1
|
Ji N, Wu CG, Wang WX, Wang XD, Zhai Y, Ali L, Song ZX, Zhang G, Feng X, Wang Y, Lv ZJ, Wang X. Binding of zebrafish lipovitellin and L1‑ORF2 increases the accessibility of L1‑ORF2 via interference with histone wrapping. Int J Mol Med 2025; 55:2. [PMID: 39450563 DOI: 10.3892/ijmm.2024.5443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Long interspersed nuclear element‑1 (L1) is highly expressed in the early embryos of humans, rodents and fish. To investigate the molecular mechanisms underlying high expression of L1 during early embryonic development, a C1‑open reading frame (ORF)2 vector was constructed in which ORF2 of human L1 (L1‑ORF2) was inserted into a pEGFP‑C1 plasmid. C1‑ORF2 vector was injected into early zebrafish embryos (EZEs) to observe expression of EGFP reporter protein by fluorescence microscopy. RNA‑seq and RT‑qPCR were used to detect the effects of lipovitellin (LV) on gene expression in EZEs. The binding ability of LV to L1‑ORF2 DNA was detected by electrophoretic mobility‑shift assay (EMSA). The chromatin recombinant DNase I digestion and ATAC‑seq assay were used to evaluate the accessibility of plasmid DNA. C1‑ORF2 vector induced high expression of enhanced green fluorescent protein (EGFP) reporter gene after it had been injected into 0 h post‑fertilization (hpf) zebrafish embryos, although histone octamer inhibited expression of EGFP in C1‑ORF2. SDS‑PAGE was used to show that LV was the predominant protein binding ORF2 DNA in 0 hpf zebrafish embryo lysate (ZEL). Both ZEL and purified LV from ZEL attenuated the inhibitory effects induced by histone. LV bound histone to interfere with the binding of histone to ORF2 DNA. Both in vitro chromatin reconstitution experiments and assay for transposase‑accessible chromatin with sequencing with HeLa cells were utilized to demonstrate that the interference induced by LV resulted in increased accessibility of C1‑ORF2. Transcription experiments in vitro verified that LV could enhance the mRNA levels of zebrafish early embryo expression genes grainyhead‑like transcription factor 3 (GRHL3), SRY‑box transcription factor 19a (SOX19A) and nanor (NNR) and also of the EGFP gene. LV was found to increase the expression levels of the zebrafish early embryo expression genes in liver tissue after LV had been injected into the abdominal cavity of adult male zebrafish. Taken together, the findings of the present study demonstrated that LV activates the expression of EGFP induced by ORF2 in EZEs by enhancing the accessibility of ORF2 DNA.
Collapse
Affiliation(s)
- Ning Ji
- Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Chong-Guang Wu
- Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Wen-Xia Wang
- Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xiao-Die Wang
- Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yu Zhai
- Department of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Luqman Ali
- Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Zhi-Xue Song
- Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Guozhong Zhang
- Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xu Feng
- Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yu Wang
- Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Zhan-Jun Lv
- Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xiufang Wang
- Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
2
|
Chakraborty H, Chakraborty HJ, Das BK, Maity J. Age-specific changes in the serum proteome of female anadromous, hilsa Tenualosa ilisha: a comparative analysis across developmental stages. Front Immunol 2024; 15:1448627. [PMID: 39493766 PMCID: PMC11527666 DOI: 10.3389/fimmu.2024.1448627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/28/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction The proteome profile of the female Tenualosa ilisha (Hamilton, 1822), a species of great ecological and economic importance, across various age groups was investigated to comprehend the functional dynamics of the serum proteome for conservation and aquaculture, as well as sustain the population. Methods Advanced liquid chromatography-tandem mass spectrometry LC-MS/MS-based proteomic data were analysed and submitted to the ProteomeXchange Consortium via PRIDE (PRoteomics IDEntifications database). Bioinformatics analysis of serum proteome have been done and it showed different proteins associated with GO Gene Ontology () terms, and the genes associated with enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (such as phagosome, mTOR, Apelin signalling pathways, herpes simplex virus) implicated in immune responses. Results The expression levels of important immunological proteins, such as those involved in cellular defence and inflammatory responses, were significantly different age-dependently. In this study, we annotated 952, 494, 415, and 282 proteins in year classes IV, III, II, and I Hilsa, respectively, and analysed their Protein-Protein Interaction (PPI) networks based on their functional characteristics. From year classes I to IV, new proteins appeared and were more than three-fold. Notably, class I hilsa displayed a lower abundance of proteins than class IV hilsa. Discussion This is the first study, to the best of our knowledge, to report the analysis of the serum proteome of hilsa at different developmental stages, and the results can help improve the understanding of the mechanisms underlying the different changes in protein enrichment during migration in hilsa. This analysis also offers crucial insights into the immune system for hilsa conservation and management.
Collapse
Affiliation(s)
- Hena Chakraborty
- Center for NMCG (National Mission for Clean Ganga), Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
- Department of Fisheries Science, Vidyasagar University, Midnapore, West Bengal, India
| | - Hirak Jyoti Chakraborty
- Center for NMCG (National Mission for Clean Ganga), Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Basanta Kumar Das
- Center for NMCG (National Mission for Clean Ganga), Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Joydev Maity
- Department of Fisheries Science, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
3
|
Chakraborty S, Bhattacharya S, Meyers BA, Sepúlveda MS, Vlachos PP. Evolution of cardiac tissue and flow mechanics in developing Japanese Medaka. PLoS One 2024; 19:e0309018. [PMID: 39186731 PMCID: PMC11346936 DOI: 10.1371/journal.pone.0309018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 08/03/2024] [Indexed: 08/28/2024] Open
Abstract
The effects of pressure drop across cardiac valve cushion regions and endocardial wall strain in the early developmental stages of a teleost species heart are poorly understood. In the presented work, we utilize microscale particle image velocimetry (μPIV) flow measurements of developing medaka hearts from 3 to 14 dpf (n = 5 at each dpf) to quantify the pressure field and endocardial wall strain. Peak pressure drop at the atrioventricular canal (ΔPAVC) and outflow tract (ΔPOFT) show a steady increase with fish age progression. Pressure drops when non-dimensionalized with blood viscosity and heart rate at each dpf are comparable with measurements in zebrafish hearts. Retrograde flows captured at these regions display a negative pressure drop. A novel metric, Endocardial Work (EW), is introduced by analyzing the ΔPAVC-strain curves, which is a non-invasive measure of work required for ventricle filling. EW is a metric that can differentiate between the linear heart stage (< 100 Pa-%), cardiac looped chamber stage (< 300 Pa-%), and the fully formed chamber stage (> 300 Pa-%).
Collapse
Affiliation(s)
- Sreyashi Chakraborty
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Sayantan Bhattacharya
- Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Brett Albert Meyers
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Maria S. Sepúlveda
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Pavlos P. Vlachos
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
4
|
Niksirat H, Siino V, Steinbach C, Levander F. The quantification of zebrafish ocular-associated proteins provides hints for sex-biased visual impairments and perception. Heliyon 2024; 10:e33057. [PMID: 38994070 PMCID: PMC11238053 DOI: 10.1016/j.heliyon.2024.e33057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Biochemical differences between sexes can also be seen in non-sexual organs and may affect organ functions and susceptibility to diseases. It has been shown that there are sex-biased visual perceptions and impairments. Abundance differences of eye proteins could provide explanations for some of these. Exploration of the ocular proteome was performed to find sex-based protein abundance differences in zebrafish Danio rerio. A label-free protein quantification workflow using high-resolution mass spectrometry was employed to find proteins with significant differences between the sexes. In total, 3740 unique master proteins were identified and quantified, and 49 proteins showed significant abundance differences between the eyes of male and female zebrafish. Those proteins belong to lipoproteins, immune system, blood coagulation, antioxidants, iron and heme-binding proteins, ion channels, pumps and exchangers, neuronal and photoreceptor proteins, and the cytoskeleton. An extensive literature review provided clues for the possible links between the sex-biased level of proteins and visual perception and impairments. In conclusion, sexual dimorphism at the protein level was discovered for the first time in the eye of zebrafish and should be accounted for in ophthalmological studies. Data are available via ProteomeXchange with identifier PXD033338.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Majewska AM, Dietrich MA, Budzko L, Adamek M, Figlerowicz M, Ciereszko A. Secreted novel AID/APOBEC-like deaminase 1 (SNAD1) - a new important player in fish immunology. Front Immunol 2024; 15:1340273. [PMID: 38601149 PMCID: PMC11004436 DOI: 10.3389/fimmu.2024.1340273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
The AID/APOBECs are a group of zinc-dependent cytidine deaminases that catalyse the deamination of bases in nucleic acids, resulting in a cytidine to uridine transition. Secreted novel AID/APOBEC-like deaminases (SNADs), characterized by the presence of a signal peptide are unique among all of intracellular classical AID/APOBECs, which are the central part of antibody diversity and antiviral defense. To date, there is no available knowledge on SNADs including protein characterization, biochemical characteristics and catalytic activity. We used various in silico approaches to define the phylogeny of SNADs, their common structural features, and their potential structural variations in fish species. Our analysis provides strong evidence of the universal presence of SNAD1 proteins/transcripts in fish, in which expression commences after hatching and is highest in anatomical organs linked to the immune system. Moreover, we searched published fish data and identified previously, "uncharacterized proteins" and transcripts as SNAD1 sequences. Our review into immunological research suggests SNAD1 role in immune response to infection or immunization, and interactions with the intestinal microbiota. We also noted SNAD1 association with temperature acclimation, environmental pollution and sex-based expression differences, with females showing higher level. To validate in silico predictions we performed expression studies of several SNAD1 gene variants in carp, which revealed distinct patterns of responses under different conditions. Dual sensitivity to environmental and pathogenic stress highlights its importance in the fish and potentially enhancing thermotolerance and immune defense. Revealing the biological roles of SNADs represents an exciting new area of research related to the role of DNA and/or RNA editing in fish biology.
Collapse
Affiliation(s)
- Anna M. Majewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola A. Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Lucyna Budzko
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Mikołaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Marek Figlerowicz
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
6
|
Golosovskaia E, Örn S, Ahrens L, Chelcea I, Andersson PL. Studying mixture effects on uptake and tissue distribution of PFAS in zebrafish (Danio rerio) using physiologically based kinetic (PBK) modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168738. [PMID: 38030006 DOI: 10.1016/j.scitotenv.2023.168738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously distributed in the aquatic environment. They include persistent, mobile, bioaccumulative, and toxic chemicals and it is therefore critical to increase our understanding on their adsorption, distribution, metabolism, excretion (ADME). The current study focused on uptake of seven emerging PFAS in zebrafish (Danio rerio) and their potential maternal transfer. In addition, we aimed at increasing our understanding on mixture effects on ADME by developing a physiologically based kinetic (PBK) model capable of handling co-exposure scenarios of any number of chemicals. All studied chemicals were taken up in the fish to varying degrees, whereas only perfluorononanoate (PFNA) and perfluorooctanoate (PFOA) were quantified in all analysed tissues. Perfluorooctane sulfonamide (FOSA) was measured at concerningly high concentrations in the brain (Cmax over 15 μg/g) but also in the liver and ovaries. All studied PFAS were maternally transferred to the eggs, with FOSA and 6:2 perfluorooctane sulfonate (6,2 FTSA) showing significant (p < 0.02) signs of elimination from the embryos during the first 6 days of development, while perfluorobutane sulfonate (PFBS), PFNA, and perfluorohexane sulfonate (PFHxS) were not eliminated in embryos during this time-frame. The mixture PBK model resulted in >85 % of predictions within a 10-fold error and 60 % of predictions within a 3-fold error. At studied levels of PFAS exposure, competitive binding was not a critical factor for PFAS kinetics. Gill surface pH influenced uptake for some carboxylates but not the sulfonates. The developed PBK model provides an important tool in understanding kinetics under complex mixture scenarios and this use of New Approach Methodologies (NAMs) is critical in future risk assessment of chemicals and early warning systems.
