1
|
Tapia G, Gonzalez M, Méndez J, Schmeda-Hirschmann G, Arrey O, Carrasco B, Nina N, Salas-Burgos A, Jimenéz-Aspee F, Arevalo B. Transcriptome analysis reveals biosynthesis and regulation of flavonoid in common bean seeds during grain filling. BMC PLANT BIOLOGY 2024; 24:916. [PMID: 39354389 PMCID: PMC11443926 DOI: 10.1186/s12870-024-05593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
The Andean domesticated common beans (Phaseolus vulgaris) are significant sources of phenolic compounds associated with health benefits. However, the regulation of biosynthesis of these compounds during bean seed development remains unclear. To elucidate the gene expression patterns involved in the regulation of the flavonoid pathway, we conducted a transcriptome analysis of two contrasting Chilean varieties, Negro Argel (black bean) and Coscorron (white bean), at three developmental stages associated with seed color change, as well as different flavonoid compound accumulations. Our study reveals that phenolic compound synthesis initiates during seed filling, although it exhibits desynchronization between both varieties. We identified 10,153 Differentially Expressed Genes (DEGs) across all comparisons. The KEGG pathway 'Flavonoid biosynthesis' showed enrichment of induced DEGs in Negro Argel (PV172), consistent with the accumulation of delphinidin, petunidin, and malvidin hexosides in their seeds, while catechin glucoside, procyanidin and kaempferol derivatives were predominantly detected in Coscorrón (PV24). Furthermore, while the flavonoid pathway was active in both varieties, our results suggest that enzymes involved in the final steps, such as ANS and UGT, were crucial, inducing anthocyanin formation in Negro Argel. Additionally, during active anthocyanin biosynthesis, the accumulation of reserve proteins or those related to seed protection and germination was induced. These findings provide valuable insights and serve as a guide for plant breeding aimed at enhancing the health and nutritional properties of common beans.
Collapse
Affiliation(s)
- Gerardo Tapia
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA- Quilamapu, Chillán, 3800062, Chile.
| | - Máximo Gonzalez
- Laboratorio de Fisiología Vegetal, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile
| | - José Méndez
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA- Quilamapu, Chillán, 3800062, Chile
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3480094, Chile
| | - Oscar Arrey
- Centro de Estudios en Alimentos Procesados (CEAP), Campus Lircay, Talca, 3480094, Chile
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados (CEAP), Campus Lircay, Talca, 3480094, Chile
| | - Nélida Nina
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3480094, Chile
| | - Alexis Salas-Burgos
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, 4070386, Chile
| | - Felipe Jimenéz-Aspee
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| | - Barbara Arevalo
- Centro de Estudios en Alimentos Procesados (CEAP), Campus Lircay, Talca, 3480094, Chile
| |
Collapse
|
2
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
3
|
Khawula S, Gokul A, Niekerk LA, Basson G, Keyster M, Badiwe M, Klein A, Nkomo M. Insights into the Effects of Hydroxycinnamic Acid and Its Secondary Metabolites as Antioxidants for Oxidative Stress and Plant Growth under Environmental Stresses. Curr Issues Mol Biol 2023; 46:81-95. [PMID: 38275667 PMCID: PMC10814621 DOI: 10.3390/cimb46010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Plant immobility renders plants constantly susceptible to various abiotic and biotic stresses. Abiotic and biotic stresses are known to produce reactive oxygen species (ROS), which cause comparable cellular secondary reactions (osmotic or oxidative stress), leading to agricultural productivity constraints worldwide. To mitigate the challenges caused by these stresses, plants have evolved a variety of adaptive strategies. Phenolic acids form a key component of these strategies, as they are predominantly known to be secreted by plants in response to abiotic or biotic stresses. Phenolic acids can be divided into different subclasses based on their chemical structures, such as hydroxybenzoic acids and hydroxycinnamic acids. This review analyzes hydroxycinnamic acids and their derivatives as they increase under stressful conditions, so to withstand environmental stresses they regulate physiological processes through acting as signaling molecules that regulate gene expression and biochemical pathways. The mechanism of action used by hydroxycinnamic acid involves minimization of oxidative damage to maintain cellular homeostasis and protect vital cellular components from harm. The purpose of this review is to highlight the potential of hydroxycinnamic acid metabolites/derivatives as potential antioxidants. We review the uses of different secondary metabolites associated with hydroxycinnamic acid and their contributions to plant growth and development.
