1
|
Liu K, Han B. Role of immune cells in the pathogenesis of myocarditis. J Leukoc Biol 2024; 115:253-275. [PMID: 37949833 DOI: 10.1093/jleuko/qiad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that mostly affects young people. Myocarditis involves a complex immune network; however, its detailed pathogenesis is currently unclear. The diversity and plasticity of immune cells, either in the peripheral blood or in the heart, have been partially revealed in a number of previous studies involving patients and several kinds of animal models with myocarditis. It is the complexity of immune cells, rather than one cell type that is the culprit. Thus, recognizing the individual intricacies within immune cells in the context of myocarditis pathogenesis and finding the key intersection of the immune network may help in the diagnosis and treatment of this condition. With the vast amount of cell data gained on myocarditis and the recent application of single-cell sequencing, we summarize the multiple functions of currently recognized key immune cells in the pathogenesis of myocarditis to provide an immune background for subsequent investigations.
Collapse
Affiliation(s)
- Keyu Liu
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, 250021, Jinan, China
- Shandong Provincial Hospital, Shandong Provincial Clinical Research Center for Children' s Health and Disease office, No. 324 Jingwu Road, 250021, Jinan, China
| |
Collapse
|
2
|
Niu C, Xu W, Xiong S. Appendectomy Mitigates Coxsackievirus B3-Induced Viral Myocarditis. Viruses 2023; 15:1974. [PMID: 37896753 PMCID: PMC10611117 DOI: 10.3390/v15101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Appendix has a distinct abundance of lymphatic cells and serves as a reservoir of microbiota which helps to replenish the large intestine with healthy flora. And it is the primary site of IgA induction, which shapes the composition of the intestinal microbiota. Recent population-based cohort studies report that appendectomy is associated with an increased risk of acute myocardial infarction and ischemic heart disease. Here, whether appendectomy has an effect on the occurrence and development of coxsackievirus B3 (CVB3)-induced viral myocarditis is studied. 103 TCID50 CVB3 was inoculated i.p. into appendectomized and sham-operated mice. RNA levels of viral load and pro-inflammatory cytokines in the hearts and the intestine were detected by RT-PCR. Compared to sham-operated mice, appendectomized mice exhibited attenuated cardiac inflammation and improved cardiac function, which is associated with a systemic reduced viral load. Appendectomized mice also displayed a reduction in cardiac neutrophil and macrophage infiltration and pro-inflammatory cytokine production. Mechanistically, we found that CVB3 induced an early and potent IL-10 production in the cecal patch at 2 days post infection. Appendectomy significantly decreased intestinal IL-10 and IL-10+ CD4+ Treg frequency which led to a marked increase in intestinal (primary entry site for CVB3) anti-viral IFN-γ+ CD4+ T and IFN-γ+ CD8+ T response and viral restriction, eventually resulting in improved myocarditis. Our results suggest that appendix modulates cardiac infection and inflammation through regulating intestinal IL-10+ Treg response.
Collapse
Affiliation(s)
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China;
| | - Sidong Xiong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China;
| |
Collapse
|
3
|
Sun T, Dong C, Xiong S. Cardiomyocyte-derived HMGB1 takes a protective role in CVB3-induced viral myocarditis via inhibiting cardiac apoptosis. Immunol Cell Biol 2023; 101:735-745. [PMID: 37253434 DOI: 10.1111/imcb.12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Coxsackievirus B3 (CVB3)-induced viral myocarditis (VMC) is characterized by immune cell infiltration and myocardial damage. High mobility group box 1 (HMGB1) is a highly conserved nuclear DNA-binding protein that participates in DNA replication, transcriptional regulation, repair response and inflammatory response in different disease models. To investigate the exact function of HMGB1 in CVB3-induced VMC, we crossed Hmgb1-floxed (Hmgb1f/f ) mice with mice carrying a suitable Cre recombinase transgenic strain to achieve conditional inactivation of the Hmgb1 gene in a cardiomyocyte-specific manner and to establish myocarditis. In this study, we found that cardiomyocyte-specific Hmgb1-deficient (Hmgb1f/f TgCre/+ ) mice exhibited exacerbated myocardial injury. Hmgb1-deficient cardiomyocytes may promote early apoptosis via the p53-mediated Bax mitochondrial pathway, as evidenced by the higher localization of p53 protein in the cytosol of Hmgb1-deficient cardiomyocytes upon CVB3 infection. Moreover, cardiomyocyte Hmgb1-deficient mice are more susceptible to cardiac dysfunction after infection. This study provides new insights into HMGB1 in VMC pathogenesis and a strategy for appropriate blocking of HMGB1 in the clinical treatment of VMC.