Collapse
Affiliation(s)
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Ioana Chelcea
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
7
|
Zhang Y, Minami R, Tatsuno R, Gao W, Ueno M, Yamada A, Yoshida A, Sedanza MG, Arima K, Takatani T, Yamaguchi K, Oshima Y, Arakawa O. Wheat germ agglutinin affinity chromatography enrichment and glyco-proteomic characterization of tetrodotoxin-binding proteins from the plasma of cultured tiger pufferfish (Takifugu rubripes). Biosci Biotechnol Biochem 2023; 87:1155-1168. [PMID: 37458754 DOI: 10.1093/bbb/zbad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 09/24/2023]
Abstract
Efficient enrichment of tetrodotoxin (TTX)-binding proteins from the plasma of cultured tiger pufferfish (Takifugu rubripes) was achieved by ammonium sulfate fractionation and wheat germ agglutinin (WGA) affinity chromatography. The enrichment efficiency was validated by ultrafiltration-LC/MS-based TTX-binding assay and proteomics. Major proteins in the WGA-bound fraction were identified as isoform X1 (125 kDa) and X2 variants (88 and 79 kDa) derived from pufferfish saxitoxin and tetrodotoxin-binding protein (PSTBP) 1-like gene (LOC101075943). The 125-kDa X1 protein was found to be a novel member of the lipocalin family, having three tandemly repeated domains. X2 variants, X2α and X2β, were estimated to have two domains, and X2β is structurally related to Takifugu pardalis PSTBP2 in their domain type and arrangement. Among 11 potential N-glycosylation sites in the X2 precursor, 5 N-glycosylated Asn residues (N55, N89, N244, N308, and N449) were empirically determined. Structural relationships among PSTBP homologs and complexity of their proteoforms are discussed.
Collapse
Affiliation(s)
- Yafei Zhang
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Ryoma Minami
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Ryohei Tatsuno
- National Fisheries University, Japan Fisheries Research and Education Agency, Nagatahonmachi, Shimonoseki, Yamaguchi, Japan
| | - Wei Gao
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
- Dalian Blue Peptide Technology Research & Development Co., Ltd, Dalian, China
| | - Mikinori Ueno
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Akinori Yamada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Mary Grace Sedanza
- Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Iloilo, Philippines
| | - Kazunari Arima
- Department of Chemistry, Graduate School of Science and Engineering, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Tomohiro Takatani
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Kenichi Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| |
Collapse
|
8
|
Elsaid HOA, Rivedal M, Skandalou E, Svarstad E, Tøndel C, Birkeland E, Eikrem Ø, Babickova J, Marti HP, Furriol J. Proteomic analysis unveils Gb3-independent alterations and mitochondrial dysfunction in a gla -/- zebrafish model of Fabry disease. J Transl Med 2023; 21:591. [PMID: 37670295 PMCID: PMC10478213 DOI: 10.1186/s12967-023-04475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Fabry disease (FD) is a rare lysosomal storage disorder caused by mutations in the GLA gene, resulting in reduced or lack of α-galactosidase A activity. This results in the accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids in lysosomes causing cellular impairment and organ failures. While current therapies focus on reversing Gb3 accumulation, they do not address the altered cellular signaling in FD. Therefore, this study aims to explore Gb3-independent mechanisms of kidney damage in Fabry disease and identify potential biomarkers. METHODS To investigate these mechanisms, we utilized a zebrafish (ZF) gla-/- mutant (MU) model. ZF naturally lack A4GALT gene and, therefore, cannot synthesize Gb3. We obtained kidney samples from both wild-type (WT) (n = 8) and MU (n = 8) ZF and conducted proteome profiling using untargeted mass spectrometry. Additionally, we examined mitochondria morphology and cristae morphology using electron microscopy. To assess oxidative stress, we measured total antioxidant activity. Finally, immunohistochemistry was conducted on kidney samples to validate specific proteins. RESULTS Our proteomics analysis of renal tissues from zebrafish revealed downregulation of lysosome and mitochondrial-related proteins in gla-/- MU renal tissues, while energy-related pathways including carbon, glycolysis, and galactose metabolisms were disturbed. Moreover, we observed abnormal mitochondrial shape, disrupted cristae morphology, altered mitochondrial volume and lower antioxidant activity in gla-/- MU ZF. CONCLUSIONS These results suggest that the alterations observed at the proteome and mitochondrial level closely resemble well-known GLA mutation-related alterations in humans. Importantly, they also unveil novel Gb3-independent pathogenic mechanisms in Fabry disease. Understanding these mechanisms could potentially lead to the development of innovative drug screening approaches. Furthermore, the findings pave the way for identifying new clinical targets, offering new avenues for therapeutic interventions in Fabry disease. The zebrafish gla-/- mutant model proves valuable in elucidating these mechanisms and may contribute significantly to advancing our knowledge of this disorder.
Collapse
Affiliation(s)
- Hassan Osman Alhassan Elsaid
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Mariell Rivedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eleni Skandalou
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Even Birkeland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Janka Babickova
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
9
|
Matthee C, Brown AR, Lange A, Tyler CR. Factors Determining the Susceptibility of Fish to Effects of Human Pharmaceuticals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8845-8862. [PMID: 37288931 PMCID: PMC10286317 DOI: 10.1021/acs.est.2c09576] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The increasing levels and frequencies at which active pharmaceutical ingredients (APIs) are being detected in the environment are of significant concern, especially considering the potential adverse effects they may have on nontarget species such as fish. With many pharmaceuticals lacking environmental risk assessments, there is a need to better define and understand the potential risks that APIs and their biotransformation products pose to fish, while still minimizing the use of experimental animals. There are both extrinsic (environment- and drug-related) and intrinsic (fish-related) factors that make fish potentially vulnerable to the effects of human drugs, but which are not necessarily captured in nonfish tests. This critical review explores these factors, particularly focusing on the distinctive physiological processes in fish that underlie drug absorption, distribution, metabolism, excretion and toxicity (ADMET). Focal points include the impact of fish life stage and species on drug absorption (A) via multiple routes; the potential implications of fish's unique blood pH and plasma composition on the distribution (D) of drug molecules throughout the body; how fish's endothermic nature and the varied expression and activity of drug-metabolizing enzymes in their tissues may affect drug metabolism (M); and how their distinctive physiologies may impact the relative contribution of different excretory organs to the excretion (E) of APIs and metabolites. These discussions give insight into where existing data on drug properties, pharmacokinetics and pharmacodynamics from mammalian and clinical studies may or may not help to inform on environmental risks of APIs in fish.
Collapse
Affiliation(s)
- Chrisna Matthee
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Andrew Ross Brown
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Anke Lange
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Charles R. Tyler
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
10
|
King AC, Zenker AK. Sex blind: bridging the gap between drug exposure and sex-related gene expression in Danio rerio using next-generation sequencing (NGS) data and a literature review to find the missing links in pharmaceutical and environmental toxicology studies. FRONTIERS IN TOXICOLOGY 2023; 5:1187302. [PMID: 37398910 PMCID: PMC10312089 DOI: 10.3389/ftox.2023.1187302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The sex of both humans and Danio rerio has previously been shown to affect the way individuals respond to drug exposure. Genes which allow identification of sex in juvenile zebrafish show potential to reveal these confounding variables between sex in toxicological and preclinical trials but the link between these is so far missing. These sex-specific, early expressed genes where expression is not altered by drug exposure must be carefully selected for this purpose. We aimed to discover genes which can be used in pharmaceutical trials and environmental toxicology studies to uncover sex-related variations in gene expression with drug application using the model organism Danio rerio. Previously published early sex determining genes from King et al. were evaluated as well as additional genes selected from our zebrafish Next-generation sequencing (NGS) data which are known from previously published works not to be susceptible to changes in expression with drug exposure. NGS revealed a further ten female-specific genes (vtg1, cyp17a1, cyp19a1a, igf3, ftz-f1, gdf9, foxl2a, Nr0b1, ipo4, lhcgr) and five male related candidate genes (FKBP5, apobb1, hbaa1, dmrt1, spata6) which are also expressed in juvenile zebrafish, 28 days post fertilisation (dpf). Following this, a literature review was performed to classify which of these early-expressed sex specific genes are already known to be affected by drug exposure in order to determine candidate genes to be used in pharmaceutical trials or environmental toxicology testing studies. Discovery of these early sex-determining genes in Danio rerio will allow identification of sex-related responses to drug testing to improve sex-specific healthcare and the medical treatment of human patients.
Collapse
Affiliation(s)
| | - Armin K. Zenker
- University of Applied Sciences and Arts North-Western Switzerland (FHNW), Muttenz, Switzerland
| |
Collapse
|
11
|
Arias‐Alpizar G, Papadopoulou P, Rios X, Pulagam KR, Moradi M, Pattipeiluhu R, Bussmann J, Sommerdijk N, Llop J, Kros A, Campbell F. Phase-Separated Liposomes Hijack Endogenous Lipoprotein Transport and Metabolism Pathways to Target Subsets of Endothelial Cells In Vivo. Adv Healthc Mater 2023; 12:e2202709. [PMID: 36565694 PMCID: PMC11469146 DOI: 10.1002/adhm.202202709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Plasma lipid transport and metabolism are essential to ensure correct cellular function throughout the body. Dynamically regulated in time and space, the well-characterized mechanisms underpinning plasma lipid transport and metabolism offers an enticing, but as yet underexplored, rationale to design synthetic lipid nanoparticles with inherent cell/tissue selectivity. Herein, a systemically administered liposome formulation, composed of just two lipids, that is capable of hijacking a triglyceride lipase-mediated lipid transport pathway resulting in liposome recognition and uptake within specific endothelial cell subsets is described. In the absence of targeting ligands, liposome-lipase interactions are mediated by a unique, phase-separated ("parachute") liposome morphology. Within the embryonic zebrafish, selective liposome accumulation is observed at the developing blood-brain barrier. In mice, extensive liposome accumulation within the liver and spleen - which is reduced, but not eliminated, following small molecule lipase inhibition - supports a role for endothelial lipase but highlights these liposomes are also subject to significant "off-target" by reticuloendothelial system organs. Overall, these compositionally simplistic liposomes offer new insights into the discovery and design of lipid-based nanoparticles that can exploit endogenous lipid transport and metabolism pathways to achieve cell selective targeting in vivo.
