancer patients. In contrast to conventional models, tumor organoids offer an intuitive, dependable, and efficient in vitro research model by conserving the phenotypic, genetic diversity, and mutational attributes of the originating tumor. Nevertheless, the organoid technology also confronts the bottlenecks and challenges, such as how to comprehensively reflect intra-tumor heterogeneity, tumor microenvironment, tumor angiogenesis, reduce research costs, and establish standardized construction processes while retaining reliability. This review extensively examines the use of tumor organoid techniques in fundamental research and precision medicine. It emphasizes the importance of patient-derived tumor organoid biobanks for drug development, screening, safety evaluation, and personalized medicine. Additionally, it evaluates the application of organoid technology as an experimental tumor model to better understand the molecular mechanisms of tumor. The intent of this review is to explicate the significance of tumor organoids in cancer research and to present new avenues for the future of tumor research.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Rongyang Xu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Huayang Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
6
|
Anan M, Del Maestro RF, Hata N, Fujiki M. O 6 -methylguanine methyltransferase promoter methylation status of glioblastoma cell line clonal population. Neuropathology 2024; 44:41-46. [PMID: 37382159 DOI: 10.1111/neup.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023]
Abstract
Glioblastoma (GBM) remains a treatment-resistant malignant brain tumor in large part because of its genetic heterogeneity and epigenetic plasticity. In this study, we investigated the epigenetic heterogeneity of GBM by evaluating the methylation status of the O6 -methylguanine methyltransferase (MGMT) promoter in individual clones of a single cell derived from GBM cell lines. The U251 and U373 GBM cell lines, from the Brain Tumour Research Centre of the Montreal Neurological Institute, were used for the experiments. To evaluate the methylation status of the MGMT promoter, pyrosequencing and methylation-specific PCR (MSP) were used. Moreover, mRNA and protein expression levels of MGMT in the individual GBM clones were evaluated. The HeLa cell line, which hyper-expresses MGMT, was used as control. A total of 12 U251 and 12 U373 clones were isolated. The methylation status of 83 of 97 CpG sites in the MGMT promoter were evaluated by pyrosequencing, and 11 methylated CpG sites and 13 unmethylated CpG sites were evaluated by MSP. The methylation status by pyrosequencing was relatively high at CpG sites 3-8, 20-35, and 7-83, in both the U251 and U373 clones. Neither MGMT mRNA nor protein was detected in any clone. These findings demonstrate tumor heterogeneity among individual clones derived from a single GBM cell. MGMT expression may be regulated, not only by methylation of the MGMT promoter but by other factors as well. Further studies are needed to clarify the mechanisms underlying the epigenetic heterogeneity and plasticity of GBM.
Collapse
Affiliation(s)
- Mitsuhiro Anan
- Department of Neurosurgery, Oita University Faculty of Medicine, Oita, Japan
| | - Rolando Fausto Del Maestro
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Nobuhiro Hata
- Department of Neurosurgery, Oita University Faculty of Medicine, Oita, Japan
| | - Minoru Fujiki
- Department of Neurosurgery, Oita University Faculty of Medicine, Oita, Japan
| |
Collapse
|
7
|
Brynjulvsen M, Solli E, Walewska M, Zucknick M, Djirackor L, Langmoen IA, Mughal AA, Skaga E, Vik-Mo EO, Sandberg CJ. Functional and Molecular Heterogeneity in Glioma Stem Cells Derived from Multiregional Sampling. Cancers (Basel) 2023; 15:5826. [PMID: 38136371 PMCID: PMC10741477 DOI: 10.3390/cancers15245826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly heterogeneous primary brain tumor. Glioma stem cells represent a subpopulation of tumor cells with stem cell traits that are presumed to be the cause of tumor relapse. There exists complex tumor heterogeneity in drug sensitivity patterns between glioma stem cell (GSC) cultures derived from different patients. Here, we describe that heterogeneity also exists between GSC cultures derived from multiple biopsies within a single tumor. From biopsies harvested within spatially distinct regions representing the entire tumor mass, we established seven GSC cultures and compared their stem cell properties, mutations, gene expression profiles, and drug sensitivity patterns against 115 different anticancer drugs. The results were compared to 14 GSC cultures derived from other patients. Between the multiregional-derived GSC cultures, we observed only minor differences in their phenotype, proliferative capacity, and global gene expression. Further, they displayed intratumoral heterogeneity in mutational profiles and sensitivity patterns to anticancer drugs. This heterogeneity, however, did not exceed the extensive heterogeneity found between GSC cultures derived from other GBM patients. Our results suggest that the use of GSC cultures from one single focal biopsy may underestimate the overall complexity of the GSC population and display the importance of including GSC cultures reflecting the entire tumor mass in drug screening strategies.
Collapse
Affiliation(s)
- Marit Brynjulvsen
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1112, 0317 Oslo, Norway
| | - Elise Solli
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Maria Walewska
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Blindern, P.O. Box 1122, 0317 Oslo, Norway
| | - Luna Djirackor
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Iver A. Langmoen
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1112, 0317 Oslo, Norway
| | - Awais Ahmad Mughal
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Erlend Skaga
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| | - Einar O. Vik-Mo
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, P.O. Box 1112, 0317 Oslo, Norway
| | - Cecilie J. Sandberg
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424 Oslo, Norway
| |
Collapse
|
8
|
Prokop G, Wiestler B, Hieber D, Withake F, Mayer K, Gempt J, Delbridge C, Schmidt-Graf F, Pfarr N, Märkl B, Schlegel J, Liesche-Starnecker F. Multiscale quantification of morphological heterogeneity with creation of a predictor of longer survival in glioblastoma. Int J Cancer 2023; 153:1658-1670. [PMID: 37501565 DOI: 10.1002/ijc.34665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Intratumor heterogeneity is a main cause of the dismal prognosis of glioblastoma (GBM). Yet, there remains a lack of a uniform assessment of the degree of heterogeneity. With a multiscale approach, we addressed the hypothesis that intratumor heterogeneity exists on different levels comprising traditional regional analyses, but also innovative methods including computer-assisted analysis of tumor morphology combined with epigenomic data. With this aim, 157 biopsies of 37 patients with therapy-naive IDH-wildtype GBM were analyzed regarding the intratumor variance of protein expression of glial marker GFAP, microglia marker Iba1 and proliferation marker Mib1. Hematoxylin and eosin stained slides were evaluated for tumor vascularization. For the estimation of pixel intensity and nuclear profiling, automated analysis was used. Additionally, DNA methylation profiling was conducted separately for the single biopsies. Scoring systems were established to integrate several parameters into one score for the four examined modalities of heterogeneity (regional, cellular, pixel-level and epigenomic). As a result, we could show that heterogeneity was detected in all four modalities. Furthermore, for the regional, cellular and epigenomic level, we confirmed the results of earlier studies stating that a higher degree of heterogeneity is associated with poorer overall survival. To integrate all modalities into one score, we designed a predictor of longer survival, which showed a highly significant separation regarding the OS. In conclusion, multiscale intratumor heterogeneity exists in glioblastoma and its degree has an impact on overall survival. In future studies, the implementation of a broadly feasible heterogeneity index should be considered.
Collapse
Affiliation(s)
- Georg Prokop
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Daniel Hieber
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Institute DigiHealth, Neu-Ulm University of Applied Sciences, Neu-Ulm, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Fynn Withake
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Karoline Mayer
- Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claire Delbridge
- Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Friederike Schmidt-Graf
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Bruno Märkl
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Jürgen Schlegel
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Friederike Liesche-Starnecker
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| |
Collapse
|
9
|
Hooper GW, Ansari S, Johnson JM, Ginat DT. Advances in the Radiological Evaluation of and Theranostics for Glioblastoma. Cancers (Basel) 2023; 15:4162. [PMID: 37627190 PMCID: PMC10453051 DOI: 10.3390/cancers15164162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Imaging is essential for evaluating patients with glioblastoma. Traditionally a multimodality undertaking, CT, including CT cerebral blood profusion, PET/CT with traditional fluorine-18 fluorodeoxyglucose (18F-FDG), and MRI have been the mainstays for diagnosis and post-therapeutic assessment. However, recent advances in these modalities, in league with the emerging fields of radiomics and theranostics, may prove helpful in improving diagnostic accuracy and treating the disease.
Collapse
Affiliation(s)
| | - Shehbaz Ansari
- Rush University Medical Center, Department of Radiology and Nuclear Medicine, Chicago, IL 60612, USA;
| | - Jason M. Johnson
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Daniel T. Ginat
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Zeng C, Song X, Zhang Z, Cai Q, Cai J, Horbinski C, Hu B, Cheng SY, Zhang W. Dissection of transcriptomic and epigenetic heterogeneity of grade 4 gliomas: implications for prognosis. Acta Neuropathol Commun 2023; 11:133. [PMID: 37580817 PMCID: PMC10426201 DOI: 10.1186/s40478-023-01619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/09/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Grade 4 glioma is the most aggressive and currently incurable brain tumor with a median survival of one year in adult patients. Elucidating novel transcriptomic and epigenetic contributors to the molecular heterogeneity underlying its aggressiveness may lead to improved clinical outcomes. METHODS To identify grade 4 glioma -associated 5-hydroxymethylcytosine (5hmC) and transcriptomic features as well as their cross-talks, genome-wide 5hmC and transcriptomic profiles of tissue samples from 61 patients with grade 4 gliomas and 9 normal controls were obtained for differential and co-regulation/co-modification analyses. Prognostic models on overall survival based on transcriptomic features and the 5hmC modifications summarized over genic regions (promoters, gene bodies) and brain-derived histone marks were developed using machine learning algorithms. RESULTS Despite global reduction, the majority of differential 5hmC features showed higher modification levels in grade 4 gliomas as compared to normal controls. In addition, the bi-directional correlations between 5hmC modifications over promoter regions or gene bodies and gene expression were greatly disturbed in grade 4 gliomas regardless of IDH1 mutation status. Phenotype-associated co-regulated 5hmC-5hmC modules and 5hmC-mRNA modules not only are enriched with different molecular pathways that are indicative of the pathogenesis of grade 4 gliomas, but also are of prognostic significance comparable to IDH1 mutation status. Lastly, the best-performing 5hmC model can predict patient survival at a much higher accuracy (c-index = 74%) when compared to conventional prognostic factor IDH1 (c-index = 57%), capturing the molecular characteristics of tumors that are independent of IDH1 mutation status and gene expression-based molecular subtypes. CONCLUSIONS The 5hmC-based prognostic model could offer a robust tool to predict survival in patients with grade 4 gliomas, potentially outperforming existing prognostic factors such as IDH1 mutations. The crosstalk between 5hmC and gene expression revealed another layer of complexity underlying the molecular heterogeneity in grade 4 gliomas, offering opportunities for identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Chang Zeng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA
| | - Xiao Song
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL, 60611, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA
| | - Qinyun Cai
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA
| | - Jiajun Cai
- Huashan Hospital, Fudan University, 12 Wulumuqi Rd., Shanghai, 200040, China
| | - Craig Horbinski
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL, 60611, USA
| | - Bo Hu
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL, 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL, 60611, USA
| | - Shi-Yuan Cheng
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL, 60611, USA.
- The Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL, 60611, USA.
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA.
