1
|
Hristov BH, Noble WS, Bertero A. Systematic identification of interchromosomal interaction networks supports the existence of specialized RNA factories. Genome Res 2024; 34:1610-1623. [PMID: 39322282 PMCID: PMC11529845 DOI: 10.1101/gr.278327.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Most studies of genome organization have focused on intrachromosomal (cis) contacts because they harbor key features such as DNA loops and topologically associating domains. Interchromosomal (trans) contacts have received much less attention, and tools for interrogating potential biologically relevant trans structures are lacking. Here, we develop a computational framework that uses Hi-C data to identify sets of loci that jointly interact in trans This method, trans-C, initiates probabilistic random walks with restarts from a set of seed loci to traverse an input Hi-C contact network, thereby identifying sets of trans-contacting loci. We validate trans-C in three increasingly complex models of established trans contacts: the Plasmodium falciparum var genes, the mouse olfactory receptor "Greek islands," and the human RBM20 cardiac splicing factory. We then apply trans-C to systematically test the hypothesis that genes coregulated by the same trans-acting element (i.e., a transcription or splicing factor) colocalize in three dimensions to form "RNA factories" that maximize the efficiency and accuracy of RNA biogenesis. We find that many loci with multiple binding sites of the same DNA-binding proteins interact with one another in trans, especially those bound by factors with intrinsically disordered domains. Similarly, clustered binding of a subset of RNA-binding proteins correlates with trans interaction of the encoding loci. We observe that these trans-interacting loci are close to nuclear speckles. These findings support the existence of trans- interacting chromatin domains (TIDs) driven by RNA biogenesis. Trans-C provides an efficient computational framework for studying these and other types of trans interactions, empowering studies of a poorly understood aspect of genome architecture.
Collapse
Affiliation(s)
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center "Guido Tarone," Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| |
Collapse
|
2
|
Saito K, Shigetomi E, Shinozaki Y, Kobayashi K, Parajuli B, Kubota Y, Sakai K, Miyakawa M, Horiuchi H, Nabekura J, Koizumi S. Microglia sense astrocyte dysfunction and prevent disease progression in an Alexander disease model. Brain 2024; 147:698-716. [PMID: 37955589 PMCID: PMC10834242 DOI: 10.1093/brain/awad358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Alexander disease (AxD) is an intractable neurodegenerative disorder caused by GFAP mutations. It is a primary astrocyte disease with a pathological hallmark of Rosenthal fibres within astrocytes. AxD astrocytes show several abnormal phenotypes. Our previous study showed that AxD astrocytes in model mice exhibit aberrant Ca2+ signals that induce AxD aetiology. Here, we show that microglia have unique phenotypes with morphological and functional alterations, which are related to the pathogenesis of AxD. Immunohistochemical studies of 60TM mice (AxD model) showed that AxD microglia exhibited highly ramified morphology. Functional changes in microglia were assessed by Ca2+ imaging using hippocampal brain slices from Iba1-GCaMP6-60TM mice and two-photon microscopy. We found that AxD microglia showed aberrant Ca2+ signals, with high frequency Ca2+ signals in both the processes and cell bodies. These microglial Ca2+ signals were inhibited by pharmacological blockade or genetic knockdown of P2Y12 receptors but not by tetrodotoxin, indicating that these signals are independent of neuronal activity but dependent on extracellular ATP from non-neuronal cells. Our single-cell RNA sequencing data showed that the expression level of Entpd2, an astrocyte-specific gene encoding the ATP-degrading enzyme NTPDase2, was lower in AxD astrocytes than in wild-type astrocytes. In situ ATP imaging using the adeno-associated virus vector GfaABC1D ATP1.0 showed that exogenously applied ATP was present longer in 60TM mice than in wild-type mice. Thus, the increased ATP level caused by the decrease in its metabolizing enzyme in astrocytes could be responsible for the enhancement of microglial Ca2+ signals. To determine whether these P2Y12 receptor-mediated Ca2+ signals in AxD microglia play a significant role in the pathological mechanism, a P2Y12 receptor antagonist, clopidogrel, was administered. Clopidogrel significantly exacerbated pathological markers in AxD model mice and attenuated the morphological features of microglia, suggesting that microglia play a protective role against AxD pathology via P2Y12 receptors. Taken together, we demonstrated that microglia sense AxD astrocyte dysfunction via P2Y12 receptors as an increase in extracellular ATP and alter their morphology and Ca2+ signalling, thereby protecting against AxD pathology. Although AxD is a primary astrocyte disease, our study may facilitate understanding of the role of microglia as a disease modifier, which may contribute to the clinical diversity of AxD.
