1
|
Shi R, Yu S, Larbi A, Pin Ng T, Lu Y. Specific and cumulative infection burden and mild cognitive impairment and dementia: A population-based study. Brain Behav Immun 2024; 121:155-164. [PMID: 39043350 DOI: 10.1016/j.bbi.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Infection by pathogenic microbes is widely hypothesized to be a risk factor for the development of neurocognitive disorders and dementia, but evidence remains limited. We analyzed the association of seropositivity to 11 common pathogens and cumulative infection burden with neurocognitive disorder (mild cognitive impairment and dementia) in a population-based cohort of 475 older individuals (mean age = 67.6 y) followed up over 3-5 years for the risk of MCI-dementia. Specific seropositivities showed a preponderance of positive trends of association with MCI-dementia, including for Plasmodium, H. pylori, and RSV (p < 0.05), as well as Chickungunya, HSV-2, CMV and EBV (p > 0.05), while HSV-1 and HHV-6 showed equivocal or no associations, and Dengue and VZV showed negative associations (p < 0.05) with MCI-dementia. High infection burden (5 + cumulated infections) was significantly associated with an increased MCI-dementia risk in comparison with low infection burden (1-3 cumulative infections), adjusted for age, sex, and education. Intriguingly, for a majority (8 of 11) of pathogens, levels of antibody titers were significantly lower in those with MCI-dementia compared to cognitive normal individuals. Based on our observations, we postulate that individuals who are unable to mount strong immunological responses to infection by diverse microorganisms, and therefore more vulnerable to infection by greater numbers of different microbial pathogens or repeated infections to the same pathogen in the course of their lifetime are more likely to develop MCI or dementia. This hypothesis should be tested in more studies.
Collapse
Affiliation(s)
- Rong Shi
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China; Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Anis Larbi
- Biology of Aging Laboratory, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Tze Pin Ng
- Gerontology Research Programme, Department of Psychological Medicine, National University Health System, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yanxia Lu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China.
| |
Collapse
|
2
|
Rankawat S, Kundal K, Chakraborty S, Kumar R, Ray S. A comprehensive rhythmicity analysis of host proteins and immune factors involved in malaria pathogenesis to decipher the importance of host circadian clock in malaria. Front Immunol 2023; 14:1210299. [PMID: 37638001 PMCID: PMC10449258 DOI: 10.3389/fimmu.2023.1210299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Background Circadian rhythms broadly impact human health by regulating our daily physiological and metabolic processes. The circadian clocks substantially regulate our immune responses and susceptibility to infections. Malaria parasites have intrinsic molecular oscillations and coordinate their infection cycle with host rhythms. Considering the cyclical nature of malaria, a clear understanding of the circadian regulations in malaria pathogenesis and host responses is of immense importance. Methods We have thoroughly investigated the transcript level rhythmic patterns in blood proteins altered in falciparum and vivax malaria and malaria-related immune factors in mice, baboons, and humans by analyzing datasets from published literature and comprehensive databases. Using the Metascape and DAVID platforms, we analyzed Gene Ontology terms and physiological pathways associated with the rhythmic malaria-associated host immune factors. Results We observed that almost 50% of the malaria-associated host immune factors are rhythmic in mice and humans. Overlapping rhythmic genes identified in mice, baboons, and humans, exhibited enrichment (Q < 0.05, fold-enrichment > 5) of multiple physiological pathways essential for host immune and defense response, including cytokine production, leukocyte activation, cellular defense, and response, regulation of kinase activity, B-cell receptor signaling pathway, and cellular response to cytokine stimulus. Conclusions Our analysis indicates a robust circadian regulation on multiple interconnected host response pathways and immunological networks in malaria, evident from numerous rhythmic genes involved in those pathways. Host immune rhythms play a vital role in the temporal regulation of host-parasite interactions and defense machinery in malaria.
Collapse
Affiliation(s)
| | | | | | | | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| |
Collapse
|
3
|
Geitgey DK, Lee M, Cottrill KA, Jaffe M, Pilcher W, Bhasin S, Randall J, Ross AJ, Salemi M, Castillo-Castrejon M, Kilgore MB, Brown AC, Boss JM, Johnston R, Fitzpatrick AM, Kemp ML, English R, Weaver E, Bagchi P, Walsh R, Scharer CD, Bhasin M, Chandler JD, Haynes KA, Wellberg EA, Henry CJ. The 'omics of obesity in B-cell acute lymphoblastic leukemia. J Natl Cancer Inst Monogr 2023; 2023:12-29. [PMID: 37139973 PMCID: PMC10157791 DOI: 10.1093/jncimonographs/lgad014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
The obesity pandemic currently affects more than 70 million Americans and more than 650 million individuals worldwide. In addition to increasing susceptibility to pathogenic infections (eg, SARS-CoV-2), obesity promotes the development of many cancer subtypes and increases mortality rates in most cases. We and others have demonstrated that, in the context of B-cell acute lymphoblastic leukemia (B-ALL), adipocytes promote multidrug chemoresistance. Furthermore, others have demonstrated that B-ALL cells exposed to the adipocyte secretome alter their metabolic states to circumvent chemotherapy-mediated cytotoxicity. To better understand how adipocytes impact the function of human B-ALL cells, we used a multi-omic RNA-sequencing (single-cell and bulk transcriptomic) and mass spectroscopy (metabolomic and proteomic) approaches to define adipocyte-induced changes in normal and malignant B cells. These analyses revealed that the adipocyte secretome directly modulates programs in human B-ALL cells associated with metabolism, protection from oxidative stress, increased survival, B-cell development, and drivers of chemoresistance. Single-cell RNA sequencing analysis of mice on low- and high-fat diets revealed that obesity suppresses an immunologically active B-cell subpopulation and that the loss of this transcriptomic signature in patients with B-ALL is associated with poor survival outcomes. Analyses of sera and plasma samples from healthy donors and those with B-ALL revealed that obesity is associated with higher circulating levels of immunoglobulin-associated proteins, which support observations in obese mice of altered immunological homeostasis. In all, our multi-omics approach increases our understanding of pathways that may promote chemoresistance in human B-ALL and highlight a novel B-cell-specific signature in patients associated with survival outcomes.