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL, USA.
| |
Collapse
|
11
|
Mehrdadi S. Drug Delivery of Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) to Target Brain Tumors. Adv Pharm Bull 2023; 13:512-520. [PMID: 37646057 PMCID: PMC10460802 DOI: 10.34172/apb.2023.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Brain, predisposed to local and metastasized tumors, has always been the focus of oncological studies. Glioblastoma multiforme (GBM), the most common invasive primary tumor of the brain, is responsible for 4% of all cancer-related deaths worldwide. Despite novel technologies, the average survival rate is 2 years. Physiological barriers such as blood-brain barrier (BBB) prevent drug molecules penetration into brain. Most of the pharmaceuticals present in the market cannot infiltrate BBB to have their maximum efficacy and this in turn imposes a major challenge. This mini review discusses GBM and physiological and biological barriers for anticancer drug delivery, challenges for drug delivery across BBB, drug delivery strategies focusing on SLNs and NLCs and their medical applications in on-going clinical trials. Numerous nanomedicines with various characteristics have been introduced in the last decades to overcome the delivery challenge. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were introduced as oral drug delivery nanomedicines which can be encapsulated by both hydrophilic and lipophilic pharmaceutical compounds. Their biocompatibility, biodegradability, lower toxicity and side effects, enhanced bioavailability, solubility and permeability, prolonged half-life and stability and finally tissue-targeted drug delivery makes them unique among all.
Collapse
Affiliation(s)
- Soheil Mehrdadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
12
|
Singh A, Singh A, Agrawal S, Jaiswal A, Jaiswal S. Prognostic Significance and Clinicopathological Correlations of Epigenetic MGMT Gene Silencing in High Grade Diffuse Gliomas. Discoveries (Craiova) 2023; 11:e175. [PMID: 39760063 PMCID: PMC11695113 DOI: 10.15190/d.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 01/07/2025] Open
Abstract
Glioblastoma is the most aggressive and commonest primary malignant brain tumour. Current standard of care includes surgery, radiation, and alkylating agent chemotherapy. Despite multimodal treatment, the survival of glioblastoma patients is dismal. Loss of O6-methylguanine-DNA-methyltransferase(MGMT) protein expression due to promoter methylation reduces glioma cell DNA repair activity and resistance to alkylating agents. Thus, in world health organization (WHO) grade 4 diffuse glioma patients treated with an alkylating agent, methylated MGMT promoter is currently being considered a clinically relevant prognostic as well as predictive biomarker. Our aim was to assess the frequency of MGMT promoter methylation in WHO grade 4 diffuse glioma patients and study their prognostic role and clinicopathological correlations. A two-year prospective cohort research was conducted on 89 WHO grade 4 diffuse glioma patients. The clinical and demographic data were retrieved from our hospital information system. MGMT methylation was assessed using methylation specific polymerase chain reaction. Data was analysed using SPSS-24 software. We studied 89 cases of WHO grade 4 diffuse glioma, of which 38.2% showed methylation of MGMT promoter. There was no significant difference in age, sex, location of tumor and clinical presentation between the methylated and unmethylated groups. A statistically significant association of methylated MGMT promoter was observed with isocitrate dehydrogenase-1 (IDH1) protein expression (p = 0.050) and alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss (p = 0.003). No significant association was noted with p53 overexpression (p = 0.492) and Ki-67 index (p = 0.698). The median overall survival in these patients receiving standard radiotherapy and concomitant temozolomide chemotherapy showed a trend towards better survival in group with methylated MGMT promoter (p < 0.001). Our study suggests that methylation of MGMT promoter is more frequent in the subset of grade 4 diffuse gliomas that significantly exhibit IDH1 immunopositivity and loss of ATRX expression. Also, patients who receive radiation therapy and simultaneous temozolomide chemotherapy have a considerably better prognosis and treatment outcome, if the promoter region of MGMT is methylated.
Collapse
Affiliation(s)
- Alka Singh
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences Lucknow, India
| | - Anurag Singh
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences Lucknow, India
| | - Sarita Agrawal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Awadhesh Jaiswal
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sushila Jaiswal
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
13
|
Christoph S, Alicia S, Fritz T, Vanessa T, Ralf K, Jin KY, Stefan L, Joachim O. The intra-tumoral heterogeneity in glioblastoma - a limitation for prognostic value of epigenetic markers? Acta Neurochir (Wien) 2023; 165:1635-1644. [PMID: 37083881 DOI: 10.1007/s00701-023-05594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Epigenetic tumor features are getting into focus as prognostic markers in glioblastoma. Whether intra-tumoral heterogeneity in these epigenetic characteristics may influence prognostic value remains unclear. METHODS Of 154 patients suffering from glioblastoma, 120 patients served as reference collective, while 34 patients were compiled as test collective. MGMT, p15, and p16 promoter methylation and miRNA expression levels (miRNA-21, miRNA-24, miRNA-26a, and miRNA-181d) were measured in each tumor specimen. Serving as a statistical baseline, epigenetic heterogeneity between tumors (inter-tumoral) was estimated within a triplet of three tumor specimens from three different reference patients. For estimation of epigenetic heterogeneity within a tumor (intra-tumoral), previous results were compared to three tumor specimens within one glioblastoma of patients of the test collective. Resulting levels of heterogeneity were then correlated with survival and validated by an external TCGA data set. RESULTS Heterogeneity in MGMT promoter methylation occurred less likely in the test group compared to the reference group. No difference in heterogeneity was observed between test and reference group regarding p15 and p16 methylation. Intra-tumoral heterogeneity within the test group regarding miRNA-21, miRNA-24, miRNA-26a, and miRNA-181d expression was not distinguishable from inter-tumoral heterogeneity. A homogenously increased miRNA-21 expression was associated with reduced overall survival in the test collective. The findings could be validated by comparison with TCGA datasets. CONCLUSION Heterogeneity of epigenetic characteristics in one glioblastoma may be of the same magnitude as heterogeneity between different patients. Not only the extent of epigenetic characteristics but also the extent of intra-tumoral heterogeneity may influence survival in glioblastoma.
Collapse
Affiliation(s)
- Sippl Christoph
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany.
| | - Saenz Alicia
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| | - Teping Fritz
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| | - Trenkpohl Vanessa
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| | - Ketter Ralf
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| | - Kim Yoo Jin
- Institute of Pathology, Faculty of Medicine, University of Saarland, Glockenstraße 54, Kaiserslautern, Germany
| | - Linsler Stefan
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| | - Oertel Joachim
- Department of Neurosurgery, Faculty of Medicine, University of Saarland, Homburg/Saar, Germany
| |
Collapse
|
14
|
Otani Y, Satomi K, Suruga Y, Ishida J, Fujii K, Ichimura K, Date I. Utility of genome-wide DNA methylation profiling for pediatric-type diffuse gliomas. Brain Tumor Pathol 2023; 40:56-65. [PMID: 37004583 DOI: 10.1007/s10014-023-00457-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/04/2023]
Abstract
Despite the current progress of treatment, pediatric-type diffuse glioma is one of the most lethal primary malignant tumors in the central nervous system (CNS). Since pediatric-type CNS tumors are rare disease entities and highly heterogeneous, the diagnosis is challenging. An accurate diagnosis is essential for the choice of optimal treatment, which leads to precision oncology and improvement of the patient's outcome. Genome-wide DNA methylation profiling recently emerged as one of the most important tools for the diagnosis of CNS tumors, and the utility of this novel assay has been reported in both pediatric and adult patients. In the current World Health Organization classification published in 2021, several new entities are recognized in pediatric-type diffuse gliomas, some of which require methylation profiling. In this review, we investigated the utility of genome-wide DNA methylation profiling in pediatric-type diffuse glioma, as well as issues in the clinical application of this assay. Furthermore, the combination of genome-wide DNA methylation profiling and other comprehensive genomic assays, which may improve diagnostic accuracy and detection of the actionable target, will be discussed.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Kaishi Satomi
- Department of Pathology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan
| | - Yasuki Suruga
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Joji Ishida
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kentaro Fujii
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
15
|
Burko P, D’Amico G, Miltykh I, Scalia F, Conway de Macario E, Macario AJL, Giglia G, Cappello F, Caruso Bavisotto C. Molecular Pathways Implicated in Radioresistance of Glioblastoma Multiforme: What Is the Role of Extracellular Vesicles? Int J Mol Sci 2023; 24:ijms24054883. [PMID: 36902314 PMCID: PMC10003080 DOI: 10.3390/ijms24054883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor that is very aggressive, resistant to treatment, and characterized by a high degree of anaplasia and proliferation. Routine treatment includes ablative surgery, chemotherapy, and radiotherapy. However, GMB rapidly relapses and develops radioresistance. Here, we briefly review the mechanisms underpinning radioresistance and discuss research to stop it and install anti-tumor defenses. Factors that participate in radioresistance are varied and include stem cells, tumor heterogeneity, tumor microenvironment, hypoxia, metabolic reprogramming, the chaperone system, non-coding RNAs, DNA repair, and extracellular vesicles (EVs). We direct our attention toward EVs because they are emerging as promising candidates as diagnostic and prognostication tools and as the basis for developing nanodevices for delivering anti-cancer agents directly into the tumor mass. EVs are relatively easy to obtain and manipulate to endow them with the desired anti-cancer properties and to administer them using minimally invasive procedures. Thus, isolating EVs from a GBM patient, supplying them with the necessary anti-cancer agent and the capability of recognizing a specified tissue-cell target, and reinjecting them into the original donor appears, at this time, as a reachable objective of personalized medicine.
Collapse
Affiliation(s)
- Pavel Burko
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Ilia Miltykh
- Department of Human Anatomy, Institute of Medicine, Penza State University, 440026 Penza, Russia
| | - Federica Scalia
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alberto J. L. Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Giuseppe Giglia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Section of Human Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: ; Tel.: +39-0916553501
| |
Collapse
|
16
|
Tu M, Zuo Z, Chen C, Zhang X, Wang S, Chen C, Sun Y. Transfer RNA-derived small RNAs (tsRNAs) sequencing revealed a differential expression landscape of tsRNAs between glioblastoma and low-grade glioma. Gene X 2023; 855:147114. [PMID: 36526122 DOI: 10.1016/j.gene.2022.147114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are the most lethal brain cancer with a median survival rate of fewer than 15 months. Both clinical and biological features of GBMs are largely different from those of low-grade gliomas (LGs), but the reasons for this intratumoral heterogeneity are not entirely clear. Transfer RNA (tRNA)-derived small RNAs (tsRNAs) were derived from tRNA precursors and mature tRNA, referring to the specific cleavage of tRNAs by dicer and angiogenin (ANG) in particular cells or tissues or under certain conditions such as stress and hypoxia. With the characteristics of wide expression and high stability, tsRNAs could be used as favorable biomarkers for diagnosis, treatment, and prognosis prediction of the tumor, viral infection, neurological as well as other systemic diseases. In this study, we have compared the differential expressed tsRNAs between GBMs and LGs, so as to investigate the possible pathogenic molecules and provide references for discovering novel nucleic acid drugs in future studies. METHODS Fresh tumor tissues of patients that were diagnosed as GBMs (4 cases) and LGs (5 cases) at the First Affiliated Hospital of Wenzhou Medical University from 2019.05 to 2021.01 were collected. The tsRNAs' levels were analyzed and compared through high-throughput sequencing, candidate tsRNAs were chosen according to the expression level, and the expression of the candidate tsRNAs was validated through qPCR. Finally, the potential targets were imputed using the Miranda and TargetScan databases, and possible biological functions of the differentially expressed (DE) tsRNAs' targets were enriched based on GO and KEGG databases. RESULTS A total of 4 GBMs and 5 LGs patients were enrolled in the current study. High-throughput sequencing showed that 186 tsRNAs were expressed in two groups, over them, 43 tsRNAs were unique to GBMs, and 24 tsRNAs were unique to LGs. A total of 9 tsRNAs were selected as candidate tsRNAs according to the tsRNA expression level, among which 6 tsRNAs were highly expressed in GBMs and 3 tsRNAs were low expressed in GBMs. qPCR verification further demonstrated that 5 tsRNAs were significantly up-regulated and 1 tsRNA was significantly down-regulated in GBMs: tRF-1-32-chrM.Lys-TTT (p=0.00118), tiRNA-1-33-Gly-GCC-1 (p=0.00203), tiRNA-1-33-Gly-CCC-1 (p=0.00460), tRF-1-31-His-GTG-1 (p=0.00819), tiRNA-1-33-Gly-GCC-2-M3 (p=0.01032), and tiRNA-1-34-Lys-CTT-1-M2 (p=0.03569). Enrichment analysis of the qPCR verified DE tsRNAs showed that the 5 up-regulated tsRNAs seemed to be associated with axon guidance, pluripotent stem cells regulation, nucleotide excision repair, Hippo signaling pathway, and cancer-related pathways, while the down-regulated tsRNA (tRF-1-32-chrM.Lys-TTT) was associated with oocyte meiosis and renin secretion. CONCLUSION The tsRNAs were differentially expressed in tumor tissues between GBMs and LGs, especially tRF-1-32-chrM.Lys-TTT, tiRNA-1-33-Gly-GCC-1, tiRNA-1-33-Gly-CCC-1, tRF-1-31-His-GTG-1, tiRNA-1-33-Gly-GCC-2-M3, and tiRNA-1-34-Lys-CTT-1-M2. These tsRNAs seemed to be associated with nucleotide excision repair, Hippo signaling, and cancer-related pathways. This may be the main reason for the differences in clinical characteristics between GBMs and LGs, which may provide a certain theoretical basis for further functional research and development of related nucleic acid drugs. CONCLUSION The tsRNAs were differentially expressed in tumor tissues between GBMs and LGs, especially tRF-1-32-chrM.Lys-TTT, tiRNA-1-33-Gly-GCC-1, tiRNA-1-33-Gly-CCC-1, tRF-1-31-His-GTG-1, tiRNA-1-33-Gly-GCC-2-M3, and tiRNA-1-34-Lys-CTT-1-M2. These tsRNAs seemed to be associated with nucleotide excision repair, Hippo signaling, and cancer-related pathways. This may be the main reason for the differences in clinical characteristics between GBMs and LGs, which may provide a certain theoretical basis for further functional research and development of related nucleic acid drugs.