Collapse
Affiliation(s)
- Tianle Sun
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Li Q, Mei A, Qian H, Min X, Yang H, Zhong J, Li C, Xu H, Chen J. The role of myeloid-derived immunosuppressive cells in cardiovascular disease. Int Immunopharmacol 2023; 117:109955. [PMID: 36878043 DOI: 10.1016/j.intimp.2023.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population found in the bone marrow, peripheral blood, and tumor tissue. Their role is mainly to inhibit the monitoring function of innate and adaptive immune cells, which leads to the escape of tumor cells and promotes tumor development and metastasis. Moreover, recent studies have found that MDSCs are therapeutic in several autoimmune disorders due to their strong immunosuppressive ability. Additionally, studies have found that MDSCs have an important role in the formation and progression of other cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, and hypertension. In this review, we will discuss the role of MDSCs in the pathogenesis and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Qingmei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| |
Collapse
|
5
|
Fairweather D, Beetler DJ, Musigk N, Heidecker B, Lyle MA, Cooper LT, Bruno KA. Sex and gender differences in myocarditis and dilated cardiomyopathy: An update. Front Cardiovasc Med 2023; 10:1129348. [PMID: 36937911 PMCID: PMC10017519 DOI: 10.3389/fcvm.2023.1129348] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
In the past decade there has been a growing interest in understanding sex and gender differences in myocarditis and dilated cardiomyopathy (DCM), and the purpose of this review is to provide an update on this topic including epidemiology, pathogenesis and clinical presentation, diagnosis and management. Recently, many clinical studies have been conducted examining sex differences in myocarditis. Studies consistently report that myocarditis occurs more often in men than women with a sex ratio ranging from 1:2-4 female to male. Studies reveal that DCM also has a sex ratio of around 1:3 women to men and this is also true for familial/genetic forms of DCM. Animal models have demonstrated that DCM develops after myocarditis in susceptible mouse strains and evidence exists for this progress clinically as well. A consistent finding is that myocarditis occurs primarily in men under 50 years of age, but in women after age 50 or post-menopause. In contrast, DCM typically occurs after age 50, although the age that post-myocarditis DCM occurs has not been investigated. In a small study, more men with myocarditis presented with symptoms of chest pain while women presented with dyspnea. Men with myocarditis have been found to have higher levels of heart failure biomarkers soluble ST2, creatine kinase, myoglobin and T helper 17-associated cytokines while women develop a better regulatory immune response. Studies of the pathogenesis of disease have found that Toll-like receptor (TLR)2 and TLR4 signaling pathways play a central role in increasing inflammation during myocarditis and in promoting remodeling and fibrosis that leads to DCM, and all of these pathways are elevated in males. Management of myocarditis follows heart failure guidelines and there are currently no disease-specific therapies. Research on standard heart failure medications reveal important sex differences. Overall, many advances in our understanding of the effect of biologic sex on myocarditis and DCM have occurred over the past decade, but many gaps in our understanding remain. A better understanding of sex and gender effects are needed to develop disease-targeted and individualized medicine approaches in the future.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Nicolas Musigk
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melissa A. Lyle
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Immunophenotype and function of circulating myeloid derived suppressor cells in COVID-19 patients. Sci Rep 2022; 12:22570. [PMID: 36581679 PMCID: PMC9799710 DOI: 10.1038/s41598-022-26943-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
The pathogenesis of coronavirus disease 2019 (COVID-19) is not fully elucidated. COVID-19 is due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes severe illness and death in some people by causing immune dysregulation and blood T cell depletion. Increased numbers of myeloid-derived suppressor cells (MDSCs) play a diverse role in the pathogenesis of many infections and cancers but their function in COVID-19 remains unclear. To evaluate the function of MDSCs in relation with the severity of COVID-19. 26 PCR-confirmed COVID-19 patients including 12 moderate and 14 severe patients along with 11 healthy age- and sex-matched controls were enrolled. 10 ml whole blood was harvested for cell isolation, immunophenotyping and stimulation. The immunophenotype of MDSCs by flow cytometry and T cells proliferation in the presence of MDSCs was evaluated. Serum TGF-β was assessed by ELISA. High percentages of M-MDSCs in males and of P-MDSCs in female patients were found in severe and moderate affected patients. Isolated MDSCs of COVID-19 patients suppressed the proliferation and intracellular levels of IFN-γ in T cells despite significant suppression of T regulatory cells but up-regulation of precursor regulatory T cells. Serum analysis shows increased levels of TGF-β in severe patients compared to moderate and control subjects (HC) (P = 0.003, P < 0.0001, respectively). The frequency of MDSCs in blood shows higher frequency among both moderate and severe patients and may be considered as a predictive factor for disease severity. MDSCs may suppress T cell proliferation by releasing TGF-β.