Collapse
Affiliation(s)
- Delaney K Geitgey
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Miyoung Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Kirsten A Cottrill
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maya Jaffe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - William Pilcher
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Swati Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Jessica Randall
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Anthony J Ross
- Riley Children’s Health, Indiana University Health, Indianapolis, IN, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, Davis, 95616, CA
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew B Kilgore
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ayjha C Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Rich Johnston
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Melissa L Kemp
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Emory Integrated Proteomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Eric Weaver
- Shimadzu Scientific Instruments, Columbia, MD, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Walsh
- Shimadzu Scientific Instruments, Columbia, MD, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
4
|
Dowd A. Elucidating Cellular Metabolism and Protein Difference Data from DIGE Proteomics Experiments Using Enzyme Assays. Methods Mol Biol 2023; 2596:399-419. [PMID: 36378453 DOI: 10.1007/978-1-0716-2831-7_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Assays for measuring enzyme activity can be useful tools for proteomics applications. Enzyme testing can be performed to validate an experimental system prior to a difference gel electrophoresis (DIGE) proteomic experiment and can also be utilized as an integral part of multifaceted experiment in conjunction with DIGE. Data from enzyme tests can be used to corroborate results of DIGE proteomic experiments where an enzyme or enzymes are demonstrated by DIGE to be differentially expressed. Enzyme testing can also be utilized to support data from DIGE experiments that demonstrate metabolic changes in a biological system. The different types of enzyme assays that can be performed in conjunction with DIGE experiments are reviewed alongside a discussion of experimental approaches for designing enzyme assays.
Collapse
Affiliation(s)
- Andrew Dowd
- Croda Europe Limited, Daresbury, Cheshire, UK.
| |
Collapse
|
5
|
Foko LPK, Narang G, Tamang S, Hawadak J, Jakhan J, Sharma A, Singh V. The spectrum of clinical biomarkers in severe malaria and new avenues for exploration. Virulence 2022; 13:634-653. [PMID: 36036460 PMCID: PMC9427047 DOI: 10.1080/21505594.2022.2056966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
Globally, malaria is a public health concern, with severe malaria (SM) contributing a major share of the disease burden in malaria endemic countries. In this context, identification and validation of SM biomarkers are essential in clinical practice. Some biomarkers (C-reactive protein, angiopoietin 2, angiopoietin-2/1 ratio, platelet count, histidine-rich protein 2) have yielded interesting results in the prognosis of Plasmodium falciparum severe malaria, but for severe P. vivax and P. knowlesi malaria, similar evidence is missing. The validation of these biomarkers is hindered by several factors such as low sample size, paucity of evidence-evaluating studies, suboptimal values of sensitivity/specificity, poor clinical practicality of measurement methods, mixed Plasmodium infections, and good clinical value of the biomarkers for concurrent infections (pneumonia and current COVID-19 pandemic). Most of these biomarkers are non-specific to pathogens as they are related to host response and hence should be regarded as prognostic/predictive biomarkers that complement but do not replace pathogen biomarkers for clinical evaluation of SM patients. This review highlights the importance of research on diagnostic/predictive/therapeutic biomarkers, neglected malaria species, and clinical practicality of measurement methods in future studies. Finally, the importance of omics technologies for faster identification/validation of SM biomarkers is also included.
Collapse
Affiliation(s)
- Loick Pradel Kojom Foko
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Geetika Narang
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Suman Tamang
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Joseph Hawadak
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Jahnvi Jakhan
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
6
|
Pessoa RC, Oliveira-Pessoa GF, Souza BKA, Sampaio VS, Pinto ALCB, Barboza LL, Mouta GS, Silva EL, Melo GC, Monteiro WM, Silva-Filho JH, Lacerda MVG, Baía-da-Silva DC. Impact of Plasmodium vivax malaria on executive and cognitive functions in elderlies in the Brazilian Amazon. Sci Rep 2022; 12:10361. [PMID: 35725784 PMCID: PMC9208538 DOI: 10.1038/s41598-022-14175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
The exact path leading to cognitive impairment that goes beyond malaria is unclear, but it appears to be the result of interactive factors. Time of exposure to disease and recurrences are potentially major determinant variables. Cognitive impairment is described mainly in children, rarely in adults. The disease in high endemic areas usually does not affect elderlies, because of acquired immunity over time. However, this population is relatively more frequently sick in lower endemic areas, such as in the Amazon. This study assessed the effect of Plasmodium vivax malaria on the executive and cognitive functions of elderlies, in the Brazilian Amazon. A cohort study was conducted to evaluate executive and cognitive functions one week (T0), two months (T2) and eight months (T8) after the malaria episode. Mini-Mental State Examination (MMSE), Beck Depression Inventory II (BDI-II), Clock Drawing Test (CDT), Wechsler adult intelligence scale (WAIS-III), and Wisconsin Card Sorting Test (WCST) were used to assess executive and cognitive functions. One hundred-forty elderlies were enrolled (70 with P. vivax malaria and 70 without malaria). P. vivax malaria was associated with impairment of the executive and cognitive functions in elderlies for up to 8 months after acute P. vivax malaria. Prior history of malaria, recurrences and higher parasitemia were independently associated with various surrogates of executive and cognitive impairment. With the increase in life expectancy, elderlies living in malaria endemic areas will deserve more attention from health authorities, to guarantee improvement of their quality of life in the tropics.
Collapse
Affiliation(s)
- Rockson C Pessoa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | - Brenda K A Souza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Vanderson S Sampaio
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
- Fundação de Vigilância em Saúde do Amazonas, Manaus, Brazil
| | - André Luiz C B Pinto
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
| | - Larissa L Barboza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Gabriel S Mouta
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Emanuelle Lira Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
| | - Gisely C Melo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
| | - Wuelton M Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
| | | | - Marcus V G Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil.
