1
|
Lazcano I, Pech-Pool SM, Maldonado-Lira MF, Olvera A, Darras VM, Orozco A. Ontogeny of Thyroid Hormone Signaling in the Retina of Zebrafish: Effects of Thyroidal Status on Retinal Morphology, Cell Survival, and Color Preference. Int J Mol Sci 2024; 25:12215. [PMID: 39596289 PMCID: PMC11594673 DOI: 10.3390/ijms252212215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The retina is crucial for converting light into neuronal signals for visual perception. Understanding the retina's structure, function, and development is essential for vision research. It is known that the thyroid hormone (TH) receptor type beta 2 (TRβ2) is a key element in the regulation of cone differentiation in the retina, but other elements of TH signaling, such as transporters and enzyme deiodinases, have also been implicated in retinal cell development and survival. In the present study, we investigated the expression profile of genes involved in TH signaling and analyzed the impact of thyroidal status on retinal morphology, opsin expression, cell death/proliferation profile, as well as color preference behavior during the early retina development of zebrafish larvae. mRNA expression analysis on dissected whole eyes revealed that TH signaling elements gradually increase during eye development, with dio3b being the component that shows the most dramatic change. Mutations generated by CRISPR/CAS9 in the dio3b gene, but not in the thrb gene, modifies the structure of the retina. Disruption in TH level reduces the cell number of the ganglion cell layer, increases cell death, and modifies color preference, emphasizing the critical importance of precise TH regulation by its signaling elements for optimal retinal development and function.
Collapse
Affiliation(s)
- Iván Lazcano
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | - Santiago M. Pech-Pool
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | | | - Aurora Olvera
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, 3000 Leuven, Belgium
| | - Aurea Orozco
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Queretaro 76230, Mexico
| |
Collapse
|
2
|
Jui J, Goldman D. Müller Glial Cell-Dependent Regeneration of the Retina in Zebrafish and Mice. Annu Rev Genet 2024; 58:67-90. [PMID: 38876121 DOI: 10.1146/annurev-genet-111523-102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Sight is one of our most precious senses. People fear losing their sight more than any other disability. Thus, restoring sight to the blind is an important goal of vision scientists. Proregenerative species, such as zebrafish, provide a system for studying endogenous mechanisms underlying retina regeneration. Nonregenerative species, such as mice, provide a system for testing strategies for stimulating retina regeneration. Key to retina regeneration in zebrafish and mice is the Müller glial cell, a malleable cell type that is amenable to a variety of regenerative strategies. Here, we review cellular and molecular mechanisms used by zebrafish to regenerate a retina, as well as the application of these mechanisms, and other strategies to stimulate retina regeneration in mice. Although our focus is on Müller glia (MG), niche components and their impact on MG reprogramming are also discussed.
Collapse
Affiliation(s)
- Jonathan Jui
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Daniel Goldman
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
3
|
Chen J, Sanchez-Iranzo H, Diotel N, Rastegar S. Comparative insight into the regenerative mechanisms of the adult brain in zebrafish and mouse: highlighting the importance of the immune system and inflammation in successful regeneration. FEBS J 2024; 291:4193-4205. [PMID: 39108082 DOI: 10.1111/febs.17231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024]
Abstract
Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.
Collapse
Affiliation(s)
- Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Hector Sanchez-Iranzo
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
4
|
Blackshaw S, Qian J, Hyde DR. New pathways to neurogenesis: Insights from injury-induced retinal regeneration. Bioessays 2024; 46:e2400133. [PMID: 38990084 DOI: 10.1002/bies.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
The vertebrate retina is a tractable system for studying control of cell neurogenesis and cell fate specification. During embryonic development, retinal neurogenesis is under strict temporal regulation, with cell types generated in fixed but overlapping temporal intervals. The temporal sequence and relative numbers of retinal cell types generated during development are robust and show minimal experience-dependent variation. In many cold-blooded vertebrates, acute retinal injury induces a different form of neurogenesis, where Müller glia reprogram into retinal progenitor-like cells that selectively regenerate retinal neurons lost to injury. The extent to which the molecular mechanisms controlling developmental and injury-induced neurogenesis resemble one another has long been unclear. However, a recent study in zebrafish has shed new light on this question, using single-cell multiomic analysis to show that selective loss of different retinal cell types induces the formation of fate-restricted Müller glia-derived progenitors that differ both from one another and from progenitors in developing retina. Here, we discuss the broader implications of these findings, and their possible therapeutic relevance.
Collapse
Affiliation(s)
- Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
5
|
Abraham E, Hartmann H, Yoshimatsu T, Baden T, Brand M. Restoration of cone-circuit functionality in the regenerating adult zebrafish retina. Dev Cell 2024; 59:2158-2170.e6. [PMID: 39096897 DOI: 10.1016/j.devcel.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/28/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024]
Abstract
Unlike humans, teleosts like zebrafish exhibit robust retinal regeneration after injury from endogenous stem cells. However, it is unclear if regenerating cone photoreceptors regain physiological function and integrate correctly into post-synaptic circuits. We used two-photon calcium imaging of living adult retina to examine photoreceptor responses before and after light-induced lesions. To assess functional recovery of cones and downstream outer retinal circuits, we exploited color opponency; UV cones exhibit intrinsic Off-response to blue light, but On-response to green light, which depends on feedback signals from outer retinal circuits. Accordingly, we assessed the presence and quality of Off- vs. On-responses and found that regenerated UV cones regain both Off-responses to short-wavelength and On-responses to long-wavelength light within 3 months after lesion. Therefore, physiological circuit functionality is restored in regenerated cone photoreceptors, suggesting that inducing endogenous regeneration is a promising strategy for human retinal repair.
Collapse
Affiliation(s)
- Evelyn Abraham
- CRTD - Center for Regenerative Therapies TU Dresden, CMCB, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Hella Hartmann
- CMCB - Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Takeshi Yoshimatsu
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Tom Baden
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Michael Brand
- CRTD - Center for Regenerative Therapies TU Dresden, CMCB, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany; CMCB - Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany; PoL - Excellence Cluster Physics of Life, TU Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.
| |
Collapse
|
6
|
He M, Xia M, Yang Q, Chen X, Li H, Xia X. P-aminobenzoic acid promotes retinal regeneration through activation of Ascl1a in zebrafish. Neural Regen Res 2024; 19:1849-1856. [PMID: 38103253 PMCID: PMC10960302 DOI: 10.4103/1673-5374.389646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00040/figure1/v/2023-12-16T180322Z/r/image-tiff The retina of zebrafish can regenerate completely after injury. Multiple studies have demonstrated that metabolic alterations occur during retinal damage; however to date no study has identified a link between metabolites and retinal regeneration of zebrafish. Here, we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration. Among the differentially-expressed metabolites, we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish. Then, we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish. Importantly, p-aminobenzoic acid activated Achaetescute complex-like 1a expression, thereby promoting Müller glia reprogramming and division, as well as Müller glia-derived progenitor cell proliferation. Finally, we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution. Taken together, these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.
Collapse
Affiliation(s)
- Meihui He
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Mingfang Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian Yang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Emmerich K, Hageter J, Hoang T, Lyu P, Sharrock AV, Ceisel A, Thierer J, Chunawala Z, Nimmagadda S, Palazzo I, Matthews F, Zhang L, White DT, Rodriguez C, Graziano G, Marcos P, May A, Mulligan T, Reibman B, Saxena MT, Ackerley DF, Qian J, Blackshaw S, Horstick E, Mumm JS. A large-scale CRISPR screen reveals context-specific genetic regulation of retinal ganglion cell regeneration. Development 2024; 151:dev202754. [PMID: 39007397 PMCID: PMC11361637 DOI: 10.1242/dev.202754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Many genes are known to regulate retinal regeneration after widespread tissue damage. Conversely, genes controlling regeneration after limited cell loss, as per degenerative diseases, are undefined. As stem/progenitor cell responses scale to injury levels, understanding how the extent and specificity of cell loss impact regenerative processes is important. Here, transgenic zebrafish enabling selective retinal ganglion cell (RGC) ablation were used to identify genes that regulate RGC regeneration. A single cell multiomics-informed screen of 100 genes identified seven knockouts that inhibited and 11 that promoted RGC regeneration. Surprisingly, 35 out of 36 genes known and/or implicated as being required for regeneration after widespread retinal damage were not required for RGC regeneration. The loss of seven even enhanced regeneration kinetics, including the proneural factors neurog1, olig2 and ascl1a. Mechanistic analyses revealed that ascl1a disruption increased the propensity of progenitor cells to produce RGCs, i.e. increased 'fate bias'. These data demonstrate plasticity in the mechanism through which Müller glia convert to a stem-like state and context specificity in how genes function during regeneration. Increased understanding of how the regeneration of disease-relevant cell types is specifically controlled will support the development of disease-tailored regenerative therapeutics.