Collapse
Affiliation(s)
- Sindiswa Khawula
- Plant Biotechnology Laboratory, Department of Agriculture, University of Zululand, Main Road, Kwa-Dlangezwa 3886, South Africa;
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of Free State, Phuthadithaba 9866, South Africa;
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (G.B.); (M.K.)
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (G.B.); (M.K.)
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (G.B.); (M.K.)
| | - Mihlali Badiwe
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7435, South Africa;
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Mbukeni Nkomo
- Plant Biotechnology Laboratory, Department of Agriculture, University of Zululand, Main Road, Kwa-Dlangezwa 3886, South Africa;
| |
Collapse
|
4
|
Guo L, Tan J, Deng X, Mo R, Pan Y, Cao Y, Chen D. Integrated analysis of metabolome and transcriptome reveals key candidate genes involved in flavonoid biosynthesis in Pinellia ternata under heat stress. JOURNAL OF PLANT RESEARCH 2023; 136:359-369. [PMID: 36881276 PMCID: PMC10126072 DOI: 10.1007/s10265-023-01446-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/23/2023] [Indexed: 05/25/2023]
Abstract
Pinellia ternata (Thunb.) Breit. is an important traditional Chinese medicinal herb and very sensitive to high temperatures. To gain a better understanding of flavonoid biosynthesis under heat stress in P. ternata, we performed integrated analyses of metabolome and transcriptome data. P. ternata plants were subjected to a temperature of 38 °C, and samples were collected after 10 d of treatment. A total of 502 differential accumulated metabolites and 5040 different expressed transcripts were identified, with flavonoid biosynthesis predominantly enriched. Integrated metabolomics and transcriptome analysis showed that high temperature treatment upregulated the expression of CYP73A and downregulated the expression of other genes (such as HCT, CCoAOMT, DFR1, DFR2), which might inhibit the biosynthesis of the downstream metabolome, including such metabolites as chlorogenic acid, pelargonidin, cyanidin, and (-)-epigallocatechin in the flavonoid biosynthesis pathway. The transcription expression levels of these genes were validated by real-time PCR. Our results provide valuable insights into flavonoid composition and accumulation patterns and the candidate genes participating in the flavonoid biosynthesis pathways under heat stress in P. ternata.
Collapse
Affiliation(s)
- Lianan Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, 400065, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, 400065, China
| | - Jun Tan
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, 400065, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, 400065, China
| | - Xiaoshu Deng
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Rangyu Mo
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, 400065, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, 400065, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, 400065, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, 400065, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Daxia Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China.
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, 400065, China.
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, 400065, China.