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil.
| | - Djane Clarys Baía-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| |
Collapse
|
7
|
Uncomplicated Plasmodium vivax malaria: mapping the proteome from circulating platelets. Clin Proteomics 2022; 19:1. [PMID: 34991449 PMCID: PMC8903537 DOI: 10.1186/s12014-021-09337-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/21/2021] [Indexed: 01/07/2023] Open
Abstract
Background Thrombocytopenia is frequent in Plasmodium vivax malaria but the role of platelets in pathogenesis is unknown. Our study explores the platelet (PLT) proteome from uncomplicated P. vivax patients, to fingerprint molecular pathways related to platelet function. Plasma levels of Platelet factor 4 (PF4/CXCL4) and Von Willebrand factor (VWf), as well as in vitro PLTs—P. vivax infected erythrocytes (Pv-IEs) interactions were also evaluated to explore the PLT response and effect on parasite development. Methods A cohort of 48 patients and 25 healthy controls were enrolled. PLTs were purified from 5 patients and 5 healthy controls for Liquid Chromatography–Mass spectrometry (LC–MS/MS) analysis. Plasma levels of PF4/CXCL4 and VWf were measured in all participants. Additionally, P. vivax isolates (n = 10) were co-cultured with PLTs to measure PLT activation by PF4/CXCL4 and Pv-IE schizonts formation by light microscopy. Results The proteome from uncomplicated P. vivax patients showed 26 out of 215 proteins significantly decreased. PF4/CXCL4 was significantly decreased followed by other proteins involved in platelet activation, cytoskeletal remodeling, and endothelial adhesion, including glycoprotein V that was significantly decreased in thrombocytopenic patients. In contrast, acute phase proteins, including SERPINs and Amyloid Serum A1 were increased. High levels of VWf in plasma from patients suggested endothelial activation while PF4/CXCL4 plasma levels were similar between patients and controls. Interestingly, high levels of PF4/CXCL4 were released from PLTs—Pv-IEs co-cultures while Pv-IEs schizont formation was inhibited. Conclusions The PLT proteome analyzed in this study suggests that PLTs actively respond to P. vivax infection. Altogether, our findings suggest important roles of PF4/CXCL4 during uncomplicated P. vivax infection through a possible intracellular localization. Our study shows that platelets are active responders to P. vivax infection, inhibiting intraerythrocytic parasite development. Future studies are needed to further investigate the molecular pathways of interaction between platelet proteins found in this study and host response, which could affect parasite control as well as disease progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09337-7.
Collapse
|
8
|
Abstract
BACKGROUND Plasmodium vivax infects an estimated 7 million people every year. Previously, vivax malaria was perceived as a benign condition, particularly when compared to falciparum malaria. Reports of the severe clinical impacts of vivax malaria have been increasing over the last decade. METHODS AND FINDINGS We describe the main clinical impacts of vivax malaria, incorporating a rapid systematic review of severe disease with meta-analysis of data from studies with clearly defined denominators, stratified by hospitalization status. Severe anemia is a serious consequence of relapsing infections in children in endemic areas, in whom vivax malaria causes increased morbidity and mortality and impaired school performance. P. vivax infection in pregnancy is associated with maternal anemia, prematurity, fetal loss, and low birth weight. More than 11,658 patients with severe vivax malaria have been reported since 1929, with 15,954 manifestations of severe malaria, of which only 7,157 (45%) conformed to the World Health Organization (WHO) diagnostic criteria. Out of 423 articles, 311 (74%) were published since 2010. In a random-effects meta-analysis of 85 studies, 68 of which were in hospitalized patients with vivax malaria, we estimated the proportion of patients with WHO-defined severe disease as 0.7% [95% confidence interval (CI) 0.19% to 2.57%] in all patients with vivax malaria and 7.11% [95% CI 4.30% to 11.55%] in hospitalized patients. We estimated the mortality from vivax malaria as 0.01% [95% CI 0.00% to 0.07%] in all patients and 0.56% [95% CI 0.35% to 0.92%] in hospital settings. WHO-defined cerebral, respiratory, and renal severe complications were generally estimated to occur in fewer than 0.5% patients in all included studies. Limitations of this review include the observational nature and small size of most of the studies of severe vivax malaria, high heterogeneity of included studies which were predominantly in hospitalized patients (who were therefore more likely to be severely unwell), and high risk of bias including small study effects. CONCLUSIONS Young children and pregnant women are particularly vulnerable to adverse clinical impacts of vivax malaria, and preventing infections and relapse in this groups is a priority. Substantial evidence of severe presentations of vivax malaria has accrued over the last 10 years, but reporting is inconsistent. There are major knowledge gaps, for example, limited understanding of the underlying pathophysiology and the reason for the heterogenous geographical distribution of reported complications. An adapted case definition of severe vivax malaria would facilitate surveillance and future research to better understand this condition.
Collapse
Affiliation(s)
| | - Prabin Dahal
- Infectious Diseases Data Observatory–IDDO, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Laos
- Lao–Oxford–Mahosot Hospital–Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Laos
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao–Oxford–Mahosot Hospital–Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Laos
- * E-mail:
| |
Collapse
|
9
|
Vasquez M, Zuniga M, Rodriguez A. Oxidative Stress and Pathogenesis in Malaria. Front Cell Infect Microbiol 2021; 11:768182. [PMID: 34917519 PMCID: PMC8669614 DOI: 10.3389/fcimb.2021.768182] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Malaria is a highly inflammatory and oxidative disease. The production of reactive oxygen species by host phagocytes is an essential component of the host response to Plasmodium infection. Moreover, host oxidative enzymes, such as xanthine oxidase, are upregulated in malaria patients. Although increased production of reactive oxygen species contributes to the clearance of the parasite, excessive amounts of these free radicals can mediate inflammation and cause extensive damage to host cells and tissues, probably contributing to severe pathologies. Plasmodium has a variety of antioxidant enzymes that allow it to survive amidst this oxidative onslaught. However, parasitic degradation of hemoglobin within the infected red blood cell generates free heme, which is released at the end of the replication cycle, further aggravating the oxidative burden on the host and possibly contributing to the severity of life-threatening malarial complications. Additionally, the highly inflammatory response to malaria contributes to exacerbate the oxidative response. In this review, we discuss host and parasite-derived sources of oxidative stress that may promote severe disease in P. falciparum infection. Therapeutics that restore and maintain oxidative balance in malaria patients may be useful in preventing lethal complications of this disease.