Collapse
Affiliation(s)
- Kevin Emmerich
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Institute and the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Hageter
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Thanh Hoang
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | - Pin Lyu
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Anneliese Ceisel
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James Thierer
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zeeshaan Chunawala
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Saumya Nimmagadda
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Isabella Palazzo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frazer Matthews
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Liyun Zhang
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David T. White
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Catalina Rodriguez
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gianna Graziano
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Patrick Marcos
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Adam May
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tim Mulligan
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Barak Reibman
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Meera T. Saxena
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jiang Qian
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Seth Blackshaw
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Institute and the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eric Horstick
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Jeff S. Mumm
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Institute and the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Lee MS, Jui J, Sahu A, Goldman D. Mycb and Mych stimulate Müller glial cell reprogramming and proliferation in the uninjured and injured zebrafish retina. Development 2024; 151:dev203062. [PMID: 38984586 PMCID: PMC11369687 DOI: 10.1242/dev.203062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
In the injured zebrafish retina, Müller glial cells (MG) reprogram to adopt retinal stem cell properties and regenerate damaged neurons. The strongest zebrafish reprogramming factors might be good candidates for stimulating a similar regenerative response by mammalian MG. Myc proteins are potent reprogramming factors that can stimulate cellular plasticity in differentiated cells; however, their role in MG reprogramming and retina regeneration remains poorly explored. Here, we report that retinal injury stimulates mycb and mych expression and that, although both Mycb and Mych stimulate MG reprogramming and proliferation, only Mych enhances retinal neuron apoptosis. RNA-sequencing analysis of wild-type, mychmut and mycbmut fish revealed that Mycb and Mych regulate ∼40% and ∼16%, respectively, of the genes contributing to the regeneration-associated transcriptome of MG. Of these genes, those that are induced are biased towards regulation of ribosome biogenesis, protein synthesis, DNA synthesis, and cell division, which are the top cellular processes affected by retinal injury, suggesting that Mycb and Mych are potent MG reprogramming factors. Consistent with this, forced expression of either of these proteins is sufficient to stimulate MG proliferation in the uninjured retina.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jonathan Jui
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aresh Sahu
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Goldman
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Bludau O, Weber A, Bosak V, Kuscha V, Dietrich K, Hans S, Brand M. Inflammation is a critical factor for successful regeneration of the adult zebrafish retina in response to diffuse light lesion. Front Cell Dev Biol 2024; 12:1332347. [PMID: 39071801 PMCID: PMC11272569 DOI: 10.3389/fcell.2024.1332347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Inflammation can lead to persistent and irreversible loss of retinal neurons and photoreceptors in mammalian vertebrates. In contrast, in the adult zebrafish brain, acute neural inflammation is both necessary and sufficient to stimulate regeneration of neurons. Here, we report on the critical, positive role of the immune system to support retina regeneration in adult zebrafish. After sterile ablation of photoreceptors by phototoxicity, we find rapid response of immune cells, especially monocytes/microglia and neutrophils, which returns to homeostatic levels within 14 days post lesion. Pharmacological or genetic impairment of the immune system results in a reduced Müller glia stem cell response, seen as decreased reactive proliferation, and a strikingly reduced number of regenerated cells from them, including photoreceptors. Conversely, injection of the immune stimulators flagellin, zymosan, or M-CSF into the vitreous of the eye, leads to a robust proliferation response and the upregulation of regeneration-associated marker genes in Müller glia. Our results suggest that neuroinflammation is a necessary and sufficient driver for retinal regeneration in the adult zebrafish retina.
Collapse
Affiliation(s)
- Oliver Bludau
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Anke Weber
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Viktoria Bosak
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Veronika Kuscha
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Kristin Dietrich
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Stefan Hans
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Michael Brand
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| |
Collapse
|
10
|
Lu C, Hyde DR. Cytokines IL-1β and IL-10 are required for Müller glia proliferation following light damage in the adult zebrafish retina. Front Cell Dev Biol 2024; 12:1406330. [PMID: 38938553 PMCID: PMC11208712 DOI: 10.3389/fcell.2024.1406330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Zebrafish possess the ability to regenerate dying neurons in response to retinal injury, with both Müller glia and microglia playing integral roles in this response. Resident Müller glia respond to damage by reprogramming and undergoing an asymmetric cell division to generate a neuronal progenitor cell, which continues to proliferate and differentiate into the lost neurons. In contrast, microglia become reactive, phagocytose dying cells, and release inflammatory signals into the surrounding tissue following damage. In recent years, there has been increased attention on elucidating the role that microglia play in regulating retinal regeneration. Here we demonstrate that inflammatory cytokines are differentially expressed during retinal regeneration, with the expression of a subset of pro-inflammatory cytokine genes upregulated shortly after light damage and the expression of a different subset of cytokine genes subsequently increasing. We demonstrate that both cytokine IL-1β and IL-10 are essential for Müller glia proliferation in the light-damaged retina. While IL-1β is sufficient to induce Müller glia proliferation in an undamaged retina, expression of IL-10 in undamaged retinas only induces Müller glia to express gliotic markers. Together, these findings demonstrate the essential role of inflammatory cytokines IL-1β and IL-10 on Müller glia proliferation following light damage in adult zebrafish.
Collapse
Affiliation(s)
| | - David R. Hyde
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, and Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
11
|
Lyu P, Iribarne M, Serjanov D, Zhai Y, Hoang T, Campbell LJ, Boyd P, Palazzo I, Nagashima M, Silva NJ, Hitchcock PF, Qian J, Hyde DR, Blackshaw S. Common and divergent gene regulatory networks control injury-induced and developmental neurogenesis in zebrafish retina. Nat Commun 2023; 14:8477. [PMID: 38123561 PMCID: PMC10733277 DOI: 10.1038/s41467-023-44142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes through Müller glia (MG) reprogramming and asymmetric cell division that produces a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, do MG reprogram to a developmental retinal progenitor cell (RPC) state? Second, to what extent does regeneration recapitulate retinal development? And finally, does loss of different retinal cell subtypes induce unique MG regeneration responses? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. Here we show that injury induces MG to reprogram to a state similar to late-stage RPCs. However, there are major transcriptional differences between MGPCs and RPCs, as well as major transcriptional differences between activated MG and MGPCs when different retinal cell subtypes are damaged. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Maria Iribarne
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Dmitri Serjanov
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yijie Zhai
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Thanh Hoang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Leah J Campbell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Patrick Boyd
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Isabella Palazzo
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, MI, 48105, USA
| | - Nicholas J Silva
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, MI, 48105, USA
| | - Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, MI, 48105, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Seth Blackshaw
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
12
|
Celotto L, Rost F, Machate A, Bläsche J, Dahl A, Weber A, Hans S, Brand M. Single-cell RNA sequencing unravels the transcriptional network underlying zebrafish retina regeneration. eLife 2023; 12:RP86507. [PMID: 37988404 PMCID: PMC10662954 DOI: 10.7554/elife.86507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
In the lesioned zebrafish retina, Müller glia produce multipotent retinal progenitors that generate all retinal neurons, replacing lost cell types. To study the molecular mechanisms linking Müller glia reactivity to progenitor production and neuronal differentiation, we used single-cell RNA sequencing of Müller glia, progenitors and regenerated progeny from uninjured and light-lesioned retinae. We discover an injury-induced Müller glia differentiation trajectory that leads into a cell population with a hybrid identity expressing marker genes of Müller glia and progenitors. A glial self-renewal and a neurogenic trajectory depart from the hybrid cell population. We further observe that neurogenic progenitors progressively differentiate to generate retinal ganglion cells first and bipolar cells last, similar to the events observed during retinal development. Our work provides a comprehensive description of Müller glia and progenitor transcriptional changes and fate decisions in the regenerating retina, which are key to tailor cell differentiation and replacement therapies for retinal dystrophies in humans.
Collapse
Affiliation(s)
- Laura Celotto
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), FetscherstraßeDresdenGermany
| | - Fabian Rost
- Technische Universität Dresden, DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering (CMCB), FetscherstraßeDresdenGermany
| | - Anja Machate
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), FetscherstraßeDresdenGermany
| | - Juliane Bläsche
- Technische Universität Dresden, DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering (CMCB), FetscherstraßeDresdenGermany
| | - Andreas Dahl
- Technische Universität Dresden, DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering (CMCB), FetscherstraßeDresdenGermany
| | - Anke Weber
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), FetscherstraßeDresdenGermany
| | - Stefan Hans
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), FetscherstraßeDresdenGermany
| | - Michael Brand
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), FetscherstraßeDresdenGermany
| |
Collapse
|
13
|
Zambuto SG, Kolluru SS, Ferchichi E, Rudewick HF, Fodera DM, Myers KM, Zustiak SP, Oyen ML. Evaluation of gelatin bloom strength on gelatin methacryloyl hydrogel properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566924. [PMID: 38014304 PMCID: PMC10680736 DOI: 10.1101/2023.11.13.566924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.