Collapse
Affiliation(s)
- Gabriela Arias‐Alpizar
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
- Division of BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
| | - Panagiota Papadopoulou
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
| | - Xabier Rios
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)San Sebastián20014Spain
| | | | - Mohammad‐Amin Moradi
- Materials and Interface ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600The Netherlands
| | - Roy Pattipeiluhu
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
| | - Jeroen Bussmann
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
- Division of BioTherapeuticsLeiden Academic Centre for Drug ResearchLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
| | - Nico Sommerdijk
- Department of BiochemistryRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegen6525The Netherlands
- Electron Microscopy CentreRadboudumc Technology Center MicroscopyRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525The Netherlands
| | - Jordi Llop
- Materials and Interface ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600The Netherlands
| | - Alexander Kros
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
| | - Frederick Campbell
- Supramolecular and Biomaterials ChemistryLeiden Institute of ChemistryLeiden UniversityP.O. Box 9502Leiden2300The Netherlands
- Present address:
NanoVation Therapeutics2405 Wesbrook Mall 4th floorVancouverBCV6T 1Z3Canada
| |
Collapse
|
12
|
Kwon YS, Park CB, Lee SM, Zee S, Kim GE, Kim YJ, Sim HJ, Kim JH, Seo JS. Proteomic analysis of zebrafish (Danio rerio) embryos exposed to benzyl benzoate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26375-26386. [PMID: 36367642 PMCID: PMC9995408 DOI: 10.1007/s11356-022-24081-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Benzyl benzoate (BB) is widely used in the food, cosmetics, agriculture, and pharmaceutical industries and is discharged into the aquatic environment via various water sources, including wastewater. Research on the bioaccumulation and possible toxicity of BB has been conducted, but the biochemical responses to BB toxicity are not fully understood, and the specific molecular pathways by which BB causes toxicity remain unknown. In this study, label-free quantitative proteomics based on mass spectrometry was applied to investigate protein profiles in zebrafish (Danio rerio) embryos exposed to BB (1 µg/mL) for 7 days. A total of 83 differentially expressed proteins (DEPs) were identified, including 49 up-regulated and 34 down-regulated proteins. The biological functions of proteins regulated by BB were grouped into functional categories and subcategories, including the biosynthesis of organonitrogen compound biosynthetic process, translation, amide biosynthetic process, lipid transport, stress response, and cytoskeletal activity. The results provide novel insight into the molecular basis of the ecotoxicity of BB in aquatic ecosystems.
Collapse
Affiliation(s)
- Young Sang Kwon
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Chang-Beom Park
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Seung-Min Lee
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Seonggeun Zee
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Go-Eun Kim
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Yeong-Jin Kim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Hee-Jung Sim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Su Seo
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
| |
Collapse
|
13
|
Charlie-Silva I, Feitosa NM, Pontes LG, Fernandes BH, Nóbrega RH, Gomes JMM, Prata MNL, Ferraris FK, Melo DC, Conde G, Rodrigues LF, Aracati MF, Corrêa-Junior JD, Manrique WG, Superio J, Garcez AS, Conceição K, Yoshimura TM, Núñez SC, Eto SF, Fernandes DC, Freitas AZ, Ribeiro MS, Nedoluzhko A, Lopes-Ferreira M, Borra RC, Barcellos LJG, Perez AC, Malafaia G, Cunha TM, Belo MAA, Galindo-Villegas J. Plasma proteome responses in zebrafish following λ-carrageenan-Induced inflammation are mediated by PMN leukocytes and correlate highly with their human counterparts. Front Immunol 2022; 13:1019201. [PMID: 36248846 PMCID: PMC9559376 DOI: 10.3389/fimmu.2022.1019201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.
Collapse
Affiliation(s)
| | - Natália M. Feitosa
- Integrated Laboratory of Translational Bioscience, Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Macaé, Brazil
| | | | - Bianca H. Fernandes
- Laboratório de Controle Genético e Sanitário, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Rafael H. Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Juliana M. M. Gomes
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana N. L. Prata
- Department of Pharmacology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Fausto K. Ferraris
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Daniela C. Melo
- Laboratory of Zebrafish from Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Letícia F. Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Mayumi F. Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - José D. Corrêa-Junior
- Department of Morphology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Wilson G. Manrique
- Veterinary College, Federal University of Rondonia, Rolim de Moura, Brazil
| | - Joshua Superio
- Department of Aquaculture, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Katia Conceição
- Peptide Biochemistry Laboratory, Universidade Federal de São Paulo (UNIFESP), Sao Jose Dos Campos, Brazil
| | - Tania M. Yoshimura
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Silvia C. Núñez
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Silas F. Eto
- Development and Innovation Laboratory, Center of Innovation and Development, Butantan Institute, São Paulo, Brazil
| | - Dayanne C. Fernandes
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Anderson Z. Freitas
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Ricardo C. Borra
- Department of Genetics and Evolution, Federal University of São Carlos, São Paulo, Brazil
| | - Leonardo J. G. Barcellos
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Rio Grande do Sul, Brazil
- Postgraduate Program in Bioexperimentation. University of Passo Fundo, Rio Grande do Sul, Brazil
| | - Andrea C. Perez
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Guilheme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, Brazil
| | - Thiago M. Cunha
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marco A. A. Belo
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
14
|
Elsaid HO, Furriol J, Blomqvist M, Diswall M, Leh S, Gharbi N, Anonsen JH, Babickova J, Tøndel C, Svarstad E, Marti HP, Krause M. Reduced α-galactosidase A activity in zebrafish ( Danio rerio) mirrors distinct features of Fabry nephropathy phenotype. Mol Genet Metab Rep 2022; 31:100851. [PMID: 35242583 PMCID: PMC8857658 DOI: 10.1016/j.ymgmr.2022.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 10/28/2022] Open
Abstract
Fabry disease (FD) is a rare genetic lysosomal storage disorder, resulting from partial or complete lack of alpha-galactosidase A (α-GAL) enzyme, leading to systemic accumulation of substrate glycosphingolipids with a broad range of tissue damage. Current in vivo models are laborious, expensive, and fail to adequately mirror the complex FD physiopathology. To address these issues, we developed an innovative FD model in zebrafish. Zebrafish GLA gene encoding α-GAL enzyme presents a high (>70%) homology with its human counterpart, and the corresponding protein has a similar tissue distribution, as evaluated by immunohistochemistry. Moreover, a similar enzymatic activity in different life stages could be demonstrated. By using CRISPR/Cas9 technology, we generated a mutant zebrafish with decreased GLA gene expression, and decreased expression of the specific gene product in the kidney. Mutant animals showed higher plasma creatinine levels and proteinuria. Transmission electron microscopy (TEM) studies documented an increased podocyte foot process width (FPW) in mutant, as compared to wild type zebrafish. This zebrafish model reliably mirrors distinct features of human FD and could be advantageously used for the identification of novel biomarkers and for an effective screening of innovative therapeutic approaches.
Collapse
Affiliation(s)
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Maria Blomqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mette Diswall
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Naouel Gharbi
- Department of Climate & Environment, Industrial Biotechnology, NORCE, Bergen, Mekjarvik, Norway
| | - Jan Haug Anonsen
- Department of Climate & Environment, Industrial Biotechnology, NORCE, Bergen, Mekjarvik, Norway
| | - Janka Babickova
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Maximilian Krause
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars Centre for Molecular Marine Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Selenium Nanoparticles (SeNPs) Immunomodulation Is More Than Redox Improvement: Serum Proteomics and Transcriptomic Analyses. Antioxidants (Basel) 2022; 11:antiox11050964. [PMID: 35624828 PMCID: PMC9137598 DOI: 10.3390/antiox11050964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are a novel elemental form selenium and often reported to possess beneficial bioactivities such as anticancer, promoting bone growth and immunomodulation. Our previous study demonstrated that chitosan-stabilized SeNPs have strong activity in immunomodulation. However, the mechanism underlying the immunomodulation of SeNPs is still unknown. The aim of this study is to identify the molecular mechanisms involved in SeNP-induced immunomodulation. Using zebrafish, as a common immunological animal model with a highly conserved molecular mechanism with other vertebrates, we conducted serum proteomic and tissue transcriptome analyses on individuals fed with SeNP in healthy or disease conditions. We also compared differences between SeNPs and an exogenous antioxidant Trolox in immune activity and redox regulation. Our results suggest that the immunomodulation activity was highly related to antioxidant activity and lipid metabolism. Interestingly, the biological functions enhanced by SeNP were almost identical in the healthy and disease conditions. However, while the SeNP was suppressing ROS in healthy individuals, it promoted ROS formation during disease condition. This might be related to the defense mechanism against pathogens. SOD and NFkβ appeared to be the key molecular switch changing effect of SeNPs when individuals undergo infection, indicating the close relationship between immune and redox regulation.
Collapse
|
16
|
Cardiac forces regulate zebrafish heart valve delamination by modulating Nfat signaling. PLoS Biol 2022; 20:e3001505. [PMID: 35030171 PMCID: PMC8794269 DOI: 10.1371/journal.pbio.3001505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2022] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
In the clinic, most cases of congenital heart valve defects are thought to arise through errors that occur after the endothelial–mesenchymal transition (EndoMT) stage of valve development. Although mechanical forces caused by heartbeat are essential modulators of cardiovascular development, their role in these later developmental events is poorly understood. To address this question, we used the zebrafish superior atrioventricular valve (AV) as a model. We found that cellularized cushions of the superior atrioventricular canal (AVC) morph into valve leaflets via mesenchymal–endothelial transition (MEndoT) and tissue sheet delamination. Defects in delamination result in thickened, hyperplastic valves, and reduced heart function. Mechanical, chemical, and genetic perturbation of cardiac forces showed that mechanical stimuli are important regulators of valve delamination. Mechanistically, we show that forces modulate Nfatc activity to control delamination. Together, our results establish the cellular and molecular signature of cardiac valve delamination in vivo and demonstrate the continuous regulatory role of mechanical forces and blood flow during valve formation. Why do developing zebrafish atrioventricular heart valves become hyperplastic under certain hemodynamic conditions? This study suggests that part of the answer lies in how the mechanosensitive Nfat pathway regulates the valve mesenchymal-to-endothelial transition.