Collapse
Affiliation(s)
| | | | - Ana Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Aggarwal S, Peng WK, Srivastava S. Multi-Omics Advancements towards Plasmodium vivax Malaria Diagnosis. Diagnostics (Basel) 2021; 11:2222. [PMID: 34943459 PMCID: PMC8700291 DOI: 10.3390/diagnostics11122222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium vivax malaria is one of the most lethal infectious diseases, with 7 million infections annually. One of the roadblocks to global malaria elimination is the lack of highly sensitive, specific, and accurate diagnostic tools. The absence of diagnostic tools in particular has led to poor differentiation among parasite species, poor prognosis, and delayed treatment. The improvement necessary in diagnostic tools can be broadly grouped into two categories: technologies-driven and omics-driven progress over time. This article discusses the recent advancement in omics-based malaria for identifying the next generation biomarkers for a highly sensitive and specific assay with a rapid and antecedent prognosis of the disease. We summarize the state-of-the-art diagnostic technologies, the key challenges, opportunities, and emerging prospects of multi-omics-based sensors.
Collapse
Affiliation(s)
- Shalini Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India;
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Building A1, University Innovation Park, Dongguan 523808, China
- Precision Medicine-Engineering Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India;
| |
Collapse
|
11
|
Singh A, Kaushik R, Chaurasia DK, Singh M, Jayaram B. PvP01-DB: computational structural and functional characterization of soluble proteome of PvP01 strain of Plasmodium vivax. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5857404. [PMID: 32542363 PMCID: PMC7296392 DOI: 10.1093/database/baaa036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 01/09/2023]
Abstract
Despite Plasmodium vivax being the main offender in the majority of malarial infections, very little information is available about its adaptation and development in humans. Its capability for activating relapsing infections through its dormant liver stage and resistance to antimalarial drugs makes it as one of the major challenges in eradicating malaria. Noting the immediate necessity for the availability of a comprehensive and reliable structural and functional repository for P. vivax proteome, here we developed a web resource for the new reference genome, PvP01, furnishing information on sequence, structure, functions, active sites and metabolic pathways compiled and predicted using some of the state-of-the-art methods in respective fields. The PvP01 web resource comprises organized data on the soluble proteome consisting of 3664 proteins in blood and liver stages of malarial cycle. The current public resources represent only 163 proteins of soluble proteome of PvP01, with complete information about their molecular function, biological process and cellular components. Also, only 46 proteins of P. vivax have experimentally determined structures. In this milieu of extreme scarcity of structural and functional information, PvP01 web resource offers meticulously validated structures of 3664 soluble proteins. The sequence and structure-based functional characterization led to a quantum leap from 163 proteins available presently to whole soluble proteome offered through PvP01 web resource. We believe PvP01 web resource will serve the researchers in identifying novel protein drug targets and in accelerating the development of structure-based new drug candidates to combat malaria. Database Availability: http://www.scfbio-iitd.res.in/PvP01
Collapse
Affiliation(s)
- Ankita Singh
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016.,Centre of Evolution and Medicine, Arizona State University, Life Sciences C, 427 East Tyler Mall, Tempe, AZ 85281, United States
| | - Rahul Kaushik
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016.,Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Dheeraj Kumar Chaurasia
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016
| | - Manpreet Singh
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016
| | - B Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016.,Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India, 110016.,Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India, 110016
| |
Collapse
|
12
|
Kumar V, Ray S, Aggarwal S, Biswas D, Jadhav M, Yadav R, Sabnis SV, Banerjee S, Talukdar A, Kochar SK, Shetty S, Sehgal K, Patankar S, Srivastava S. Multiplexed quantitative proteomics provides mechanistic cues for malaria severity and complexity. Commun Biol 2020; 3:683. [PMID: 33204009 PMCID: PMC7672109 DOI: 10.1038/s42003-020-01384-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Management of severe malaria remains a critical global challenge. In this study, using a multiplexed quantitative proteomics pipeline we systematically investigated the plasma proteome alterations in non-severe and severe malaria patients. We identified a few parasite proteins in severe malaria patients, which could be promising from a diagnostic perspective. Further, from host proteome analysis we observed substantial modulations in many crucial physiological pathways, including lipid metabolism, cytokine signaling, complement, and coagulation cascades in severe malaria. We propose that severe manifestations of malaria are possibly underpinned by modulations of the host physiology and defense machinery, which is evidently reflected in the plasma proteome alterations. Importantly, we identified multiple blood markers that can effectively define different complications of severe falciparum malaria, including cerebral syndromes and severe anemia. The ability of our identified blood markers to distinguish different severe complications of malaria may aid in developing new clinical tests for monitoring malaria severity.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shalini Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Manali Jadhav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Radha Yadav
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sanjeev V Sabnis
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Soumaditya Banerjee
- Medicine Department, Medical College Hospital Kolkata, 88, College Street, Kolkata, 700073, India
| | - Arunansu Talukdar
- Medicine Department, Medical College Hospital Kolkata, 88, College Street, Kolkata, 700073, India
| | - Sanjay K Kochar
- Department of Medicine, Malaria Research Centre, S.P. Medical College, Bikaner, 334003, India
| | - Suvin Shetty
- Dr. L H Hiranandani Hospital, Mumbai, 400076, India
| | | | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
13
|