Collapse
Affiliation(s)
- Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, Zhejiang, China
| | - Ziyi Zuo
- The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, Zhejiang, China
| | - Cuie Chen
- Department of Pediatrics, Yiwu Maternity and Children Hospital, No. C100 Xinke Road, Yiwu, Jinhua, Zhejiang, China
| | - Xixi Zhang
- Department of Pediatrics, The People' s Hospital of Yuhuan, Taizhou, Zhejiang, China
| | - Shi Wang
- Department of Anesthesiology, Women' s Hospital School of Medicine Zhejiang University, No.1 Xueshi Road, Shangcheng district, Hangzhou, Zhejiang, China
| | - Changwei Chen
- Department of Pediatrics, The People' s Hospital of Yuhuan, Taizhou, Zhejiang, China
| | - Yuanyuan Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Al-Holou WN, Wang H, Ravikumar V, Shankar S, Oneka M, Fehmi Z, Verhaak RG, Kim H, Pratt D, Camelo-Piragua S, Speers C, Wahl DR, Hollon T, Sagher O, Heth JA, Muraszko KM, Lawrence TS, de Carvalho AC, Mikkelsen T, Rao A, Rehemtulla A. Subclonal evolution and expansion of spatially distinct THY1-positive cells is associated with recurrence in glioblastoma. Neoplasia 2023; 36:100872. [PMID: 36621024 PMCID: PMC9841165 DOI: 10.1016/j.neo.2022.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Glioblastoma(GBM) is a lethal disease characterized by inevitable recurrence. Here we investigate the molecular pathways mediating resistance, with the goal of identifying novel therapeutic opportunities. EXPERIMENTAL DESIGN We developed a longitudinal in vivo recurrence model utilizing patient-derived explants to produce paired specimens(pre- and post-recurrence) following temozolomide(TMZ) and radiation(IR). These specimens were evaluated for treatment response and to identify gene expression pathways driving treatment resistance. Findings were clinically validated using spatial transcriptomics of human GBMs. RESULTS These studies reveal in replicate cohorts, a gene expression profile characterized by upregulation of mesenchymal and stem-like genes at recurrence. Analyses of clinical databases revealed significant association of this transcriptional profile with worse overall survival and upregulation at recurrence. Notably, gene expression analyses identified upregulation of TGFβ signaling, and more than one-hundred-fold increase in THY1 levels at recurrence. Furthermore, THY1-positive cells represented <10% of cells in treatment-naïve tumors, compared to 75-96% in recurrent tumors. We then isolated THY1-positive cells from treatment-naïve patient samples and determined that they were inherently resistant to chemoradiation in orthotopic models. Additionally, using image-guided biopsies from treatment-naïve human GBM, we conducted spatial transcriptomic analyses. This revealed rare THY1+ regions characterized by mesenchymal/stem-like gene expression, analogous to our recurrent mouse model, which co-localized with macrophages within the perivascular niche. We then inhibited TGFBRI activity in vivo which decreased mesenchymal/stem-like protein levels, including THY1, and restored sensitivity to TMZ/IR in recurrent tumors. CONCLUSIONS These findings reveal that GBM recurrence may result from tumor repopulation by pre-existing, therapy-resistant, THY1-positive, mesenchymal cells within the perivascular niche.
Collapse
Affiliation(s)
- Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hanxiao Wang
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States; AstraZeneca, United States
| | - Visweswaran Ravikumar
- Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sunita Shankar
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Morgan Oneka
- Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Ziad Fehmi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | | | - Hoon Kim
- The Jackson Laboratory, Farmington, CT 06032, United States; Department of Biopharmaceutical Convergence, Sungkyunkwan University, South Korea
| | - Drew Pratt
- Department of Pathology, University of Michigan, United States
| | | | - Corey Speers
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Todd Hollon
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Oren Sagher
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jason A Heth
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Karin M Muraszko
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States
| | - Ana C de Carvalho
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, United States
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, United States
| | - Arvind Rao
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States; Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, NCRC 520, Room 1342, Ann Arbor, MI 48105, United States.
| |
Collapse
|
18
|
Wolin IAV, Nascimento APM, Seeger R, Poluceno GG, Zanotto-Filho A, Nedel CB, Tasca CI, Correia SEG, Oliveira MV, Pinto-Junior VR, Osterne VJS, Nascimento KS, Cavada BS, Leal RB. The lectin DrfL inhibits cell migration, adhesion and triggers autophagy-dependent cell death in glioma cells. Glycoconj J 2023; 40:47-67. [PMID: 36522582 DOI: 10.1007/s10719-022-10095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38MAPK and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.
Collapse
Affiliation(s)
- Ingrid A V Wolin
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Paula M Nascimento
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Rodrigo Seeger
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Gabriela G Poluceno
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Alfeu Zanotto-Filho
- Departamento de Farmacologia e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Claudia B Nedel
- Departamento de Biologia Celular, Embriologia e Genética, Programa Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Carla I Tasca
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Sarah Elizabeth Gomes Correia
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Messias Vital Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Vanir Reis Pinto-Junior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, CEP, 60020-181, Brazil
| | - Vinicius Jose Silva Osterne
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Kyria Santiago Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Benildo Sousa Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
19
|
Hooper GW, Ginat DT. MRI radiomics and potential applications to glioblastoma. Front Oncol 2023; 13:1134109. [PMID: 36874083 PMCID: PMC9982088 DOI: 10.3389/fonc.2023.1134109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
MRI plays an important role in the evaluation of glioblastoma, both at initial diagnosis and follow up after treatment. Quantitative analysis via radiomics can augment the interpretation of MRI in terms of providing insights regarding the differential diagnosis, genotype, treatment response, and prognosis. The various MRI radiomic features of glioblastoma are reviewed in this article.
Collapse
Affiliation(s)
- Grayson W Hooper
- Landstuhl Regional Medical Center, Department of Radiology, Landstuhl, Germany
| | - Daniel T Ginat
- University of Chicago, Department of Radiology, Chicago, IL, United States
| |
Collapse
|
20
|
Verduin M, Hoosemans L, Vanmechelen M, van Heumen M, Piepers JAF, Astuti G, Ackermans L, Schijns OEMG, Kampen KR, Tjan-Heijnen VCG, de Barbanson BA, Postma AA, Eekers DBP, Broen MPG, Beckervordersandforth J, Staňková K, de Smet F, Rich J, Hubert CG, Gimenez G, Chatterjee A, Hoeben A, Vooijs MA. Patient-derived glioblastoma organoids reflect tumor heterogeneity and treatment sensitivity. Neurooncol Adv 2023; 5:vdad152. [PMID: 38130902 PMCID: PMC10733660 DOI: 10.1093/noajnl/vdad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Treatment resistance and tumor relapse are the primary causes of mortality in glioblastoma (GBM), with intratumoral heterogeneity playing a significant role. Patient-derived cancer organoids have emerged as a promising model capable of recapitulating tumor heterogeneity. Our objective was to develop patient-derived GBM organoids (PGO) to investigate treatment response and resistance. Methods GBM samples were used to generate PGOs and analyzed using whole-exome sequencing (WES) and single-cell karyotype sequencing. PGOs were subjected to temozolomide (TMZ) to assess viability. Bulk RNA sequencing was performed before and after TMZ. Results WES analysis on individual PGOs cultured for 3 time points (1-3 months) showed a high inter-organoid correlation and retention of genetic variants (range 92.3%-97.7%). Most variants were retained in the PGO compared to the tumor (range 58%-90%) and exhibited similar copy number variations. Single-cell karyotype sequencing demonstrated preservation of genetic heterogeneity. Single-cell multiplex immunofluorescence showed maintenance of cellular states. TMZ treatment of PGOs showed a differential response, which largely corresponded with MGMT promoter methylation. Differentially expressed genes before and after TMZ revealed an upregulation of the JNK kinase pathway. Notably, the combination treatment of a JNK kinase inhibitor and TMZ demonstrated a synergistic effect. Conclusions Overall, these findings demonstrate the robustness of PGOs in retaining the genetic and phenotypic heterogeneity in culture and the application of measuring clinically relevant drug responses. These data show that PGOs have the potential to be further developed into avatars for personalized adaptive treatment selection and actionable drug target discovery and as a platform to study GBM biology.
Collapse
Affiliation(s)
- Maikel Verduin
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Linde Hoosemans
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maxime Vanmechelen
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- LISCO—KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Mike van Heumen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jolanda A F Piepers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Galuh Astuti
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
- Academic Center for Epileptology, Maastricht University Medical Center and Kempenhaeghe, Maastricht—Heeze, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Vivianne C G Tjan-Heijnen
- Department of Medical Oncology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Alida A Postma
- Department of Radiology and Nuclear Medicine, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Danielle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martijn P G Broen
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Katerina Staňková
- Institute for Health Systems Science, Delft University of Technology, Delft, The Netherlands
| | - Frederik de Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- LISCO—KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Jeremy Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher G Hubert
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
21
|
Wenger A, Carén H. Methylation Profiling in Diffuse Gliomas: Diagnostic Value and Considerations. Cancers (Basel) 2022; 14:cancers14225679. [PMID: 36428772 PMCID: PMC9688075 DOI: 10.3390/cancers14225679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Diffuse gliomas cause significant morbidity across all age groups, despite decades of intensive research efforts. Here, we review the differences in diffuse gliomas in adults and children, as well as the World Health Organisation (WHO) 2021 classification of these tumours. We explain how DNA methylation-based classification works and list the methylation-based tumour types and subclasses for adult and paediatric diffuse gliomas. The benefits and utility of methylation-based classification in diffuse gliomas demonstrated to date are described. This entails the identification of novel tumour types/subclasses, patient stratification and targeted treatment/clinical management, and alterations in the clinical diagnosis in favour of the methylation-based over the histopathological diagnosis. Finally, we address several considerations regarding the use of DNA methylation profiling as a diagnostic tool, e.g., the threshold of the classifier, the calibrated score, tumour cell content and intratumour heterogeneity.