| |
Collapse
|
5
|
Spanò R, Fortunato S, Linsalata V, D’Antuono I, Cardinali A, de Pinto MC, Mascia T. Comparative Analysis of Bioactive Compounds in Two Globe Artichoke Ecotypes Sanitized and Non-Sanitized from Viral Infections. PLANTS (BASEL, SWITZERLAND) 2023; 12:1600. [PMID: 37111825 PMCID: PMC10145195 DOI: 10.3390/plants12081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Globe artichoke ecotypes sanitized from plant pathogen infections are characterized by high vegetative vigor, productivity, and quality of capitula. The recent availability on the market of these plants has renewed the interest of farmers and pharmaceutical industries in the crop. Globe artichoke exhibits interesting nutraceutical properties due to the high content of health-promoting bioactive compounds (BACs), such as polyphenols, that could be extracted from waste biomass. The production of BACs depends on several factors including the plant portion considered, the globe artichoke variety/ecotype, and the physiological status of the plants, linked to biotic and abiotic stresses. We investigated the influence of viral infections on polyphenol accumulation in two Apulian late-flowering ecotypes "Locale di Mola tardivo" and "Troianella", comparing sanitized virus-free material (S) vs. naturally virus-infected (non-sanitized, NS) plants. Transcriptome analysis of the two ecotypes highlighted that differentially expressed genes (DEGs), in the two tested conditions, were mainly involved in primary metabolism and processing of genetic/environmental information. The up-regulation of the genes related to the biosynthesis of secondary metabolites and the analysis of peroxidase activity suggested that their modulation is influenced by the phytosanitary status of the plant and is ecotype-dependent. Conversely, the phytochemical analysis showed a remarkable decrease in polyphenols and lignin accumulation in S artichokes compared to NS plants. This unique study analyzes the potential of growing vigorous, sanitized plants, in order to have high amounts of 'soft and clean' biomass, finalized for BAC extraction for nutraceutical purposes. This, in turn, opens new perspectives for a circular economy of sanitized artichokes, in line with the current phytosanitary standards and sustainable development goals.
Collapse
Affiliation(s)
- Roberta Spanò
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy
| | - Stefania Fortunato
- Department of Bioscience, Biotechnology and Environment, University of Bari “Aldo Moro”, Via E. Orabona 4, 70124 Bari, Italy
| | - Vito Linsalata
- Institute of Science of Foods Production (ISPA), CNR Via Amendola 122/O, 70126 Bari, Italy
| | - Isabella D’Antuono
- Institute of Science of Foods Production (ISPA), CNR Via Amendola 122/O, 70126 Bari, Italy
| | - Angela Cardinali
- Institute of Science of Foods Production (ISPA), CNR Via Amendola 122/O, 70126 Bari, Italy
| | - Maria Concetta de Pinto
- Department of Bioscience, Biotechnology and Environment, University of Bari “Aldo Moro”, Via E. Orabona 4, 70124 Bari, Italy
| | - Tiziana Mascia
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
6
|
Judd R, Dong Y, Sun X, Zhu Y, Li M, Xie DY. Metabolic engineering of the anthocyanin biosynthetic pathway in Artemisia annua and relation to the expression of the artemisinin biosynthetic pathway. PLANTA 2023; 257:63. [PMID: 36807538 DOI: 10.1007/s00425-023-04091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Four types of cells were engineered from Artemisia annua to produce approximately 17 anthocyanins, four of which were elucidated structurally. All of them expressed the artemisinin pathway. Artemisia annua is the only medicinal crop to produce artemisinin for the treatment of malignant malaria. Unfortunately, hundreds of thousands of people still lose their life every year due to the lack of sufficient artemisinin. Artemisinin is considered to result from the spontaneous autoxidation of dihydroartemisinic acid in the presence of reactive oxygen species (ROS) in an oxidative condition of glandular trichomes (GTs); however, whether increasing antioxidative compounds can inhibit artemisinin biosynthesis in plant cells is unknown. Anthocyanins are potent antioxidants that can remove ROS in plant cells. To date, no anthocyanins have been structurally elucidated from A. annua. In this study, we had two goals: (1) to engineer anthocyanins in A. annua cells and (2) to understand the artemisinin biosynthesis in anthocyanin-producing cells. Arabidopsis Production of Anthocyanin Pigment 1 was used to engineer four types of transgenic anthocyanin-producing A. annua (TAPA1-4) cells. Three wild-type cell types were developed as controls. TAPA1 cells produced the highest contents of total anthocyanins. LC-MS analysis detected 17 anthocyanin or anthocyanidin compounds. Crystallization, LC/MS/MS, and NMR analyses identified cyanidin, pelargonidin, one cyanin, and one pelargonin. An integrative analysis characterized that four types of TAPA cells expressed the artemisinin pathway and TAPA1 cells produced the highest artemisinin and artemisinic acid. The contents of arteannuin B were similar in seven cell types. These data showed that the engineering of anthocyanins does not eliminate the biosynthesis of artemisinin in cells. These data allow us to propose a new hypothesis that enzymes catalyze the formation of artemisinin from dihydroartemisinic acid in non-GT cells. These findings show a new platform to increase artemisinin production via non-GT cells of A. annua.