Collapse
|
17
|
Nissa MU, Pinto N, Mukherjee A, Reddy PJ, Ghosh B, Sun Z, Ghantasala S, Chetanya C, Shenoy SV, Moritz RL, Goswami M, Srivastava S. Organ-Based Proteome and Post-Translational Modification Profiling of a Widely Cultivated Tropical Water Fish, Labeo rohita. J Proteome Res 2021; 21:420-437. [PMID: 34962809 DOI: 10.1021/acs.jproteome.1c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteomics has enormous applications in human and animal research. However, proteomic studies in fisheries science are quite scanty particularly for economically important species. Few proteomic studies have been carried out in model fish species, but comprehensive proteomics of aquaculture species are still scarce. This study aimed to perform a comprehensive organ-based protein profiling of important tissue samples for one of the most important aquaculture species,Labeo rohita.Deep proteomic profiling of 17 histologically normal tissues, blood plasma, and embryo provided mass-spectrometric evidence for 8498 proteins at 1% false discovery rate that make up about 26% of the total annotated protein-coding sequences in Rohu. Tissue-wise expression analysis was performed, and the presence of several biologically important proteins was also verified using a targeted proteomic approach. We identified the global post-translational modifications (PTMs) in terms of acetylation (N-terminus and lysine), methylation (N-terminus, lysine, and arginine), and phosphorylation (serine, threonine, and tyrosine) to present a comprehensive proteome resource. An interactive web-based portal has been developed for an overall landscape of protein expression across the studied tissues of Labeo rohita (www.fishprot.org). This draft proteome map of Labeo rohita would advance basic and applied research in aquaculture to meet the most critical challenge of providing food and nutritional security to an increasing world population.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Arijit Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Biplab Ghosh
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Saicharan Ghantasala
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chetanya Chetanya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjyot Vinayak Shenoy
- Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
18
|
Gans IM, Coffman JA. Glucocorticoid-Mediated Developmental Programming of Vertebrate Stress Responsivity. Front Physiol 2021; 12:812195. [PMID: 34992551 PMCID: PMC8724051 DOI: 10.3389/fphys.2021.812195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids, vertebrate steroid hormones produced by cells of the adrenal cortex or interrenal tissue, function dynamically to maintain homeostasis under constantly changing and occasionally stressful environmental conditions. They do so by binding and thereby activating nuclear receptor transcription factors, the Glucocorticoid and Mineralocorticoid Receptors (MR and GR, respectively). The GR, by virtue of its lower affinity for endogenous glucocorticoids (cortisol or corticosterone), is primarily responsible for transducing the dynamic signals conveyed by circadian and ultradian glucocorticoid oscillations as well as transient pulses produced in response to acute stress. These dynamics are important determinants of stress responsivity, and at the systemic level are produced by feedforward and feedback signaling along the hypothalamus-pituitary-adrenal/interrenal axis. Within receiving cells, GR signaling dynamics are controlled by the GR target gene and negative feedback regulator fkpb5. Chronic stress can alter signaling dynamics via imperfect physiological adaptation that changes systemic and/or cellular set points, resulting in chronically elevated cortisol levels and increased allostatic load, which undermines health and promotes development of disease. When this occurs during early development it can "program" the responsivity of the stress system, with persistent effects on allostatic load and disease susceptibility. An important question concerns the glucocorticoid-responsive gene regulatory network that contributes to such programming. Recent studies show that klf9, a ubiquitously expressed GR target gene that encodes a Krüppel-like transcription factor important for metabolic plasticity and neuronal differentiation, is a feedforward regulator of GR signaling impacting cellular glucocorticoid responsivity, suggesting that it may be a critical node in that regulatory network.
Collapse
Affiliation(s)
- Ian M. Gans
- MDI Biological Laboratory, Salisbury Cove, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - James A. Coffman
- MDI Biological Laboratory, Salisbury Cove, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
19
|
Costa JZ, Del Pozo J, McLean K, Inglis N, Sourd P, Bordeianu A, Thompson KD. Proteomic characterization of serum proteins from Atlantic salmon (Salmo salar L.) from an outbreak with cardiomyopathy syndrome. JOURNAL OF FISH DISEASES 2021; 44:1697-1709. [PMID: 34224170 DOI: 10.1111/jfd.13488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cardiomyopathy syndrome (CMS), caused by piscine myocarditis virus (PMCV), is a serious challenge to Atlantic salmon (Salmo salar L.) aquaculture. Regrettably, husbandry techniques are the only tool to manage CMS outbreaks, and no prophylactic measures are available at present. Early diagnosis of CMS is therefore desirable, preferably with non-lethal diagnostic methods, such as serum biomarkers. To identify candidate biomarkers for CMS, the protein content of pools of sera (4 fish/pool) from salmon with a CMS outbreak (3 pools) and from clinically healthy salmon (3 pools) was compared using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Overall, seven proteins were uniquely identified in the sera of clinically healthy fish, while 27 proteins were unique to the sera of CMS fish. Of the latter, 24 have been associated with cardiac disease in humans. These were grouped as leakage enzymes (creatine kinase, lactate dehydrogenase, glycogen phosphorylase and carbonic anhydrase); host reaction proteins (acute-phase response proteins-haptoglobin, fibrinogen, α2-macroglobulin and ceruloplasmin; and complement-related proteins); and regeneration/remodelling proteins (fibronectin, lumican and retinol). Clinical evaluation of the suitability of these proteins as biomarkers of CMS, either individually or as part of a panel, is a logical next step for the development of early diagnostic tools for CMS.
Collapse
Affiliation(s)
- Janina Z Costa
- Aquaculture Research Group, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| | - Jorge Del Pozo
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Kevin McLean
- Proteomics Facilities, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| | - Neil Inglis
- Proteomics Facilities, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| | - Philippe Sourd
- Cooke Aquaculture Scotland, Willow House, Strathclyde Business Park, Bellshill, UK
| | - Andrei Bordeianu
- Cooke Aquaculture Scotland, Willow House, Strathclyde Business Park, Bellshill, UK
| | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Pentlands Science Park, Penicuik (Edinburgh), UK
| |
Collapse
|
20
|
Dupree EJ, Manzoor Z, Alwine S, Crimmins BS, Holsen TM, Darie CC. Proteomic analysis of the lake trout (Salvelinus namaycush) heart and blood: The beginning of a comprehensive lake trout protein database. Proteomics 2021; 22:e2100146. [PMID: 34676671 DOI: 10.1002/pmic.202100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/07/2022]
Abstract
Lake trout (Salvelinus namaycush) are a top-predator species in the Laurentian Great Lakes that are often used as bioindicators of chemical stressors in the ecosystem. Although many studies are done using these fish to determine concentrations of stressors like legacy persistent, bioaccumulative and toxic chemicals, there are currently no proteomic studies on the biological effects these stressors have on the ecosystem. This lack of proteomic studies on Great Lakes lake trout is because there is currently no complete, comprehensive protein database for this species. Here, we employed proteomics approaches to develop a lake trout protein database that could aid in future research on this fish, in particular exposomics and adductomics. The current study utilized heart tissue and blood from two lake trout. Our previous work using lake trout liver revealed 4194 potential protein hits in the NCBI databases and 3811 potential protein hits in the UniProtKB databases. In the current study, using the NCBI databases we identified 838 proteins for the heart and 580 proteins for the blood tissues in the biological replicate 1 (BR1) and 1180 potential protein hits for the heart and 561 potential protein hits for the blood in BR2. Similar results were obtained using the UniProtKB databases. This study builds on our previous work by continuing to build the first comprehensive lake trout protein database and provides insight into protein homology through evolutionary relationships. This data is available via the PRIDE partner repository with the dataset identifier PXD023970.
Collapse
Affiliation(s)
- Emmalyn J Dupree
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Zaen Manzoor
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Shelby Alwine
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Bernard S Crimmins
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York, USA
- AEACS, LLC, New Kensington, Pennsylvania, USA
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York, USA
| | - Costel C Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| |
Collapse
|
21
|
Nanoparticle shell structural cues drive in vitro transport properties, tissue distribution and brain accessibility in zebrafish. Biomaterials 2021; 277:121085. [PMID: 34461457 DOI: 10.1016/j.biomaterials.2021.121085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Zwitterion polymers with strong antifouling properties have been suggested as the prime alternative to polyethylene glycol (PEG) for drug nanocarriers surface coating. It is believed that PEG coating shortcomings, such as immune responses and incomplete protein repellency, could be overcome by zwitterionic polymers. However, no systematic study has been conducted so far to complete a comparative appraisal of PEG and zwitterionic-coating effects on nanoparticles (NPs) stealthness, cell uptake, cell barrier translocation and biodistribution in the context of nanocarriers brain targeting. Core-shell polymeric particles with identical cores and a shell of either PEG or poly(2-methacryloyloxyethyl phosphorylcholine (PMPC) were prepared by impinging jet mixer nanoprecipitation. NPs with similar size and surface potential were systematically compared using in vitro and in vivo assays. NPs behavior differences were rationalized based on their protein-particles interactions. PMPC-coated NPs were significantly more endocytosed by mouse macrophages or brain resident macrophages compared to PEGylated NPs but exhibited the remarkable ability to cross the blood-brain barrier in in vitro models. Nanoscale flow cytometry assays showed significantly more adsorbed proteins on PMPC-coated NPs than PEG-coated NPs. In vivo, distribution in zebrafish larvae, showed a strong propensity for PMPC-coated NPs to adhere to the vascular endothelium, while PEG-coated NPs were able to circulate for a longer time and escape the bloodstream to penetrate deep into the cerebral tissue. The stark differences between these two types of particles, besides their similarities in size and surface potential, points towards the paramount role of surface chemistry in controlling NPs fate likely via the formation of distinct protein corona for each coating.
Collapse
|
22
|
Pieróg M, Socała K, Doboszewska U, Wyska E, Guz L, Szopa A, Serefko A, Poleszak E, Wlaź P. Effects of new antiseizure drugs on seizure activity and anxiety-like behavior in adult zebrafish. Toxicol Appl Pharmacol 2021; 427:115655. [PMID: 34329640 DOI: 10.1016/j.taap.2021.115655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Several studies with larvae and adult zebrafish have shown that old and new antiseizure drugs (ASDs) produce discrepant results in seizure tests, locomotor activity or anxiety models. In this study, the pentylenetetrazole seizure test (PTZ) was performed to assess the effectiveness of four new ASDs: lamotrigine (LTG), topiramate (TPM), felbamate (FBM), and levetiracetam (LEV) in the subsequent stages of seizures in adult fish. All ASDs were administered intraperitoneally (i.p.). The time of maximal anticonvulsant effect and the dose-response relationship of the drugs were assessed. The effects of studied ASDs on the locomotor activity and the anxiety-like behavior in the color preference test were also investigated. Furthermore, drug concentrations in zebrafish homogenates were determined. LTG, TPM, and LEV significantly increased the seizure latency at three subsequent stages of seizures (SI-SIII), while FBM was effective only at SI. Locomotor activity decreased after TPM treatment. TPM and FBM exhibited a strong anxiolytic-like effect in the color preference test. LEV at the highest dose tested had a weak anxiolytic-like effect. The HPLC analysis showed average concentrations of the studied ASDs in the fish body during their maximum anticonvulsant activity. The present study shows that FBM cannot inhibit all subsequent PTZ seizure stages in the adult fish. Except for LTG, the studied drugs affected the anxiety-like behavior of treated animals. Furthermore, only TPM significantly changed locomotion parameters. Our findings support the need to accurately characterize the efficacy of new ASDs at different stages of the PTZ-induced seizures in adult zebrafish.