Collapse
Affiliation(s)
- Anna Wenger
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
22
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
23
|
Gempt J, Withake F, Aftahy AK, Meyer HS, Barz M, Delbridge C, Liesche-Starnecker F, Prokop G, Pfarr N, Schlegel J, Meyer B, Zimmer C, Menze BH, Wiestler B. Methylation subgroup and molecular heterogeneity is a hallmark of glioblastoma: implications for biopsy targeting, classification and therapy. ESMO Open 2022; 7:100566. [PMID: 36055049 PMCID: PMC9588899 DOI: 10.1016/j.esmoop.2022.100566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Intratumoral heterogeneity at the cellular and molecular level is a hallmark of glioblastoma (GB) that contributes to treatment resistance and poor clinical outcome. Little is known regarding epigenetic heterogeneity and intratumoral phylogeny and their implication for molecular classification and targeted therapies. PATIENTS AND METHODS Multiple tissue biopsies (238 in total) were sampled from 56 newly-diagnosed, treatment-naive GB patients from a prospective in-house cohort and publicly available data and profiled for DNA methylation using the Illumina MethylationEPIC array. Methylation-based classification using the glioma classifier developed by Ceccarelli et al. and estimation of the MGMT promoter methylation status via the MGMT-STP27 model were carried out. In addition, copy number variations (CNVs) and phylogeny were analyzed. RESULTS Almost half of the patients (22/56, 39%) harbored tumors composed of heterogeneous methylation subtypes. We found two predominant subtype combinations: classic-/mesenchymal-like, and mesenchymal-/pilocytic astrocytoma-like. Nine patients (16%) had tumors composed of subvolumes with and without MGMT promoter methylation, whereas 20 patients (36%) were homogeneously methylated, and 27 patients (48%) were homogeneously unmethylated. CNV analysis revealed high variations in many genes, including CDKN2A/B, EGFR, and PTEN. Phylogenetic analysis correspondingly showed a general pattern of CDKN2A/B loss and gain of EGFR, PDGFRA, and CDK4 during early stages of tumor development. CONCLUSIONS (Epi)genetic intratumoral heterogeneity is a hallmark of GB, both at DNA methylation and CNV level. This intratumoral heterogeneity is of utmost importance for molecular classification as well as for defining therapeutic targets in this disease, as single biopsies might underestimate the true molecular diversity in a tumor.
Collapse
Affiliation(s)
- J Gempt
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - F Withake
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - A K Aftahy
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - H S Meyer
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - M Barz
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - C Delbridge
- Departments of Neuropathology, School of Medicine, Technical University Munich, Munich, Germany
| | - F Liesche-Starnecker
- Departments of Neuropathology, School of Medicine, Technical University Munich, Munich, Germany
| | - G Prokop
- Departments of Neuropathology, School of Medicine, Technical University Munich, Munich, Germany
| | - N Pfarr
- Department of Pathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - J Schlegel
- Departments of Neuropathology, School of Medicine, Technical University Munich, Munich, Germany
| | - B Meyer
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - C Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - B H Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - B Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany; TranslaTUM, Technical University Munich, Munich, Germany.
| |
Collapse
|
24
|
The Comparative Experimental Study of Sodium and Magnesium Dichloroacetate Effects on Pediatric PBT24 and SF8628 Cell Glioblastoma Tumors Using a Chicken Embryo Chorioallantoic Membrane Model and on Cells In Vitro. Int J Mol Sci 2022; 23:ijms231810455. [PMID: 36142368 PMCID: PMC9499689 DOI: 10.3390/ijms231810455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, pyruvate dehydrogenase kinase-1 inhibition with dichloroacetate (DCA) was explored as an alternative cancer therapy. The study’s aim was to compare the effectiveness of NaDCA and MgDCA on pediatric glioblastoma PBT24 and SF8628 tumors and cells. The treatment effects were evaluated on xenografts growth on a chicken embryo chorioallantoic membrane. The PCNA, EZH2, p53, survivin expression in tumor, and the SLC12A2, SLC12A5, SLC5A8, CDH1, and CDH2 expression in cells were studied. The tumor groups were: control, cells treated with 10 mM and 5 mM of NaDCA, and 5 mM and 2.5 mM of MgDCA. The cells were also treated with 3 mM DCA. Both the 10 mM DCA preparations significantly reduced PBT24 and SF8624 tumor invasion rates, while 5 mM NaDCA reduced it only in the SF8628 tumors. The 5 mM MgDCA inhibited tumor-associated neoangiogenesis in PBT24; both doses of NaDCA inhibited tumor-associated neoangiogenesis in SF8628. The 10 mM DCA inhibited the expression of markers tested in PBT24 and SF8628 tumors, but the 5 mM DCA affect on their expression depended on the cation. The DCA treatment did not affect the SLC12A2, SLC12A5, and SLC5A8 expression in cells but increased CDH1 expression in SF8628. The tumor response to DCA at different doses indicated that a contrast between NaDCA and MgDCA effectiveness reflects the differences in the tested cells’ biologies.
Collapse
|
25
|
Rath S, Chakraborty D, Pradhan J, Imran Khan M, Dandapat J. Epigenomic interplay in tumor heterogeneity: Potential of epidrugs as adjunct therapy. Cytokine 2022; 157:155967. [PMID: 35905624 DOI: 10.1016/j.cyto.2022.155967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
"Heterogeneity" in tumor mass has immense importance in cancer progression and therapy. The impact of tumor heterogeneity is an emerging field and not yet fully explored. Tumor heterogeneity is mainly considered as intra-tumor heterogeneity and inter-tumor heterogeneity based on their origin. Intra-tumor heterogeneity refers to the discrepancy within the same cancer mass while inter-tumor heterogeneity refers to the discrepancy between different patients having the same tumor type. Both of these heterogeneity types lead to variation in the histopathological as well as clinical properties of the cancer mass which drives disease resistance towards therapeutic approaches. Cancer stem cells (CSCs) act as pinnacle progenitors for heterogeneity development along with various other genetic and epigenetic parameters that are regulating this process. In recent times epigenetic factors are one of the most studied parameters that drive oxidative stress pathways essential during cancer progression. These epigenetic changes are modulated by various epidrugs and have an impact on tumor heterogeneity. The present review summarizes various aspects of epigenetic regulation in the tumor microenvironment, oxidative stress, and progression towards tumor heterogeneity that creates complications during cancer treatment. This review also explores the possible role of epidrugs in regulating tumor heterogeneity and personalized therapy against drug resistance.
Collapse
Affiliation(s)
- Suvasmita Rath
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Diptesh Chakraborty
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jyotsnarani Pradhan
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University (KAU), Jeddah 21577, Saudi Arabia; Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
26
|
A Signature of Three microRNAs Is a Potential Diagnostic Biomarker for Glioblastoma. IRANIAN BIOMEDICAL JOURNAL 2022; 26:301-12. [PMID: 35490305 PMCID: PMC9432466 DOI: 10.52547/ibj.3671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background: Glioblastoma is the most common primary malignant neoplasm of the central nervous system. Despite progress in diagnosis and treatment, glioblastoma still has a poor prognosis. This study aimed to examine whether a signature of three candidate miRNAs (i.e. hsa-let-7c-5p, hsa-miR-206-5p, and hsa-miR-1909-5p) can be used as a diagnostic biomarker for distinguishing glioblastoma from healthy brain tissues. Methods: In this study, 50 FFPE glioblastoma tissue samples and 50 healthy tissue samples adjacent to tumor were included. The expression of each candidate miRNA (i.e. hsa-let-7c-5p, hsa-miR-206-5p, and hsa-miR-1909-5p) was measured using RT-qPCR. To show the roles of each miRNA and their biological effects on glioblastoma development and clinicopathological characteristics, in silico tools were used. ROC curves were performed to assess the diagnostic accuracy of each miRNA. Results: Based on the results, hsa-let-7c-5p and hsa-miR-206-5p were downregulated, while hsa-miR-1909-5p was upregulated in glioblastoma tumors compared to healthy samples. No association was detected between the expression of each candidate miRNA and sex. Except for hsa-let-7c-5p, other miRNAs did not correlate with age status. ROC curve analysis indicated that the signature of candidate miRNAs is a potential biomarker distinguishing between glioblastoma and healthy samples. Only hsa-miR-206-5p suggested the association with poor prognosis in glioblastoma patients. Conclusion: Our findings revealed that the signature of three miRNAs is capable of distinguishing glioblastoma tumor and healthy tissues. These results are beneficial for the clinical management of glioblastoma patients.
Collapse
|
27
|
MGMT and Whole-Genome DNA Methylation Impacts on Diagnosis, Prognosis and Therapy of Glioblastoma Multiforme. Int J Mol Sci 2022; 23:ijms23137148. [PMID: 35806153 PMCID: PMC9266959 DOI: 10.3390/ijms23137148] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic changes in DNA methylation contribute to the development of many diseases, including cancer. In glioblastoma multiforme, the most prevalent primary brain cancer and an incurable tumor with a median survival time of 15 months, a single epigenetic modification, the methylation of the O6-Methylguanine-DNA Methyltransferase (MGMT) gene, is a valid biomarker for predicting response to therapy with alkylating agents and also, independently, prognosis. More recently, the progress from single gene to whole-genome analysis of DNA methylation has allowed a better subclassification of glioblastomas. Here, we review the clinically relevant information that can be obtained by studying MGMT gene and whole-genome DNA methylation changes in glioblastomas, also highlighting benefits, including those of liquid biopsy, and pitfalls of the different detection methods. Finally, we discuss how changes in DNA methylation, especially in glioblastomas bearing mutations in the Isocitrate Dehydrogenase (IDH) 1 and 2 genes, can be exploited as targets for tailoring therapy.