Collapse
Affiliation(s)
- Rika Judd
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Yilun Dong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyan Sun
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Yue Zhu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Mingzhuo Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
7
|
Liu X, Du C, Yue C, Tan Y, Fan H. Exogenously applied melatonin alleviates the damage in cucumber plants caused by Aphis goosypii through altering the insect behavior and inducing host plant resistance. PEST MANAGEMENT SCIENCE 2023; 79:140-151. [PMID: 36107970 DOI: 10.1002/ps.7183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Aphis gossypii Glover is the main pest found in most cucumber-producing areas. Melatonin (MT) has been widely studied in protecting plants from environmental stresses and pathogens. However, little knowledge is available on the impact of MT on insect resistance. RESULTS The fecundity of aphids on MT-treated cucumber leaves was inhibited. Interestingly, MT-treated plants were more attractive to aphids, which would prevent the large-scale transmission of viruses caused by the random movement of aphids. Meanwhile, MT caused varying degrees of change in enzyme activities related to methylesterified HG degradation, antioxidants, defense systems and membrane lipid peroxidation. Furthermore, transcriptomic analysis showed that MT induced 2360 differentially expressed genes (DEGs) compared with the control before aphid infection. These DEGs mainly were enriched in hormone signal transduction, MAPK signaling pathway, and plant-pathogen interaction, revealing that MT can help plants acquire inducible resistance and enhance plant immunity. Subsequently, 2397 DEGs were identified after aphid infection. Further analysis showed that MT-treated plants possessed stronger JA signal, reactive oxygen species stability, and the ability of flavonoid synthesis under aphid infection, while mediating plant growth and sucrose metabolism. CONCLUSION In summary, MT as an environmentally friendly substance mitigated aphid damage to cucumbers by affecting the aphids themselves and enhancing plant resistance. This will facilitate exploring sustainable MT-based strategies for cucumber aphid control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingchen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Cong Yue
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Yinqing Tan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
8
|
Wang P, Guo L, Morgan J, Dudareva N, Chapple C. Transcript and metabolite network perturbations in lignin biosynthetic mutants of Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2828-2846. [PMID: 35880844 PMCID: PMC9706439 DOI: 10.1093/plphys/kiac344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/24/2022] [Indexed: 06/01/2023]
Abstract
Lignin, one of the most abundant polymers in plants, is derived from the phenylpropanoid pathway, which also gives rise to an array of metabolites that are essential for plant fitness. Genetic engineering of lignification can cause drastic changes in transcription and metabolite accumulation with or without an accompanying development phenotype. To understand the impact of lignin perturbation, we analyzed transcriptome and metabolite data from the rapidly lignifying stem tissue in 13 selected phenylpropanoid mutants and wild-type Arabidopsis (Arabidopsis thaliana). Our dataset contains 20,974 expressed genes, of which over 26% had altered transcript levels in at least one mutant, and 18 targeted metabolites, all of which displayed altered accumulation in at least one mutant. We found that lignin biosynthesis and phenylalanine supply via the shikimate pathway are tightly co-regulated at the transcriptional level. The hierarchical clustering analysis of differentially expressed genes (DEGs) grouped the 13 mutants into 5 subgroups with similar profiles of mis-regulated genes. Functional analysis of the DEGs in these mutants and correlation between gene expression and metabolite accumulation revealed system-wide effects on transcripts involved in multiple biological processes.