Collapse
Affiliation(s)
- Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Leszek Guz
- Department of Fish Diseases and Biology, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Akademicka 12, PL 20-033 Lublin, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
23
|
Niksirat H, Siino V, Steinbach C, Levander F. High-Resolution Proteomic Profiling Shows Sexual Dimorphism in Zebrafish Heart-Associated Proteins. J Proteome Res 2021; 20:4075-4088. [PMID: 34185526 DOI: 10.1021/acs.jproteome.1c00387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the molecular basis of sexual dimorphism in the cardiovascular system may contribute to the improvement of the outcome in biological, pharmacological, and toxicological studies as well as on the development of sex-based drugs and therapeutic approaches. Label-free protein quantification using high-resolution mass spectrometry was applied to detect sex-based proteome differences in the heart of zebrafish Danio rerio. Out of almost 3000 unique identified proteins in the heart, 79 showed significant abundance differences between male and female fish. The functional differences were mapped using enrichment analyses. Our results suggest that a large amount of materials needed for reproduction (e.g., sugars, lipids, proteins, etc.) may impose extra pressure on blood, vessels, and heart on their way toward the ovaries. In the present study, the female's heart shows a clear sexual dimorphism by changing abundance levels of numerous proteins, which could be a way to safely overcome material-induced elevated pressures. These proteins belong to the immune system, oxidative stress response, drug metabolization, detoxification, energy, metabolism, and so on. In conclusion, we showed that sex can induce dimorphism at the molecular level in nonsexual organs such as heart and must be considered as an important factor in cardiovascular research. Data are available via ProteomeXchange with identifier PXD023506.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund 223 87, Sweden
| |
Collapse
|
24
|
BING, a novel antimicrobial peptide isolated from Japanese medaka plasma, targets bacterial envelope stress response by suppressing cpxR expression. Sci Rep 2021; 11:12219. [PMID: 34108601 PMCID: PMC8190156 DOI: 10.1038/s41598-021-91765-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising alternative to small molecule antibiotics. Although AMPs have previously been isolated in many organisms, efforts on the systematic identification of AMPs in fish have been lagging. Here, we collected peptides from the plasma of medaka (Oryzias latipes) fish. By using mass spectrometry, 6399 unique sequences were identified from the isolated peptides, among which 430 peptides were bioinformatically predicted to be potential AMPs. One of them, a thermostable 13-residue peptide named BING, shows a broad-spectrum toxicity against pathogenic bacteria including drug-resistant strains, at concentrations that presented relatively low toxicity to mammalian cell lines and medaka. Proteomic analysis indicated that BING treatment induced a deregulation of periplasmic peptidyl-prolyl isomerases in gram-negative bacteria. We observed that BING reduced the RNA level of cpxR, an upstream regulator of envelope stress responses. cpxR is known to play a crucial role in the development of antimicrobial resistance, including the regulation of genes involved in drug efflux. BING downregulated the expression of efflux pump components mexB, mexY and oprM in P. aeruginosa and significantly synergised the toxicity of antibiotics towards these bacteria. In addition, exposure to sublethal doses of BING delayed the development of antibiotic resistance. To our knowledge, BING is the first AMP shown to suppress cpxR expression in Gram-negative bacteria. This discovery highlights the cpxR pathway as a potential antimicrobial target.
Collapse
|
25
|
Abstract
Nanomedicine has demonstrated substantial potential to improve the quality and efficacy of healthcare systems. Although the promise of nanomedicine to transform conventional medicine is evident, significant numbers of therapeutic nanomedicine products have failed in clinical trials. Most studies in nanomedicine have overlooked several important factors, including the significance of sex differences at various physiological levels. This report attempts to highlight the importance of sex in nanomedicine at cellular and molecular level. A more thorough consideration of sex physiology, among other critical variations (e.g., health status of individuals), would enable researchers to design and develop safer and more-efficient sex-specific diagnostic and therapeutic nanomedicine products.
Collapse
|
26
|
Costa KCM, Brigante TAV, Fernandes GG, Scomparin DS, Scarante FF, de Oliveira DP, Campos AC. Zebrafish as a Translational Model: An Experimental Alternative to Study the Mechanisms Involved in Anosmia and Possible Neurodegenerative Aspects of COVID-19? eNeuro 2021; 8:ENEURO.0027-21.2021. [PMID: 33952614 PMCID: PMC8174008 DOI: 10.1523/eneuro.0027-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
The Coronavirus disease-2019 (COVID-19) presents a variability of clinical symptoms, ranging from asymptomatic to severe respiratory and systemic conditions. In a cohort of patients, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), beyond the classical respiratory manifestations, induces anosmia. Evidence has suggested SARS-CoV-2-induced anosmia can be the result of neurodegeneration of the olfactory pathway. Neurologic symptoms associated with COVID-19 have been reported; however, the precise mechanism and possible long-lasting effects remain poorly investigated. Preclinical models are valuable tools for describing and testing new possible treatments for neurologic disorders. In this way, the zebrafish (Danio rerio) organism model represents an attractive tool in the field of neuroscience, showing economic and logistic advantages besides genetic and physiologic similarities with mammalian, including the brain structure and functions. Besides, its external embryonic development, high availability of eggs, and fast development allows easy genetic manipulation and fast replications. In the present review, we suggest that the zebrafish model can be advantageous to investigate the neurologic features of COVID-19.
Collapse
Affiliation(s)
- Karla C M Costa
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900,
| | - Tamires A V Brigante
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Gabriel G Fernandes
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Davi S Scomparin
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Franciele F Scarante
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| | - Danielle P de Oliveira
- EcoHumanTox Laboratory, Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, São Paulo, Brazil 14049-900
| | - Alline C Campos
- Pharmacology of Neuroplasticity Laboratory, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil, 14049-900
| |
Collapse
|
27
|
Pires IS, Govender K, Munoz CJ, Williams AT, O'Boyle QT, Savla C, Cabrales P, Palmer AF. Purification and analysis of a protein cocktail capable of scavenging cell-free hemoglobin, heme, and iron. Transfusion 2021; 61:1894-1907. [PMID: 33817808 DOI: 10.1111/trf.16393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hemolysis releases toxic cell-free hemoglobin (Hb), heme, and iron, which overwhelm their natural scavenging mechanisms during acute or chronic hemolytic conditions. This study describes a novel strategy to purify a protein cocktail containing a comprehensive set of scavenger proteins for potential treatment of hemolysis byproducts. STUDY DESIGN AND METHODS Tangential flow filtration was used to purify a protein cocktail from Human Cohn Fraction IV (FIV). A series of in vitro assays were performed to characterize composition and biocompatibility. The in vivo potential for hemolysis byproduct mitigation was assessed in a hamster exchange transfusion model using mechanically hemolyzed blood plasma mixed with the protein cocktail or a control colloid (dextran 70 kDa). RESULTS A basis of 500 g of FIV yielded 62 ± 9 g of a protein mixture at 170 g/L, which bound to approximately 0.6 mM Hb, 1.2 mM heme, and 1.2 mM iron. This protein cocktail was shown to be biocompatible in vitro with red blood cells and platelets and exhibits nonlinear concentration dependence with respect to viscosity and colloidal osmotic pressure. In vivo assessment of the protein cocktail demonstrated higher iron transport to the liver and spleen and less to the kidney and heart with significantly reduced renal and cardiac inflammation markers and lower kidney and hepatic damage compared to a control colloid. DISCUSSION Taken together, this study provides an effective method for large-scale production of a protein cocktail suitable for comprehensive reduction of hemolysis-induced toxicity.
Collapse
Affiliation(s)
- Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Krianthan Govender
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Carlos J Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Alexander T Williams
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Quintin T O'Boyle
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
28
|
Pieróg M, Socała K, Doboszewska U, Wyska E, Guz L, Szopa A, Serefko A, Poleszak E, Wlaź P. Effects of classic antiseizure drugs on seizure activity and anxiety-like behavior in adult zebrafish. Toxicol Appl Pharmacol 2021; 415:115429. [PMID: 33524447 DOI: 10.1016/j.taap.2021.115429] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
The zebrafish is extensively used as a model organism for studying several disorders of the central nervous system (CNS), including epilepsy. Some antiseizure drugs (ASDs) have been shown to produce discrepant results in larvae and adults zebrafish, therefore, their anticonvulsant efficacy in subsequent stages of the pentylenetetrazole (PTZ)-induced seizures should be more precisely characterized. The purpose of this study was to investigate behavioral effects of five classic ASDs: valproate (VPA), phenytoin (PHT), carbamazepine (CBZ), diazepam (DZP), and phenobarbital (PB) administered intraperitoneally (i.p.) in the PTZ-induced seizure test in adult zebrafish. We determined the time of maximal effect and the dose-response relationship of the studied ASDs. Furthermore, we assessed changes in the locomotor activity and the anxiety-like behavior in the color preference test. Moreover, drug concentrations in zebrafish homogenates were examined. VPA, DZP, and PB significantly increased the seizure latency at three subsequent stages of seizures (SI-SIII). PHT produced the anticonvulsant-like effect at SI and SII, while CBZ was effective at SII and SIII. Only DZP decreased zebrafish locomotor activity. A strong anxiolytic-like effect was observed after administration of PHT and PB. A weak anxiolytic-like effect occurred after treatment with VPA and DZP. The HPLC analysis showed the average concentrations of the studied ASDs in the fish body during the maximum anticonvulsant activity of each drug. Our results confirm the advantages of using zebrafish with the mature CNS over larval models and its utility to investigate some neuropharmacological properties of the tested drugs.
Collapse
Affiliation(s)
- Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Leszek Guz
- Department of Fish Diseases and Biology, Institute of Biological Bases of Animal Diseases, University of Life Sciences, Akademicka 12, PL 20-033 Lublin, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
29
|
Mohammad-Beigi H, Scavenius C, Jensen PB, Kjaer-Sorensen K, Oxvig C, Boesen T, Enghild JJ, Sutherland DS, Hayashi Y. Tracing the In Vivo Fate of Nanoparticles with a "Non-Self" Biological Identity. ACS NANO 2020; 14:10666-10679. [PMID: 32806026 DOI: 10.1021/acsnano.0c05178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoparticles can acquire a biomolecular corona with a species-specific biological identity. However, "non-self" incompatibility of recipient biological systems is often not considered, for example, when rodents are used as a model organism for preclinical studies of biomolecule-inspired nanomedicines. Using zebrafish embryos as an emerging model for nanobioimaging, here we unravel the in vivo fate of intravenously injected 70 nm SiO2 nanoparticles with a protein corona preformed from fetal bovine serum (FBS), representing a non-self biological identity. Strikingly rapid sequestration and endolysosomal acidification of nanoparticles with the preformed FBS corona were observed in scavenger endothelial cells within minutes after injection. This led to loss of blood vessel integrity and to inflammatory activation of macrophages over the course of several hours. As unmodified nanoparticles or the equivalent dose of FBS proteins alone failed to induce the observed pathophysiology, this signifies how the corona enriched with a differential repertoire of proteins can determine the fate of the nanoparticles in vivo. Our findings thus reveal the adverse outcome triggered by incompatible protein coronas and indicate a potential pitfall in the use of mismatched species combinations during nanomedicine development.
Collapse
Affiliation(s)
- Hossein Mohammad-Beigi
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Pia Bomholt Jensen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Thomas Boesen
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Duncan S Sutherland
- iNANO Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Yuya Hayashi
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| |
Collapse
|
30
|
Kwon YS, Jung JW, Kim YJ, Park CB, Shon JC, Kim JH, Park JW, Kim SG, Seo JS. Proteomic analysis of whole-body responses in medaka ( Oryzias latipes) exposed to benzalkonium chloride. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1387-1397. [PMID: 32693679 DOI: 10.1080/10934529.2020.1796117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Benzalkonium chloride (BAC) is a cationic surfactant commonly used as a disinfectant, and is discharged into the aquatic environment by various water sources such as wastewater. BAC may also interact with potentially toxic substances such as persistent organic chemicals. Although studies of BAC contamination toxicity and bioaccumulation have been widely reported, the biochemical responses to BAC toxicity remain incompletely understood, and the detailed molecular mechanisms are largely unknown. In this study, two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry-based proteomic approaches were applied to investigate the protein profiles in Oryzias latipes (medaka) chronically exposed to BAC. Fish were exposed to three different concentrations of BAC, 0.05, 0.1, and 0.2 mg/L, for 21 days. A total of 20 proteins involved in the cytoskeleton, the oxidative stress response, the nervous and endocrine systems, signaling pathways, and cellular proteolysis were significantly upregulated by BAC exposure. The proteomic information obtained in the present study will be useful in identification of potential biomarkers for BAC toxicity, and begins to elucidate its molecular mechanisms, providing new insights into the ecotoxicity of BAC.