Collapse
|
14
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
15
|
Emmerich K, Walker SL, Wang G, White DT, Ceisel A, Wang F, Teng Y, Chunawala Z, Graziano G, Nimmagadda S, Saxena MT, Qian J, Mumm JS. Transcriptomic comparison of two selective retinal cell ablation paradigms in zebrafish reveals shared and cell-specific regenerative responses. PLoS Genet 2023; 19:e1010905. [PMID: 37819938 PMCID: PMC10593236 DOI: 10.1371/journal.pgen.1010905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/23/2023] [Accepted: 08/07/2023] [Indexed: 10/13/2023] Open
Abstract
Retinal Müller glia (MG) can act as stem-like cells to generate new neurons in both zebrafish and mice. In zebrafish, retinal regeneration is innate and robust, resulting in the replacement of lost neurons and restoration of visual function. In mice, exogenous stimulation of MG is required to reveal a dormant and, to date, limited regenerative capacity. Zebrafish studies have been key in revealing factors that promote regenerative responses in the mammalian eye. Increased understanding of how the regenerative potential of MG is regulated in zebrafish may therefore aid efforts to promote retinal repair therapeutically. Developmental signaling pathways are known to coordinate regeneration following widespread retinal cell loss. In contrast, less is known about how regeneration is regulated in the context of retinal degenerative disease, i.e., following the loss of specific retinal cell types. To address this knowledge gap, we compared transcriptomic responses underlying regeneration following targeted loss of rod photoreceptors or bipolar cells. In total, 2,531 differentially expressed genes (DEGs) were identified, with the majority being paradigm specific, including during early MG activation phases, suggesting the nature of the injury/cell loss informs the regenerative process from initiation onward. For example, early modulation of Notch signaling was implicated in the rod but not bipolar cell ablation paradigm and components of JAK/STAT signaling were implicated in both paradigms. To examine candidate gene roles in rod cell regeneration, including several immune-related factors, CRISPR/Cas9 was used to create G0 mutant larvae (i.e., "crispants"). Rod cell regeneration was inhibited in stat3 crispants, while mutating stat5a/b, c7b and txn accelerated rod regeneration kinetics. These data support emerging evidence that discrete responses follow from selective retinal cell loss and that the immune system plays a key role in regulating "fate-biased" regenerative processes.
Collapse
Affiliation(s)
- Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Steven L. Walker
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Guohua Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - David T. White
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anneliese Ceisel
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fang Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Zeeshaan Chunawala
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gianna Graziano
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Saumya Nimmagadda
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Meera T. Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jeff S. Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
16
|
Hu M, Veldman MB. Intraocular Axon Regeneration in a Model of Penetrating Eye Injury. J Ocul Pharmacol Ther 2023; 39:563-571. [PMID: 37486664 PMCID: PMC10616938 DOI: 10.1089/jop.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose: Penetrating eye injuries commonly cause permanent loss of vision in patients. Unlike mammals, zebrafish can regenerate both damaged tissue and severed axons in the central nervous system. Here, we present a tractable adult zebrafish model to study intraocular axon regeneration after penetrating eye injury. Methods: To create consistent penetrating intraocular injuries, pins of standardized diameters were inserted into the eye through the cornea and penetrating the retina but not the underlying sclera. Transgenic gap43:GFP reporter fish were used to preferentially label retinal ganglion cells (RGCs) that respond to injury with regenerating axons. Retinas were fixed and flat mounted at various times postinjury to examine injury size, number of green fluorescent protein (GFP)-positive cells and axons, axonal varicosities, and rate of regeneration to the optic nerve head. Intraocular injection of colchicine was used to inhibit axon outgrow as a proof of principle that this method can be used to screen effects of pharmacological agents on intraocular axon regeneration. Results: Penetrating injury to the zebrafish retina results in robust axon regeneration by RGCs around and beyond the site of injury. The gap43:GFP transgene allows visualization of individual or small bundles of axons with varicosities and growth cones easily observable. Regeneration proceeded with most, if not all, axons reaching the optic nerve head by 3-day postinjury. A single intraocular injection of colchicine a day after injury was sufficient to delay axon regeneration at 2-days postinjury. Surprisingly, we identified a stereotypically located population of circumferential projecting neurons within the retina that upregulate gap43:GFP expression after injury. Conclusions: Penetrating injury to the adult gap43:GFP transgenic zebrafish eye is a model of successful intraocular axon regeneration. The pharmacological and genetic tools available for this organism should make it a powerful tool for dissecting the cellular, molecular, and genetic mechanisms of axon regeneration in the intraocular environment.
Collapse
Affiliation(s)
- Mengming Hu
- Department of Cell Biology, Neurobiology, and Anatomy and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew B. Veldman
- Department of Cell Biology, Neurobiology, and Anatomy and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Blackshaw S, Lyu P, Zhai Y, Qian J, Iribarne M, Serjanov D, Campbell L, Boyd P, Hyde D, Palazzo I, Hoang T, Nagashima M, Silva N, Hitchcock P. Common and divergent gene regulatory networks control injury-induced and developmental neurogenesis in zebrafish retina. RESEARCH SQUARE 2023:rs.3.rs-3294233. [PMID: 37790324 PMCID: PMC10543505 DOI: 10.21203/rs.3.rs-3294233/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes. This regeneration requires Müller glia (MG) to reprogram and divide asymmetrically to produce a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, does loss of different retinal cell subtypes induce unique MG regeneration responses? Second, do MG reprogram to a developmental retinal progenitor cell state? And finally, to what extent does regeneration recapitulate retinal development? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. While MG reprogram to a state similar to late-stage retinal progenitors in developing retinas, there are transcriptional differences between reprogrammed MG/MGPCs and late progenitors, as well as reprogrammed MG in outer and inner retinal damage models. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes. This work identifies major differences between gene regulatory networks activated following the selective loss of different subtypes of retina neurons, as well as between retinal regeneration and development.
Collapse
Affiliation(s)
| | | | - Yijie Zhai
- Johns Hopkins University School of Medicine
| | - Jiang Qian
- Johns Hopkins University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lyu P, Iribarne M, Serjanov D, Zhai Y, Hoang T, Campbell LJ, Boyd P, Palazzo I, Nagashima M, Silva NJ, HItchcock PF, Qian J, Hyde DR, Blackshaw S. Common and divergent gene regulatory networks control injury-induced and developmental neurogenesis in zebrafish retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552451. [PMID: 37609307 PMCID: PMC10441373 DOI: 10.1101/2023.08.08.552451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Following acute retinal damage, zebrafish possess the ability to regenerate all neuronal subtypes. This regeneration requires Müller glia (MG) to reprogram and divide asymmetrically to produce a multipotent Müller glia-derived neuronal progenitor cell (MGPC). This raises three key questions. First, does loss of different retinal cell subtypes induce unique MG regeneration responses? Second, do MG reprogram to a developmental retinal progenitor cell state? And finally, to what extent does regeneration recapitulate retinal development? We examined these questions by performing single-nuclear and single-cell RNA-Seq and ATAC-Seq in both developing and regenerating retinas. While MG reprogram to a state similar to late-stage retinal progenitors in developing retinas, there are transcriptional differences between reprogrammed MG/MGPCs and late progenitors, as well as reprogrammed MG in outer and inner retinal damage models. Validation of candidate genes confirmed that loss of different subtypes induces differences in transcription factor gene expression and regeneration outcomes. This work identifies major differences between gene regulatory networks activated following the selective loss of different subtypes of retina neurons, as well as between retinal regeneration and development.
Collapse
|
19
|
Krylov A, Yu S, Veen K, Newton A, Ye A, Qin H, He J, Jusuf PR. Heterogeneity in quiescent Müller glia in the uninjured zebrafish retina drive differential responses following photoreceptor ablation. Front Mol Neurosci 2023; 16:1087136. [PMID: 37575968 PMCID: PMC10413128 DOI: 10.3389/fnmol.2023.1087136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Loss of neurons in the neural retina is a leading cause of vision loss. While humans do not possess the capacity for retinal regeneration, zebrafish can achieve this through activation of resident Müller glia. Remarkably, despite the presence of Müller glia in humans and other mammalian vertebrates, these cells lack an intrinsic ability to contribute to regeneration. Upon activation, zebrafish Müller glia can adopt a stem cell-like state, undergo proliferation and generate new neurons. However, the underlying molecular mechanisms of this activation subsequent retinal regeneration remains unclear. Methods/Results To address this, we performed single-cell RNA sequencing (scRNA-seq) and report remarkable heterogeneity in gene expression within quiescent Müller glia across distinct dorsal, central and ventral retina pools of such cells. Next, we utilized a genetically driven, chemically inducible nitroreductase approach to study Müller glia activation following selective ablation of three distinct photoreceptor subtypes: long wavelength sensitive cones, short wavelength sensitive cones, and rods. There, our data revealed that a region-specific bias in activation of Müller glia exists in the zebrafish retina, and this is independent of the distribution of the ablated cell type across retinal regions. Notably, gene ontology analysis revealed that injury-responsive dorsal and central Müller glia express genes related to dorsal/ventral pattern formation, growth factor activity, and regulation of developmental process. Through scRNA-seq analysis, we identify a shared genetic program underlying initial Müller glia activation and cell cycle entry, followed by differences that drive the fate of regenerating neurons. We observed an initial expression of AP-1 and injury-responsive transcription factors, followed by genes involved in Notch signaling, ribosome biogenesis and gliogenesis, and finally expression of cell cycle, chromatin remodeling and microtubule-associated genes. Discussion Taken together, our findings document the regional specificity of gene expression within quiescent Müller glia and demonstrate unique Müller glia activation and regeneration features following neural ablation. These findings will improve our understanding of the molecular pathways relevant to neural regeneration in the retina.