Kumar V, Ray S, Ghantasala S, Srivastava S. An Integrated Quantitative Proteomics Workflow for Cancer Biomarker Discovery and Validation in Plasma. Front Oncol 2020; 10:543997. [PMID: 33072574 PMCID: PMC7538778 DOI: 10.3389/fonc.2020.543997] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Blood plasma is one of the most widely used samples for cancer biomarker discovery research as well as clinical investigations for diagnostic and therapeutic purposes. However, the plasma proteome is extremely complex due to its wide dynamic range of protein concentrations and the presence of high-abundance proteins. Here we have described an optimized, integrated quantitative proteomics pipeline combining the label-free and multiplexed-labeling-based (iTRAQ and TMT) plasma proteome profiling methods for biomarker discovery, followed by the targeted approaches for validation of the identified potential marker proteins. In this workflow, the targeted quantitation of proteins is carried out by multiple-reaction monitoring (MRM) and parallel-reaction monitoring (PRM) mass spectrometry. Thus, our approach enables both unbiased screenings of biomarkers and their subsequent selective validation in human plasma. The overall procedure takes only ~2 days to complete, including the time for data acquisition (excluding database searching). This protocol is quick, flexible, and eliminates the need for a separate immunoassay-based validation workflow in blood cancer biomarker investigations. We anticipate that this plasma proteomics workflow will help to accelerate the cancer biomarker discovery program and provide a valuable resource to the cancer research community.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Saicharan Ghantasala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
14
|
Taunk K, Kalita B, Kale V, Chanukuppa V, Naiya T, Zingde SM, Rapole S. The development and clinical applications of proteomics: an Indian perspective. Expert Rev Proteomics 2020; 17:433-451. [PMID: 32576061 DOI: 10.1080/14789450.2020.1787157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | - Vaikhari Kale
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | | | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Surekha M Zingde
- CH3-53, Kendriya Vihar, Sector 11, Kharghar , Navi Mumbai, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| |
Collapse
|
15
|
Brito MAM, Baro B, Raiol TC, Ayllon-Hermida A, Safe IP, Deroost K, Figueiredo EFG, Costa AG, Armengol MDP, Sumoy L, Almeida ACG, Hounkpe BW, De Paula EV, Fernandez-Becerra C, Monteiro WM, Del Portillo HA, Lacerda MVG. Morphological and Transcriptional Changes in Human Bone Marrow During Natural Plasmodium vivax Malaria Infections. J Infect Dis 2020; 225:1274-1283. [PMID: 32556188 PMCID: PMC8974851 DOI: 10.1093/infdis/jiaa177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
Background The presence of Plasmodium vivax malaria parasites in the human bone marrow (BM) is still controversial. However, recent data from a clinical case and experimental infections in splenectomized nonhuman primates unequivocally demonstrated the presence of parasites in this tissue. Methods In the current study, we analyzed BM aspirates of 7 patients during the acute attack and 42 days after drug treatment. RNA extracted from CD71+ cell suspensions was used for sequencing and transcriptomic analysis. Results We demonstrated the presence of parasites in all patients during acute infections. To provide further insights, we purified CD71+ BM cells and demonstrated dyserythropoiesis and inefficient erythropoiesis in all patients. In addition, RNA sequencing from 3 patients showed that genes related to erythroid maturation were down-regulated during acute infections, whereas immune response genes were up-regulated. Conclusions This study thus shows that during P. vivax infections, parasites are always present in the BM and that such infections induced dyserythropoiesis and ineffective erythropoiesis. Moreover, infections induce transcriptional changes associated with such altered erythropoietic response, thus highlighting the importance of this hidden niche during natural infections.
Collapse
Affiliation(s)
- Marcelo A M Brito
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Bàrbara Baro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Tainá C Raiol
- Fiocruz Brasilia, Oswaldo Cruz Foundation, Brasilia, Brazil
| | | | - Izabella P Safe
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Katrien Deroost
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Erick F G Figueiredo
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Allyson G Costa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Maria Del P Armengol
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Lauro Sumoy
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Anne C G Almeida
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | | | - Erich V De Paula
- University of Campinas, Campinas, São Paulo, Brazil.,Hematology and Hemotherapy Foundation from Amazonas State, Manaus, Amazonas, Brazil
| | - Cármen Fernandez-Becerra
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Hernando A Del Portillo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.,Instituto Leônidas & Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| |
Collapse
|
16
|
Venkatesh A, Aggarwal S, Kumar S, Rajyaguru S, Kumar V, Bankar S, Shastri J, Patankar S, Srivastava S. Comprehensive proteomics investigation of P. vivax-infected human plasma and parasite isolates. BMC Infect Dis 2020; 20:188. [PMID: 32122317 PMCID: PMC7053139 DOI: 10.1186/s12879-020-4885-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Background In recent times, Plasmodium vivax (P. vivax) has become a serious threat to public health due to its ability to cause severe infection with fatal outcomes. Its unique biology makes it resilient to control measures that are otherwise effective against P. falciparum. A deeper understanding of P. vivax biology and pathogenesis is, therefore, essential for developing the right control strategies. Proteomics of P. falciparum has been helpful in studying disease biology and elucidating molecular mechanisms involved in the development of disease. However, unlike P. falciparum, proteomics data for P. vivax infection is minimal due to the absence of a continuous culture system. The dependence on clinical samples and animal models has drastically limited P. vivax research, creating critical knowledge gaps in our understanding of the disease. This study describes an in-depth proteomics analysis of P. vivax-infected human plasma and parasite isolates, to understand parasite biology, pathogenesis, and to identify new diagnostic targets for P. vivax malaria. Methods A mass-spectrometry- (MS) based proteomics approach (Q Exactive) was applied to analyze human plasma and parasite isolates from vivax malaria patients visiting a primary health centre in India. Additionally, a targeted proteomics assay was standardized for validating unique peptides of most recurring parasite proteins. Results Thirty-eight P. vivax proteins were detected in human plasma with high confidence. Several glycolytic enzymes were found along with hypothetical, cytoskeletal, ribosomal, and nuclear proteins. Additionally, 103 highly abundant P. vivax proteins were detected in parasite isolates. This represents the highest number of parasite proteins to be reported from clinical samples so far. Interestingly, five of these; three Plasmodium exported proteins (PVX_003545, PVX_003555 and PVX_121935), a hypothetical protein (PVX_083555) and Pvstp1 (subtelomeric transmembrane protein 1, PVX_094303) were found in both plasma and parasite isolates. Conclusions A parasite proteomics investigation is essential to understand disease pathobiology and design novel interventions. Control strategies against P. vivax also depend on early diagnosis. This work provides deeper insights into the biology of P. vivax by identifying proteins expressed by the parasite during its complex life-cycle within the human host. The study also reports antigens that may be explored as diagnostic candidates.