Collapse
Affiliation(s)
- Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuto Kubota
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Miho Miyakawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
3
|
Characterization of Astrocytes in the Minocycline-Administered Mouse Photothrombotic Ischemic Stroke Model. Neurochem Res 2022; 47:2839-2855. [PMID: 35907114 DOI: 10.1007/s11064-022-03703-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 10/16/2022]
Abstract
Astrocytes, together with microglia, play important roles in the non-infectious inflammation and scar formation at the brain infarct during ischemic stroke. After ischemia occurs, these become highly reactive, accumulate at the infarction, and release various inflammatory signaling molecules. The regulation of astrocyte reactivity and function surrounding the infarction largely depends on intercellular communication with microglia. However, the mechanisms involved remain unclear. Furthermore, recent molecular biological studies have revealed that astrocytes are highly divergent under both resting and reactive states, whereas it has not been well reported how the communication between microglia and astrocytes affects astrocyte divergency during ischemic stroke. Minocycline, an antibiotic that reduces microglial activity, has been used to examine the functional roles of microglia in mice. In this study, we used a mouse photothrombotic ischemic stroke model to examine the characteristics of astrocytes after the administration of minocycline during ischemic stroke. Minocycline increased astrocyte reactivity and affected the localization of astrocytes in the penumbra region. Molecular characterization revealed that the induced expression of mRNA encoding the fatty acid binding protein 7 (FABP7) by photothrombosis was enhanced by the minocycline administration. Meanwhile, minocycline did not significantly affect the phenotype or class of astrocytes. The expression of Fabp7 mRNA was well correlated with that of tumor-necrosis factor α (TNFα)-encoding Tnf mRNA, indicating that a correlated expression of FABP7 from astrocytes and TNFα is suppressed by microglial activity.
Collapse
|
4
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System. Results Probl Cell Differ 2022; 70:419-442. [PMID: 36348117 DOI: 10.1007/978-3-031-06573-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurons and glial cells in the nervous system exhibit different gene expression programs for neural development and function. These programs are controlled by the epigenetic regulatory layers in the nucleus. The nucleus is a well-organized subcellular organelle that includes chromatin, the nuclear lamina, and nuclear bodies. These subnuclear components operate together as epigenetic regulators of neural development and function and are collectively called the nuclear architecture. In the nervous system, dynamic rearrangement of the nuclear architecture has been observed in each cell type, especially in neurons, allowing for their specialized functions, including learning and memory formation. Although the importance of nuclear architecture has been debated for decades, the paradigm has been changing rapidly, owing to the development of new technologies. Here, we reviewed the latest studies on nuclear geometry, nuclear bodies, and heterochromatin compartments, as well as summarized recent novel insights regarding radial positioning, chromatin condensation, and chromatin interaction between genes and cis-regulatory elements.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania, USA
| | - Takumi Takizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
5
|
Flagelli A, Candini O, Frabetti S, Dominici M, Giardino L, Calzà L, Baldassarro VA. A Novel Three-Dimensional Culture Device Favors a Myelinating Morphology of Neural Stem Cell-Derived Oligodendrocytes. Front Cell Dev Biol 2021; 9:759982. [PMID: 34660610 PMCID: PMC8517262 DOI: 10.3389/fcell.2021.759982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
The complexity of the central nervous system (CNS) requires researchers to consider all the variables linked to the interaction between the different cell inhabitants. On this basis, any in vitro study of the physiological and pathological processes regarding the CNS should consider the balance between the standardization of the assay and the complexity of the cellular system which mimics the in vivo microenvironment. One of the main structural and functional components of the CNS is the oligodendrocyte precursor cell (OPC), responsible for developmental myelination and myelin turnover and repair during adulthood following differentiation into mature oligodendrocytes. In the present brief research report, we describe a 3D culture tool (VITVO) based on an inert and biocompatible synthetic polymer material scaffold, functionalized with laminin coating, and tested as a new culture microenvironment for neural stem/precursor cell (NSPC) differentiation compared to standard 2D cultures. NSPCs spontaneously differentiate in the three neural lineages (neurons, astrocytes and OPCs), identified by specific markers, along the fibers in the 3D structure. Analysis of the mRNA levels for lineage differentiation markers reveals a higher expression compared to those seeded on a 2D surface, suggesting an acceleration of the differentiation process. We then focused on the oligodendroglial lineage, showing that in VITVO, mature oligodendrocytes exhibit a myelinating morphology, proven by 3D image elaboration, linked to a higher expression of mature oligodendrocyte markers. This preliminary study on an innovative 3D culture system is the first robust step in producing new microenvironment-based strategies to investigate in vitro OPC and oligodendrocyte biology.