Collapse
|
28
|
Mao DD, Cleary RT, Gujar A, Mahlokozera T, Kim AH. CDC20 regulates sensitivity to chemotherapy and radiation in glioblastoma stem cells. PLoS One 2022; 17:e0270251. [PMID: 35737702 PMCID: PMC9223386 DOI: 10.1371/journal.pone.0270251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma stem cells (GSCs) are an important subpopulation in glioblastoma, implicated in tumor growth, tumor recurrence, and radiation resistance. Understanding the cellular mechanisms for chemo- and radiation resistance could lead to the development of new therapeutic strategies. Here, we demonstrate that CDC20 promotes resistance to chemotherapy and radiation therapy. CDC20 knockdown does not increase TMZ- and radiation-induced DNA damage, or alter DNA damage repair, but rather promotes cell death through accumulation of the pro-apoptotic protein, Bim. Our results identify a CDC20 signaling pathway that regulates chemo- and radiosensitivity in GSCs, with the potential for CDC20-targeted therapeutic strategies in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Diane D. Mao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ryan T. Cleary
- Department of Neurological Surgery, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Amit Gujar
- The Jackson Laboratory in Genomic Medicine, Farmington, Connecticut, United States of America
| | - Tatenda Mahlokozera
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
29
|
Mladek AC, Yan H, Tian S, Decker PA, Burgenske DM, Bakken K, Hu Z, He L, Connors MA, Carlson BL, Wilson J, Bommi-Reddy A, Conery A, Eckel-Passow JE, Sarkaria JN, Kitange GJ. RBBP4-p300 axis modulates expression of genes essential for cell survival and is a potential target for therapy in glioblastoma. Neuro Oncol 2022; 24:1261-1272. [PMID: 35231103 PMCID: PMC9340617 DOI: 10.1093/neuonc/noac051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND RBBP4 activates transcription by histone acetylation, but the partner histone acetyltransferases are unknown. Thus, we investigated the hypothesis that RBBP4 interacts with p300 in a complex in glioblastoma (GBM). METHODS shRNA silencing of RBBP4 or p300 and RNAseq was used to identify genes co-regulated by RBBP4 and p300 in GBM43 patient-derived xenograft (PDX). RBBP4/p300 complex was demonstrated using proximity ligation assay (PLA) and ChIPseq delineated histone H3 acetylation and RBBP4/p300 complex binding in promoters/enhancers. Temozolomide (TMZ)-induced DNA double strand breaks (DSBs) were evaluated by γ-H2AX and proliferation by CyQuant and live cell monitoring assays. In vivo efficacy was based on survival of mice with orthotopic tumors. RESULTS shRBBP4 and shp300 downregulated 4768 genes among which 1485 (31%) were commonly downregulated by both shRNAs, while upregulated genes were 2484, including 863 (35%) common genes. The pro-survival genes were the top-ranked among the downregulated genes, including C-MYC. RBBP4/p300 complex was demonstrated in the nucleus, and shRBBP4 or shp300 significantly sensitized GBM cells to TMZ compared to the control shNT in vitro (P < .05). Moreover, TMZ significantly prolonged the survival of mice bearing GBM22-shRBBP4 orthotopic tumors compared with control shNT tumors (median shNT survival 52 days vs. median shRBBP4 319 days; P = .001). CREB-binding protein (CBP)/p300 inhibitor CPI-1612 suppressed H3K27Ac and RBBP4/p300 complex target proteins, including C-MYC, and synergistically sensitized TMZ in vitro. Pharmacodynamic evaluation confirmed brain penetration by CPI-1612 supporting further investigation to evaluate efficacy to sensitize TMZ. CONCLUSIONS RBBP4/p300 complex is present in GBM cells and is a potential therapeutic target.
Collapse
Affiliation(s)
- Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Huihuang Yan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Shulan Tian
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul A Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Katrina Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zeng Hu
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lihong He
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaret A Connors
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathan Wilson
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | - Andy Conery
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gaspar J Kitange
- Corresponding Author: Gaspar J. Kitange, MD, PhD, Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA (/)
| |
Collapse
|
30
|
MGMT promoter methylation status shows no effect on [ 18F]FET uptake and CBF in gliomas: a stereotactic image-based histological validation study. Eur Radiol 2022; 32:5577-5587. [PMID: 35192012 DOI: 10.1007/s00330-022-08606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 01/22/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the effects of O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status of gliomas on O-(2-18F-fluoroethyl)-L-tyrosine ([18F]FET) uptake and cerebral blood flow (CBF) of arterial spin labeling (ASL), evaluated by hybrid PET/MR. Stereotactic biopsy was used to validate the findings. METHODS A set of whole tumor and reference volumes of interest (VOIs) based on PET/FLAIR imaging were delineated and transferred to the corresponding [18F]FET PET and CBF maps in 57 patients with newly diagnosed gliomas. The mean and max tumor-to-brain ratio (TBR) and normalized CBF (nCBF) were calculated. The predictive efficacy of [18F]FET PET and CBF in determining MGMT promoter methylation status of glioma were evaluated by whole tumor analysis and stereotactic biopsy. The correlation between PET/MR parameters and MGMT promoter methylation were analyzed using histological specimens acquired from multiple stereotactic biopsies. RESULTS Based on the analysis of whole tumor volume and biopsy site, TBRmean, TBRmax, nCBFmean, and nCBFmax showed no statistically significant differences between gliomas with and without MGMT promoter methylation (all p > 0.05). Furthermore, stereotactic biopsy demonstrated that TBRmean, TBRmax, nCBFmean, and nCBFmax showed no correlation with MGMT promoter methylation (r = -0.117, p = 0.579; r = -0.161, p = 0.443; r = -0.271, p = 0.191; r = -0.300, p = 0.145; respectively). CONCLUSIONS MGMT promoter methylation status shows no effect on [18F]FET uptake and CBF of ASL in gliomas. Stereotactic biopsy validates it and further reveals there is no correlation of [18F]FET PET uptake and CBF with the percentages of MGMT promoter methylation. KEY POINTS • Based on whole tumor VOI assessment, MGMT promoter methylation status shows no effect on [18F]FET uptake and CBF of ASL in gliomas. • For WHO grade IV glioblastomas, [18F]FET PET and ASL parameters based on hybrid PET/MR fail to predict the MGMT promoter methylation status. • Stereotactic image-based histology reveals that there is no correlation of [18F]FET PET uptake and CBF with the status and percentages of MGMT promoter methylation in gliomas.
Collapse
|
31
|
Vincent MS, Uphoff S. Cellular heterogeneity in DNA alkylation repair increases population genetic plasticity. Nucleic Acids Res 2021; 49:12320-12331. [PMID: 34850170 PMCID: PMC8643705 DOI: 10.1093/nar/gkab1143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
DNA repair mechanisms fulfil a dual role, as they are essential for cell survival and genome maintenance. Here, we studied how cells regulate the interplay between DNA repair and mutation. We focused on the adaptive response that increases the resistance of Escherichia coli cells to DNA alkylation damage. Combination of single-molecule imaging and microfluidic-based single-cell microscopy showed that noise in the gene activation timing of the master regulator Ada is accurately propagated to generate a distinct subpopulation of cells in which all proteins of the adaptive response are essentially absent. Whereas genetic deletion of these proteins causes extreme sensitivity to alkylation stress, a temporary lack of expression is tolerated and increases genetic plasticity of the whole population. We demonstrated this by monitoring the dynamics of nascent DNA mismatches during alkylation stress as well as the frequency of fixed mutations that are generated by the distinct subpopulations of the adaptive response. We propose that stochastic modulation of DNA repair capacity by the adaptive response creates a viable hypermutable subpopulation of cells that acts as a source of genetic diversity in a clonal population.
Collapse
Affiliation(s)
- Maxence S Vincent
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
32
|
Targeting Glucose Metabolism of Cancer Cells with Dichloroacetate to Radiosensitize High-Grade Gliomas. Int J Mol Sci 2021; 22:7265. [PMID: 34298883 PMCID: PMC8305417 DOI: 10.3390/ijms22147265;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
As the cornerstone of high-grade glioma (HGG) treatment, radiotherapy temporarily controls tumor cells via inducing oxidative stress and subsequent DNA breaks. However, almost all HGGs recur within months. Therefore, it is important to understand the underlying mechanisms of radioresistance, so that novel strategies can be developed to improve the effectiveness of radiotherapy. While currently poorly understood, radioresistance appears to be predominantly driven by altered metabolism and hypoxia. Glucose is a central macronutrient, and its metabolism is rewired in HGG cells, increasing glycolytic flux to produce energy and essential metabolic intermediates, known as the Warburg effect. This altered metabolism in HGG cells not only supports cell proliferation and invasiveness, but it also contributes significantly to radioresistance. Several metabolic drugs have been used as a novel approach to improve the radiosensitivity of HGGs, including dichloroacetate (DCA), a small molecule used to treat children with congenital mitochondrial disorders. DCA reverses the Warburg effect by inhibiting pyruvate dehydrogenase kinases, which subsequently activates mitochondrial oxidative phosphorylation at the expense of glycolysis. This effect is thought to block the growth advantage of HGGs and improve the radiosensitivity of HGG cells. This review highlights the main features of altered glucose metabolism in HGG cells as a contributor to radioresistance and describes the mechanism of action of DCA. Furthermore, we will summarize recent advances in DCA's pre-clinical and clinical studies as a radiosensitizer and address how these scientific findings can be translated into clinical practice to improve the management of HGG patients.
Collapse
|
33
|
Cook KM, Shen H, McKelvey KJ, Gee HE, Hau E. Targeting Glucose Metabolism of Cancer Cells with Dichloroacetate to Radiosensitize High-Grade Gliomas. Int J Mol Sci 2021; 22:ijms22147265. [PMID: 34298883 PMCID: PMC8305417 DOI: 10.3390/ijms22147265] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
As the cornerstone of high-grade glioma (HGG) treatment, radiotherapy temporarily controls tumor cells via inducing oxidative stress and subsequent DNA breaks. However, almost all HGGs recur within months. Therefore, it is important to understand the underlying mechanisms of radioresistance, so that novel strategies can be developed to improve the effectiveness of radiotherapy. While currently poorly understood, radioresistance appears to be predominantly driven by altered metabolism and hypoxia. Glucose is a central macronutrient, and its metabolism is rewired in HGG cells, increasing glycolytic flux to produce energy and essential metabolic intermediates, known as the Warburg effect. This altered metabolism in HGG cells not only supports cell proliferation and invasiveness, but it also contributes significantly to radioresistance. Several metabolic drugs have been used as a novel approach to improve the radiosensitivity of HGGs, including dichloroacetate (DCA), a small molecule used to treat children with congenital mitochondrial disorders. DCA reverses the Warburg effect by inhibiting pyruvate dehydrogenase kinases, which subsequently activates mitochondrial oxidative phosphorylation at the expense of glycolysis. This effect is thought to block the growth advantage of HGGs and improve the radiosensitivity of HGG cells. This review highlights the main features of altered glucose metabolism in HGG cells as a contributor to radioresistance and describes the mechanism of action of DCA. Furthermore, we will summarize recent advances in DCA’s pre-clinical and clinical studies as a radiosensitizer and address how these scientific findings can be translated into clinical practice to improve the management of HGG patients.
Collapse
Affiliation(s)
- Kristina M. Cook
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (H.S.); (K.J.M.); (H.E.G.); (E.H.)
- Correspondence: ; Tel.: +61-286274858
| | - Han Shen
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (H.S.); (K.J.M.); (H.E.G.); (E.H.)
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead 2145, Australia
| | - Kelly J. McKelvey
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (H.S.); (K.J.M.); (H.E.G.); (E.H.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, University of Sydney, St. Leonards 2065, Australia
| | - Harriet E. Gee
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (H.S.); (K.J.M.); (H.E.G.); (E.H.)
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead 2145, Australia
- Sydney West Radiation Oncology Network, University of Sydney, Sydney 2006, Australia
- Children’s Medical Research Institute, Westmead 2145, Australia
| | - Eric Hau
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (H.S.); (K.J.M.); (H.E.G.); (E.H.)