Collapse
|
7
|
He B, Quan LP, Cai CY, Yu DY, Yan W, Wei QJ, Zhang Z, Huang XN, Liu L. Dysregulation and imbalance of innate and adaptive immunity are involved in the cardiomyopathy progression. Front Cardiovasc Med 2022; 9:973279. [PMID: 36148059 PMCID: PMC9485579 DOI: 10.3389/fcvm.2022.973279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCardiomyopathy is known to be a heterogeneous disease with numerous etiologies. They all have varying degrees and types of myocardial pathological changes, resulting in impaired contractility, ventricle relaxation, and heart failure. The purpose of this study was to determine the pathogenesis, immune-related pathways and important biomarkers engaged in the progression of cardiomyopathy from various etiologies.MethodsWe downloaded the gene microarray data from the Gene Expression Omnibus (GEO). The hub genes between cardiomyopathy and non-cardiomyopathy control groups were identified using differential expression analysis, least absolute shrinkage and selection operator (LASSO) regression and weighted gene co-expression network analysis (WGCNA). To assess the diagnostic precision of hub genes, receiver-operating characteristic (ROC) curves as well as the area under the ROC curve (AUC) were utilized. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis and Gene Ontology (GO) analysis were conducted on the obtained differential genes. Finally, single-sample GSEA (ssGSEA) and Gene Set Enrichment Analysis (GSEA) were utilized to analyze the infiltration level of 28 immune cells and their relationship with hub genes based on gene expression profile data and all differential gene files.ResultsA total of 82 differentially expressed genes (DEGs) were screened after the training datasets were merged and intersected. The WGCNA analysis clustered the expression profile data into four co-expression modules, The turquoise module exhibited the strongest relationship with clinical traits, and nine candidate key genes were obtained from the module. Then we intersected DEGs with nine candidate genes. LASSO regression analysis identified the last three hub genes as promising biomarkers to distinguish the cardiomyopathy group from the non-cardiomyopathy control group. ROC curve analysis in the validation dataset revealed the sensitivity and accuracy of three hub genes as marker genes. The majority of the functional enrichment analysis results were concentrated on immunological and inflammatory pathways. Immune infiltration analysis revealed a significant correlation between regulatory T cells, type I helper T cells, macrophages, myeloid-derived suppressor cells, natural killer cells, activated dendritic cells and the abundance of immune infiltration in hub genes.ConclusionThe hub genes (CD14, CCL2, and SERPINA3) can be used as markers to distinguish cardiomyopathy from non-cardiomyopathy individuals. Among them, SERPINA3 has the best diagnostic performance. T cell immunity (adaptive immune response) is closely linked to cardiomyopathy progression. Hub genes may protect the myocardium from injury through myeloid-derived suppressor cells, regulatory T cells, helper T cells, monocytes/macrophages, natural killer cells and activated dendritic cells. The innate immune response is crucial to this process. Dysregulation and imbalance of innate immune cells or activation of adaptive immune responses are involved in cardiomyopathy disease progression in patients.
Collapse
Affiliation(s)
- Bin He
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Li-Ping Quan
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Chun-Yu Cai
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Dian-You Yu
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Wei Yan
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qin-Jiang Wei
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhen Zhang
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xian-Nan Huang
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Li Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, College of Clinical Medicine, Youjiang Medical University for Nationalitie, Baise, China
- *Correspondence: Li Liu
| |
Collapse
|
8
|
Vanhaver C, van der Bruggen P, Bruger AM. MDSC in Mice and Men: Mechanisms of Immunosuppression in Cancer. J Clin Med 2021; 10:jcm10132872. [PMID: 34203451 PMCID: PMC8268873 DOI: 10.3390/jcm10132872] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand during pathological conditions in both humans and mice and their presence is linked to poor clinical outcomes for cancer patients. Studying MDSC immunosuppression is restricted by MDSCs’ rarity, short lifespan, heterogeneity, poor viability after freezing and the lack of MDSC-specific markers. In this review, we will compare identification and isolation strategies for human and murine MDSCs. We will also assess what direct and indirect immunosuppressive mechanisms have been attributed to MDSCs. While some immunosuppressive mechanisms are well-documented in mice, e.g., generation of ROS, direct evidence is still lacking in humans. In future, bulk or single-cell genomics could elucidate which phenotypic and functional phenotypes MDSCs adopt in particular microenvironments and help to identify potential targets for therapy.