Collapse
Affiliation(s)
- Alessandra Flagelli
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Bologna, Italy
| | | | | | - Massimo Dominici
- Rigenerand Srl, Modena, Italy.,Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy.,IRET Foundation, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Bologna, Italy.,Department of Pharmacy and BioTechnology, University of Bologna, Bologna, Italy.,Montecatone Rehabilitation Institute, Imola, Italy
| | - Vito Antonio Baldassarro
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Bologna, Italy.,Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Brookhouser N, Raman S, Frisch C, Srinivasan G, Brafman DA. APOE2 mitigates disease-related phenotypes in an isogenic hiPSC-based model of Alzheimer's disease. Mol Psychiatry 2021; 26:5715-5732. [PMID: 33837271 PMCID: PMC8501163 DOI: 10.1038/s41380-021-01076-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Genome-wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E gene (APOE) to be the most prominent risk factor for Alzheimer's disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces the lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. In this study, we utilize an isogenic human induced pluripotent stem cell (hiPSC)-based system to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aβ) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 are mediated by cell autonomous and non-autonomous effects. In particular, we demonstrated the reduction in Aβ is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of the protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.
Collapse
Affiliation(s)
- Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Carlye Frisch
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Franzese O, Di Francesco AM, Meco D, Graziani G, Cusano G, Levati L, Riccardi R, Ruggiero A. hTERT Transduction Extends the Lifespan of Primary Pediatric Low-Grade Glioma Cells While Preserving the Biological Response to NGF. Pathol Oncol Res 2021; 27:612375. [PMID: 34257579 PMCID: PMC8262147 DOI: 10.3389/pore.2021.612375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
The neurotrophin nerve growth factor (NGF) modulates the growth of human gliomas and is able to induce cell differentiation through the engagement of tropomyosin receptor kinase A (TrkA) receptor, although the role played in controlling glioma survival has proved controversial. Unfortunately, the slow growth rate of low-grade gliomas (LGG) has made it difficult to investigate NGF effects on these tumors in preclinical models. In fact, patient-derived low-grade human astrocytoma cells duplicate only a limited number of times in culture before undergoing senescence. Nevertheless, replicative senescence can be counteracted by overexpression of hTERT, the catalytic subunit of telomerase, which potentially increases the proliferative potential of human cells without inducing cancer-associated changes. We have extended, by hTERT transduction, the proliferative in vitro potential of a human LGG cell line derived from a pediatric pilocytic astrocytoma (PA) surgical sample. Remarkably, the hTERT-transduced LGG cells showed a behavior similar to that of the parental line in terms of biological responses to NGF treatment, including molecular events associated with induction of NGF-related differentiation. Therefore, transduction of LGG cells with hTERT can provide a valid approach to increase the in vitro life-span of patient-derived astrocytoma primary cultures, characterized by a finite proliferative potential.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angela M Di Francesco
- Institute of Internal Medicine, Periodic Fever and Rare Diseases Center, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Daniela Meco
- UOC di Oncologia Pediatrica, "Fondazione Policlinico Universitario A. Gemelli", IRCCS, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gabriella Cusano
- UOC di Oncologia Pediatrica, "Fondazione Policlinico Universitario A. Gemelli", IRCCS, Rome, Italy
| | | | - Riccardo Riccardi
- UOC di Oncologia Pediatrica, "Fondazione Policlinico Universitario A. Gemelli", IRCCS, Rome, Italy
| | - Antonio Ruggiero
- UOC di Oncologia Pediatrica, "Fondazione Policlinico Universitario A. Gemelli", IRCCS, Rome, Italy
| |
Collapse
|
8
|
Bertero A. RNA Biogenesis Instructs Functional Inter-Chromosomal Genome Architecture. Front Genet 2021; 12:645863. [PMID: 33732290 PMCID: PMC7957078 DOI: 10.3389/fgene.2021.645863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) genome organization has emerged as an important layer of gene regulation in development and disease. The functional properties of chromatin folding within individual chromosomes (i.e., intra-chromosomal or in cis) have been studied extensively. On the other hand, interactions across different chromosomes (i.e., inter-chromosomal or in trans) have received less attention, being often regarded as background noise or technical artifacts. This viewpoint has been challenged by emerging evidence of functional relationships between specific trans chromatin interactions and epigenetic control, transcription, and splicing. Therefore, it is an intriguing possibility that the key processes involved in the biogenesis of RNAs may both shape and be in turn influenced by inter-chromosomal genome architecture. Here I present the rationale behind this hypothesis, and discuss a potential experimental framework aimed at its formal testing. I present a specific example in the cardiac myocyte, a well-studied post-mitotic cell whose development and response to stress are associated with marked rearrangements of chromatin topology both in cis and in trans. I argue that RNA polymerase II clusters (i.e., transcription factories) and foci of the cardiac-specific splicing regulator RBM20 (i.e., splicing factories) exemplify the existence of trans-interacting chromatin domains (TIDs) with important roles in cellular homeostasis. Overall, I propose that inter-molecular 3D proximity between co-regulated nucleic acids may be a pervasive functional mechanism in biology.