Collapse
Affiliation(s)
- Aaron Krylov
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Shuguang Yu
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Kellie Veen
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Axel Newton
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Qin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie He
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Patricia R. Jusuf
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Zhang H, Guo Y, Yang Y, Wang Y, Zhang Y, Zhuang J, Zhang Y, Shen M, Zhao J, Zhang R, Qiu Y, Li S, Hu J, Li W, Wu J, Xu H, Fliesler SJ, Liao Y, Liu Z. MAP4Ks inhibition promotes retinal neuron regeneration from Müller glia in adult mice. NPJ Regen Med 2023; 8:36. [PMID: 37443319 DOI: 10.1038/s41536-023-00310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Mammalian Müller glia (MG) possess limited regenerative capacities. However, the intrinsic capacity of mammalian MG to transdifferentiate to generate mature neurons without transgenic manipulations remains speculative. Here we show that MAP4K4, MAP4K6 and MAP4K7, which are conserved Misshapen subfamily of ste20 kinases homologs, repress YAP activity in mammalian MG and therefore restrict their ability to be reprogrammed. However, by treating with a small molecule inhibitor of MAP4K4/6/7, mouse MG regain their ability to proliferate and enter into a retinal progenitor cell (RPC)-like state after NMDA-induced retinal damage; such plasticity was lost in YAP knockout MG. Moreover, spontaneous trans-differentiation of MG into retinal neurons expressing both amacrine and retinal ganglion cell (RGC) markers occurs after inhibitor withdrawal. Taken together, these findings suggest that MAP4Ks block the reprogramming capacity of MG in a YAP-dependent manner in adult mammals, which provides a novel avenue for the pharmaceutical induction of retinal regeneration in vivo.
Collapse
Affiliation(s)
- Houjian Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Xiamen University Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China
| | - Yuli Guo
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
- Xiamen University Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China
| | - Yaqiong Yang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuqian Wang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Youwen Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jingbin Zhuang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuting Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mei Shen
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiankai Zhao
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Rongrong Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yan Qiu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shiying Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiaoyue Hu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- Laboratory animal research center, Xiamen University, Xiamen, Fujian, 361102, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate School, Jacobs School of Medicine and Biomedical Sciences, SUNY- University at Buffalo, Buffalo, NY, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA
| | - Yi Liao
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
- Xiamen University Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
21
|
Fujii Y, Arima M, Murakami Y, Sonoda KH. Rhodopsin-positive cell production by intravitreal injection of small molecule compounds in mouse models of retinal degeneration. PLoS One 2023; 18:e0282174. [PMID: 36821627 PMCID: PMC9949636 DOI: 10.1371/journal.pone.0282174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
We aimed to verify whether the intravitreal injection of small molecule compounds alone can create photoreceptor cells in mouse models of retinal degeneration. Primary cultured mouse Müller cells were stimulated in vitro with combinations of candidate compounds and the rhodopsin expression was measured on day 7 using polymerase chain reaction and immunostaining. We used 6-week-old N-methyl-N-nitrosourea-treated and 4-week-old rd10 mice as representative in vivo models of retinal degeneration. The optimal combination of compounds selected via in vitro screening was injected into the vitreous and the changes in rhodopsin expression were investigated on day 7 using polymerase chain reaction and immunostaining. The origin of rhodopsin-positive cells was also analyzed via lineage tracing and the recovery of retinal function was assessed using electroretinography. The in vitro mRNA expression of rhodopsin in Müller cells increased 30-fold, and 25% of the Müller cells expressed rhodopsin protein 7 days after stimulation with a combination of 4 compounds: transforming growth factor-β inhibitor, bone morphogenetic protein inhibitor, glycogen synthase kinase 3 inhibitor, and γ-secretase inhibitor. The in vivo rhodopsin mRNA expression and the number of rhodopsin-positive cells in the outer retina were significantly increased on day 7 after the intravitreal injection of these 4 compounds in both N-methyl-N-nitrosourea-treated and rd10 mice. Lineage tracing in td-Tomato mice treated with N-methyl-N-nitrosourea suggested that the rhodopsin-positive cells originated from endogenous Müller cells, accompanied with the recovery of the rhodopsin-derived scotopic function. It was suggested that rhodopsin-positive cells generated by compound stimulation contributes to the recovery of retinal function impaired by degeneration.
Collapse
Affiliation(s)
- Yuya Fujii
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan,* E-mail:
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
John MC, Quinn J, Hu ML, Cehajic-Kapetanovic J, Xue K. Gene-agnostic therapeutic approaches for inherited retinal degenerations. Front Mol Neurosci 2023; 15:1068185. [PMID: 36710928 PMCID: PMC9881597 DOI: 10.3389/fnmol.2022.1068185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Inherited retinal diseases (IRDs) are associated with mutations in over 250 genes and represent a major cause of irreversible blindness worldwide. While gene augmentation or gene editing therapies could address the underlying genetic mutations in a small subset of patients, their utility remains limited by the great genetic heterogeneity of IRDs and the costs of developing individualised therapies. Gene-agnostic therapeutic approaches target common pathogenic pathways that drive retinal degeneration or provide functional rescue of vision independent of the genetic cause, thus offering potential clinical benefits to all IRD patients. Here, we review the key gene-agnostic approaches, including retinal cell reprogramming and replacement, neurotrophic support, immune modulation and optogenetics. The relative benefits and limitations of these strategies and the timing of clinical interventions are discussed.
Collapse
Affiliation(s)
- Molly C. John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Joel Quinn
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Monica L. Hu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
23
|
Lu J, Xu H, Song K, Lin Z, Cao L, Lu B, Chen Y, Zhang S. Sox11b regulates the migration and fate determination of Müller glia-derived progenitors during retina regeneration in zebrafish. Neural Regen Res 2023; 18:445-450. [PMID: 35900444 PMCID: PMC9396499 DOI: 10.4103/1673-5374.346550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The transcription factor Sox11 plays important roles in retinal neurogenesis during vertebrate eye development. However, its function in retina regeneration remains elusive. Here we report that Sox11b, a zebrafish Sox11 homolog, regulates the migration and fate determination of Müller glia-derived progenitors (MGPCs) in an adult zebrafish model of mechanical retinal injury. Following a stab injury, the expression of Sox11b was induced in proliferating MGPCs in the retina. Sox11b knockdown did not affect MGPC formation at 4 days post-injury, although the nuclear morphology and subsequent radial migration of MGPCs were altered. At 7 days post-injury, Sox11b knockdown resulted in an increased proportion of MGPCs in the inner retina and a decreased proportion of MGPCs in the outer nuclear layer, compared with controls. Furthermore, Sox11b knockdown led to reduced photoreceptor regeneration, while it increased the numbers of newborn amacrines and retinal ganglion cells. Finally, quantitative polymerase chain reaction analysis revealed that Sox11b regulated the expression of Notch signaling components in the retina, and Notch inhibition partially recapitulated the Sox11b knockdown phenotype, indicating that Notch signaling functions downstream of Sox11b. Our findings imply that Sox11b plays key roles in MGPC migration and fate determination during retina regeneration in zebrafish, which may have critical implications for future explorations of retinal repair in mammals.
Collapse
|
24
|
Mitchell DM, Stenkamp DL. Generating Widespread and Scalable Retinal Lesions in Adult Zebrafish by Intraocular Injection of Ouabain. Methods Mol Biol 2023; 2636:221-235. [PMID: 36881303 DOI: 10.1007/978-1-0716-3012-9_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Zebrafish regenerate functional retinal neurons after injury. Regeneration takes place following photic, chemical, mechanical, surgical, or cryogenic lesions, as well as after lesions that selectively target specific neuronal cell populations. An advantage of chemical retinal lesion for studying the process of regeneration is that the lesion is topographically widespread. This results in the loss of visual function as well as a regenerative response that engages nearly all stem cells (Müller glia). Such lesions can therefore be used to further our understanding of the process and mechanisms underlying re-establishment of neuronal wiring patterns, retinal function, and visually mediated behaviors. Widespread chemical lesions also permit the quantitative analysis of gene expression throughout the retina during the period of initial damage and over the duration of regeneration, as well as the study of growth and targeting of axons of regenerated retinal ganglion cells. The neurotoxic Na+/K+ ATPase inhibitor ouabain specifically offers a further advantage over other types of chemical lesions in that it is scalable; the extent of damage can be targeted to include only inner retinal neurons, or all retinal neurons, simply by adjusting the intraocular concentration of ouabain that is used. Here we describe the procedure through which these "selective" vs. "extensive" retinal lesions can be generated.
Collapse
Affiliation(s)
- Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
25
|
Erhardt S, Wang J. Cardiac Neural Crest and Cardiac Regeneration. Cells 2022; 12:cells12010111. [PMID: 36611905 PMCID: PMC9818523 DOI: 10.3390/cells12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCCs) are a vertebrate-specific, multipotent stem cell population that have the ability to migrate and differentiate into various cell populations throughout the embryo during embryogenesis. The heart is a muscular and complex organ whose primary function is to pump blood and nutrients throughout the body. Mammalian hearts, such as those of humans, lose their regenerative ability shortly after birth. However, a few vertebrate species, such as zebrafish, have the ability to self-repair/regenerate after cardiac damage. Recent research has discovered the potential functional ability and contribution of cardiac NCCs to cardiac regeneration through the use of various vertebrate species and pluripotent stem cell-derived NCCs. Here, we review the neural crest's regenerative capacity in various tissues and organs, and in particular, we summarize the characteristics of cardiac NCCs between species and their roles in cardiac regeneration. We further discuss emerging and future work to determine the potential contributions of NCCs for disease treatment.