Collapse
Affiliation(s)
- Peng Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Longyun Guo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - John Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
9
|
March of molecular breeding techniques in the genetic enhancement of herbal medicinal plants: present and future prospects. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
CRISPRi-Mediated Down-Regulation of the Cinnamate-4-Hydroxylase (C4H) Gene Enhances the Flavonoid Biosynthesis in Nicotiana tabacum. BIOLOGY 2022; 11:biology11081127. [PMID: 36009753 PMCID: PMC9404795 DOI: 10.3390/biology11081127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Flavonoids are natural compounds in plants. They play a critical role in plant growth and pathogen defense. Due to their health benefits, flavonoids have gained much attention as potent therapeutic agents. However, the low abundance of flavonoids in nature has limited their exploitation. Hence, this study aimed to enhance flavonoid production by silencing the cinnamate-4-hydroxylase (C4H) enzyme using the clustered regularly interspaced short palindromic repeats interference (CRISPRi) technology. Our results showed that the C4H-silenced tobacco cells had a lower NtC4H expression level compared to wild-type. This was concurred by the flavonoid analysis, where the accumulation of C4H’s substrate in the C4H-silenced cells was significantly higher than in the wild-type. Our findings provide valuable insight into the future development of CRISPRi to manipulate plant metabolite biosynthesis. Abstract Flavonoids are an important class of natural compounds present in plants. However, despite various known biological activities and therapeutic potential, the low abundance of flavonoids in nature limits their development for industrial applications. In this study, we aimed to enhance flavonoid production by silencing cinnamate-4-hydroxylase (C4H), an enzyme involved in the branch point of the flavonoid biosynthetic pathway, using the clustered regularly interspaced short palindromic repeats interference (CRISPRi) approach. We designed three sgRNAs targeting the promoter region of NtC4H and cloned them into a CRISPRi construct. After being introduced into Nicotiana tabacum cell suspension culture, the transformed cells were sampled for qPCR and liquid chromatography-mass spectrometry analyses. Sixteen of 21 cell lines showed PCR-positive, confirming the presence of the CRISPRi transgene. The NtC4H transcript in the transgenic cells was 0.44-fold lower than in the wild-type. In contrast, the flavonoid-related genes in the other branching pathways, such as Nt4CL and NtCHS, in the C4H-silenced cells showed higher expression than wild-type. The upregulation of these genes increased their respective products, including pinostrobin, naringenin, and chlorogenic acid. This study provides valuable insight into the future development of CRISPRi-based metabolic engineering to suppress target genes in plants.
Collapse
|
11
|
Shah S, Rastogi S, Vashisth D, Rout PK, Lal RK, Lavania UC, Shasany AK. Altered Developmental and Metabolic Gene Expression in Basil Interspecific Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:1873. [PMID: 35890507 PMCID: PMC9321874 DOI: 10.3390/plants11141873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
To understand the altered developmental changes and associated gene expression in inter-genomic combinations, a study was planned in two diverse yet closely related species of Ocimum, targeting their hybrid F1 and amphidiploids. The existing developmental variations between F1 and amphidiploids was analyzed through phenotypical and anatomical assessments. The absence of 8330 transcripts of F1 in amphidiploids and the exclusive presence of two transcripts related to WNK lysine-deficient protein kinase and geranylgeranyl transferase type-2 subunit beta 1-like proteins in amphidiploids provided a set of genes to compare the suppressed and activated functions between F1 and amphidiploids. The estimation of eugenol and methyleugenol, flavonoid, lignin and chlorophyll content was correlated with the average FPKM and differential gene expression values and further validated through qRT-PCR. Differentially expressed genes of stomatal patterning and development explained the higher density of stomata in F1 and the larger size of stomata in amphidiploids. Gene expression study of several transcription factors putatively involved in the growth and developmental processes of plants clearly amalgamates the transcriptome data linking the phenotypic differences in F1 and amphidiploids. This investigation describes the influence of interspecific hybridization on genes and transcription factors leading to developmental changes and alleviation of intergenomic instability in amphidiploids.