Collapse
Affiliation(s)
- Alessandro Bertero
- Department of Laboratory Medicine and Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Trombetta-Lima M, Assis-Ribas T, Cintra RC, Campeiro JD, Guerreiro JR, Winnischofer SMB, Nascimento ICC, Ulrich H, Hayashi MAF, Sogayar MC. Impact of Reck expression and promoter activity in neuronal in vitro differentiation. Mol Biol Rep 2021; 48:1985-1994. [PMID: 33619662 DOI: 10.1007/s11033-021-06175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Reck (REversion-inducing Cysteine-rich protein with Kazal motifs) tumor suppressor gene encodes a multifunctional glycoprotein which inhibits the activity of several matrix metalloproteinases (MMPs), and has the ability to modulate the Notch and canonical Wnt pathways. Reck-deficient neuro-progenitor cells undergo precocious differentiation; however, modulation of Reck expression during progression of the neuronal differentiation process is yet to be characterized. In the present study, we demonstrate that Reck expression levels are increased during in vitro neuronal differentiation of PC12 pheochromocytoma cells and P19 murine teratocarcinoma cells and characterize mouse Reck promoter activity during this process. Increased Reck promoter activity was found upon induction of differentiation in PC12 cells, in accordance with its increased mRNA expression levels in mouse in vitro models. Interestingly, Reck overexpression, prior to the beginning of the differentiation protocol, led to diminished efficiency of the neuronal differentiation process. Taken together, our findings suggest that increased Reck expression at early stages of differentiation diminishes the number of neuron-like cells, which are positive for the beta-3 tubulin marker. Our data highlight the importance of Reck expression evaluation to optimize in vitro neuronal differentiation protocols.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Thais Assis-Ribas
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Ricardo C Cintra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil
| | - Juliano R Guerreiro
- Faculdade de Farmácia, Universidade Paulista (UNIP), São Paulo, SP, 05347-020, Brazil
| | - Sheila M B Winnischofer
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
| | - Isis C C Nascimento
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil.
| | - Mari C Sogayar
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil.
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
10
|
Khlghatyan J, Quintana C, Parent M, Beaulieu JM. High Sensitivity Mapping of Cortical Dopamine D2 Receptor Expressing Neurons. Cereb Cortex 2020; 29:3813-3827. [PMID: 30295716 DOI: 10.1093/cercor/bhy261] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Cortical D2 dopamine receptor (Drd2) have mostly been examined in the context of cognitive function regulation and neurotransmission modulation of medial prefrontal cortex by principal neurons and parvalbumin positive, fast-spiking, interneurons in schizophrenia. Early studies suggested the presence of D2 receptors in several cortical areas, albeit with major technical limitations. We used combinations of transgenic reporter systems, recombinase activated viral vectors, quantitative translatome analysis, and high sensitivity in situ hybridization to identify D2 receptor expressing cells and establish a map of their respective projections. Our results identified previously uncharacterized clusters of D2 expressing neurons in limbic and sensory regions of the adult mouse brain cortex. Characterization of these clusters by translatome analysis and cell type specific labeling revealed highly heterogeneous expression of D2 receptors in principal neurons and various populations of interneurons across cortical areas. Transcript enrichment analysis also demonstrated variable levels of D2 receptor expression and several orphan G-protein-coupled receptors coexpression in different neuronal clusters, thus suggesting strategies for genetic and therapeutic targeting of D2 expressing neurons in specific cortical areas. These results pave the way for a thorough re-examination of cortical D2 receptor functions, which could provide information about neuronal circuits involved in psychotic and mood disorders.