Collapse
Affiliation(s)
- Christophe Vanhaver
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- Correspondence: (C.V.); (A.M.B.)
| | - Pierre van der Bruggen
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- WELBIO, Avenue Hippocrate 74, 1200 Brussels, Belgium
| | - Annika M. Bruger
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- Correspondence: (C.V.); (A.M.B.)
| |
Collapse
|
9
|
Müller I, Janson L, Sauter M, Pappritz K, Linthout SV, Tschöpe C, Klingel K. Myeloid-Derived Suppressor Cells Restrain Natural Killer Cell Activity in Acute Coxsackievirus B3-Induced Myocarditis. Viruses 2021; 13:v13050889. [PMID: 34065891 PMCID: PMC8151145 DOI: 10.3390/v13050889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Murine models of coxsackievirus B3 (CVB3)-induced myocarditis well represent the different outcomes of this inflammatory heart disease. Previously, we found that CVB3-infected A.BY/SnJ mice, susceptible for severe acute and chronic myocarditis, have lower natural killer (NK) cell levels than C57BL/6 mice, with mild acute myocarditis. There is evidence that myeloid-derived suppressor cells (MDSC) may inhibit NK cells, influencing the course of myocarditis. To investigate the MDSC/NK interrelationship in acute myocarditis, we used CVB3-infected A.BY/SnJ mice. Compared to non-infected mice, we found increased cell numbers of MDSC in the spleen and heart of CVB3-infected A.BY/SnJ mice. In parallel, S100A8 and S100A9 were increased in the heart, spleen, and especially in splenic MDSC cells compared to non-infected mice. In vitro experiments provided evidence that MDSC disrupt cytotoxic NK cell function upon co-culturing with MDSC. MDSC-specific depletion by an anti-Ly6G antibody led to a significant reduction in the virus load and injury in hearts of infected animals. The decreased cardiac damage in MDSC-depleted mice was associated with fewer Mac3+ macrophages and CD3+ T lymphocytes and a reduced cardiac expression of S100A8, S100A9, IL-1β, IL-6, and TNF-α. In conclusion, impairment of functional NK cells by MDSC promotes the development of chronic CVB3 myocarditis in A.BY/SnJ mice.
Collapse
Affiliation(s)
- Irene Müller
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
| | - Lisa Janson
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (L.J.); (M.S.)
| | - Martina Sauter
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (L.J.); (M.S.)
| | - Kathleen Pappritz
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
| | - Carsten Tschöpe
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
- Department of Cardiology, Campus Virchow Clinic, Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (L.J.); (M.S.)
- Correspondence: ; Tel.: +49-7071-2980205
| |
Collapse
|
10
|
Ruohtula T, Kondrashova A, Lehtonen J, Oikarinen S, Hämäläinen AM, Niemelä O, Peet A, Tillmann V, Nieminen JK, Ilonen J, Knip M, Vaarala O, Hyöty H. Immunomodulatory Effects of Rhinovirus and Enterovirus Infections During the First Year of Life. Front Immunol 2021; 11:567046. [PMID: 33643278 PMCID: PMC7905218 DOI: 10.3389/fimmu.2020.567046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Early childhood infections have been implicated in the development of immune-mediated diseases, such as allergies, asthma, and type 1 diabetes. We set out to investigate the immunomodulatory effects of early viral infections experienced before the age of one year on the peripheral regulatory T cell population (Treg) and circulating cytokines in a birth-cohort study of Estonian and Finnish infants. We show here a temporal association of virus infection with the expression of FOXP3 in regulatory T cells. Infants with rhinovirus infection during the preceding 30 days had a higher FOXP3 expression in Treg cells and decreased levels of several cytokines related to Th1 and Th2 responses in comparison to the children without infections. In contrast, FOXP3 expression was significantly decreased in highly activated (CD4+CD127-/loCD25+FOXP3high) regulatory T cells (TregFOXP3high) in the infants who had enterovirus infection during the preceding 30 or 60 days. After enterovirus infections, the cytokine profile showed an upregulation of Th1- and Th17-related cytokines and a decreased activation of CCL22, which is a chemokine derived from dendritic cells and associated with Th2 deviation. Our results reveal that immunoregulatory mechanisms are up-regulated after rhinovirus infections, while enterovirus infections are associated with activation of proinflammatory pathways and decreased immune regulation.