Collapse
Affiliation(s)
- Saumya Shah
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; (S.S.); (S.R.); (D.V.)
| | - Shubhra Rastogi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; (S.S.); (S.R.); (D.V.)
| | - Divya Vashisth
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; (S.S.); (S.R.); (D.V.)
| | - Prashant Kumar Rout
- Department of Phytochemistry, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India;
| | - Raj Kishori Lal
- Department of Genetics and Plant Breeding, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; (R.K.L.); (U.C.L.)
| | - Umesh Chandra Lavania
- Department of Genetics and Plant Breeding, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; (R.K.L.); (U.C.L.)
- Department of Botany, University of Lucknow, Lucknow 226007, India
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; (S.S.); (S.R.); (D.V.)
- ICAR-National Institute for Plant Biotechnology (NIPB), Pusa Campus, New Delhi 110012, India
| |
Collapse
|
12
|
Cao X, Bai G, Zheng J, Zhu D, Li J. Effects of freeze-thaw cycles on the texture of Nanguo pear. J Texture Stud 2022; 53:662-671. [PMID: 35661160 DOI: 10.1111/jtxs.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/15/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
Freezing is a way to preserve the quality of fruit for a long time. Nanguo pear stored at low temperature is prone to browning and lignification. In this study, freeze-thaw cycles were used to simulate the temperature fluctuation in the process, storage and transportation. The texture properties were taken as the research focus to analyze the lignification phenomenon of Nanguo pear under freeze-thaw cycles. The results showed that freeze-thaw treatment significantly reduced the firmness and propectin content of Nanguo pear, increased the content of stone cells in the fruit, but also destroyed the size of stone cells in the fruit. However, with the increase of freezing-thawing cycles, the content of lignin, stone cell content and PAL activity increased significantly, while the content of chlorogenic acid increased first and then decreased. These results are helpful to further understand the correlation between texture change with fruit firmness and formation mechanism of stone cells during freeze-thaw cycles of Nanguo pear. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuehui Cao
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Ge Bai
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Jianrong Zheng
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| |
Collapse
|
13
|
Nkomo M, Gokul A, Ndimba R, Badiwe M, Keyster M, Klein A. Piperonylic acid alters growth, mineral content accumulation and reactive oxygen species-scavenging capacity in chia seedlings. AOB PLANTS 2022; 14:plac025. [PMID: 35734448 PMCID: PMC9206689 DOI: 10.1093/aobpla/plac025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
p-Coumaric acid synthesis in plants involves the conversion of phenylalanine to trans-cinnamic acid via phenylalanine ammonia-lyase (PAL), which is then hydroxylated at the para-position under the action of trans-cinnamic acid 4-hydroxylase. Alternatively, some PAL enzymes accept tyrosine as an alternative substrate and convert tyrosine directly to p-coumaric acid without the intermediary of trans-cinnamic acid. In recent years, the contrasting roles of p-coumaric acid in regulating the growth and development of plants have been well-documented. To understand the contribution of trans-cinnamic acid 4-hydroxylase activity in p-coumaric acid-mediated plant growth, mineral content accumulation and the regulation of reactive oxygen species (ROS), we investigated the effect of piperonylic acid (a trans-cinnamic acid 4-hydroxylase inhibitor) on plant growth, essential macroelements, osmolyte content, ROS-induced oxidative damage, antioxidant enzyme activities and phytohormone levels in chia seedlings. Piperonylic acid restricted chia seedling growth by reducing shoot length, fresh weight, leaf area measurements and p-coumaric acid content. Apart from sodium, piperonylic acid significantly reduced the accumulation of other essential macroelements (such as K, P, Ca and Mg) relative to the untreated control. Enhanced proline, superoxide, hydrogen peroxide and malondialdehyde contents were observed. The inhibition of trans-cinnamic acid 4-hydroxylase activity significantly increased the enzymatic activities of ROS-scavenging enzymes such as superoxide dismutase, ascorbate peroxidase, catalase and guaiacol peroxidase. In addition, piperonylic acid caused a reduction in indole-3-acetic acid and salicylic acid content. In conclusion, the reduction in chia seedling growth in response to piperonylic acid may be attributed to a reduction in p-coumaric acid content coupled with elevated ROS-induced oxidative damage, and restricted mineral and phytohormone (indole-3-acetic acid and salicylic) levels.