Collapse
Affiliation(s)
- Jivan Khlghatyan
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec-City, Quebec, Canada
| | - Clémentine Quintana
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec-City, Quebec, Canada
| | - Jean-Martin Beaulieu
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec-City, Quebec, Canada
| |
Collapse
|
11
|
Heithoff BP, George KK, Phares AN, Zuidhoek IA, Munoz-Ballester C, Robel S. Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. Glia 2020; 69:436-472. [PMID: 32955153 DOI: 10.1002/glia.23908] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/22/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
In the adult brain, multiple cell types are known to produce factors that regulate blood-brain barrier (BBB) properties, including astrocytes. Yet several recent studies disputed a role for mature astrocytes at the BBB. To determine if astrocytes contribute a nonredundant and necessary function in maintaining the adult BBB, we used a mouse model of tamoxifen-inducible astrocyte ablation. In adult mice, tamoxifen induction caused sparse apoptotic astrocyte cell death within 2 hr. Indicative of BBB damage, leakage of the small molecule Cadaverine, and the large plasma protein fibrinogen into the brain parenchyma indicative of BBB damage was detected as early as astrocyte ablation was present. Vessels within and close to regions of astrocyte loss had lower expression of the tight junction protein zonula occludens-1 while endothelial glucose transporter 1 expression was undisturbed. Cadaverine leakage persisted for several weeks suggesting a lack of barrier repair. This is consistent with the finding that ablated astrocytes were not replaced. Adjacent astrocytes responded with partial nonproliferative astrogliosis, characterized by morphological changes and delayed phosphorylation of STAT3, which restricted dye leakage to the brain and vessel surface areas lacking coverage by astrocytes 1 month after ablation. In conclusion, astrocytes are necessary to maintain BBB integrity in the adult brain. BBB-regulating factors secreted by other cell types, such as pericytes, are not sufficient to compensate for astrocyte loss.
Collapse
Affiliation(s)
- Benjamin P Heithoff
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Kijana K George
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, Virginia, USA
| | - Aubrey N Phares
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.,School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| | - Ivan A Zuidhoek
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, Virginia, USA
| | | | - Stefanie Robel
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.,School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
12
|
Li D, Liu X, Liu T, Liu H, Tong L, Jia S, Wang YF. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia 2019; 68:878-897. [PMID: 31626364 DOI: 10.1002/glia.23734] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Li Tong
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Weber-Adrian D, Kofoed RH, Chan JWY, Silburt J, Noroozian Z, Kügler S, Hynynen K, Aubert I. Strategy to enhance transgene expression in proximity of amyloid plaques in a mouse model of Alzheimer's disease. Theranostics 2019; 9:8127-8137. [PMID: 31754385 PMCID: PMC6857057 DOI: 10.7150/thno.36718] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Gene therapy can be designed to efficiently counter pathological features characteristic of neurodegenerative disorders. Here, we took advantage of the glial fibrillary acidic protein (GFAP) promoter to preferentially enhance transgene expression near plaques composed of amyloid-beta peptides (Aβ), a hallmark of Alzheimer's disease (AD), in the TgCRND8 mouse model of amyloidosis. Methods: The delivery of intravenously injected recombinant adeno-associated virus mosaic serotype 1/2 (rAAV1/2) to the cortex and hippocampus of TgCRND8 mice was facilitated using transcranial MRI-guided focused ultrasound in combination with microbubbles (MRIgFUS), which transiently and locally increases the permeability of the blood-brain barrier (BBB). rAAV1/2 expression of the reporter green fluorescent protein (GFP) under a GFAP promoter was compared to GFP expression driven by the constitutive human beta actin (HBA) promoter. Results: MRIgFUS targeting the cortex and hippocampus facilitated the entry of rAAV1/2 and GFP expression under the GFAP promoter was localized to GFAP-positive astrocytes. Adjacent to Aβ plaques where GFAP is upregulated, the volume, surface area, and fluorescence intensity of the transgene GFP were greater in rAAV1/2-GFAP-GFP compared to rAAV1/2-HBA-GFP treated animals. In peripheral organs, GFP expression was particularly strong in the liver, irrespective of the promoter. Conclusion: The GFAP promoter enhanced transgene expression in proximity of Aβ plaques in the brain of TgCRND8 mice, and it also resulted in significant expression in the liver. Future gene therapies for neurological disorders could benefit from using a GFAP promoter to regulate transgene expression in response to disease-induced astrocytic reactivity.