Collapse
Affiliation(s)
| | - Anita Kondrashova
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi Lehtonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anu-Maaria Hämäläinen
- Department of Pediatrics, Jorvi Hospital, Helsinki University Hospital, Espoo, Finland
| | - Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of Tampere, Seinäjoki, Finland
| | - Aleksandr Peet
- Department of Pediatrics, University of Tartu and Tartu University Hospital, Tartu, Estonia
| | - Vallo Tillmann
- Department of Pediatrics, University of Tartu and Tartu University Hospital, Tartu, Estonia
| | - Janne K Nieminen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Outi Vaarala
- Clinicum, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | | |
Collapse
|
11
|
Zhang Y, Zheng Y, Shou L, Shi Y, Shen H, Zhu M, Ye X, Jin J, Xie W. Increased Serum Level of Interleukin-10 Predicts Poor Survival and Early Recurrence in Patients With Peripheral T-Cell Lymphomas. Front Oncol 2020; 10:584261. [PMID: 33154947 PMCID: PMC7590574 DOI: 10.3389/fonc.2020.584261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Peripheral T cell lymphoma (PTCL) is an alloplasm group of aggressive and lymphoproliferative tumors with heterogeneous morphological changes of mature T cell immunophenotype. It has multiple subtypes and most of them have poor prognosis. Interleukin 10 (IL-10) is one kind of multi-cell-derived and multifunctional cytokine. It regulates the growth and differentiation of cells, participates in inflammation and immune response, plays an important role in tumor and infection, and is closely related to blood system diseases. Therefore, we implemented a retrospective study of 205 patients who were newly diagnosed with PTCL to explore the relationship between IL-10 and prognosis and early recurrence. We found patients with IL-10 ≥3.6 pg/ml achieved a lower CR rate and higher 1-year recurrence rate than patients with IL-10 <3.6 pg/ml (14.4 vs. 51.9%; 17.6 vs. 49.5%). On multivariate analysis, moreover, elevated IL-10 is an extremely important prognostic factor in PTCL, which can lead to worsening of overall survival (OS), low complete response (CR) rate and higher early relapse rate. Therefore, measurement of IL-10 levels in peripheral blood at the initial stage are useful for predicting the prognosis and helping us to make different treatment plans for individual patients. In the near future, IL-10 inhibitors or antagonists may become a new method of immunotargeting therapy for patients with PTCL.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Hematology, Huzhou Central Hospital, Affiliated Cent Hospital of Huzhou University, Huzhou, China
| | - Yanlong Zheng
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Shou
- Department of Hematology, Huzhou Central Hospital, Affiliated Cent Hospital of Huzhou University, Huzhou, China
| | - Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huafei Shen
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingyu Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Meng Y, Sun T, Wu C, Dong C, Xiong S. Calpain regulates CVB3 induced viral myocarditis by promoting autophagic flux upon infection. Microbes Infect 2019; 22:46-54. [PMID: 31319178 DOI: 10.1016/j.micinf.2019.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/22/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022]
Abstract
Calpains are calcium-activated neutral cysteine proteases. The dysregulation of calpain activity has been found to be related to cardiovascular diseases, for which calpain inhibition is used as a treatment. Viral myocarditis (VMC) is primarily caused by Coxsackievirus group B3 virus infection (CVB3). CVB3 virus infection induces autophagy and hijacks this process to facilitate its replication. In this study, we found that calpain was significantly activated in hearts affected by VMC. However, pharmacologically inhibiting calpain aggravated VMC symptoms in mice due to myocardial inflammation and cardiac dysfunction. The inhibition of calpain activity in vitro led to the accumulation of LC3-II and increased levels of p62/SQSTM1 protein expression, suggesting that autophagic flux was impaired by calpain inhibition. These effects of calpain inhibition were also observed in capn4-specific myocardial knockout mice in vivo. Furthermore, our results provided evidence that calpain inhibition in VMC, unlike other cardiovascular diseases, exacerbated the disease symptom by impairing CVB3-induced autophagic flux, which may subsequently reduce virus autolysosome degradation. Our findings indicated that calpain inhibition may not be a good treatment for VMC disease in a clinical setting.
Collapse
Affiliation(s)
- Yawen Meng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Tianle Sun
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Chuanjian Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
13
|
Immunostimulatory functions of adoptively transferred MDSCs in experimental blunt chest trauma. Sci Rep 2019; 9:7992. [PMID: 31142770 PMCID: PMC6541619 DOI: 10.1038/s41598-019-44419-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/14/2019] [Indexed: 01/15/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand during inflammation and exhibit immunomodulatory functions on innate and adaptive immunity. However, their impact on trauma-induced immune responses, characterized by an early pro-inflammatory phase and dysregulated adaptive immunity involving lymphocyte apoptosis, exhaustion and unresponsiveness is less clear. Therefore, we adoptively transferred in vitro-generated MDSCs shortly before experimental blunt chest trauma (TxT). MDSCs preferentially homed into spleen and liver, but were undetectable in the injured lung, although pro-inflammatory mediators transiently increased in the bronchoalveolar lavage (BAL). Surprisingly, MDSC treatment strongly increased splenocyte numbers, however, without altering the percentage of splenic leukocyte populations. T cells of MDSC-treated TxT mice exhibited an activated phenotype characterized by expression of activation markers and elevated proliferative capacity in vitro, which was not accompanied by up-regulated exhaustion markers or unresponsiveness towards in vitro activation. Most importantly, also T cell expansion after staphylococcal enterotoxin B (SEB) stimulation in vivo was unchanged between MDSC-treated or untreated mice. After MDSC transfer, T cells preferentially exhibited a Th1 phenotype, a prerequisite to circumvent post-traumatic infectious complications. Our findings reveal a totally unexpected immunostimulatory role of adoptively transferred MDSCs in TxT and might offer options to interfere with post-traumatic malfunction of the adaptive immune response.