Collapse
Affiliation(s)
- Apoorva Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shalini Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Swati Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Srushti Rajyaguru
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Vipin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sheetal Bankar
- Department of Microbiology, T. N. Medical College and BYL Nair Hospital, Mumbai, India
| | - Jayanthi Shastri
- Department of Microbiology, T. N. Medical College and BYL Nair Hospital, Mumbai, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
17
|
Thomson-Luque R, Adams JH, Kocken CHM, Pasini EM. From marginal to essential: the golden thread between nutrient sensing, medium composition and Plasmodium vivax maturation in in vitro culture. Malar J 2019; 18:344. [PMID: 31601222 PMCID: PMC6785855 DOI: 10.1186/s12936-019-2949-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Historically neglected, due to its biological peculiarities, the absence of a continuous long-term in vitro blood stage culture system and a propensity towards high morbidity rather than mortality, Plasmodium vivax was put back on the agenda during the last decade by the paradigm shift in the fight against malaria from malaria control to malaria eradication. While the incidence of the deadliest form of malaria, Plasmodium falciparum malaria, has declined since this paradigm shift took hold, the prospects of eradication are now threatened by the increase in the incidence of other human malaria parasite species. Plasmodium vivax is geographically the most widely distributed human malaria parasite, characterized by millions of clinical cases every year and responsible for a massive economic burden. The urgent need to tackle the unique biological challenges posed by this parasite led to renewed efforts aimed at establishing a continuous, long-term in vitro P. vivax blood stage culture. Based on recent discoveries on the role of nutrient sensing in Plasmodium’s pathophysiology, this review article critically assesses the extensive body of literature concerning Plasmodium culture conditions with a specific focus on culture media used in attempts to culture different Plasmodium spp. Hereby, the effect of specific media components on the parasite’s in vitro fitness and the maturation of the parasite’s host cell, the reticulocyte, is analysed. Challenging the wide-held belief that it is sufficient to find the right parasite isolate and give it the right type of cells to invade for P. vivax to grow in vitro, this review contends that a healthy side-by-side maturation of both the parasite and its host cell, the reticulocyte, is necessary in the adaptation of P. vivax to in vitro growth and argues that culture conditions and the media in particular play an essential role in this maturation process.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - John H Adams
- Center for Global Health, & Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404 IDRB, Tampa, FL, USA
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg, 161, 2288 GJ, Rijswijk, The Netherlands
| | - Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg, 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
18
|
Patel SK, Rajora N, Kumar S, Sahu A, Kochar SK, Krishna CM, Srivastava S. Rapid Discrimination of Malaria- and Dengue-Infected Patients Sera Using Raman Spectroscopy. Anal Chem 2019; 91:7054-7062. [PMID: 31033270 DOI: 10.1021/acs.analchem.8b05907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Malaria and dengue have overlapping clinical symptoms and are prevalent in the same geographic region (tropical and subtropical), hence precise diagnosis is challenging. The high mortality rate associated with both malaria and dengue could be attributed to "false", "delayed", or "missed" diagnosis. The present study thus aims to stratify malaria and dengue using Raman spectroscopy (RS). In total, 130 human sera were analyzed for model development and double-blinded testing. Principal components linear discriminant analysis (PC-LDA) of acquired RS-spectra could classify malaria and dengue with a minor overlap of 16.7%. Receiver operating characteristic (ROC) analysis of test samples showed sensitivity/specificity of 0.9529 for malaria vs healthy controls (HC) and 0.9584 for dengue vs HC. The Raman findings were complemented by mass spectroscopy (MS)-based metabolite analysis of 8 individuals, each from malaria, dengue, and HC. Several of the metabolites, including amino acids, cell-free DNA, creatinine, and bilirubin, assigned for the predominant RS-bands were also identified by MS and showed similar trends. Our data clearly indicates that RS-based serum analysis using a microprobe has immense potential for early, accurate, and automated detection and discrimination of malaria and dengue, and in the future, it could be extrapolated in field-settings combined with hand-held RS. Further, this approach might be extended to diagnose other closely related infections with similar clinical manifestations.
Collapse
Affiliation(s)
- Sandip K Patel
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| | - Nishant Rajora
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| | - Saurabh Kumar
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| | - Aditi Sahu
- Chilakapati Lab, ACTREC , Tata Memorial Center , Kharghar, Navi Mumbai 410210 , India
| | - Sanjay K Kochar
- Department of Medicine, Malaria Research Center , S.P. Medical College , Bikaner 334003 , India
| | - C Murali Krishna
- Chilakapati Lab, ACTREC , Tata Memorial Center , Kharghar, Navi Mumbai 410210 , India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| |
Collapse
|
19
|
Kaur H, Sehgal R, Kumar A, Sehgal A, Bansal D, Sultan AA. Screening and identification of potential novel biomarker for diagnosis of complicated Plasmodium vivax malaria. J Transl Med 2018; 16:272. [PMID: 30286756 PMCID: PMC6172720 DOI: 10.1186/s12967-018-1646-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background In the recent years Plasmodium vivax has been reported to cause severe infections associated with mortality. Clinical evaluation has limited accuracy for the early identification of the patients progressing towards the fatal condition. Researchers have tried to identify the serum and the plasma-based indicators of the severe malaria. Discovery of MicroRNA (miRNA) has opened up an era of identification of early biomarkers for various infectious and non-infectious diseases. MicroRNAs (miRNA) are the small non-coding RNA molecules of length 19–24 nts and are responsible for the regulation of the majority of human gene expressions at post transcriptional level. Methods We identified the differentially expressed miRNAs by microarray and validated the selected miRNAs by qRT-PCR. We assessed the diagnostic potential of these up-regulated miRNAs for complicated P. vivax malaria. Futher, the bioinformtic analysis was performed to construct protein–protein and mRNA–miRNA networks to identify highly regulated miRNA. Results In the present study, utility of miRNA as potential biomarker of complicated P. vivax malaria was explored. A total of 276 miRNAs were found to be differentially expressed by miRNA microarray and out of which 5 miRNAs (hsa-miR-7977, hsa-miR-28-3p, hsa-miR-378-5p, hsa-miR-194-5p and hsa-miR-3667-5p) were found to be significantly up-regulated in complicated P. vivax malaria patients using qRT-PCR. The diagnostic potential of these 5 miRNAs were found to be significant with sensitivity and specificity of 60–71% and 69–81% respectively and area under curve (AUC) of 0.7 (p < 0.05). Moreover, in silico analysis of the common targets of up-regulated miRNAs revealed UBA52 and hsa-miR-7977 as majorly regulated hubs in the PPI and mRNA–miRNA networks, suggesting their putative role in complicated P. vivax malaria. Conclusion miR-7977 might act as a potential biomarker for differentiating complicated P. vivax malaria from uncomplicated type. The elevated levels of miR-7977 may have a role to play in the disease pathology through UBA52 or TGF-beta signalling pathway. Electronic supplementary material The online version of this article (10.1186/s12967-018-1646-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Archit Kumar