Collapse
Affiliation(s)
- Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
26
|
Vegf signaling between Müller glia and vascular endothelial cells is regulated by immune cells and stimulates retina regeneration. Proc Natl Acad Sci U S A 2022; 119:e2211690119. [PMID: 36469778 PMCID: PMC9897474 DOI: 10.1073/pnas.2211690119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
In the zebrafish retina, Müller glia (MG) can regenerate retinal neurons lost to injury or disease. Even though zebrafish MG share structure and function with those of mammals, only in zebrafish do MG function as retinal stem cells. Previous studies suggest dying neurons, microglia/macrophage, and T cells contribute to MG's regenerative response [White et al., Proc. Natl. Acad. Sci. U.S.A. 114, E3719 (2017); Hui et al., Dev. Cell 43, 659 (2017)]. Although MG end-feet abut vascular endothelial (VE) cells to form the blood-retina barrier, a role for VE cells in retina regeneration has not been explored. Here, we report that MG-derived Vegfaa and Pgfa engage Flt1 and Kdrl receptors on VE cells to regulate MG gene expression, Notch signaling, proliferation, and neuronal regeneration. Remarkably, vegfaa and pgfa expression is regulated by microglia/macrophages, while Notch signaling in MG is regulated by a Vegf-dll4 signaling system in VE cells. Thus, our studies link microglia/macrophage, MG, and VE cells in a multicomponent signaling pathway that controls MG reprogramming and proliferation.
Collapse
|
27
|
Frey RA, Barrett LM, Parkin L, Blakeley B, Ålund M, Byford G, Euhus A, Tsarnas C, Boughman JW, Stenkamp DL. Eye flukes (Diplostomum spp) damage retinal tissue and may cause a regenerative response in wild threespine stickleback fish. Exp Eye Res 2022; 225:109298. [PMID: 36288754 DOI: 10.1016/j.exer.2022.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 01/29/2023]
Abstract
Fish rely upon vision as a dominant sensory system for foraging, predator avoidance, and mate selection. Damage to the visual system, in particular to the neural retina of the eye, has been demonstrated to result in a regenerative response in captive fish that serve as model organisms (e.g. zebrafish), and this response restores some visual function. The purpose of the present study is to determine whether damage to the visual system that occurs in wild populations of fish also results in a regenerative response, offering a potentially ecologically relevant model of retinal regeneration. Adult threespine stickleback were collected from several water bodies of Iceland, and cryosectioned eye tissues were processed for hematoxylin and eosin staining or for indirect immunofluorescence using cell-specific markers. In many of the samples, eye flukes (metacercariae of Diplostomum spp) were present, frequently between the neural retina and retinal pigmented epithelium (RPE). Damage to the retina and to the RPE was evident in eyes containing flukes, and RPE fragments were observed within fluke bodies, suggesting they had consumed this eye tissue. Expression of a cell proliferation marker was also observed in both retina and RPE, consistent with a proliferative response to the damage. Interestingly, some regions of infected retina displayed "laminar fusions," in which neuronal cell bodies were misplaced within the major synaptic layer of the retina. These laminar fusions are also frequently found in regenerated zebrafish retina following non-parasitic (experimental) forms of retinal damage. The stickleback retina may therefore respond to fluke-mediated damage by engaging in retinal regeneration.
Collapse
Affiliation(s)
- Ruth A Frey
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Lindsey M Barrett
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Lauren Parkin
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Brittany Blakeley
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Murielle Ålund
- Department of Integrative Biology, Michigan State University, Lansing, MI, 48824, USA
| | - Gregory Byford
- Department of Integrative Biology, Michigan State University, Lansing, MI, 48824, USA
| | - Abigail Euhus
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Christine Tsarnas
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, Lansing, MI, 48824, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
28
|
Todd L, Jenkins W, Finkbeiner C, Hooper MJ, Donaldson PC, Pavlou M, Wohlschlegel J, Ingram N, Mu X, Rieke F, Reh TA. Reprogramming Müller glia to regenerate ganglion-like cells in adult mouse retina with developmental transcription factors. SCIENCE ADVANCES 2022; 8:eabq7219. [PMID: 36417510 PMCID: PMC9683702 DOI: 10.1126/sciadv.abq7219] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/26/2022] [Indexed: 06/11/2023]
Abstract
Many neurodegenerative diseases cause degeneration of specific types of neurons. For example, glaucoma leads to death of retinal ganglion cells, leaving other neurons intact. Neurons are not regenerated in the adult mammalian central nervous system. However, in nonmammalian vertebrates, glial cells spontaneously reprogram into neural progenitors and replace neurons after injury. We have recently developed strategies to stimulate regeneration of functional neurons in the adult mouse retina by overexpressing the proneural factor Ascl1 in Müller glia. Here, we test additional transcription factors (TFs) for their ability to direct regeneration to particular types of retinal neurons. We engineered mice to express different combinations of TFs in Müller glia, including Ascl1, Pou4f2, Islet1, and Atoh1. Using immunohistochemistry, single-cell RNA sequencing, single-cell assay for transposase-accessible chromatin sequencing, and electrophysiology, we find that retinal ganglion-like cells can be regenerated in the damaged adult mouse retina in vivo with targeted overexpression of developmental retinal ganglion cell TFs.
Collapse
Affiliation(s)
- Levi Todd
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Wesley Jenkins
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Connor Finkbeiner
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Marcus J. Hooper
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Phoebe C. Donaldson
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Marina Pavlou
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Juliette Wohlschlegel
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Norianne Ingram
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 91895, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 91895, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Xu D, Zhong LT, Cheng HY, Wang ZQ, Chen XM, Feng AY, Chen WY, Chen G, Xu Y. Overexpressing NeuroD1 reprograms Müller cells into various types of retinal neurons. Neural Regen Res 2022; 18:1124-1131. [PMID: 36255002 PMCID: PMC9827787 DOI: 10.4103/1673-5374.355818] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The onset of retinal degenerative disease is often associated with neuronal loss. Therefore, how to regenerate new neurons to restore vision is an important issue. NeuroD1 is a neural transcription factor with the ability to reprogram brain astrocytes into neurons in vivo. Here, we demonstrate that in adult mice, NeuroD1 can reprogram Müller cells, the principal glial cell type in the retina, to become retinal neurons. Most strikingly, ectopic expression of NeuroD1 using two different viral vectors converted Müller cells into different cell types. Specifically, AAV7m8 GFAP681::GFP-ND1 converted Müller cells into inner retinal neurons, including amacrine cells and ganglion cells. In contrast, AAV9 GFAP104::ND1-GFP converted Müller cells into outer retinal neurons such as photoreceptors and horizontal cells, with higher conversion efficiency. Furthermore, we demonstrate that Müller cell conversion induced by AAV9 GFAP104::ND1-GFP displayed clear dose- and time-dependence. These results indicate that Müller cells in adult mice are highly plastic and can be reprogrammed into various subtypes of retinal neurons.
Collapse
Affiliation(s)
- Di Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Li-Ting Zhong
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Hai-Yang Cheng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Zeng-Qiang Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Xiong-Min Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Ai-Ying Feng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Wei-Yi Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Gong Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China,Correspondence to: Ying Xu, ; Gong Chen, .
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Ying Xu, ; Gong Chen, .
| |
Collapse
|
30
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
31
|
Iribarne M, Hyde DR. Different inflammation responses modulate Müller glia proliferation in the acute or chronically damaged zebrafish retina. Front Cell Dev Biol 2022; 10:892271. [PMID: 36120571 PMCID: PMC9472244 DOI: 10.3389/fcell.2022.892271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike mammals, zebrafish regenerate in response to retinal damage. Because microglia are activated by retinal damage, we investigated their role during regeneration following either acute or chronic damage. At three weeks post-fertilization (wpf), both wild-type fish exhibiting NMDA-induced acute ganglion and amacrine cell death and gold rush (gosh) mutant fish possessing chronic cone photoreceptor degeneration displayed reactive microglia/macrophages and Müller glia proliferation. Dexamethasone-treated retinas, to inhibit the immune response, lacked reactive microglia/macrophages and possessed fewer PCNA-positive cells, while LPS treatment increased microglia/macrophages and PCNA-labeled cells. NMDA-injured retinas upregulated expression of il-1β and tnfα pro-inflammatory cytokine genes, followed by increased expression of il-10 and arg1 anti-inflammatory/remodeling cytokine genes. A transient early TNFα pro-inflammatory microglia/macrophage population was visualized in NMDA-damaged retinas. In contrast, gosh mutant retinas exhibited a slight increase of pro-inflammatory cytokine gene expression concurrently with a greater increased anti-inflammatory/remodeling cytokine gene expression. Few TNFα pro-inflammatory microglia/macrophages were observed in the gosh retina. Understanding why acute and chronic damage results in different inflammation profiles and their effects on regulating zebrafish retinal regeneration would provide important clues toward improving therapeutic strategies for repairing injured mammalian tissues.
Collapse
Affiliation(s)
- Maria Iribarne
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| | - David R. Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
- *Correspondence: David R. Hyde,
| |
Collapse
|
32
|
Todd L, Reh TA. Comparative Biology of Vertebrate Retinal Regeneration: Restoration of Vision through Cellular Reprogramming. Cold Spring Harb Perspect Biol 2022; 14:a040816. [PMID: 34580118 PMCID: PMC9248829 DOI: 10.1101/cshperspect.a040816] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The regenerative capacity of the vertebrate retina varies substantially across species. Whereas fish and amphibians can regenerate functional retina, mammals do not. In this perspective piece, we outline the various strategies nonmammalian vertebrates use to achieve functional regeneration of vision. We review key differences underlying the regenerative potential across species including the cellular source of postnatal progenitors, the diversity of cell fates regenerated, and the level of functional vision that can be achieved. Finally, we provide an outlook on the field of engineering the mammalian retina to replace neurons lost to injury or disease.