Collapse
|
14
|
De-Pu Z, Li-Sha G, Guang-Yi C, Xiaohong G, Chao X, Cheng Z, Wen-Wu Z, Jia L, Jia-Feng L, Maoping C, Yue-Chun L. The cholinergic anti-inflammatory pathway ameliorates acute viral myocarditis in mice by regulating CD4 + T cell differentiation. Virulence 2019; 9:1364-1376. [PMID: 30176160 PMCID: PMC6141146 DOI: 10.1080/21505594.2018.1482179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many studies have found that abnormalities in the proportion and differentiation of CD4+ T cells (Th cells) are closely related to the pathogenesis of viral myocarditis (VMC). Our previous research indicates that the cholinergic anti-inflammatory pathway (CAP) attenuates the inflammatory response of VMC and downregulates the expression of cytokines in Th1 and Th17 cells. This suggests that the cholinergic anti-inflammatory pathway likely attenuates the inflammatory response in VMC by altering Th cell differentiation. The aim of this study is to investigate the effect of CAP on CD4+ T cell differentiation in VMC mice. CD4+ T cells in the spleen of VMC mice were obtained and cultured in the presence of nicotine or methyllycaconitine (MLA). Cells were harvested and analyzed for the percentage of each Th cell subset by flow cytometry and transcription factor release by Western blot. Then, we detected the effect of CAP on the differentiation of Th cells in vivo. Nicotine or MLA was used to activate and block CAP, respectively, in acute virus-induced myocarditis. Nicotine treatment increased the proportion of Th2 and Treg cells, decreased the proportion of Th1 and Th17 cells in the spleen, reduced the level of proinflammatory cytokines, and attenuated the severity of myocardium lesions and cellular infiltration in viral myocarditis. MLA administration had the opposite effect. Our result demonstrated that CAP effectively protects the myocardium from virus infection, which may be attributable to the regulation of Th cell differentiation.
Collapse
Affiliation(s)
- Zhou De-Pu
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Ge Li-Sha
- b Department of Pediatric Emergency , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Chen Guang-Yi
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Gu Xiaohong
- c Children's Heart Center and Department of Pediatrics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xing Chao
- d Department of Clinical Laboratory , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zheng Cheng
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zhang Wen-Wu
- e Department of Intensive Care Unit , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Li Jia
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Lin Jia-Feng
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Chu Maoping
- c Children's Heart Center and Department of Pediatrics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Li Yue-Chun
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
15
|
Bruger AM, Dorhoi A, Esendagli G, Barczyk-Kahlert K, van der Bruggen P, Lipoldova M, Perecko T, Santibanez J, Saraiva M, Van Ginderachter JA, Brandau S. How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunol Immunother 2019; 68:631-644. [PMID: 29785656 PMCID: PMC11028070 DOI: 10.1007/s00262-018-2170-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of mononuclear and polymorphonuclear myeloid cells, which are present at very low numbers in healthy subjects, but can expand substantially under disease conditions. Depending on disease type and stage, MDSC comprise varying amounts of immature and mature differentiation stages of myeloid cells. Validated unique phenotypic markers for MDSC are still lacking. Therefore, the functional analysis of these cells is of central importance for their identification and characterization. Various disease-promoting and immunosuppressive functions of MDSC are reported in the literature. Among those, the capacity to modulate the activity of T cells is by far the most often used and best-established read-out system. In this review, we critically evaluate the assays available for the functional analysis of human and murine MDSC under in vitro and in vivo conditions. We also discuss critical issues and controls associated with those assays. We aim at providing suggestions and recommendations useful for the contemporary biological characterization of MDSC.
Collapse
Affiliation(s)
- Annika M Bruger
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, 1200, Brussels, Belgium
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany and Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | | | - Pierre van der Bruggen
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, 1200, Brussels, Belgium
| | - Marie Lipoldova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics AS CR, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Tomas Perecko
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovak Republic
| | - Juan Santibanez
- Molecular Oncology group, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Jo A Van Ginderachter
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
16
|
Wang T, Chen S, Wang X, Huang Y, Qiu J, Fei Y, Chaulagain A, Chen Y, Wang Y, Lin L, Yan B, Wang Y, Wang W, Zhao W, Zhong Z. Aberrant PD-1 ligand expression contributes to the myocardial inflammatory injury caused by Coxsackievirus B infection. Antiviral Res 2019; 166:1-10. [PMID: 30904424 DOI: 10.1016/j.antiviral.2019.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/16/2022]
Abstract
Coxsackievirus group B (CVB) is considered as one of the most common pathogens of human viral myocarditis. CVB-induced myocarditis is mainly characterized by the persistence of the virus infection and immune-mediated inflammatory injury. Costimulatory signals are crucial for the activation of adaptive immunity. Our data reveal that the CVB type 3 (CVB3) infection altered the expression profile of costimulatory molecules in host cells. CVB3 infection caused the decrease of PD-1 ligand expression, partially due to the cleavage of AU-rich element binding protein AUF1 by the viral protease 3Cpro, leading to the exacerbated inflammatory injury of the myocardium. Moreover, systemic PD-L1 treatment, which augmented the apoptosis of proliferating lymphocytes, alleviated myocardial inflammatory injury. Our findings suggest that PD1-pathway can be a potential immunologic therapeutic target for CVB-induced myocarditis.