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead 2145, Australia
- Sydney West Radiation Oncology Network, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
34
|
Palaz F, Kalkan AK, Can Ö, Demir AN, Tozluyurt A, Özcan A, Ozsoz M. CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research. ACS Synth Biol 2021; 10:1245-1267. [PMID: 34037380 DOI: 10.1021/acssynbio.1c00107] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decades, significant progress has been made in targeted cancer therapy. In precision oncology, molecular profiling of cancer patients enables the use of targeted cancer therapeutics. However, current diagnostic methods for molecular analysis of cancer are costly and require sophisticated equipment. Moreover, targeted cancer therapeutics such as monoclonal antibodies and small-molecule drugs may cause off-target effects and they are available for only a minority of cancer driver proteins. Therefore, there is still a need for versatile, efficient, and precise tools for cancer diagnostics and targeted cancer treatment. In recent years, the CRISPR-based genome and transcriptome engineering toolbox has expanded rapidly. Particularly, the RNA-targeting CRISPR-Cas13 system has unique biochemical properties, making Cas13 a promising tool for cancer diagnosis, therapy, and research. Cas13-based diagnostic methods allow early detection and monitoring of cancer markers from liquid biopsy samples without the need for complex instrumentation. In addition, Cas13 can be used for targeted cancer therapy through degrading and manipulating cancer-associated transcripts with high efficiency and specificity. Moreover, Cas13-mediated programmable RNA manipulation tools offer invaluable opportunities for cancer research, identification of drug-resistance mechanisms, and discovery of novel therapeutic targets. Here, we review and discuss the current use and potential applications of the CRISPR-Cas13 system in cancer diagnosis, therapy, and research. Thus, researchers will gain a deep understanding of CRISPR-Cas13 technologies, which have the potential to be used as next-generation cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Özgür Can
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Ayça Nur Demir
- Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03100, Turkey
| | - Abdullah Tozluyurt
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Ahsen Özcan
- Institute of Genetic Engineering and Biotechnology, TUBITAK Marmara Research Center, Kocaeli 41470, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, 10 Mersin, Nicosia, Turkey
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This review discusses current and investigative strategies for targeting DNA repair in the management of glioma. RECENT FINDINGS Recent strategies in glioma treatment rely on the production of overwhelming DNA damage and inhibition of repair mechanisms, resulting in lethal cytotoxicity. Many strategies are effective in preclinical glioma models while clinical feasibility remains under investigation. The presence of glioma biomarkers, including IDH mutation and/or MGMT promoter methylation, may confer particular susceptibility to DNA damage and inhibition of repair. These biomarkers have been adopted as eligibility criteria in the design of multiple ongoing clinical trials. Targeting DNA repair mechanisms with novel agents or therapeutic combinations is a promising approach to the treatment of glioma. Further investigations are underway to optimize this approach in the clinical setting.
Collapse
|
36
|
Zhou J, Li Q, Cao Y. Spatiotemporal Heterogeneity across Metastases and Organ-Specific Response Informs Drug Efficacy and Patient Survival in Colorectal Cancer. Cancer Res 2021; 81:2522-2533. [PMID: 33589516 PMCID: PMC8137573 DOI: 10.1158/0008-5472.can-20-3665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/28/2020] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
The sum of target lesions is routinely used to evaluate patient objective responses to treatment in the RECIST criteria, but it fails to address response heterogeneity across metastases. This study argues that spatiotemporal heterogeneity across metastases and organ-specific response is informative for drug efficacy and patient survival. We analyzed the longitudinal data of 11,404 metastatic lesions in 2,802 colorectal cancer patients from five phase III clinical trials. Initially, a metric Gower distance was applied to quantify response heterogeneity across metastases. Next, the spatiotemporal response heterogeneity across anatomic sites, therapies, and KRAS mutation status was assessed and examined for its association with drug efficacy and long-term patient survival. The response of metastatic lesions broadly differed across anatomic sites and therapies. About 60% of patients had at least one lesion respond contrarily from total tumor size. High interlesion heterogeneity was associated with shorter progression-free survival and overall survival. Targeted therapies (bevacizumab or panitumumab) combined with standard chemotherapy reduced interlesion heterogeneity and elicited more favorable effects from liver lesions (P < 0.001) than chemotherapy alone. Moreover, the favorable responses in liver metastases (> 30% shrinkage) were associated with extended patient overall survival (P < 0.001), in contrast to lesions in the lungs and lymph nodes. Altogether, the spatiotemporal response heterogeneity across metastases informed drug efficacy and patient survival, which could improve the current methods for treatment evaluation and patient prognosis. SIGNIFICANCE: These findings support the modification of RECIST criteria to include individual lesion response to improve assessments of drug efficacy.
Collapse
Affiliation(s)
- Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina
| | - Quefeng Li
- School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
37
|
Multiregional Sequencing of IDH-WT Glioblastoma Reveals High Genetic Heterogeneity and a Dynamic Evolutionary History. Cancers (Basel) 2021; 13:cancers13092044. [PMID: 33922652 PMCID: PMC8122908 DOI: 10.3390/cancers13092044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Glioblastoma is the most common and aggressive primary brain malignancy in adults. In addition to extensive inter-patient heterogeneity, glioblastoma shows intra-tumor extensive cellular and molecular heterogeneity, both spatially and temporally. This heterogeneity is one of the main reasons for the poor prognosis and overall survival. Moreover, it raises the important question of whether the molecular characterization of a single biopsy sample, as performed in standard diagnostics, actually represents the entire lesion. In this study, we sequenced the whole exome of nine spatially different cancer regions of three primary glioblastomas. We characterized their mutational profiles and copy number alterations, with implications for our understanding of tumor biology in relation to clonal architecture and evolutionary dynamics, as well as therapeutically relevant alterations. Abstract Glioblastoma is one of the most common and lethal primary neoplasms of the brain. Patient survival has not improved significantly over the past three decades and the patient median survival is just over one year. Tumor heterogeneity is thought to be a major determinant of therapeutic failure and a major reason for poor overall survival. This work aims to comprehensively define intra- and inter-tumor heterogeneity by mapping the genomic and mutational landscape of multiple areas of three primary IDH wild-type (IDH-WT) glioblastomas. Using whole exome sequencing, we explored how copy number variation, chromosomal and single loci amplifications/deletions, and mutational burden are spatially distributed across nine different tumor regions. The results show that all tumors exhibit a different signature despite the same diagnosis. Above all, a high inter-tumor heterogeneity emerges. The evolutionary dynamics of all identified mutations within each region underline the questionable value of a single biopsy and thus the therapeutic approach for the patient. Multiregional collection and subsequent sequencing are essential to try to address the clinical challenge of precision medicine. Especially in glioblastoma, this approach could provide powerful support to pathologists and oncologists in evaluating the diagnosis and defining the best treatment option.
Collapse
|
38
|
Santoni G, Amantini C, Nabissi M, Maggi F, Arcella A, Marinelli O, Eleuteri AM, Santoni M, Morelli MB. Knock-Down of Mucolipin 1 Channel Promotes Tumor Progression and Invasion in Human Glioblastoma Cell Lines. Front Oncol 2021; 11:578928. [PMID: 33954107 PMCID: PMC8092188 DOI: 10.3389/fonc.2021.578928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Among cancers that affect the central nervous system, glioblastoma is the most common. Given the negative prognostic significance of transient receptor potential mucolipin 1 (TRPML1) channel reduction in patients with glioblastoma, as discussed in previous publications, the aim of the current study was to investigate the biological advantage of TRPML1 loss for glioma cells. Human glioblastoma primary cancer cells (FSL and FCL) and glioblastoma cell lines (T98 and U251) were used for that purpose. TRPML1 silencing in T98 cells induces defective autophagy, nitric oxide (NO) production, and cathepsin B-dependent apoptosis in the first 48 h and then apoptotic-resistant cells proliferate with a high growth rate with respect to control cells. In U251 cells, knock-down of TRPML1 stimulates NO generation and protein oxidation, arrests cell cycle at G2/M phase, and induces autophagy leading to cathepsin B-dependent senescence. Finally, in both cell lines, the long-term effects of TRPML1 silencing promote survival and invasion capacity with respect to control cells. Silencing of TRPML1 also affects the phenotype of glioblastoma primary cells. FSL cells show increased proliferation ability, while FCL cells enter into senescence associated with an increased invasion ability. In conclusion, although the molecular heterogeneity among different glioblastoma cell lines mirrors the intercellular heterogeneity in cancer cells, our data support TRPML1 downregulation as a negative prognostic factor in glioblastoma.
Collapse
Affiliation(s)
- Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Federica Maggi
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Antonietta Arcella
- Neuropathology Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| | - Oliviero Marinelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Anna Maria Eleuteri
- Clinical Biochemistry Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Medical Oncology Unit, Hospital of Macerata, Macerata, Italy
| | | |
Collapse
|
39
|
McKelvey KJ, Wilson EB, Short S, Melcher AA, Biggs M, Diakos CI, Howell VM. Glycolysis and Fatty Acid Oxidation Inhibition Improves Survival in Glioblastoma. Front Oncol 2021; 11:633210. [PMID: 33854970 PMCID: PMC8039392 DOI: 10.3389/fonc.2021.633210] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/10/2021] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive adult glioma with a median survival of 14 months. While standard treatments (safe maximal resection, radiation, and temozolomide chemotherapy) have increased the median survival in favorable O(6)-methylguanine-DNA methyltransferase (MGMT)-methylated GBM (~21 months), a large proportion of patients experience a highly debilitating and rapidly fatal disease. This study examined GBM cellular energetic pathways and blockade using repurposed drugs: the glycolytic inhibitor, namely dicholoroacetate (DCA), and the partial fatty acid oxidation (FAO) inhibitor, namely ranolazine (Rano). Gene expression data show that GBM subtypes have similar glucose and FAO pathways, and GBM tumors have significant upregulation of enzymes in both pathways, compared to normal brain tissue (p < 0.01). DCA and the DCA/Rano combination showed reduced colony-forming activity of GBM and increased oxidative stress, DNA damage, autophagy, and apoptosis in vitro. In the orthotopic Gl261 and CT2A syngeneic murine models of GBM, DCA, Rano, and DCA/Rano increased median survival and induced focal tumor necrosis and hemorrhage. In conclusion, dual targeting of glycolytic and FAO metabolic pathways provides a viable treatment that warrants further investigation concurrently or as an adjuvant to standard chemoradiation for GBM.
Collapse
Affiliation(s)
- Kelly J. McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Erica B. Wilson
- Translational Neuro-Oncology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Susan Short
- Translational Neuro-Oncology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Alan A. Melcher
- Translational Immunotherapy, Division of Radiotherapy and Imaging, Institute for Cancer Research, London, United Kingdom
| | - Michael Biggs
- Department of Neurosurgery, North Shore Private Hospital, St Leonards, NSW, Australia
| | - Connie I. Diakos
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Viive M. Howell
- Bill Walsh Translational Cancer Research Laboratory, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| |
Collapse
|
40
|
Liu SJ, Magill ST, Vasudevan HN, Hilz S, Villanueva-Meyer JE, Lastella S, Daggubati V, Spatz J, Choudhury A, Orr BA, Demaree B, Seo K, Ferris SP, Abate AR, Oberheim Bush NA, Bollen AW, McDermott MW, Costello JF, Raleigh DR. Multiplatform Molecular Profiling Reveals Epigenomic Intratumor Heterogeneity in Ependymoma. Cell Rep 2021; 30:1300-1309.e5. [PMID: 32023450 PMCID: PMC7313374 DOI: 10.1016/j.celrep.2020.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/19/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022] Open
Abstract
Ependymomas exist within distinct genetic subgroups, but the molecular diversity within individual ependymomas is unknown. We perform multiplatform molecular profiling of 6 spatially distinct samples from an ependymoma with C11orf95-RELA fusion. DNA methylation and RNA sequencing distinguish clusters of samples according to neuronal development gene expression programs that could also be delineated by differences in magnetic resonance blood perfusion. Exome sequencing and phylogenetic analysis reveal epigenomic intratumor heterogeneity and suggest that chromosomal structural alterations may precede accumulation of single-nucleotide variants during ependymoma tumorigenesis. In sum, these findings shed light on the oncogenesis and intratumor heterogeneity of ependymoma. Tumor heterogeneity poses a barrier to cancer treatment. Liu etal. investigate radiographically distinct regions of an ependymoma tumor using transcriptomic, genetic, and epigenomic profiling and discover axes of gene expression programs that recapitulate normal brain development in addition to phylogenies that shed light on the tumorigenesis of ependymoma.