Collapse
Affiliation(s)
- Young Sang Kwon
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jae-Woong Jung
- Environmental Biology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Yeong Jin Kim
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Chang-Beom Park
- Ecotoxicology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jong Cheol Shon
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - June-Woo Park
- Environmental Biology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Sang Gon Kim
- Gyeongnam Oriental Anti-aging Institute, Sancheong, Republic of Korea
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| |
Collapse
|
31
|
Dhar P, Samarasinghe RM, Shigdar S. Antibodies, Nanobodies, or Aptamers-Which Is Best for Deciphering the Proteomes of Non-Model Species? Int J Mol Sci 2020; 21:E2485. [PMID: 32260091 PMCID: PMC7177290 DOI: 10.3390/ijms21072485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
This planet is home to countless species, some more well-known than the others. While we have developed many techniques to be able to interrogate some of the "omics", proteomics is becoming recognized as a very important part of the puzzle, given how important the protein is as a functional part of the cell. Within human health, the proteome is fairly well-established, with numerous reagents being available to decipher cellular pathways. Recent research advancements have assisted in characterizing the proteomes of some model (non-human) species, however, in many other species, we are only just touching the surface. This review considers three main reagent classes-antibodies, aptamers, and nanobodies-as a means of continuing to investigate the proteomes of non-model species without the complications of understanding the full protein signature of a species. Considerations of ease of production, potential applications, and the necessity for producing a new reagent depending on homology are presented.
Collapse
Affiliation(s)
- Poshmaal Dhar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
32
|
Xu S, Xie F, Tian L, Fallah S, Babaei F, Manno SHC, Manno FAM, Zhu L, Wong KF, Liang Y, Ramalingam R, Sun L, Wang X, Plumb R, Gethings L, Lam YW, Cheng SH. Estrogen accelerates heart regeneration by promoting the inflammatory response in zebrafish. J Endocrinol 2020; 245:39-51. [PMID: 31977314 PMCID: PMC7040496 DOI: 10.1530/joe-19-0413] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Sexual differences have been observed in the onset and prognosis of human cardiovascular diseases, but the underlying mechanisms are not clear. Here, we found that zebrafish heart regeneration is faster in females, can be accelerated by estrogen and is suppressed by the estrogen-antagonist tamoxifen. Injuries to the zebrafish heart, but not other tissues, increased plasma estrogen levels and the expression of estrogen receptors, especially esr2a. The resulting endocrine disruption induces the expression of the female-specific protein vitellogenin in male zebrafish. Transcriptomic analyses suggested heart injuries triggered pronounced immune and inflammatory responses in females. These responses, previously shown to elicit heart regeneration, could be enhanced by estrogen treatment in males and reduced by tamoxifen in females. Furthermore, a prior exposure to estrogen preconditioned the zebrafish heart for an accelerated regeneration. Altogether, this study reveals that heart regeneration is modulated by an estrogen-inducible inflammatory response to cardiac injury. These findings elucidate a previously unknown layer of control in zebrafish heart regeneration and provide a new model system for the study of sexual differences in human cardiac repair.
Collapse
Affiliation(s)
- Shisan Xu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Fangjing Xie
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Li Tian
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Samane Fallah
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Fatemeh Babaei
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Sinai H C Manno
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Francis A M Manno
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Lina Zhu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Kin Fung Wong
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Yimin Liang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Rajkumar Ramalingam
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Lei Sun
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Xin Wang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Robert Plumb
- Waters Technologies Corporation, Milford, Massachusetts, USA
| | - Lee Gethings
- Waters Technologies Corporation, Milford, Massachusetts, USA
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Correspondence should be addressed to Y W Lam or S H Cheng: or
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
- State Key Laboratory of Marine Pollution (SKLMP) at City University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Materials Science and Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Correspondence should be addressed to Y W Lam or S H Cheng: or
| |
Collapse
|
33
|
Morro B, Doherty MK, Balseiro P, Handeland SO, MacKenzie S, Sveier H, Albalat A. Plasma proteome profiling of freshwater and seawater life stages of rainbow trout (Oncorhynchus mykiss). PLoS One 2020; 15:e0227003. [PMID: 31899766 PMCID: PMC6941806 DOI: 10.1371/journal.pone.0227003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023] Open
Abstract
The sea-run phenotype of rainbow trout (Oncorhynchus mykiss), like other anadromous salmonids, present a juvenile stage fully adapted to life in freshwater known as parr. Development in freshwater is followed by the smolt stage, where preadaptations needed for seawater life are developed making fish ready to migrate to the ocean, after which event they become post-smolts. While these three life stages have been studied using a variety of approaches, proteomics has never been used for such purpose. The present study characterised the blood plasma proteome of parr, smolt and post-smolt rainbow trout using a gel electrophoresis liquid chromatography tandem mass spectrometry approach alone or in combination with low-abundant protein enrichment technology (combinatorial peptide ligand library). In total, 1,822 proteins were quantified, 17.95% of them being detected only in plasma post enrichment. Across all life stages, the most abundant proteins were ankyrin-2, DNA primase large subunit, actin, serum albumin, apolipoproteins, hemoglobin subunits, hemopexin-like proteins and complement C3. When comparing the different life stages, 17 proteins involved in mechanisms to cope with hyperosmotic stress and retinal changes, as well as the downregulation of nonessential processes in smolts, were significantly different between parr and smolt samples. On the other hand, 11 proteins related to increased growth in post-smolts, and also related to coping with hyperosmotic stress and to retinal changes, were significantly different between smolt and post-smolt samples. Overall, this study presents a series of proteins with the potential to complement current seawater-readiness assessment tests in rainbow trout, which can be measured non-lethally in an easily accessible biofluid. Furthermore, this study represents a first in-depth characterisation of the rainbow trout blood plasma proteome, having considered three life stages of the fish and used both fractionation alone or in combination with enrichment methods to increase protein detection.
Collapse
Affiliation(s)
- Bernat Morro
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Mary K. Doherty
- Institute of Health Research and Innovation, Centre for Health Science, University of the Highlands and Islands, Inverness, Scotland, United Kingdom
| | | | | | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
- NORCE AS, Universitetet i Bergen, Bergen, Norway
| | - Harald Sveier
- Lerøy Seafood Group ASA, Universitetet i Bergen, Bergen, Norway
| | - Amaya Albalat
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
34
|
Boleij M, Seviour T, Wong LL, van Loosdrecht MCM, Lin Y. Solubilization and characterization of extracellular proteins from anammox granular sludge. WATER RESEARCH 2019; 164:114952. [PMID: 31408759 DOI: 10.1016/j.watres.2019.114952] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Elucidating the extracellular polymeric substances (EPS) of anammox granular sludge is important for stable nitrogen removal processes in wastewater treatment. However, due to a lack of standardized methods for extraction and characterization, the composition of anammox granule EPS remains mostly unknown. In this study, alkaline (NaOH) and ionic liquid (IL) extractions were compared in terms of the proteins they extracted from different "Candidatus Brocadia" cultures. We aimed to identify structural proteins and evaluated to which extend these extraction methods bias the outcome of EPS characterization. Extraction was focussed on solubilization of the EPS matrix, and the NaOH and IL extraction recovered on average 20% and 26% of the VSS, respectively. Using two extraction methods targeting different intermolecular interactions increased the possibility of identifying structural extracellular proteins. Of the extracted proteins, ∼40% were common between the extraction methods. The high number of common abundant proteins between the extraction methods, illustrated how extraction biases can be reduced when solubility of the granular sludge is enhanced. Physicochemical analyses of the granules indicated that extracellular structural matrix proteins likely have β-sheet dominated secondary structures. These β-sheet structures were measured in EPS extracted with both methods. The high number of uncharacterized proteins and possible moonlighting proteins confounded identifying structural (i.e. β-sheet dominant) proteins. Nonetheless, new candidates for structural matrix proteins are described. Further current bottlenecks in assigning specific proteins to key extracellular functions in anammox granular sludge are discussed.
Collapse
Affiliation(s)
- Marissa Boleij
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Lan Li Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| |
Collapse
|
35
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
36
|
Andreeva AM, Vasiliev AS, Toropygin IY, Garina DV, Lamash N, Filippova A. Involvement of apolipoprotein A in maintaining tissue fluid balance in goldfish Carassius auratus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1717-1730. [PMID: 31227941 DOI: 10.1007/s10695-019-00662-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Mammalian plasma proteins play a key role in maintaining tissue fluid balance because they are retained within capillaries and thus create colloid osmotic pressure. Likewise, fish plasma contain a considerable concentration oligomeric proteins which likely serve a similar role. To elucidate the functions of these oligomeric proteins, we analyzed blood serum (BS) and interstitial fluid (IF) complexes in goldfish from the wild and under experimental conditions using 2D electrophoresis and matrix-assisted laser desorption/ionization (MALDI). We detected protein compounds with MWs ranging from 50 to 155 kDa, organized as oligomeric complexes. The protein compounds consisted of apolipoproteins АроА-I and Аро-14 which are homological to mammalian АроА-I and АроА-II, respectively. The 155-kDa and 50-125-kDa oligomer complexes were located very low-density lipoproteins (LDL) and high-density lipoproteins (HDL) areas on the BS/IF proteomic maps, respectively. The latter resembled mammalian HDL plasma particles by size and contained lipids, so we considered them as HDL particle populations. Investigation of the uniform dissociation/association mechanism for HDL and LDL oligomers in goldfish, from the wild and under critical salinity conditions, showed the "125/110 → 85/60 kDa" reorganization. This was associated with overcoming physiological stress during spawning and under critical salinity conditions. Opposite reorganization "85/60 → 125/110 kDa" was associated with restoration of metabolic processes after stress. The association/dissociation reorganizations promoted equilibration of BS and IF osmolarities in all fish groups. We discuss the connection of these reorganizations with total protein distribution across the capillary wall and salinity, as well as the role of oligomeric apolipoproteins as universal metabolic regulators.
Collapse
Affiliation(s)
- Alla M Andreeva
- Ecological Biochemistry Laboratory, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, House 109, Borok, Nekouzskii Raion, Yaroslavl, Oblast, Russia, 152742.
| | - Alexey S Vasiliev
- Ecological Biochemistry Laboratory, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, House 109, Borok, Nekouzskii Raion, Yaroslavl, Oblast, Russia, 152742
| | - Ilya Yu Toropygin
- Institute of Biomedical Chemistry, Russian Academy of Sciences, Pogodinskaya Street, House 10, Building 8, Moscow, Russia, 119121
| | - Darina V Garina
- Ecological Biochemistry Laboratory, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, House 109, Borok, Nekouzskii Raion, Yaroslavl, Oblast, Russia, 152742
| | - Nina Lamash
- Ecological Biochemistry Laboratory, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, House 109, Borok, Nekouzskii Raion, Yaroslavl, Oblast, Russia, 152742
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia, 690041
| | - Alexandra Filippova
- Ecological Biochemistry Laboratory, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, House 109, Borok, Nekouzskii Raion, Yaroslavl, Oblast, Russia, 152742
| |
Collapse
|
37
|
Developing Well-Annotated Species-Specific Protein Databases Using Comparative Proteogenomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:389-400. [PMID: 31347060 DOI: 10.1007/978-3-030-15950-4_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteomics is a mass spectrometry-based discipline that aims to analyze proteomes and their functions. Many proteomic studies require well-developed protein databases for reference. However, most proteomes are not well-annotated, aside from model organisms. Techniques like six-frame translation, ab initio gene prediction, and EST databases can aid in maximizing the amount of proteins identified in proteomics experiments, however, each of these has its downfalls. Proteogenomics is a term used to describe the union of proteomics, genomics and transcriptomics to assist in the identification of peptides which would help build better annotated proteome databases. Here, current proteomic and proteogenomic methods will be reviewed, and an example of a comparative proteomics method using lake trout liver samples will be described.