Collapse
Affiliation(s)
- Levi Todd
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
33
|
Magner E, Sandoval-Sanchez P, Kramer AC, Thummel R, Hitchcock PF, Taylor SM. Disruption of miR-18a Alters Proliferation, Photoreceptor Replacement Kinetics, Inflammatory Signaling, and Microglia/Macrophage Numbers During Retinal Regeneration in Zebrafish. Mol Neurobiol 2022; 59:2910-2931. [PMID: 35246819 PMCID: PMC9018604 DOI: 10.1007/s12035-022-02783-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
In mammals, photoreceptor loss causes permanent blindness, but in zebrafish (Danio rerio), photoreceptor loss reprograms Müller glia to function as stem cells, producing progenitors that regenerate photoreceptors. MicroRNAs (miRNAs) regulate CNS neurogenesis, but the roles of miRNAs in injury-induced neuronal regeneration are largely unknown. In the embryonic zebrafish retina, miR-18a regulates photoreceptor differentiation. The purpose of the current study was to determine, in zebrafish, the function of miR-18a during injury-induced photoreceptor regeneration. RT-qPCR, in situ hybridization, and immunohistochemistry showed that miR-18a expression increases throughout the retina between 1 and 5 days post-injury (dpi). To test miR-18a function during photoreceptor regeneration, we used homozygous miR-18a mutants (miR-18ami5012), and knocked down miR-18a with morpholino oligonucleotides. During photoreceptor regeneration, miR-18ami5012 retinas have fewer mature photoreceptors than WT at 7 and 10 dpi, but there is no difference at 14 dpi, indicating that photoreceptor regeneration is delayed. Labeling dividing cells with 5-bromo-2'-deoxyuridine (BrdU) showed that at 7 and 10 dpi, there are excess dividing progenitors in both mutants and morphants, indicating that miR-18a negatively regulates injury-induced proliferation. Tracing 5-ethynyl-2'-deoxyuridine (EdU) and BrdU-labeled cells showed that in miR-18ami5012 retinas excess progenitors migrate to other retinal layers in addition to the photoreceptor layer. Inflammation is critical for photoreceptor regeneration, and RT-qPCR showed that in miR-18ami5012 retinas, inflammatory gene expression and microglia activation are prolonged. Suppressing inflammation with dexamethasone rescues the miR-18ami5012 phenotype. Together, these data show that in the injured zebrafish retina, disruption of miR-18a alters proliferation, inflammation, the microglia/macrophage response, and the timing of photoreceptor regeneration.
Collapse
Affiliation(s)
- Evin Magner
- Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Pamela Sandoval-Sanchez
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Ashley C Kramer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan, W. K. Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Scott M Taylor
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA.
| |
Collapse
|
34
|
Becker T, Becker CG. Regenerative neurogenesis: the integration of developmental, physiological and immune signals. Development 2022; 149:275248. [PMID: 35502778 PMCID: PMC9124576 DOI: 10.1242/dev.199907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In fishes and salamanders, but not mammals, neural stem cells switch back to neurogenesis after injury. The signalling environment of neural stem cells is strongly altered by the presence of damaged cells and an influx of immune, as well as other, cells. Here, we summarise our recently expanded knowledge of developmental, physiological and immune signals that act on neural stem cells in the zebrafish central nervous system to directly, or indirectly, influence their neurogenic state. These signals act on several intracellular pathways, which leads to changes in chromatin accessibility and gene expression, ultimately resulting in regenerative neurogenesis. Translational approaches in non-regenerating mammals indicate that central nervous system stem cells can be reprogrammed for neurogenesis. Understanding signalling mechanisms in naturally regenerating species show the path to experimentally promoting neurogenesis in mammals.
Collapse
Affiliation(s)
- Thomas Becker
- Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Biomedical Science, Edinburgh, EH16 4SB, Scotland
| | - Catherina G Becker
- Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Biomedical Science, Edinburgh, EH16 4SB, Scotland
| |
Collapse
|
35
|
Gallo RA, Qureshi F, Strong TA, Lang SH, Pino KA, Dvoriantchikova G, Pelaez D. Derivation and Characterization of Murine and Amphibian Müller Glia Cell Lines. Transl Vis Sci Technol 2022; 11:4. [PMID: 35377941 PMCID: PMC8994200 DOI: 10.1167/tvst.11.4.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Müller glia (MG) in the retina of Xenopus laevis (African clawed frog) reprogram to a transiently amplifying retinal progenitor state after an injury. These progenitors then give rise to new retinal neurons. In contrast, mammalian MG have a restricted neurogenic capacity and undergo reactive gliosis after injury. This study sought to establish MG cell lines from the regeneration-competent frog and the regeneration-deficient mouse. Methods MG were isolated from postnatal day 5 GLAST-CreERT; Rbfl/fl mice and from adult (3–5 years post-metamorphic) Xlaevis. Serial adherent subculture resulted in spontaneously immortalized cells and the establishment of two MG cell lines: murine retinal glia 17 (RG17) and Xenopus glia 69 (XG69). They were characterized for MG gene and protein expression by qPCR, immunostaining, and Western blot. Purinergic signaling was assessed with calcium imaging. Pharmacological perturbations with 2’-3’-O-(4-benzoylbenzoyl) adenosine 5’-triphosphate (BzATP) and KN-62 were performed on RG17 cells. Results RG17 and XG69 cells express several MG markers and retain purinergic signaling. Pharmacological perturbations of intracellular calcium responses with BzATP and KN-62 suggest that the ionotropic purinergic receptor P2X7 is present and functional in RG17 cells. Stimulation of XG69 cells with adenosine triphosphate–induced calcium responses in a dose-dependent manner. Conclusions We report the characterization of RG17 and XG69, two novel MG cell lines from species with significantly disparate retinal regenerative capabilities. Translational Relevance RG17 and XG69 cell line models will aid comparative studies between species endowed with varied regenerative capacity and will facilitate the development of new cell-based strategies for treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Ryan A Gallo
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA.,Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Farhan Qureshi
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Thomas A Strong
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven H Lang
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin A Pino
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Galina Dvoriantchikova
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Pelaez
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
36
|
Cocchiaro P, Di Donato V, Rubbini D, Mastropasqua R, Allegretti M, Mantelli F, Aramini A, Brandolini L. Intravitreal Administration of rhNGF Enhances Regenerative Processes in a Zebrafish Model of Retinal Degeneration. Front Pharmacol 2022; 13:822359. [PMID: 35330834 PMCID: PMC8940169 DOI: 10.3389/fphar.2022.822359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Nerve growth factor (NGF) is the best characterized neurotrophin, and it is known to play an important role in ocular homeostasis. Here, we demonstrated the expression of NGF receptors in adult zebrafish retina and optimized a light-induced retina degeneration (LID) zebrafish model that mimics human cone-rod disorders, demonstrating that intravitreal (IV) administration of rhNGF can boost zebrafish retinal regeneration in this model. Adult zebrafish retinae exposed to 60 h of light irradiation (60 h LID) displayed evident reduction of outer nuclear layer (ONL) thickness and cell number with presence of apoptotic cells. Retinal histologic evaluation at different time points showed that IV therapeutic injection of rhNGF resulted in an increase of ONL thickness and cell number at late time points after damage (14 and 21 days post injury), ultimately accelerating retinal tissue recovery by driving retinal cell proliferation. At a molecular level, rhNGF activated the ERK1/2 pathway and enhanced the regenerative potential of Müller glia gfap- and vim-expressing cells by stimulating at early time points the expression of the photoreceptor regeneration factor Drgal1-L2. Our results demonstrate the highly conserved nature of NGF canonical pathway in zebrafish and thus support the use of zebrafish models for testing new compounds with potential retinal regenerative properties. Moreover, the pro-regenerative effects of IV-injected NGF that we observed pave the way to further studies aimed at evaluating its effects also in mammals, in order to expedite the development of novel rhNGF-based therapeutic approaches for ophthalmological disorders.
Collapse
Affiliation(s)
| | - Vincenzo Di Donato
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
- *Correspondence: Vincenzo Di Donato, ; Laura Brandolini,
| | - Davide Rubbini
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Rodolfo Mastropasqua
- Institute of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | - Laura Brandolini
- Dompé Farmaceutici SpA, Napoli, Italy
- *Correspondence: Vincenzo Di Donato, ; Laura Brandolini,
| |
Collapse
|
37
|
Hammer J, Röppenack P, Yousuf S, Schnabel C, Weber A, Zöller D, Koch E, Hans S, Brand M. Visual Function is Gradually Restored During Retina Regeneration in Adult Zebrafish. Front Cell Dev Biol 2022; 9:831322. [PMID: 35178408 PMCID: PMC8844564 DOI: 10.3389/fcell.2021.831322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
In comparison to mammals, zebrafish are able to regenerate many organs and tissues, including the central nervous system (CNS). Within the CNS-derived neural retina, light lesions result in a loss of photoreceptors and the subsequent activation of Müller glia, the retinal stem cells. Müller glia-derived progenitors differentiate and eventually restore the anatomical tissue architecture within 4 weeks. However, little is known about how light lesions impair vision functionally, as well as how and to what extent visual function is restored during the course of regeneration, in particular in adult animals. Here, we applied quantitative behavioral assays to assess restoration of visual function during homeostasis and regeneration in adult zebrafish. We developed a novel vision-dependent social preference test, and show that vision is massively impaired early after lesion, but is restored to pre-lesion levels within 7 days after lesion. Furthermore, we employed a quantitative optokinetic response assay with different degrees of difficulty, similar to vision tests in humans. We found that vision for easy conditions with high contrast and low level of detail, as well as color vision, was restored around 7–10 days post lesion. Vision under more demanding conditions, with low contrast and high level of detail, was regained only later from 14 days post lesion onwards. Taken together, we conclude that vision based on contrast sensitivity, spatial resolution and the perception of colors is restored after light lesion in adult zebrafish in a gradual manner.