Collapse
Affiliation(s)
- S John Liu
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephen T Magill
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sydney Lastella
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikas Daggubati
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jordan Spatz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Benjamin Demaree
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kyounghee Seo
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sean P Ferris
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael W McDermott
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
41
|
Rosas-Alonso R, Colmenarejo-Fernandez J, Pernia O, Rodriguez-Antolín C, Esteban I, Ghanem I, Sanchez-Cabrero D, Losantos-Garcia I, Palacios-Zambrano S, Moreno-Bueno G, de Castro J, Martinez-Marin V, Ibanez-de-Caceres I. Clinical validation of a novel quantitative assay for the detection of MGMT methylation in glioblastoma patients. Clin Epigenetics 2021; 13:52. [PMID: 33750464 PMCID: PMC7941980 DOI: 10.1186/s13148-021-01044-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/28/2021] [Indexed: 12/03/2022] Open
Abstract
Background The promoter hypermethylation of the methylguanine-DNA methyltransferase gene is a frequently used biomarker in daily clinical practice as it is associated with a favorable prognosis in glioblastoma patients treated with temozolamide. Due to the absence of adequately standardized techniques, international harmonization of the MGMT methylation biomarker is still an unmet clinical need for the diagnosis and treatment of glioblastoma patients. Results In this study we carried out a clinical validation of a quantitative assay for MGMT methylation detection by comparing a novel quantitative MSP using double-probe (dp_qMSP) with the conventional MSP in 100 FFPE glioblastoma samples. We performed both technologies and established the best cutoff for the identification of positive-methylated samples using the quantitative data obtained from dp_qMSP. Kaplan–Meier curves and ROC time dependent curves were employed for the comparison of both methodologies. Conclusions We obtained similar results using both assays in the same cohort of patients, in terms of progression free survival and overall survival according to Kaplan–Meier curves. In addition, the results of ROC(t) curves showed that dp_qMSP increases the area under curve time-dependent in comparison with MSP for predicting progression free survival and overall survival over time. We concluded that dp_qMSP is an alternative methodology compatible with the results obtained with the conventional MSP. Our assay will improve the therapeutic management of glioblastoma patients, being a more sensitive and competitive alternative methodology that ensures the standardization of the MGMT-biomarker making it reliable and suitable for clinical use. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01044-2.
Collapse
Affiliation(s)
- Rocio Rosas-Alonso
- Epigenetics Laboratory. INGEMM, Paseo La Castellana 261. Edificio Bloque Quirúrgico Planta -2. University Hospital La Paz, 28046, Madrid, Spain. .,Experimental Therapies and Novel Biomarkers in Cancer. IdiPAZ, Madrid, Spain.
| | - Julian Colmenarejo-Fernandez
- Epigenetics Laboratory. INGEMM, Paseo La Castellana 261. Edificio Bloque Quirúrgico Planta -2. University Hospital La Paz, 28046, Madrid, Spain.,Experimental Therapies and Novel Biomarkers in Cancer. IdiPAZ, Madrid, Spain
| | - Olga Pernia
- Epigenetics Laboratory. INGEMM, Paseo La Castellana 261. Edificio Bloque Quirúrgico Planta -2. University Hospital La Paz, 28046, Madrid, Spain.,Experimental Therapies and Novel Biomarkers in Cancer. IdiPAZ, Madrid, Spain
| | - Carlos Rodriguez-Antolín
- Epigenetics Laboratory. INGEMM, Paseo La Castellana 261. Edificio Bloque Quirúrgico Planta -2. University Hospital La Paz, 28046, Madrid, Spain.,Experimental Therapies and Novel Biomarkers in Cancer. IdiPAZ, Madrid, Spain
| | - Isabel Esteban
- Experimental Therapies and Novel Biomarkers in Cancer. IdiPAZ, Madrid, Spain.,Pathology Department, La Paz University Hospital, Madrid, Spain
| | - Ismael Ghanem
- Medical Oncology Department, La Paz University Hospital, Madrid, Spain
| | | | | | | | - Gema Moreno-Bueno
- MD Anderson Cancer Center, Madrid, Spain.,Biochemistry Department, UAM/ IIBm (CSIC-UAM), IdiPaz, Fundación MD Anderson Internacional, Madrid, Spain.,CIBERONC, Madrid, Spain
| | - Javier de Castro
- Experimental Therapies and Novel Biomarkers in Cancer. IdiPAZ, Madrid, Spain.,Medical Oncology Department, La Paz University Hospital, Madrid, Spain
| | | | - Inmaculada Ibanez-de-Caceres
- Epigenetics Laboratory. INGEMM, Paseo La Castellana 261. Edificio Bloque Quirúrgico Planta -2. University Hospital La Paz, 28046, Madrid, Spain. .,Experimental Therapies and Novel Biomarkers in Cancer. IdiPAZ, Madrid, Spain.
| |
Collapse
|
42
|
Mikkelsen VE, Dai HY, Stensjøen AL, Berntsen EM, Salvesen Ø, Solheim O, Torp SH. MGMT Promoter Methylation Status Is Not Related to Histological or Radiological Features in IDH Wild-type Glioblastomas. J Neuropathol Exp Neurol 2021; 79:855-862. [PMID: 32688383 DOI: 10.1093/jnen/nlaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/25/2020] [Accepted: 06/03/2020] [Indexed: 11/15/2022] Open
Abstract
O6-methylguanine DNA methyltransferase (MGMT) promoter methylation is an important favorable predictive marker in patients with glioblastoma (GBM). We hypothesized that MGMT status could be a surrogate marker of pretreatment tumor biology observed as histopathological and radiological features. Apart from some radiological studies aiming to noninvasively predict the MGMT status, few studies have investigated relationships between MGMT status and phenotypical tumor biology. We have therefore aimed to investigate such relationships in 85 isocitrate dehydrogenase (IDH) wild-type GBMs. MGMT status was determined by methylation-specific PCR and was assessed for associations with 22 histopathological features, immunohistochemical proliferative index and microvessel density measurements, conventional magnetic resonance imaging characteristics, preoperative speed of tumor growth, and overall survival. None of the investigated histological or radiological features were significantly associated with MGMT status. Methylated MGMT status was a significant independent predictor of improved overall survival. In conclusion, our results suggest that MGMT status is not related to the pretreatment phenotypical biology in IDH wild-type GBMs. Furthermore, our findings suggest the survival benefit of MGMT methylated GBMs is not due to an inherently less aggressive tumor biology, and that conventional magnetic resonance imaging features cannot be used to noninvasively predict the MGMT status.
Collapse
Affiliation(s)
- Vilde Elisabeth Mikkelsen
- From the Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology
| | - Hong Yan Dai
- Department of Pathology, St Olav's University Hospital
| | - Anne Line Stensjøen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology.,Department of Radiology and Nuclear Medicine, St. Olav's University Hospital
| | | | - Ole Solheim
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology.,Department of Neurosurgery, St. Olav's University Hospital, Trondheim, Norway
| | - Sverre Helge Torp
- From the Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology.,Department of Pathology, St Olav's University Hospital
| |
Collapse
|
43
|
Barbaro M, Fine HA, Magge RS. Scientific and Clinical Challenges within Neuro-Oncology. World Neurosurg 2021; 151:402-410. [PMID: 33610863 DOI: 10.1016/j.wneu.2021.01.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/25/2022]
Abstract
Both primary and metastatic brain tumors carry poor prognoses despite modern advances in medical therapy, radiation therapy, and surgical techniques. Gliomas, including glioblastoma (GBM), are particularly difficult to treat, and high-grade gliomas have poor outcomes. Treatment of brain tumors involves a unique set of scientific and clinical challenges, which are often not present in the treatment of systemic malignancies. With respect to scientific challenges, the anatomy and physiology of brain tumors (including the blood-brain barrier, blood-tumor barrier, and blood-cerebrospinal fluid barrier) prevent adequate drug delivery into the central nervous system. The unique nature of the immune system in the central nervous system as well as the immunosuppressive microenvironment of tumors such as GBM also create therapeutic roadblocks in the treatment of brain tumors. Tumor heterogeneity, particularly in GBM, has classically been believed to contribute to multitherapy resistance; however, recent data suggest that this may not be the case. Clinical challenges include neurologic and medical comorbidities of patients with brain tumor, as well as potential toxicity of tumor-directed treatment. Clinical trials investigating new treatment paradigms are needed, but several roadblocks exist to good and promising clinical trial availability.
Collapse
Affiliation(s)
- Marissa Barbaro
- Weill Cornell Brain Tumor Center, Department of Neurology, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, New York, USA
| | - Howard A Fine
- Weill Cornell Brain Tumor Center, Department of Neurology, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, New York, USA
| | - Rajiv S Magge
- Weill Cornell Brain Tumor Center, Department of Neurology, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, New York, USA.
| |
Collapse
|
44
|
Immanuel SRC, Ghanate AD, Parmar DS, Yadav R, Uthup R, Panchagnula V, Raghunathan A. Integrated genetic and metabolic landscapes predict vulnerabilities of temozolomide resistant glioblastoma cells. NPJ Syst Biol Appl 2021; 7:2. [PMID: 33420045 PMCID: PMC7794364 DOI: 10.1038/s41540-020-00161-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023] Open
Abstract
Metabolic reprogramming and its molecular underpinnings are critical to unravel the duality of cancer cell function and chemo-resistance. Here, we use a constraints-based integrated approach to delineate the interplay between metabolism and epigenetics, hardwired in the genome, to shape temozolomide (TMZ) resistance. Differential metabolism was identified in response to TMZ at varying concentrations in both the resistant neurospheroidal (NSP) and the susceptible (U87MG) glioblastoma cell-lines. The genetic basis of this metabolic adaptation was characterized by whole exome sequencing that identified mutations in signaling pathway regulators of growth and energy metabolism. Remarkably, our integrated approach identified rewiring in glycolysis, TCA cycle, malate aspartate shunt, and oxidative phosphorylation pathways. The differential killing of TMZ resistant NSP by Rotenone at low concentrations with an IC50 value of 5 nM, three orders of magnitude lower than for U87MG that exhibited an IC50 value of 1.8 mM was thus identified using our integrated systems-based approach.
Collapse
Affiliation(s)
- Selva Rupa Christinal Immanuel
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109-5263, USA
| | - Avinash D Ghanate
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Dharmeshkumar S Parmar
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Ritu Yadav
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Riya Uthup
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Venkateswarlu Panchagnula
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Anu Raghunathan
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
45
|
The Intratumoral Heterogeneity of Cancer Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:149-160. [PMID: 34014541 DOI: 10.1007/978-3-030-65768-0_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is one of the deadliest diseases in the world, causing over half a million deaths a year in the USA alone. Despite recent advances made in the field of cancer biology and the therapies that have been developed [1, 2], it is clear that more advances are necessary for us to classify cancer as curable. The logical question that arises is simple: Why, despite all the technologies and medical innovations of our time, has a complete cure eluded us? This chapter sheds light on one of cancer's most impactful attributes: its heterogeneity and, more specifically, the intratumoral heterogeneity of cancer metabolism. Simply put, what makes cancer one of the deadliest diseases is its ability to change and adapt. Cancer cells' rapid evolution, coupled with their irrepressible ability to divide, gives most of them the advantage over our immune systems. In this chapter, we delve into the complexities of this adaptability and the vital role that metabolism plays in the rise and progression of this heterogeneity.