Collapse
Affiliation(s)
- Danielle Weber-Adrian
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Rikke Hahn Kofoed
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Josephine Wing Yee Chan
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Joseph Silburt
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Zeinab Noroozian
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Sebastian Kügler
- Department of Neurology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
14
|
Pinto JP, Machado RSR, Magno R, Oliveira DV, Machado S, Andrade RP, Bragança J, Duarte I, Futschik ME. StemMapper: a curated gene expression database for stem cell lineage analysis. Nucleic Acids Res 2019; 46:D788-D793. [PMID: 29045725 PMCID: PMC5753294 DOI: 10.1093/nar/gkx921] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Transcriptomic data have become a fundamental resource for stem cell (SC) biologists as well as for a wider research audience studying SC-related processes such as aging, embryonic development and prevalent diseases including cancer, diabetes and neurodegenerative diseases. Access and analysis of the growing amount of freely available transcriptomics datasets for SCs, however, are not trivial tasks. Here, we present StemMapper, a manually curated gene expression database and comprehensive resource for SC research, built on integrated data for different lineages of human and mouse SCs. It is based on careful selection, standardized processing and stringent quality control of relevant transcriptomics datasets to minimize artefacts, and includes currently over 960 transcriptomes covering a broad range of SC types. Each of the integrated datasets was individually inspected and manually curated. StemMapper's user-friendly interface enables fast querying, comparison, and interactive visualization of quality-controlled SC gene expression data in a comprehensive manner. A proof-of-principle analysis discovering novel putative astrocyte/neural SC lineage markers exemplifies the utility of the integrated data resource. We believe that StemMapper can open the way for new insights and advances in SC research by greatly simplifying the access and analysis of SC transcriptomic data. StemMapper is freely accessible at http://stemmapper.sysbiolab.eu.
Collapse
Affiliation(s)
- José P Pinto
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Universidade do Algarve, Faro, 8005-139, Portugal.,Center for Biomedical Research (CBMR), Universidade do Algarve, Faro, 8005-139, Portugal
| | - Rui S R Machado
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Universidade do Algarve, Faro, 8005-139, Portugal.,Center for Biomedical Research (CBMR), Universidade do Algarve, Faro, 8005-139, Portugal
| | - Ramiro Magno
- Center for Biomedical Research (CBMR), Universidade do Algarve, Faro, 8005-139, Portugal.,Algarve Biomedical Center (ABC), Campus Gambelas, Ed. 2 - Ala Norte 8005-139, Faro, Portugal
| | - Daniel V Oliveira
- Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm 14157, Sweden
| | - Susana Machado
- Center for Biomedical Research (CBMR), Universidade do Algarve, Faro, 8005-139, Portugal.,Algarve Biomedical Center (ABC), Campus Gambelas, Ed. 2 - Ala Norte 8005-139, Faro, Portugal
| | - Raquel P Andrade
- Center for Biomedical Research (CBMR), Universidade do Algarve, Faro, 8005-139, Portugal.,Algarve Biomedical Center (ABC), Campus Gambelas, Ed. 2 - Ala Norte 8005-139, Faro, Portugal.,Department of Medicine and Biomedical Sciences, Universidade do Algarve 8005-139, Faro, Portugal
| | - José Bragança
- Center for Biomedical Research (CBMR), Universidade do Algarve, Faro, 8005-139, Portugal.,Algarve Biomedical Center (ABC), Campus Gambelas, Ed. 2 - Ala Norte 8005-139, Faro, Portugal.,Department of Medicine and Biomedical Sciences, Universidade do Algarve 8005-139, Faro, Portugal
| | - Isabel Duarte
- Center for Biomedical Research (CBMR), Universidade do Algarve, Faro, 8005-139, Portugal.,Algarve Biomedical Center (ABC), Campus Gambelas, Ed. 2 - Ala Norte 8005-139, Faro, Portugal
| | - Matthias E Futschik
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Universidade do Algarve, Faro, 8005-139, Portugal.,Center for Biomedical Research (CBMR), Universidade do Algarve, Faro, 8005-139, Portugal.,Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro 8005-139, Portugal.,School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon PL4 8AA, UK
| |
Collapse
|
15
|
Brookes E, Riccio A. Location, location, location: nuclear structure regulates gene expression in neurons. Curr Opin Neurobiol 2019; 59:16-25. [PMID: 31005709 DOI: 10.1016/j.conb.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 12/27/2022]
Abstract
Genome architecture plays a critical role in regulating the expression of genes that are essential for nervous system development. During neuronal differentiation, spatially and temporally regulated transcription allows neuronal migration, the growth of dendrites and axons, and at later stages, synaptic formation and the establishment of neuronal circuitry. Genome topology and relocation of gene loci within the nucleus are now regarded as key factors that contribute to transcriptional regulation. Here, we review recent work supporting the hypothesis that the dynamic organization of chromatin within the nucleus impacts gene activation in response to extrinsic signalling and during neuronal differentiation. The consequences of disruption of the genome architecture on neuronal health will be also discussed.