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Sehgal
- Department of Obstt. & Gynae, Government Medical College and Hospital, Chandigarh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar
| |
Collapse
|
20
|
Distinct inflammatory profile underlies pathological increases in creatinine levels associated with Plasmodium vivax malaria clinical severity. PLoS Negl Trop Dis 2018; 12:e0006306. [PMID: 29596409 PMCID: PMC5875744 DOI: 10.1371/journal.pntd.0006306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/08/2018] [Indexed: 11/22/2022] Open
Abstract
Background Although Plasmodium vivax infection is a frequent cause of malaria worldwide, severe presentations have been more regularly described only in recent years. In this setting, despite clinical descriptions of multi-organ involvement, data associating it with kidney dysfunction are relatively scarce. Here, renal dysfunction is retrospectively analyzed in a large cohort of vivax malaria patients with an attempt to dissect its association with disease severity and mortality, and to determine the role of inflammation in its progression. Methods A retrospective analysis of a databank containing 572 individuals from the Brazilian Amazon, including 179 patients with P. vivax monoinfection (161 symptomatic malaria, 12 severe non-lethal malaria, and 6 severe lethal disease) and 165 healthy controls, was performed. Data on levels of cytokines, chemokines, C-reactive protein (CRP), fibrinogen, creatinine, hepatic enzymes, bilirubin levels, free heme, and haptoglobin were analyzed to depict and compare profiles from patients per creatinine levels. Results Elevated creatinine levels were found predominantly in women. Vivax malaria severity was highly associated with abnormal creatinine increases, and nonsurvivors presented the highest values of serum creatinine. Indication of kidney dysfunction was not associated with parasitemia levels. IFN-γ/IL-10 ratio and CRP values marked the immune biosignature of vivax malaria patients, and could distinguish subjects with elevated creatinine levels who did not survive from those who did. Patients with elevated serum creatinine or severe vivax malaria displayed indication of cholestasis. Biomarkers of hemolysis did not follow increases in serum creatinine. Conclusion These findings reinforce the hypothesis that renal dysfunction is a key component in P. vivax malaria associated with clinical severity and mortality, possibly through intense inflammation and immune imbalance. Our study argues for systematic evaluation of kidney function as part of the clinical assessment in vivax malaria patients, and warrants additional studies in experimental models for further mechanism investigations. Severe clinical presentations of Plasmodium vivax malaria are not completely understood. Multi-organ involvement is described in severe vivax cases, however data associating it with kidney dysfunction are relatively scarce, in part because the clinical signs only appear late during kidney injury. We analyzed biomarkers of renal function in groups of patients from the Brazilian Amazon with different presentations of vivax malaria to determine its associations with disease progression. Inflammatory biomarkers were also analyzed to assess inflammation related to kidney dysfunction. The results indicate that severe disease presentation in these patients was associated with abnormal serum creatinine elevations and exacerbated systemic inflammatory response. The highest levels of creatinine were observed in nonsurvivors. Biomarkers of hemolysis did not directly follow increases in serum creatinine. These readouts suggest that kidney dysfunction probably influences vivax malaria severity and mortality. As P. vivax is a widely distributed species of Plasmodium in the world, and severe cases are increasingly being reported, it is important to better understand the role of kidney injury in these presentations, especially considering that it may affect clinical outcomes.
Collapse
|
21
|
Bourgard C, Albrecht L, Kayano ACAV, Sunnerhagen P, Costa FTM. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol 2018; 8:34. [PMID: 29473024 PMCID: PMC5809496 DOI: 10.3389/fcimb.2018.00034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research.
Collapse
Affiliation(s)
- Catarina Bourgard
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil.,Laboratory of Regulation of Gene Expression, Instituto Carlos Chagas, Curitiba, Brazil
| | - Ana C A V Kayano
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
22
|
Patankar S, Sharma S, Rathod PK, Duraisingh MT. Malaria in India: The Need for New Targets for Diagnosis and Detection of Plasmodium vivax. Proteomics Clin Appl 2018; 12:e1700024. [PMID: 29193853 DOI: 10.1002/prca.201700024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/28/2017] [Indexed: 11/08/2022]
Abstract
Plasmodium vivax is a protozoan parasite that is one of the causative agents of human malaria. Due to several occult features of its life cycle, P. vivax threatens to be a problem for the recent efforts toward elimination of malaria globally. With an emphasis on malaria elimination goals, the authors summarize the major gaps in P. vivax diagnosis and describe how proteomics technologies have begun to contribute toward the discovery of antigens that could be used for various technology platforms and applications. The authors suggest areas where, in the future, proteomics technologies could fill in gaps in P. vivax diagnosis that have proved difficult. The discovery of new parasite antigens, host responses, and immune signatures using proteomics technologies will be a key part of the global malaria elimination efforts.
Collapse
Affiliation(s)
- Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
23
|
Dowd A. Elucidating Cellular Metabolism and Protein Difference Data from DIGE Proteomics Experiments Using Enzyme Assays. Methods Mol Biol 2018; 1664:261-278. [PMID: 29019139 DOI: 10.1007/978-1-4939-7268-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Assays for measuring enzyme activity can be useful tools for proteomics applications. Enzyme testing can be performed to validate an experimental system prior to a Difference Gel Electrophoresis (DIGE) proteomic experiment and can also be utilized as an integral part of multifaceted experiment in conjunction with DIGE. Data from enzyme tests can be used to corroborate results of DIGE proteomic experiments where an enzyme or enzymes are demonstrated by DIGE to be differentially expressed. Enzyme testing can also be utilized to support data from DIGE experiments that demonstrate metabolic changes in a biological system. The different types of enzyme assays that can be performed in conjunction with DIGE experiments are reviewed alongside a discussion of experimental approaches for designing enzyme assays.