Collapse
Affiliation(s)
- Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Shuang Chen
- Department of Immunology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Xueqing Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Yike Huang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Jianfa Qiu
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Yanru Fei
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Anita Chaulagain
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Biying Yan
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Ying Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin, China.
| |
Collapse
|
17
|
Regulatory Role of CD4 + T Cells in Myocarditis. J Immunol Res 2018; 2018:4396351. [PMID: 30035131 PMCID: PMC6032977 DOI: 10.1155/2018/4396351] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Myocarditis is an important cause of heart failure in young patients. Autoreactive, most often, infection-triggered CD4+ T cells were confirmed to be critical for myocarditis induction. Due to a defect in clonal deletion of heart-reactive CD4+ T cells in the thymus of mice and humans, significant numbers of heart-specific autoreactive CD4+ T cells circulate in the blood. Normally, regulatory T cells maintain peripheral tolerance and prevent spontaneous myocarditis development. In the presence of tissue damage and innate immune activation, however, activated self-antigen-loaded dendritic cells promote CD4+ effector T cell expansion and myocarditis. So far, a direct pathogenic role has been described for both activated Th17 and Th1 effector CD4+ T cell subsets, though Th1 effector T cell-derived interferon-gamma was shown to limit myocarditis severity and prevent transition to inflammatory dilated cardiomyopathy. Interestingly, recent observations point out that various CD4+ T cell subsets demonstrate high plasticity in maintaining immune homeostasis and modulating disease phenotypes in myocarditis. These subsets include Th1 and Th17 effector cells and regulatory T cells, despite the fact that there are still sparse and controversial data on the specific role of FOXP3-expressing Treg in myocarditis. Understanding the specific roles of these T cell populations at different stages of the disease progression might provide a key for the development of successful therapeutic strategies.
Collapse
|
18
|
Zhou N, Yue Y, Xiong S. Sex Hormone Contributes to Sexually Dimorphic Susceptibility in CVB3-Induced Viral Myocarditis via Modulating IFN-γ + NK Cell Production. Can J Cardiol 2018; 34:492-501. [DOI: 10.1016/j.cjca.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
|
19
|
Sanmarco LM, Eberhardt N, Ponce NE, Cano RC, Bonacci G, Aoki MP. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases. Front Immunol 2018; 8:1921. [PMID: 29375564 PMCID: PMC5767236 DOI: 10.3389/fimmu.2017.01921] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies.
Collapse
Affiliation(s)
- Liliana Maria Sanmarco
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Nicolás Eric Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Católica de Córdoba, Unidad Asociada Área Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la Salud, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Gustavo Bonacci
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Maria Pilar Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| |
Collapse
|
20
|
Wu X, Meng Y, Wang C, Yue Y, Dong C, Xiong S. Semaphorin7A aggravates coxsackievirusB3-induced viral myocarditis by increasing α1β1-integrin macrophages and subsequent enhanced inflammatory response. J Mol Cell Cardiol 2018; 114:48-57. [DOI: 10.1016/j.yjmcc.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022]
|
21
|
Koenig A, Buskiewicz I, Huber SA. Age-Associated Changes in Estrogen Receptor Ratios Correlate with Increased Female Susceptibility to Coxsackievirus B3-Induced Myocarditis. Front Immunol 2017; 8:1585. [PMID: 29201031 PMCID: PMC5696718 DOI: 10.3389/fimmu.2017.01585] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023] Open
Abstract
Sexual bias is a hallmark in various diseases. This review evaluates sexual dimorphism in clinical and experimental coxsackievirus B3 (CVB3) myocarditis, and how sex bias in the experimental disease changes with increased age. Coxsackieviruses are major causes of viral myocarditis, an inflammation of the heart muscle, which is more frequent and severe in men than women. Young male mice infected with CVB3 develop heart-specific autoimmunity and severe myocarditis. Females infected during estrus (high estradiol) develop T-regulatory cells and when infected during diestrus (low estradiol) develop autoimmunity similar to males. During estrus, protection depends on estrogen receptor alpha (ERα), which promotes type I interferon, activation of natural killer/natural killer T cells and suppressor cell responses. Estrogen receptor beta has opposing effects to ERα and supports pro-inflammatory immunity. However, the sexual dimorphism of the disease is significantly ameliorated in aged animals when old females become as susceptible as males. This correlates to a selective loss of the ERα that is required for immunosuppression. Therefore, sex-associated hormones control susceptibility in the virus-mediated disease, but their impact can alter with the age and physiological stage of the individual.