Collapse
Affiliation(s)
- Emily Brookes
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Antonella Riccio
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System: Development, Function, and Neurodevelopmental Diseases. Front Genet 2018; 9:308. [PMID: 30127803 PMCID: PMC6087739 DOI: 10.3389/fgene.2018.00308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Decades of study have shown that epigenetic regulation plays an important role in neural development and function. Several layers of epigenetic mechanisms control functions of the eukaryotic cell nucleus, a well-organized subcellular organelle with distinct compartments: chromatin, its related architectural proteins, and nuclear bodies. As these components function together in the epigenetic regulation of cellular development and functions, they are collectively termed nuclear architecture. In the nervous system, dynamic rearrangement of nuclear architecture correlates with alteration of transcription programs. During maturation and upon depolarization, neurons undergo a reorganization of nuclear architecture that alters gene expression programs. As such changes allow for specialized functions, including learning and memory, nuclear architecture is distinct among cell types. Studying nuclear architecture of neurons may uncover cell-division-independent mechanisms of global and local changes to nuclear architecture. We herein review recent research concerning nuclear architecture in the nervous system and will discuss its importance to the development, maturation, function, and diseases of the nervous system.
Collapse
Affiliation(s)
- Kenji Ito
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
17
|
Kojima R, Bojar D, Rizzi G, Hamri GCE, El-Baba MD, Saxena P, Ausländer S, Tan KR, Fussenegger M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment. Nat Commun 2018; 9:1305. [PMID: 29610454 PMCID: PMC5880805 DOI: 10.1038/s41467-018-03733-8] [Citation(s) in RCA: 485] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
Exosomes are cell-derived nanovesicles (50-150 nm), which mediate intercellular communication, and are candidate therapeutic agents. However, inefficiency of exosomal message transfer, such as mRNA, and lack of methods to create designer exosomes have hampered their development into therapeutic interventions. Here, we report a set of EXOsomal transfer into cells (EXOtic) devices that enable efficient, customizable production of designer exosomes in engineered mammalian cells. These genetically encoded devices in exosome producer cells enhance exosome production, specific mRNA packaging, and delivery of the mRNA into the cytosol of target cells, enabling efficient cell-to-cell communication without the need to concentrate exosomes. Further, engineered producer cells implanted in living mice could consistently deliver cargo mRNA to the brain. Therapeutic catalase mRNA delivery by designer exosomes attenuated neurotoxicity and neuroinflammation in in vitro and in vivo models of Parkinson's disease, indicating the potential usefulness of the EXOtic devices for RNA delivery-based therapeutic applications.
Collapse
Affiliation(s)
- Ryosuke Kojima
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daniel Bojar
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Giorgio Rizzi
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Institut Universitaire de Technologie (IUTA), F-69622, Villeurbanne Cedex, France
| | - Marie Daoud El-Baba
- Département Génie Biologique, Institut Universitaire de Technologie (IUTA), F-69622, Villeurbanne Cedex, France
| | - Pratik Saxena
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Simon Ausländer
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Kelly R Tan
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Martin Fussenegger
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland.
- Faculty of Life Science, University of Basel, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
18
|
Wang YL, Xue P, Xu CY, Wang Z, Liu XS, Hua LL, Bai HY, Zeng ZL, Duan HF, Li JF. SPK1-transfected UCMSC has better therapeutic activity than UCMSC in the treatment of experimental autoimmune encephalomyelitis model of Multiple sclerosis. Sci Rep 2018; 8:1756. [PMID: 29379030 PMCID: PMC5788935 DOI: 10.1038/s41598-018-19703-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022] Open
Abstract
Multiple Sclerosis (MS), is a chronic inflammatory autoimmune disorder of the central nervous system that leads to chronic demyelination with axonal damage and neuronal loss. Mesenchymal stem cells (MSCs) represent a promising therapeutic approach for MS. In the current study, we investigated the effects of MSCs derived from the human umbilical cord (UCMSC) transfected by sphingosine kinase 1 (SPK1) gene. All the results showed that transplantation of UCMSCs gene modified by SPK1 (UCMSC-SPK1) dramatically reduce the severity of neurological deficits of the experimental autoimmune encephalomyelitis (EAE) mice, paralleling by reductions in demyelination, axonal loss, and astrogliosis. UCMSC-SPK1 transplantation also could inhibit the development of natural killer (NK) responses in the spleen of EAE mice, and increase the ratio of CD4+ CD25+ FoxP3+ (Treg) T cells. Furthermore, we described that a shift in the cytokine response from Th1/Th17 to Th2 was an underlying mechanism that suppressed CNS autoimmunity. UCMSCs transfected by SPK1 gene potentially offer a novel mode for the treatment of MS, and the specific mechanism of SPK1 in treating MS/EAE.