Collapse
|
46
|
If Artificial In Vitro Microenvironment Can Influence Tumor Drug Resistance Network via Modulation of lncRNA Expression?-Comparative Analysis of Glioblastoma-Derived Cell Culture Models and Initial Tumors In Vivo. Cell Mol Neurobiol 2020; 42:1005-1020. [PMID: 33245508 PMCID: PMC8942942 DOI: 10.1007/s10571-020-00991-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022]
Abstract
The tumor resistance of glioblastoma cells in vivo is thought to be enhanced by their heterogeneity and plasticity, which are extremely difficult to curb in vitro. The external microenvironment shapes the molecular profile of tumor culture models, thus influencing potential therapy response. Our study examines the expression profile of selected lncRNAs involved in tumor resistance network in three different glioblastoma-derived models commonly utilized for testing drug response in vitro. Differential expression analysis revealed significant divergence in lncRNA profile between parental tumors and tumor-derived cell cultures in vitro, including the following particles: MALAT1, CASC2, H19, TUSC7, XIST, RP11-838N2.4, DLX6-AS1, GLIDR, MIR210HG, SOX2-OT. The examined lncRNAs influence the phenomenon of tumor resistance via their downstream target genes through a variety of processes: multi-drug resistance, epithelial-mesenchymal transition, autophagy, cell proliferation and viability, and DNA repair. A comparison of in vivo and in vitro expression identified differences in the levels of potential lncRNA targets, with the highest discrepancies detected for the MDR1, LRP1, BCRP and MRP1 genes. Co-expression analyses confirmed the following interrelations: MALAT1-TYMS, MALAT1-MRP5, H19-ZEB1, CASC2-VIM, CASC2-N-CAD; they additionally suggest the possibility of MALAT1-BCRP, MALAT1-mTOR and TUSC7-PTEN interconnections in glioblastoma. Although our results clearly demonstrate that the artificial ex vivo microenvironment changes the profile of lncRNAs related to tumor resistance, it is difficult to anticipate the final phenotypic effect, since this phenomenon is a complex one that involves a network of molecular interactions underlying a variety of cellular processes.
Collapse
|
47
|
Andreatta F, Beccaceci G, Fortuna N, Celotti M, De Felice D, Lorenzoni M, Foletto V, Genovesi S, Rubert J, Alaimo A. The Organoid Era Permits the Development of New Applications to Study Glioblastoma. Cancers (Basel) 2020; 12:E3303. [PMID: 33182346 PMCID: PMC7695252 DOI: 10.3390/cancers12113303] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GB) is the most frequent and aggressive type of glioma. The lack of reliable GB models, together with its considerable clinical heterogeneity, has impaired a comprehensive investigation of the mechanisms that lead to tumorigenesis, cancer progression, and response to treatments. Recently, 3D cultures have opened the possibility to overcome these challenges and cerebral organoids are emerging as a leading-edge tool in GB research. The opportunity to easily engineer brain organoids via gene editing and to perform co-cultures with patient-derived tumor spheroids has enabled the analysis of cancer development in a context that better mimics brain tissue architecture. Moreover, the establishment of biobanks from GB patient-derived organoids represents a crucial starting point to improve precision medicine therapies. This review exemplifies relevant aspects of 3D models of glioblastoma, with a specific focus on organoids and their involvement in basic and translational research.
Collapse
Affiliation(s)
- Francesco Andreatta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Giulia Beccaceci
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Nicolò Fortuna
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Martina Celotti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Dario De Felice
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| | - Josep Rubert
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
- Interdisciplinary Research Structure of Biotechnology and Biomedicine, Department of Biochemistry and Molecular Biology, Universitat de Valencia, 46100 Burjassot, Spain
| | - Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (F.A.); (G.B.); (N.F.); (M.C.); (D.D.F.); (M.L.); (V.F.); (S.G.); (J.R.)
| |
Collapse
|
48
|
Brigliadori G, Goffredo G, Bartolini D, Tosatto L, Gurrieri L, Mercatali L, Ibrahim T. Influence of Intratumor Heterogeneity on the Predictivity of MGMT Gene Promoter Methylation Status in Glioblastoma. Front Oncol 2020; 10:533000. [PMID: 33194592 PMCID: PMC7606920 DOI: 10.3389/fonc.2020.533000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is the most aggressive tumor of the central nervous system. Prognosis is poor, even in the presence of a methylated state of MGMT gene promoter, which represents the biomarker with the highest prognostic/predictive value for the standard treatment of patients. Among patients with a methylated MGMT status, we identified an intermediate range of methylation above the standard 9% cut-off (gray zone) in which the predictive strength of the marker was lost. In an effort to improve the evaluation of the biomarker in clinical decision-making, we are carrying out a retrospective study, performing an in-depth analysis of samples used for diagnosis to understand how molecular heterogeneity, a hallmark of glioblastoma, impacts the evaluation of MGMT gene promoter methylation. Preliminary data from samples belonging to the "gray zone" tend to confirm the hypothesis of a mismatch between methylation values used for clinical decision-making and those included in our in-depth analysis. Confirmation of these data would help to better define the predictive power of MGMT promoter methylation status and greatly facilitate clinical decision-making.
Collapse
Affiliation(s)
- Giovanni Brigliadori
- Bioscience Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giulia Goffredo
- Bioscience Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | | | - Lorena Gurrieri
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
49
|
McAbee JH, Degorre-Kerbaul C, Valdez K, Wendler A, Shankavaram UT, Watts C, Camphausen K, Tofilon PJ. Detection of glioblastoma intratumor heterogeneity in radiosensitivity using patient-derived neurosphere cultures. J Neurooncol 2020; 149:383-390. [PMID: 33057920 DOI: 10.1007/s11060-020-03643-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/01/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Glioblastoma (GBM) is characterized by extensive clonal diversity suggesting the presence of tumor cells with varying degrees of treatment sensitivity. Radiotherapy is an integral part of glioblastoma treatment. Whether GBMs are comprised of spatially distinct cellular populations with uniform or varying degrees of radiosensitivity has not been established. METHODS Spatially distinct regions of three GBMs (J3, J7 and J14) were resected and unique cell lines were derived from each region. DNA from cell lines, corresponding tumor fragments, and patient blood was extracted for whole exome sequencing. Variants, clonal composition, and functional implications were compared and analyzed with superFreq and IPA. Limiting dilution assays were performed on cell lines to measure intrinsic radiosensitivity. RESULTS Based on WES, cell lines generated from different regions of the same tumor were more closely correlated with their tumor of origin than the other GBMs. Variant and clonal composition comparisons showed that cell lines from distinct tumors displayed increasing levels of ITH with J3 and J14 having the lowest and highest, respectively. The radiosensitivities of the cell lines generated from the J3 tumor were similar as were those generated from the J7 tumor. However, the radiosensitivities of the 2 cell lines generated from the J14 tumor (J14T3 and J14T6) were significantly different with J14T6 being more sensitive than J14T3. CONCLUSION Data suggest a tumor dependent ITH in radiosensitivity. The existence of ITH in radiosensitivity may impact not only the initial therapeutic response but also the effectiveness of retreatment protocols.
Collapse
Affiliation(s)
- Joseph H McAbee
- Radiation Oncology Branch, NCI, Bethesda, MD, USA.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Astrid Wendler
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Colin Watts
- Department of Neurosurgery, Institute of Cancer Genome Sciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
50
|
Liesche-Starnecker F, Mayer K, Kofler F, Baur S, Schmidt-Graf F, Kempter J, Prokop G, Pfarr N, Wei W, Gempt J, Combs SE, Zimmer C, Meyer B, Wiestler B, Schlegel J. Immunohistochemically Characterized Intratumoral Heterogeneity Is a Prognostic Marker in Human Glioblastoma. Cancers (Basel) 2020; 12:cancers12102964. [PMID: 33066251 PMCID: PMC7602025 DOI: 10.3390/cancers12102964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Intratumoral heterogeneity is believed to contribute to the immense therapy resistance and recurrence rate of glioblastoma. The aim of this retrospective study was to analyze the heterogeneity of 36 human glioblastoma samples on a morphological level by immunohistochemistry. We confirmed that this method is valid for heterogeneity detection. 115 Areas of Interest were labelled. By cluster analysis, we defined two subtypes (“classical” and “mesenchymal”). The results of epigenomic analyses corroborated the findings. Interestingly, patients with tumors that consisted of both subtypes (“subtype-heterogeneous”) showed a shorter overall survival compared to patients with tumor that were dominated by one subtype (“subtype-dominant”). Furthermore, the analysis of 21 corresponding pairs of primary and recurrent glioblastoma demonstrated that, additionally to an intratumoral heterogeneity, there is also a chronological heterogeneity with dominance of the mesenchymal subtype in recurrent tumors. Our study confirms the prognostic impact of intratumoral heterogeneity in glioblastoma and makes this hallmark assessable by routine diagnostics. Abstract Tumor heterogeneity is considered to be a hallmark of glioblastoma (GBM). Only more recently, it has become apparent that GBM is not only heterogeneous between patients (intertumoral heterogeneity) but more importantly, also within individual patients (intratumoral heterogeneity). In this study, we focused on assessing intratumoral heterogeneity. For this purpose, the heterogeneity of 38 treatment-naïve GBM was characterized by immunohistochemistry. Perceptible areas were rated for ALDH1A3, EGFR, GFAP, Iba1, Olig2, p53, and Mib1. By clustering methods, two distinct groups similar to subtypes described in literature were detected. The classical subtype featured a strong EGFR and Olig2 positivity, whereas the mesenchymal subtype displayed a strong ALDH1A3 expression and a high fraction of Iba1-positive microglia. 18 tumors exhibited both subtypes and were classified as “subtype-heterogeneous”, whereas the areas of the other tumors were all assigned to the same cluster and named “subtype-dominant”. Results of epigenomic analyses corroborated these findings. Strikingly, the subtype-heterogeneous tumors showed a clearly shorter overall survival compared to subtype-dominant tumors. Furthermore, 21 corresponding pairs of primary and recurrent GBM were compared, showing a dominance of the mesenchymal subtype in the recurrent tumors. Our study confirms the prognostic impact of intratumoral heterogeneity in GBM, and more importantly, makes this hallmark assessable by routine diagnostics.
Collapse
Affiliation(s)
- Friederike Liesche-Starnecker
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
- Correspondence: ; Tel.: +49-89-6145
| | - Karoline Mayer
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
| | - Florian Kofler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (F.K.); (C.Z.); (B.W.)
| | - Sandra Baur
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
| | - Friederike Schmidt-Graf
- Department of Neurology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (F.S.-G.); (J.K.)
| | - Johanna Kempter
- Department of Neurology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (F.S.-G.); (J.K.)
| | - Georg Prokop
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine, Technical University Munich, Trogerstraße 18, 81675 München, Germany;
| | - Wu Wei
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
| | - Jens Gempt
- Department of Neurosurgery, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (J.G.); (B.M.)
| | - Stephanie E. Combs
- Department of RadiationOncology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany;
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (F.K.); (C.Z.); (B.W.)
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (J.G.); (B.M.)
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University Munich, Ismaninger Str. 22, 81675 München, Germany; (F.K.); (C.Z.); (B.W.)
- TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Einsteinstraße 25, 81675 München, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Trogerstraße 18, 81675 München, Germany; (K.M.); (S.B.); (G.P.); (W.W.); (J.S.)
| |
Collapse
|