Collapse
Affiliation(s)
- Mbukeni Nkomo
- Plant Omics Laboratory, Department of Biotechnology, Life Science Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
- Department of Agriculture, University of Zululand, Main Road, KwaDlagezwe 3886, South Africa
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Roya Ndimba
- Radiation Biophysics Division, Ithemba LABS (Laboratory for Accelerator Based Sciences), Nuclear Medicine Department, National Research Foundation, Cape Town 8000, South Africa
| | - Mihlali Badiwe
- Plant Omics Laboratory, Department of Biotechnology, Life Science Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - Marshall Keyster
- Environmental Biotechnology, Department of Biotechnology, Life Science Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
- Centre of Excellence in Food Security, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Life Science Building, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| |
Collapse
|
14
|
Yin S, Cui H, Zhang L, Yan J, Qian L, Ruan S. Transcriptome and Metabolome Integrated Analysis of Two Ecotypes of Tetrastigma hemsleyanum Reveals Candidate Genes Involved in Chlorogenic Acid Accumulation. PLANTS 2021; 10:plants10071288. [PMID: 34202839 PMCID: PMC8309080 DOI: 10.3390/plants10071288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022]
Abstract
T. hemsleyanum plants with different geographical origins contain enormous genetic variability, which causes different composition and content of flavonoids. In this research, integrated analysis of transcriptome and metabolome were performed in two ecotypes of T. hemsleyanum. There were 5428 different expressed transcripts and 236 differentially accumulated metabolites, phenylpropane and flavonoid biosynthesis were most predominantly enriched. A regulatory network of 9 transcripts and 11 compounds up-regulated in RG was formed, and chlorogenic acid was a core component.
Collapse
Affiliation(s)
- Shuya Yin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.Y.); (H.C.)
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310058, China;
| | - Hairui Cui
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.Y.); (H.C.)
| | - Le Zhang
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310058, China;
| | - Jianli Yan
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310058, China;
- Correspondence: (J.Y.); (L.Q.); (S.R.)
| | - Lihua Qian
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310058, China;
- Correspondence: (J.Y.); (L.Q.); (S.R.)
| | - Songlin Ruan
- Institute of Crops, Hangzhou Academy of Agricultural Sciences, Hangzhou 310058, China
- Correspondence: (J.Y.); (L.Q.); (S.R.)
| |
Collapse
|
15
|
Transcriptomic Analysis of Seasonal Gene Expression and Regulation during Xylem Development in “Shanxin” Hybrid Poplar (Populus davidiana × Populus bolleana). FORESTS 2021. [DOI: 10.3390/f12040451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Xylem development is a key process for wood formation in woody plants. To study the molecular regulatory mechanisms related to xylem development in hybrid poplar P. davidiana × P. bolleana, transcriptome analyses were conducted on developing xylem at six different growth stages within a single growing season. Xylem development and differentially expressed genes in the six time points were selected for a regulatory analysis. Xylem development was observed in stem sections at different growth stages, which showed that xylem development extended from the middle of April to early August and included cell expansion and secondary cell wall biosynthesis. An RNA-seq analysis of six samples with three replicates was performed. After transcriptome assembly and annotation, the differentially expressed genes (DEGs) were identified, and a Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and expression analysis of the DEGs were performed on each sample. On average, we obtained >20 million clean reads per sample, which were assembled into 84,733 nonredundant transcripts, of which there were 17,603 unigenes with lengths >1 kb. There were 14,890 genes that were differentially expressed among the six stages. The upregulated DEGs were enriched in GO terms related to cell wall biosynthesis between S1 vs. S2 or S3 vs. S4 and, in GO terms, related to phytohormones in the S1 vs. S2 or S4 vs. S5 comparisons. The downregulated DEGs were enriched in GO terms related to cell wall biosynthesis between S4 vs. S5 or S5 vs. S6 and, in GO terms, related to hormones between S1 vs. S2 or S2 vs. S3. The KEGG pathways in the DEGs related to “phenylpropanoid biosynthesis”, “plant hormone signal transduction” and “starch and sucrose metabolism” were significantly enriched among the different stages. The DEGs related to cell expansion, polysaccharide metabolism and synthesis, lignin synthesis, transcription factors and hormones were identified. The identification of genes involved in the regulation of xylem development will increase our understanding of the molecular regulation of wood formation in trees and, also, offers potential targets for genetic manipulation to improve the properties of wood.