Collapse
Affiliation(s)
- Andreas Koenig
- Department of Pathology, University of Vermont, Burlington, VT, United States
| | - Iwona Buskiewicz
- Department of Pathology, University of Vermont, Burlington, VT, United States
| | - Sally A Huber
- Department of Pathology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
22
|
Expansion of CD11b +Ly-6C + myeloid-derived suppressor cells (MDSCs) driven by galectin-9 attenuates CVB3-induced myocarditis. Mol Immunol 2017; 83:62-71. [PMID: 28110209 DOI: 10.1016/j.molimm.2017.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/31/2022]
Abstract
Galectin-9 is known to play a role in the modulation of innate and adaptive immunity to ameliorate CVB3-induced myocarditis. In the present study, we found that galectin-9 induced the expansion of CD11b+Ly-6C+ myeloid-derived suppressor cells (MDSCs) in the heart from CVB3-infected mice. Adoptive transfer of CD11b+Ly-6C+ MDSCs significantly alleviated myocarditis accompanied by increased Th2 and Treg frequency and anti-inflammatory cytokines expression in the heart tissue. Moreover, Ly6C+ MDSCs, but not Ly6G+ cells, expressed Arg-1 and NOS2, and suppressed CD4+ T cell proliferation in vitro in an Arg-1-dependent mechanism; an event that was reversed with treatment of either an Arg-1 inhibitor or addition of excess l-arginine. Furthermore, Ly6C+ MDSCs co-expressed higher levels of F4/80, Tim-3, and IL-4Rα, and had the plasticity to up-regulate NOS2 or Arg-1 in response to IFN-γ or IL-4 treatment. The present results indicate that galectin-9 expands CD11b+Ly-6C+ MDSCs to ameliorate CVB3-induced myocarditis.
Collapse
|
23
|
Niu L, Li C, Wang Z, Xu H, An X. Effects of the MAPK pathway and the expression of CAR in a murine model of viral myocarditis. Exp Ther Med 2016; 13:230-234. [PMID: 28123495 PMCID: PMC5244858 DOI: 10.3892/etm.2016.3909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/08/2016] [Indexed: 11/06/2022] Open
Abstract
The pathogenesis of viral myocarditis (VMC) is not fully understood. This study aimed to examine the relationship between coxsackie-adenovirus receptor (CAR) and the p38 mitogen activated protein kinase (MAPK) pathway mechanisms in a mouse model. Three groups of mice were established: 5 mice in a control group injected with saline, 15 in the model group injected with coxsackie virus B3 (CVB) and 15 in the intervention group injected with CVB3 but treated with the p38 MAPK inhibitor SB203580. Mice were sacrificed at days 1, 5, 10, 15 and 30 and cardiac tissues were isolated to perform the tests. Quantitative PCR and western blot analysis showed CAR mRNA and protein expression levels were highest in the model group at all time-points (P<0.05). The expression levels of p38 MAPK protein by western blot analysis at days 1, 5 and 10 were obviously higher in the model group (P>0.05). H&E staining used to observe myocardial pathological changes showed the inflammatory infiltration was also higher in the model group at all the time-points (P<0.05). Our results show a direct relationship between CAR and p38 MAPK levels, and since the p38 MAPK inhibitor treatment resulted in reduced levels of CAR as well as lower inflammatory infiltration, it is possible that the signaling pathway may mediate CAR expression during the pathogenesis of VMC.
Collapse
Affiliation(s)
- Ling Niu
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Chunli Li
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenzhou Wang
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Hui Xu
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Xinjiang An
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
24
|
Neutrophils and Granulocytic MDSC: The Janus God of Cancer Immunotherapy. Vaccines (Basel) 2016; 4:vaccines4030031. [PMID: 27618112 PMCID: PMC5041025 DOI: 10.3390/vaccines4030031] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are the most abundant circulating blood cell type in humans, and are the first white blood cells recruited at the inflammation site where they orchestrate the initial immune response. Although their presence at the tumor site was recognized in the 1970s, until recently these cells have been neglected and considered to play just a neutral role in tumor progression. Indeed, in recent years neutrophils have been recognized to play a dual role in tumor development by either assisting the growth, angiogenesis, invasion, and metastasis or by exerting tumoricidal action directly via the secretion of antitumoral compounds, or indirectly via the orchestration of antitumor immunity. Understanding the biology of these cells and influencing their polarization in the tumor micro- and macro-environment may be the key for the development of new therapeutic strategies, which may finally hold the promise of an effective immunotherapy for cancer.
Collapse
|