Collapse
Affiliation(s)
- Andrew Dowd
- Monaghan Biosciences, Tyholland, Co. Monaghan, Ireland.
| |
Collapse
|
24
|
Venkatesh A, Lahiri A, Reddy PJ, Shastri J, Bankar S, Patankar S, Srivastava S. Identification of Highly Expressed Plasmodium Vivax Proteins from Clinical Isolates Using Proteomics. Proteomics Clin Appl 2017; 12:e1700046. [PMID: 28841253 DOI: 10.1002/prca.201700046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/08/2017] [Indexed: 12/11/2022]
Abstract
Plasmodium vivax is the most geographically widespread species responsible for malaria in humans. Our study focused on identifying highly expressed parasite proteins using a shotgun proteomics approach. Parasites (P. vivax) are isolated from seven patient samples using saponin lysis. Protein extracts from these parasites are processed and subjected to LC-MS/MS analysis. An overall proteome coverage of 605 P. vivax proteins along with 1670 human host proteins are obtained upon combining the data from LC-MS/MS runs. While a major proportion of the P. vivax proteins are either hypothetical or involved in basic cellular activities, few proteins such as tryptophan-rich antigen (Pv-fam-a; PVX_090265), Pv-fam-d protein (PVX_101520), Plasmodium exported protein (PVX_003545), Pvstp1 (PVX_094303) and hypothetical protein (PVX_083555) are detected in more than 80% of the clinical isolates and found to be unique to P. vivax without orthologs in P. falciparum. Our proteomics study on individual parasite isolates reveals highly expressed P. vivax proteins, few of which may be good candidates for vivax malaria diagnosis due to their abundance and absence in P. falciparum. This study represents the first step towards the identification of biomarkers for P. vivax malaria. In future, their clinical diagnostic values must be explored and validated on large patient cohorts.
Collapse
Affiliation(s)
- Apoorva Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anwesha Lahiri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Panga Jaipal Reddy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Jayanthi Shastri
- Department of Microbiology, T. N. Medical College and BYL Nair Hospital, Mumbai
| | - Sheetal Bankar
- Department of Microbiology, T. N. Medical College and BYL Nair Hospital, Mumbai
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
25
|
Ray S, Patel SK, Venkatesh A, Chatterjee G, Ansari NN, Gogtay NJ, Thatte UM, Gandhe P, Varma SG, Patankar S, Srivastava S. Quantitative Proteomics Analysis of Plasmodium vivax Induced Alterations in Human Serum during the Acute and Convalescent Phases of Infection. Sci Rep 2017; 7:4400. [PMID: 28667326 PMCID: PMC5493610 DOI: 10.1038/s41598-017-04447-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/15/2017] [Indexed: 12/23/2022] Open
Abstract
The radial distribution of Plasmodium vivax malaria burden has evoked enormous concern among the global research community. In this study, we have investigated the serum proteome alterations in non-severe vivax malaria patients before and during patient recuperation starting from the early febrile to the defervescence and convalescent stages of the infection. We have also performed an extensive quantitative proteomics analysis to compare the serum proteome profiles of vivax malaria patients with low (LPVM) and moderately-high (MPVM) parasitemia with healthy community controls. Interestingly, some of the serum proteins such as Serum amyloid A, Apolipoprotein A1, C-reactive protein, Titin and Haptoglobin, were found to be sequentially altered with respect to increased parasite counts. Analysis of a longitudinal cohort of malaria patients indicated reversible alterations in serum levels of some proteins such as Haptoglobin, Apolipoprotein E, Apolipoprotein A1, Carbonic anhydrase 1, and Hemoglobin subunit alpha upon treatment; however, the levels of a few other proteins did not return to the baseline even during the convalescent phase of the infection. Here we present the first comprehensive serum proteomics analysis of vivax malaria patients with different levels of parasitemia and during the acute and convalescent phases of the infection.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.,Department of Clinical Biochemistry, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Sandip K Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Apoorva Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Gangadhar Chatterjee
- Dept of Biochemistry, Grant Govt Medical College and Sir JJ Group of Hospitals, Byculla, Mumbai, 400008, India
| | - Naziya N Ansari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Nithya J Gogtay
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Urmila M Thatte
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Prajakta Gandhe
- Departments of Clinical Pharmacology, Seth GS Medical College & KEM Hospital, Parel, Mumbai, 400012, India
| | - Santosh G Varma
- Dept of Biochemistry, Grant Govt Medical College and Sir JJ Group of Hospitals, Byculla, Mumbai, 400008, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
26
|
Imamura H, Honda S. Calibration-free concentration analysis for an analyte prone to self-association. Anal Biochem 2017; 516:61-64. [PMID: 27760299 DOI: 10.1016/j.ab.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
Calibration-free concentration analysis (CFCA) based on surface plasmon resonance uses the diffusion coefficient of an analyte to determine the concentration of that analyte in a bulk solution. In general, CFCA is avoided when investigating analytes prone to self-association, as the heterogeneous diffusion coefficient results in a loss of precision. The derivation for self-association of the analyte was presented here. By using the diffusion coefficient for the monomeric state, CFCA provides the lowest possible concentration even though the analyte is self-associated.
Collapse
Affiliation(s)
- Hiroshi Imamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
27
|
Venkatesh A, Patel SK, Ray S, Shastri J, Chatterjee G, Kochar SK, Patankar S, Srivastava S. Proteomics ofPlasmodium vivaxmalaria: new insights, progress and potential. Expert Rev Proteomics 2016; 13:771-82. [DOI: 10.1080/14789450.2016.1210515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Rai V, Karthikaichamy A, Das D, Noronha S, Wangikar PP, Srivastava S. Multi-omics Frontiers in Algal Research: Techniques and Progress to Explore Biofuels in the Postgenomics World. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:387-99. [DOI: 10.1089/omi.2016.0065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vineeta Rai
- Department of Biosciences and Bioengineering, Proteomics Laboratory, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Debasish Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
| | - Santosh Noronha
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pramod P. Wangikar
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Proteomics Laboratory, Indian Institute of Technology Bombay, Mumbai, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology, Bombay, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|