Collapse
|
38
|
[Comparing nanoflow reversed-phase liquid chromatography-tandem mass spectrometry and capillary zone electrophoresis-tandem mass spectrometry for top-down proteomics]. Se Pu 2019; 37:878-886. [PMID: 31642259 DOI: 10.3724/sp.j.1123.2019.05001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
One of the major shortcomings in top-down proteomics is the lack of efficient separations for intact proteins that can be effectively coupled to mass spectrometry. Capillary zone electrophoresis (CZE) and nanoflow reversed-phase liquid chromatography (nanoRPLC) are two methods that can be coupled to mass spectrometry directly and have been recently advanced in terms of their ability to separate intact proteins in complex biological mixtures. In this work, for the first time, we compared the state-of-the-art nanoRPLC-MS/MS and CZE-MS/MS platforms for top-down characterization of a standard protein mixture and an Escherichia coli (E. coli) proteome sample. CZE-MS produced comparable signals of standard proteins to RPLC-MS with 10-times less sample consumption. Interestingly, the proteins in RPLC-MS tended to have higher charge states than in CZE-MS, most likely due to the high acetonitrile concentration in RPLC mobile phase, leading to the more extensive unfolding of proteins in RPLC compared to in CZE. CZE-MS/MS identified 159 proteins and 513 proteoforms using 1-μg E. coli proteins in a single run and outperformed RPLC-MS/MS using 1-μg E. coli proteins in terms of protein and proteoform identifications (159 vs. 105 proteins and 513 vs. 277 proteoforms). The RPLC-MS/MS using 8-μg E. coli proteins identified 245 proteins and 1004 proteoforms in a single run, and the data was much better than that from CZE-MS/MS (1-μg E. coli proteins) regarding the number of identifications because of the 8-times higher sample loading amount and significantly wider separation window of RPLC-MS/MS compared to CZE-MS/MS.
Collapse
|
39
|
White DT, Saxena MT, Mumm JS. Let's get small (and smaller): Combining zebrafish and nanomedicine to advance neuroregenerative therapeutics. Adv Drug Deliv Rev 2019; 148:344-359. [PMID: 30769046 PMCID: PMC6937731 DOI: 10.1016/j.addr.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/18/2023]
Abstract
Several key attributes of zebrafish make them an ideal model system for the discovery and development of regeneration promoting therapeutics; most notably their robust capacity for self-repair which extends to the central nervous system. Further, by enabling large-scale drug discovery directly in living vertebrate disease models, zebrafish circumvent critical bottlenecks which have driven drug development costs up. This review summarizes currently available zebrafish phenotypic screening platforms, HTS-ready neurodegenerative disease modeling strategies, zebrafish small molecule screens which have succeeded in identifying regeneration promoting compounds and explores how intravital imaging in zebrafish can facilitate comprehensive analysis of nanocarrier biodistribution and pharmacokinetics. Finally, we discuss the benefits and challenges attending the combination of zebrafish and nanoparticle-based drug optimization, highlighting inspiring proof-of-concept studies and looking toward implementation across the drug development community.
Collapse
Affiliation(s)
- David T White
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Meera T Saxena
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; Luminomics Inc., Baltimore, MD 21286, USA
| | - Jeff S Mumm
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
40
|
Facchin F, Alviano F, Canaider S, Bianconi E, Rossi M, Bonsi L, Casadei R, Biava PM, Ventura C. Early Developmental Zebrafish Embryo Extract to Modulate Senescence in Multisource Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20112646. [PMID: 31146388 PMCID: PMC6600478 DOI: 10.3390/ijms20112646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cells undergo senescence both in vivo, contributing to the progressive decline in self-healing mechanisms, and in vitro during prolonged expansion. Here, we show that an early developmental zebrafish embryo extract (ZF1) could act as a modulator of senescence in human mesenchymal stem cells (hMSCs) isolated from both adult tissues, including adipose tissue (hASCs), bone marrow (hBM-MSCs), dental pulp (hDP-MSCs), and a perinatal tissue such as the Wharton’s Jelly (hWJ-MSCs). In all the investigated hMSCs, ZF1 decreased senescence-associated β-galactosidase (SA β-gal) activity and enhanced the transcription of TERT, encoding the catalytic telomerase core. In addition, it was associated, only in hASCs, with a transcriptional induction of BMI1, a pleiotropic repressor of senescence. In hBM-MSCs, hDP-MSCs, and hWJ-MSCs, TERT over-expression was concomitant with a down-regulation of two repressors of TERT, TP53 (p53), and CDKN1A (p21). Furthermore, ZF1 increased the natural ability of hASCs to perform adipogenesis. These results indicate the chance of using ZF1 to modulate stem cell senescence in a source-related manner, to be potentially used as a tool to affect stem cell senescence in vitro. In addition, its anti-senescence action could also set the basis for future in vivo approaches promoting tissue rejuvenation bypassing stem cell transplantation.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Eva Bianconi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Martina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D'Augusto 237, 47921 Rimini, Italy.
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300, 20099 Sesto San Giovanni (Milano), Italy.
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
41
|
Wang W, Zhang X, Qin J, Wei P, Jia Y, Wang J, Ru S. Long-term bisphenol S exposure induces fat accumulation in liver of adult male zebrafish (Danio rerio) and slows yolk lipid consumption in F1 offspring. CHEMOSPHERE 2019; 221:500-510. [PMID: 30660906 DOI: 10.1016/j.chemosphere.2019.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS), as a substitute for bisphenol A, was frequently detected in human urine and blood. It has been reported that BPS could disrupt fat metabolism in vivo and vitro although mechanisms remain unclear. Additionally, there is no study that the disruptive effect of BPS on parental fat metabolism indirectly interferes with the lipid metabolism of offspring. Here, after 120-d exposure to 1, 10, 100, and 1000 μg/L BPS, the transcription level of genes involved in lipid metabolism in liver and feeding regulation of brain-gut axis, as well as the hepatic triacylglycerol (TAG) and plasma lipid levels were investigated in both male and female zebrafish. Results showed that in male liver, fatty acid synthesis and degradation were inhibited by reducing transcription levels of srebp1 and pparα, and the synthesis of TAG was significantly increased using fatty acid as a precursor by elevating agpat4 and dgat2 mRNA expression levels. As a consequence, fat accumulation and the increased TAG levels were observed in male liver, and lipid levels were also elevated in male plasma. In female liver, there was no excessive fat accumulation and BPS exposure had a non-monotonic effect on the gene expression of fasn, dagt2, and pparα. Notably, the unexposed offspring showed a large amount of yolk lipid remain at 5 days post fertilization. This study obviously demonstrated that long-term BPS exposure increases the risk of non-alcoholic fatty liver disease in male zebrafish and life-cycle exposure hazard on offspring is noteworthy.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Penghao Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yi Jia
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
42
|
Medina-Gali R, Belló-Pérez M, Ciordia S, Mena MC, Coll J, Novoa B, Ortega-Villaizán MDM, Perez L. Plasma proteomic analysis of zebrafish following spring viremia of carp virus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 86:892-899. [PMID: 30580041 DOI: 10.1016/j.fsi.2018.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
To better understand spring viremia of carp virus (SVCV) pathogenesis in zebrafish proteomic analysis was used to examine the plasma protein profile in SVCV-infected zebrafish. A total of 3062 proteins were identified. Of those 137, 63 and 31 proteins were enriched in blood samples harvested at 1, 2 and 5 days post SVCV infection, respectively. These altered host proteins were classified based on their biological function: 23 proteins under the response to stimulus term were identified. Interestingly, at the top of the up-regulated proteins during SVCV infection were the proteins of the vitellogenin family (Vtg) and the grass carp reovirus-induced gene (Gig) proteins. Real-time RT-PCR evaluation of samples from internal organs verified that SVCV infection induced vtg and gig2 gene expression already at day 1 post-infection. Western blot analysis revealed the presence of Vtg protein only in blood of SVCV-infected fish. This is the first proteomic study to reveal the involvement of Vtg proteins in adult fish response to viral challenge. It also highlights the role of Gig proteins as important factors in antiviral response in fish. This work provides valuable relevant insight into virus-host interaction and the identification of molecular markers of fish response to virus.
Collapse
Affiliation(s)
- Regla Medina-Gali
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández de Elche (UMH), 03202, Elche, Spain.
| | - Melissa Belló-Pérez
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández de Elche (UMH), 03202, Elche, Spain.
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB), Madrid, Spain.
| | - María Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB), Madrid, Spain.
| | - Julio Coll
- Instituto Nacional de Investigaciones Agrarias (INIA), 28040, Madrid, Spain.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM-CSIC), 36208, Vigo, Spain.
| | | | - Luis Perez
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández de Elche (UMH), 03202, Elche, Spain.