Collapse
Affiliation(s)
- Yun-Liang Wang
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, No. 32 Nanyang Road, Zhengzhou, 450014, China.,Department of Neurology, the 148th Hospital of Chinese PLA, No. 20 North Road Zhoucun District, Zibo, 255300, China
| | - Peng Xue
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, No. 32 Nanyang Road, Zhengzhou, 450014, China
| | - Chun-Yang Xu
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, No. 32 Nanyang Road, Zhengzhou, 450014, China
| | - Zhen Wang
- Department of Neurology, the 148th Hospital of Chinese PLA, No. 20 North Road Zhoucun District, Zibo, 255300, China
| | - Xin-Shan Liu
- Electroencephalogram Room of Sanbo Brain Hospital, Capital Medical University, No. 50 Xiangshanyikesong Haidian District, Beijing, 100093, China
| | - Lin-Lin Hua
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, No. 32 Nanyang Road, Zhengzhou, 450014, China
| | - Hong-Ying Bai
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, No. 32 Nanyang Road, Zhengzhou, 450014, China
| | - Zhi-Lei Zeng
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, No. 32 Nanyang Road, Zhengzhou, 450014, China
| | - Hai-Feng Duan
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Jin-Feng Li
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
19
|
Ito K, Noguchi A, Uosaki Y, Taga T, Arakawa H, Takizawa T. Gfap and Osmr regulation by BRG1 and STAT3 via interchromosomal gene clustering in astrocytes. Mol Biol Cell 2017; 29:209-219. [PMID: 29142070 PMCID: PMC5909932 DOI: 10.1091/mbc.e17-05-0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
Gene clustering is relevant in the regulation of gene expression. However, the mechanisms of gene clustering remain to be elucidated. Using a glial differentiation system, we found that the clustering of Gfap, an astrocyte-pecific gene, with Osmr enhances transcription of both genes. BRG1 and the JAK-STAT pathway are central to the clustering. Long-range chromatin interactions between gene loci in the cell nucleus are important for many biological processes, including transcriptional regulation. Previously, we demonstrated that several genes specifically cluster with the astrocyte-specific gene for glial fibrillary acidic protein (Gfap) during astrocyte differentiation; however, the molecular mechanisms for gene clustering remain largely unknown. Here we show that brahma-related gene 1 (BRG1), an ATP-dependent chromatin remodeling factor, and the transcription factor STAT3 are required for Gfap and oncostatin M receptor (Osmr) clustering and enhanced expression through recruitment to STAT3 recognition sequences and that gene clustering occurs prior to transcriptional up-regulation. BRG1 knockdown and JAK-STAT signaling inhibition impaired clustering, leading to transcriptional down-regulation of both genes. BRG1 and STAT3 were recruited to the same Gfap fragment; JAK-STAT signaling inhibition impaired BRG1 recruitment. Our results suggest that BRG1 and STAT3 coordinately regulate gene clustering and up-regulate Gfap and Osmr transcription.
Collapse
Affiliation(s)
- Kenji Ito
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyoku, Kyoto 606 8507, Japan
| | - Azumi Noguchi
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Yuichi Uosaki
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Testuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Hirokazu Arakawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| |
Collapse
|
20
|
TAKOUDA J, KATADA S, NAKASHIMA K. Emerging mechanisms underlying astrogenesis in the developing mammalian brain. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:386-398. [PMID: 28603210 PMCID: PMC5709539 DOI: 10.2183/pjab.93.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/31/2017] [Indexed: 06/06/2023]
Abstract
In the developing brain, the three major cell types, i.e., neurons, astrocytes and oligodendrocytes, are generated from common multipotent neural stem cells (NSCs). In particular, astrocytes eventually occupy a great fraction of the brain and play pivotal roles in the brain development and functions. However, NSCs cannot produce the three major cell types simultaneously from the beginning; e.g., it is known that neurogenesis precedes astrogenesis during brain development. How is this fate switching achieved? Many studies have revealed that extracellular cues and intracellular programs are involved in the transition of NSC fate specification. The former include growth factor- and cytokine-signaling, and the latter involve epigenetic machinery, including DNA methylation, histone modifications, and non-coding RNAs. Accumulating evidence has identified a complex array of epigenetic modifications that control the timing of astrocytic differentiation of NSCs. In this review, we introduce recent progress in identifying the molecular mechanisms of astrogenesis underlying the tight regulation of neuronal-astrocytic fate switching of NSCs.
Collapse
Affiliation(s)
- Jun TAKOUDA
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako KATADA
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi NAKASHIMA
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|