Collapse
Affiliation(s)
- Juliane Hammer
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Paul Röppenack
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Sarah Yousuf
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Christian Schnabel
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Anke Weber
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Daniela Zöller
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stefan Hans
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| | - Michael Brand
- CRTD-Center for Regenerative Therapies at TU Dresden, Dresden, Germany
| |
Collapse
|
38
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
39
|
Berrosteguieta I, Rosillo JC, Herrera ML, Olivera-Bravo S, Casanova G, Herranz-Pérez V, García-Verdugo JM, Fernández AS. Plasticity of cell proliferation in the retina of Austrolebias charrua fish under light and darkness conditions. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100042. [DOI: 10.1016/j.crneur.2022.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022] Open
|
40
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
41
|
Campbell LJ, Levendusky JL, Steines SA, Hyde DR. Retinal regeneration requires dynamic Notch signaling. Neural Regen Res 2021; 17:1199-1209. [PMID: 34782554 PMCID: PMC8643038 DOI: 10.4103/1673-5374.327326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal damage in the adult zebrafish induces Müller glia reprogramming to produce neuronal progenitor cells that proliferate and differentiate into retinal neurons. Notch signaling, which is a fundamental mechanism known to drive cell-cell communication, is required to maintain Müller glia in a quiescent state in the undamaged retina, and repression of Notch signaling is necessary for Müller glia to reenter the cell cycle. The dynamic regulation of Notch signaling following retinal damage also directs proliferation and neurogenesis of the Müller glia-derived progenitor cells in a robust regeneration response. In contrast, mammalian Müller glia respond to retinal damage by entering a prolonged gliotic state that leads to additional neuronal death and permanent vision loss. Understanding the dynamic regulation of Notch signaling in the zebrafish retina may aid efforts to stimulate Müller glia reprogramming for regeneration of the diseased human retina. Recent findings identified DeltaB and Notch3 as the ligand-receptor pair that serves as the principal regulators of zebrafish Müller glia quiescence. In addition, multiomics datasets and functional studies indicate that additional Notch receptors, ligands, and target genes regulate cell proliferation and neurogenesis during the regeneration time course. Still, our understanding of Notch signaling during retinal regeneration is limited. To fully appreciate the complex regulation of Notch signaling that is required for successful retinal regeneration, investigation of additional aspects of the pathway, such as post-translational modification of the receptors, ligand endocytosis, and interactions with other fundamental pathways is needed. Here we review various modes of Notch signaling regulation in the context of the vertebrate retina to put recent research in perspective and to identify open areas of inquiry.
Collapse
Affiliation(s)
- Leah J Campbell
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Jaclyn L Levendusky
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Shannon A Steines
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
42
|
Todd L, Hooper MJ, Haugan AK, Finkbeiner C, Jorstad N, Radulovich N, Wong CK, Donaldson PC, Jenkins W, Chen Q, Rieke F, Reh TA. Efficient stimulation of retinal regeneration from Müller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Rep 2021; 37:109857. [PMID: 34686336 PMCID: PMC8691131 DOI: 10.1016/j.celrep.2021.109857] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Regenerative neuroscience aims to stimulate endogenous repair in the nervous system to replace neurons lost from degenerative diseases. Recently, we reported that overexpressing the transcription factor Ascl1 in Müller glia (MG) is sufficient to stimulate MG to regenerate functional neurons in the adult mouse retina. However, this process is inefficient, and only a third of the Ascl1-expressing MG generate new neurons. Here, we test whether proneural transcription factors of the Atoh1/7 class can further promote the regenerative capacity of MG. We find that the combination of Ascl1:Atoh1 is remarkably efficient at stimulating neurogenesis, even in the absence of retinal injury. Using electrophysiology and single-cell RNA sequencing (scRNA-seq), we demonstrate that Ascl1:Atoh1 generates a diversity of retinal neuron types, with the majority expressing characteristics of retinal ganglion cells. Our results provide a proof of principle that combinations of developmental transcription factors can substantially improve glial reprogramming to neurons and expand the repertoire of regenerated cell fates.
Collapse
Affiliation(s)
- Levi Todd
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Marcus J Hooper
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Alexandra K Haugan
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Connor Finkbeiner
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Nikolas Jorstad
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Radulovich
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Claire K Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Phoebe C Donaldson
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Wesley Jenkins
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Qiang Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 91895, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 91895, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Stenkamp DL, Viall DD, Mitchell DM. Evidence of regional specializations in regenerated zebrafish retina. Exp Eye Res 2021; 212:108789. [PMID: 34653519 DOI: 10.1016/j.exer.2021.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
Adult zebrafish are capable of functional retinal regeneration following damage. A goal of vision science is to stimulate or permit a similar process in mammals to treat human retinal disease and trauma. Ideally such a process would reconstitute the stereotyped, two-dimensional topographic patterns and regional specializations of specific cell types, functionally important for representation of the visual field. An example in humans is the cone-rich fovea, essential for high-acuity color vision. Stereotyped, global topographic patterns of specific retinal cell types are also found in zebrafish, particularly for cone types expressing the tandemly-replicated lws (long wavelength-sensitive) and rh2 (middle wavelength-sensitive) opsins. Here we examine whether regionally specialized patterns of LWS1 and LWS2 cones are restored in regenerated retinas in zebrafish. Adult transgenic zebrafish carrying fluorescent reporters for lws1 and lws2 were subjected to retinal lesions that destroy all neurons but spare glia, via intraocular injection of the neurotoxin ouabain. Regenerated and contralateral control retinas were mounted whole or sectioned, and imaged. Overall spatial patterns of lws1 vs. lws2 opsin-expressing cones in regenerated retinas were remarkably similar to those of control retinas, with LWS1 cones in ventral/peripheral regions, and LWS2 cones in dorsal/central regions. However, LWS2 cones occupied a smaller fraction of regenerated retina, and several cones co-expressed the lws1 and lws2 reporters in regenerated retinas. Local patterns of regenerated LWS1 cones showed modest reductions in regularity. These results suggest that some of the regional patterning information, or the source of such signals, for LWS cone subtypes may be retained by undamaged cell types (Müller glia or RPE) and re-deployed during regeneration.
Collapse
Affiliation(s)
- Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 82844, USA.
| | - Derek D Viall
- Department of Biological Sciences, University of Idaho, Moscow, ID, 82844, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, 82844, USA
| |
Collapse
|
44
|
Kugler EC, Greenwood J, MacDonald RB. The "Neuro-Glial-Vascular" Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction. Front Cell Dev Biol 2021; 9:732820. [PMID: 34646826 PMCID: PMC8502923 DOI: 10.3389/fcell.2021.732820] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The neurovascular unit (NVU) is a complex multi-cellular structure consisting of endothelial cells (ECs), neurons, glia, smooth muscle cells (SMCs), and pericytes. Each component is closely linked to each other, establishing a structural and functional unit, regulating central nervous system (CNS) blood flow and energy metabolism as well as forming the blood-brain barrier (BBB) and inner blood-retina barrier (BRB). As the name suggests, the “neuro” and “vascular” components of the NVU are well recognized and neurovascular coupling is the key function of the NVU. However, the NVU consists of multiple cell types and its functionality goes beyond the resulting neurovascular coupling, with cross-component links of signaling, metabolism, and homeostasis. Within the NVU, glia cells have gained increased attention and it is increasingly clear that they fulfill various multi-level functions in the NVU. Glial dysfunctions were shown to precede neuronal and vascular pathologies suggesting central roles for glia in NVU functionality and pathogenesis of disease. In this review, we take a “glio-centric” view on NVU development and function in the retina and brain, how these change in disease, and how advancing experimental techniques will help us address unanswered questions.