| |
Collapse
|
43
|
Le TTY, García MR, Nachev M, Grabner D, Balsa-Canto E, Hendriks AJ, Sures B. Development of a PBPK Model for Silver Accumulation in Chub Infected with Acanthocephalan Parasites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12514-12525. [PMID: 30251844 DOI: 10.1021/acs.est.8b04022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Simultaneous presence of metals and parasites in fish might lead to potential risks to human health. Parasites might influence metal accumulation and disturb detoxification in fish, thereby affecting biomarkers of fish responses as well as metal biomagnification in humans. It is, therefore, of importance to take into account parasite infection when investigating metal accumulation in fish. However, mechanisms of metal accumulation and distribution in fish-parasite systems are not integrated into current approaches. The present study proposes a new physiologically based pharmacokinetic model for mechanistic simulation of metal partitioning between intestinal parasites and their hosts. As a particular case, Ag accumulation in the system of chub Squalius cephalus and the acanthocephalan Pomphorhynchus tereticollis was investigated. As a novelty, fish cardiac output and organ-specific blood flow distribution were incorporated in our model. This approach distinguishes the current model from the ones developed previously. It also facilitates model extrapolation and application to varying conditions. In general, the model explained Ag accumulation in the system well, especially in chub gill, storage (including skin, muscle, and carcass), and liver. The highest concentration of Ag was found in the liver. The accumulation of Ag in the storage, liver, and gill compartments followed a similar pattern, i.e., increasing during the exposure and decreasing during the depuration. The model also generated this observed trend. However, the model had a weaker performance for simulating Ag accumulation in the intestine and the kidney. Silver accumulation in these organs was less evident with considerable variations.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU) , University of Duisburg-Essen , D-45141 Essen , Germany
| | - Míriam R García
- Process Engineering Group , Spanish Council for Scientific Research, IIM-CSIC , 36208 Vigo , Spain
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU) , University of Duisburg-Essen , D-45141 Essen , Germany
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU) , University of Duisburg-Essen , D-45141 Essen , Germany
| | - Eva Balsa-Canto
- Process Engineering Group , Spanish Council for Scientific Research, IIM-CSIC , 36208 Vigo , Spain
| | - A Jan Hendriks
- Department of Environmental Science, Faculty of Science , Radboud University Nijmegen , 6525 HP Nijmegen , The Netherlands
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU) , University of Duisburg-Essen , D-45141 Essen , Germany
| |
Collapse
|
44
|
Causey DR, Pohl MAN, Stead DA, Martin SAM, Secombes CJ, Macqueen DJ. High-throughput proteomic profiling of the fish liver following bacterial infection. BMC Genomics 2018; 19:719. [PMID: 30285610 PMCID: PMC6167799 DOI: 10.1186/s12864-018-5092-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background High-throughput proteomics was used to determine the role of the fish liver in defense responses to bacterial infection. This was done using a rainbow trout (Oncorhynchus mykiss) model following infection with Aeromonas salmonicida, the causative agent of furunculosis. The vertebrate liver has multifaceted functions in innate immunity, metabolism, and growth; we hypothesize this tissue serves a dual role in supporting host defense in parallel to metabolic adjustments that promote effective immune function. While past studies have reported mRNA responses to A. salmonicida in salmonids, the impact of bacterial infection on the liver proteome remains uncharacterized in fish. Results Rainbow trout were injected with A. salmonicida or PBS (control) and liver extracted 48 h later for analysis on a hybrid quadrupole-Orbitrap mass spectrometer. A label-free method was used for protein abundance profiling, which revealed a strong innate immune response along with evidence to support parallel rewiring of metabolic and growth systems. 3076 proteins were initially identified against all proteins (n = 71,293 RefSeq proteins) annotated in a single high-quality rainbow trout reference genome, of which 2433 were maintained for analysis post-quality filtering. Among the 2433 proteins, 109 showed significant differential abundance following A. salmonicida challenge, including many upregulated complement system and acute phase response proteins, in addition to molecules with putative functions that may support metabolic re-adjustments. We also identified novel expansions in the complement system due to gene and whole genome duplication events in salmonid evolutionary history, including eight C3 proteins showing differential changes in abundance. Conclusions This study provides the first high-throughput proteomic examination of the fish liver in response to bacterial challenge, revealing novel markers for the host defense response, and evidence of metabolic remodeling in conjunction with activation of innate immunity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5092-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dwight R Causey
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Moritz A N Pohl
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - David A Stead
- Aberdeen Proteomics, University of Aberdeen, The Rowett Institute, Aberdeen, UK
| | | | | | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
45
|
Elmonem MA, Berlingerio SP, van den Heuvel LP, de Witte PA, Lowe M, Levtchenko EN. Genetic Renal Diseases: The Emerging Role of Zebrafish Models. Cells 2018; 7:cells7090130. [PMID: 30200518 PMCID: PMC6162634 DOI: 10.3390/cells7090130] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
The structural and functional similarity of the larval zebrafish pronephros to the human nephron, together with the recent development of easier and more precise techniques to manipulate the zebrafish genome have motivated many researchers to model human renal diseases in the zebrafish. Over the last few years, great advances have been made, not only in the modeling techniques of genetic diseases in the zebrafish, but also in how to validate and exploit these models, crossing the bridge towards more informative explanations of disease pathophysiology and better designed therapeutic interventions in a cost-effective in vivo system. Here, we review the significant progress in these areas giving special attention to the renal phenotype evaluation techniques. We further discuss the future applications of such models, particularly their role in revealing new genetic diseases of the kidney and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Mohamed A Elmonem
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, 11628 Cairo, Egypt.
| | - Sante Princiero Berlingerio
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Peter A de Witte
- Laboratory for Molecular Bio-Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| |
Collapse
|
46
|
Aizat WM, Ibrahim S, Rahnamaie-Tajadod R, Loke KK, Goh HH, Noor NM. Proteomics (SWATH-MS) informed by transcriptomics approach of tropical herb Persicaria minor leaves upon methyl jasmonate elicitation. PeerJ 2018; 6:e5525. [PMID: 30186693 PMCID: PMC6118203 DOI: 10.7717/peerj.5525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Jasmonic acid (JA) and its derivative, methyl JA (MeJA) are hormonal cues released by plants that signal defense response to curb damages from biotic and abiotic stresses. To study such response, a tropical herbal plant, Persicaria minor, which possesses pungent smell and various bioactivities including antimicrobial and anticancer, was treated with MeJA. Such elicitation has been performed in hairy root cultures and plants such as Arabidopsis and rice, yet how MeJA influenced the proteome of an herbal species like P. minor is unknown. METHOD In this study, P. minor plants were exogenously elicited with MeJA and leaf samples were subjected to SWATH-MS proteomics analysis. A previously published translated transcriptome database was used as a reference proteome database for a comprehensive protein sequence catalogue and to compare their differential expression. RESULTS From this proteomics informed by transcriptomics approach, we have successfully profiled 751 proteins of which 40 proteins were significantly different between control and MeJA-treated samples. Furthermore, a correlation analysis between both proteome and the transcriptome data sets suggests that significantly upregulated proteins were positively correlated with their cognate transcripts (Pearson's r = 0.677) while a weak correlation was observed for downregulated proteins (r = 0.147). DISCUSSION MeJA treatment induced the upregulation of proteins involved in various biochemical pathways including stress response mechanism, lipid metabolism, secondary metabolite production, DNA degradation and cell wall degradation. Conversely, proteins involved in energy expensive reactions such as photosynthesis, protein synthesis and structure were significantly downregulated upon MeJA elicitation. Overall protein-transcript correlation was also weak (r = 0.341) suggesting the existence of post-transcriptional regulation during such stress. In conclusion, proteomics analysis using SWATH-MS analysis supplemented by the transcriptome database allows comprehensive protein profiling of this non-model herbal species upon MeJA treatment.
Collapse
Affiliation(s)
- Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Sarah Ibrahim
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Kok-Keong Loke
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
47
|
Wang W, Zhang X, Wang Z, Qin J, Wang W, Tian H, Ru S. Bisphenol S induces obesogenic effects through deregulating lipid metabolism in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2018; 199:286-296. [PMID: 29448196 DOI: 10.1016/j.chemosphere.2018.01.163] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 05/27/2023]
Abstract
It has been suggested that dramatic increase in obesity may be caused by growing exposure to environmental chemicals. In vitro data has suggested bisphenol S (BPS), a compound widely used in polycarbonate plastic production, can induce lipid accumulation in preadipocytes. However, the mechanisms responsible for BPS-induced obesity in vivo remain unclear. In this study, we used translucent zebrafish (Danio rerio) larvae as a model to investigate the effect of environmentally relevant BPS exposure (1, 10, and 100 μg/L from 2 h to 15 d post fertilization) on lipid accumulation, triacylglycerol (TAG) and lipoproteins content, and mRNA expression of genes involved in the regulation of lipid synthesis, transport, degradation, and storage. We also analyzed activities of two enzymes critical to TAG metabolism: lipoprotein lipase and diglyceride acyltransferase. Overfed, obese larvae were used as positive control. The results indicated that BPS-treated and overfed larvae had much higher TAG levels and visceral fat accumulation compared with control. BPS exhibited obesogenic effects by interfering with lipid metabolism as evidenced by (a) upregulation of the mRNA expression of fasn, acc1, and agpat4 genes encoding enzymes involved in the de novo synthesis of TAG in the liver, (b) downregulation of apolipoprotein expression, which should reduce TAG transport from the liver, and (c) increase in rxrα expression, which should promote visceral fat accumulation. Our study is the first to demonstrate that the obesogenic effects of BPS in zebrafish are related to the disruption of TAG metabolism.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zihao Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
48
|
Khazaee M, Ng CA. Evaluating parameter availability for physiologically based pharmacokinetic (PBPK) modeling of perfluorooctanoic acid (PFOA) in zebrafish. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:105-119. [PMID: 29265128 DOI: 10.1039/c7em00474e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models are considered useful tools to describe the absorption, distribution, metabolism and excretion of xenobiotics. For accurate predictions, PBPK models require species-specific and compound-specific parameters. Zebrafish are considered an appropriate vertebrate model for investigating the toxicity of a wide variety of compounds. However, no specific mechanistic model exists for the pharmacokinetics of perfluoroalkyl acids (PFAAs) in zebrafish, despite growing concern about this class of ubiquitous environmental contaminants. The purpose of this study was to evaluate the current state of knowledge for the parameters that would be needed to construct such a model for zebrafish. We chose perfluorooctanoic acid (PFOA) as a model PFAA with greater data availability. We have updated a previous PBPK model for rainbow trout to simulate PFOA fate in zebrafish following waterborne exposure. For the first time, the model considers hepatobiliary circulation. In order to evaluate the availability of parameters to implement this model, we performed an extensive literature review to find zebrafish-specific parameters. As in previous approaches, we broadened our search to include mammalian and other fish studies when zebrafish-specific data were lacking. Based on the method used to measure or estimate parameters, or based on their species-specific origin, we scored and ranked the quality of available parameters. These scores were then used in Monte Carlo and partial rank correlation analyses to identify the most critical data gaps. The liver, where fatty acid binding proteins (FABPs) and plasma proteins are considered, represented the best model-data agreement. Lack of agreement in other tissues suggest better parameters are needed. The results of our study highlight the lack of zebrafish-specific parameters. Based on sensitivity and uncertainty analysis, parameters associated with PFAA-protein interactions and passive diffusion need further refinement to enable development of predictive models for these emerging chemicals in zebrafish.
Collapse
Affiliation(s)
- Manoochehr Khazaee
- University of Pittsburgh, Department of Civil and Environmental Engineering, 3700 O'Hara St, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
49
|
Foshag D, Henrich E, Hiller E, Schäfer M, Kerger C, Burger-Kentischer A, Diaz-Moreno I, García-Mauriño SM, Dötsch V, Rupp S, Bernhard F. The E. coli S30 lysate proteome: A prototype for cell-free protein production. N Biotechnol 2017; 40:245-260. [PMID: 28943390 DOI: 10.1016/j.nbt.2017.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Protein production using processed cell lysates is a core technology in synthetic biology and these systems are excellent to produce difficult toxins or membrane proteins. However, the composition of the central lysate of cell-free systems is still a "black box". Escherichia coli lysates are most productive for cell-free expression, yielding several mgs of protein per ml of reaction. Their preparation implies proteome fractionation, resulting in strongly biased and yet unknown lysate compositions. Many metabolic pathways are expected to be truncated or completely removed. The lack of knowledge of basic cell-free lysate proteomes is a major bottleneck for directed lysate engineering approaches as well as for assay design using non-purified reaction mixtures. This study is starting to close this gap by providing a blueprint of the S30 lysate proteome derived from the commonly used E. coli strain A19. S30 lysates are frequently used for cell-free protein production and represent the basis of most commercial E. coli cell-free expression systems. A fraction of 821 proteins was identified as the core proteome in S30 lysates, representing approximately a quarter of the known E. coli proteome. Its classification into functional groups relevant for transcription/translation, folding, stability and metabolic processes will build the framework for tailored cell-free reactions. As an example, we show that SOS response induction during cultivation results in tuned S30 lysate with better folding capacity, and improved solubility and activity of synthesized proteins. The presented data and protocols can serve as a platform for the generation of customized cell-free systems and product analysis.
Collapse
Affiliation(s)
- Daniel Foshag
- Institute for Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Ekkehard Hiller
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Miriam Schäfer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Christian Kerger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | | | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Sofía M García-Mauriño
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
50
|
Elmiger MP, Poetzsch M, Steuer AE, Kraemer T. Assessment of simpler calibration models in the development and validation of a fast postmortem multi-analyte LC-QTOF quantitation method in whole blood with simultaneous screening capabilities using SWATH acquisition. Anal Bioanal Chem 2017; 409:6495-6508. [DOI: 10.1007/s00216-017-0594-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 12/01/2022]
|