Collapse
Affiliation(s)
- Elisabeth C Kugler
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - John Greenwood
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Ryan B MacDonald
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| |
Collapse
|
45
|
Brandli A, Dudczig S, Currie PD, Jusuf PR. Photoreceptor ablation following ATP induced injury triggers Müller glia driven regeneration in zebrafish. Exp Eye Res 2021; 207:108569. [PMID: 33839111 DOI: 10.1016/j.exer.2021.108569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Retinal regeneration research offers hope to people affected by visual impairment due to disease and injury. Ongoing research has explored many avenues towards retinal regeneration, including those that utilizes implantation of devices, cells or targeted viral-mediated gene therapy. These results have so far been limited, as gene therapy only has applications for rare single-gene mutations and implantations are invasive and in the case of cell transplantation donor cells often fail to integrate with adult neurons. An alternative mode of retinal regeneration utilizes a stem cell population unique to vertebrate retina - Müller glia (MG). Endogenous MG can readily regenerate lost neurons spontaneously in zebrafish and to a very limited extent in mammalian retina. The use of adenosine triphosphate (ATP) has been shown to induce retinal degeneration and activation of the MG in mammals, but whether this is conserved to other vertebrate species including those with higher regenerative capacity remains unknown. In our study, we injected a single dose of ATP intravitreal in zebrafish to characterize the cell death and MG induced regeneration. We used TUNEL labelling on retinal sections to show that ATP caused localised death of photoreceptors and ganglion cells within 24 h. Histology of GFP-transgenic zebrafish and BrdU injected fish demonstrated that MG proliferation peaked at days 3 and 4 post-ATP injection. Using BrdU labelling and photoreceptor markers (Zpr1) we observed regeneration of lost rod photoreceptors at day 14. This study has been undertaken to allow for comparative studies between mammals and zebrafish that use the same specific induction method of injury, i.e. ATP induced injury to allow for direct comparison of across species to narrow down resulting differences that might reflect the differing regenerative capacity. The ultimate aim of this work is to recapitulate pro-neurogenesis Müller glia signaling in mammals to produce new neurons that integrate with the existing retinal circuit to restore vision.
Collapse
Affiliation(s)
- Alice Brandli
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia; Deptartment of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Stefanie Dudczig
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia; School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Patricia R Jusuf
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia; School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
46
|
Nagashima M, Hitchcock PF. Inflammation Regulates the Multi-Step Process of Retinal Regeneration in Zebrafish. Cells 2021; 10:cells10040783. [PMID: 33916186 PMCID: PMC8066466 DOI: 10.3390/cells10040783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to regenerate tissues varies between species and between tissues within a species. Mammals have a limited ability to regenerate tissues, whereas zebrafish possess the ability to regenerate almost all tissues and organs, including fin, heart, kidney, brain, and retina. In the zebrafish brain, injury and cell death activate complex signaling networks that stimulate radial glia to reprogram into neural stem-like cells that repair the injury. In the retina, a popular model for investigating neuronal regeneration, Müller glia, radial glia unique to the retina, reprogram into stem-like cells and undergo a single asymmetric division to generate multi-potent retinal progenitors. Müller glia-derived progenitors then divide rapidly, numerically matching the magnitude of the cell death, and differentiate into the ablated neurons. Emerging evidence reveals that inflammation plays an essential role in this multi-step process of retinal regeneration. This review summarizes the current knowledge of the inflammatory events during retinal regeneration and highlights the mechanisms whereby inflammatory molecules regulate the quiescence and division of Müller glia, the proliferation of Müller glia-derived progenitors and the survival of regenerated neurons.
Collapse
|
47
|
Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina. Cells 2021; 10:cells10030633. [PMID: 33809186 PMCID: PMC8000332 DOI: 10.3390/cells10030633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative retinal diseases, such as glaucoma and diabetic retinopathy, involve a gradual loss of neurons in the retina as the disease progresses. Central nervous system neurons are not able to regenerate in mammals, therefore, an often sought after course of treatment for neuronal loss follows a neuroprotective or regenerative strategy. Neuroprotection is the process of preserving the structure and function of the neurons that have survived a harmful insult; while regenerative approaches aim to replace or rewire the neurons and synaptic connections that were lost, or induce regrowth of damaged axons or dendrites. In order to test the neuroprotective effectiveness or the regenerative capacity of a particular agent, a robust experimental model of retinal neuronal damage is essential. Zebrafish are being used more often in this type of study because their eye structure and development is well-conserved between zebrafish and mammals. Zebrafish are robust genetic tools and are relatively inexpensive to maintain. The large array of functional and behavioral tests available in zebrafish makes them an attractive model for neuroprotection studies. Some common insults used to model retinal disease and study neuroprotection in zebrafish include intense light, chemical toxicity and mechanical damage. This review covers the existing retinal neuroprotection and regeneration literature in the zebrafish and highlights their potential for future studies.
Collapse
|
48
|
Lahne M, Brecker M, Jones SE, Hyde DR. The Regenerating Adult Zebrafish Retina Recapitulates Developmental Fate Specification Programs. Front Cell Dev Biol 2021; 8:617923. [PMID: 33598455 PMCID: PMC7882614 DOI: 10.3389/fcell.2020.617923] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Adult zebrafish possess the remarkable capacity to regenerate neurons. In the damaged zebrafish retina, Müller glia reprogram and divide to produce neuronal progenitor cells (NPCs) that proliferate and differentiate into both lost neuronal cell types and those unaffected by the damage stimulus, which suggests that developmental specification/differentiation programs might be recapitulated during regeneration. Quantitative real-time polymerase chain reaction revealed that developmental competence factors are expressed following photoreceptor damage induced by intense light or in a genetic rod photoreceptor cell ablation model. In both light- and N-Methyl-D-aspartic acid (NMDA)-damaged adult zebrafish retinas, NPCs, but not proliferating Müller glia, expressed fluorescent reporters controlled by promoters of ganglion (atoh7), amacrine (ptf1a), bipolar (vsx1), or red cone photoreceptor cell competence factors (thrb) in a temporal expression sequence. In both damage paradigms, atoh7:GFP was expressed first, followed by ptf1a:EGFP and lastly, vsx1:GFP, whereas thrb:Tomato was observed in NPCs at the same time as ptf1a:GFP following light damage but shifted alongside vsx1:GFP in the NMDA-damaged retina. Moreover, HuC/D, indicative of ganglion and amacrine cell differentiation, colocalized with atoh7:GFP prior to ptf1a:GFP expression in the ganglion cell layer, which was followed by Zpr-1 expression (red/green cone photoreceptors) in thrb:Tomato-positive cells in the outer nuclear layer in both damage paradigms, mimicking the developmental differentiation sequence. However, comparing NMDA- to light-damaged retinas, the fraction of PCNA-positive cells expressing atoh7:GFP increased, that of thrb:Tomato and vsx1:GFP decreased, and that of ptf1a:GFP remained similar. To summarize, developmental cell specification programs were recapitulated during retinal regeneration, which adapted to account for the cell type lost.
Collapse
Affiliation(s)
- Manuela Lahne
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States.,Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, United States
| | - Margaret Brecker
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States.,Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, United States
| | - Stuart E Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States.,Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
49
|
Gao H, A L, Huang X, Chen X, Xu H. Müller Glia-Mediated Retinal Regeneration. Mol Neurobiol 2021; 58:2342-2361. [PMID: 33417229 DOI: 10.1007/s12035-020-02274-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Müller glia originate from neuroepithelium and are the principal glial cells in the retina. During retinal development, Müller glia are one of the last cell types to be born. In lower vertebrates, such as zebrafish, Müller glia possess a remarkable capacity for retinal regeneration following various forms of injury through a reprogramming process in which endogenous Müller glia proliferate and differentiate into all types of retinal cells. In mammals, Müller glia become reactive in response to damage to protect or to further impair retinal function. Although mammalian Müller glia have regenerative potential, it is limited as far as repairing damaged retina. Lessons learned from zebrafish will help reveal the critical mechanisms involved in Müller glia reprogramming. Progress has been made in triggering Müller glia to reprogram and generate functional neurons to restore vision in mammals indicating that Müller glia reprogramming may be a promising therapeutic strategy for human retinal diseases. This review comprehensively summarizes the mechanisms related to retinal regeneration in model animals and the critical advanced progress made in Müller glia reprogramming in mammals.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
50
|
Hoang T, Wang J, Boyd P, Wang F, Santiago C, Jiang L, Yoo S, Lahne M, Todd LJ, Jia M, Saez C, Keuthan C, Palazzo I, Squires N, Campbell WA, Rajaii F, Parayil T, Trinh V, Kim DW, Wang G, Campbell LJ, Ash J, Fischer AJ, Hyde DR, Qian J, Blackshaw S. Gene regulatory networks controlling vertebrate retinal regeneration. Science 2020; 370:eabb8598. [PMID: 33004674 PMCID: PMC7899183 DOI: 10.1126/science.abb8598] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin accessibility in Müller glia from zebrafish, chick, and mice in response to different stimuli. We identified evolutionarily conserved and species-specific gene networks controlling glial quiescence, reactivity, and neurogenesis. In zebrafish and chick, the transition from quiescence to reactivity is essential for retinal regeneration, whereas in mice, a dedicated network suppresses neurogenic competence and restores quiescence. Disruption of nuclear factor I transcription factors, which maintain and restore quiescence, induces Müller glia to proliferate and generate neurons in adult mice after injury. These findings may aid in designing therapies to restore retinal neurons lost to degenerative diseases.
Collapse
Affiliation(s)
- Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jie Wang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick Boyd
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Fang Wang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manuela Lahne
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Levi J Todd
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Meng Jia
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cristian Saez
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Casey Keuthan
- Department of Ophthalmology, University of Florida School of Medicine, Gainesville, FL 32610, USA
| | - Isabella Palazzo
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Natalie Squires
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Warren A Campbell
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Trisha Parayil
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vickie Trinh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guohua Wang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leah J Campbell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - John Ash
- Department of Ophthalmology, University of Florida School of Medicine, Gainesville, FL 32610, USA
| | - Andy J Fischer
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|