Collapse
|
16
|
Kim JI, Hidalgo-Shrestha C, Bonawitz ND, Franke RB, Chapple C. Spatio-temporal control of phenylpropanoid biosynthesis by inducible complementation of a cinnamate 4-hydroxylase mutant. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3061-3073. [PMID: 33585900 DOI: 10.1093/jxb/erab055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Cinnamate 4-hydroxylase (C4H) is a cytochrome P450-dependent monooxygenase that catalyzes the second step of the general phenylpropanoid pathway. Arabidopsis reduced epidermal fluorescence 3 (ref3) mutants, which carry hypomorphic mutations in C4H, exhibit global alterations in phenylpropanoid biosynthesis and have developmental abnormalities including dwarfing. Here we report the characterization of a conditional Arabidopsis C4H line (ref3-2pOpC4H), in which wild-type C4H is expressed in the ref3-2 background. Expression of C4H in plants with well-developed primary inflorescence stems resulted in restoration of fertility and the production of substantial amounts of lignin, revealing that the developmental window for lignification is remarkably plastic. Following induction of C4H expression in ref3-2pOpC4H, we observed rapid and significant reductions in the levels of numerous metabolites, including several benzoyl and cinnamoyl esters and amino acid conjugates. These atypical conjugates were quickly replaced with their sinapoylated equivalents, suggesting that phenolic esters are subjected to substantial amounts of turnover in wild-type plants. Furthermore, using localized application of dexamethasone to ref3-2pOpC4H, we show that phenylpropanoids are not transported appreciably from their site of synthesis. Finally, we identified a defective Casparian strip diffusion barrier in the ref3-2 mutant root endodermis, which is restored by induction of C4H expression.
Collapse
Affiliation(s)
- Jeong Im Kim
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), Discovery Park, Purdue University, West Lafayette, IN, USA
| | | | | | - Rochus B Franke
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), Discovery Park, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
Yang YH, Yang H, Li RF, Li CX, Zeng L, Wang CJ, Li N, Luo Z. A Rehmannia glutinosa cinnamate 4-hydroxylase promotes phenolic accumulation and enhances tolerance to oxidative stress. PLANT CELL REPORTS 2021; 40:375-391. [PMID: 33392729 DOI: 10.1007/s00299-020-02639-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
RgC4H promotes phenolic accumulation in R. glutinosa, activating the molecular networks of its antioxidant systems, and enhancing the tolerance to oxidative stresses exposed to drought, salinity and H2O2 conditions. Rehmannia glutinosa is of great economic importance in China and increasing R. glutinosa productivity relies, in part, on understanding its tolerance to oxidative stress. Oxidative stress is a key influencing factor for crop productivity in plants exposed to harsh conditions. In the defense mechanisms of plants against stress, phenolics serve an important antioxidant function. Cinnamate 4-hydroxylase (C4H) is the first hydroxylase in the plant phenolics biosynthesis pathway, and elucidating the molecular characteristics of this gene in R. glutinosa is essential for understanding the effect of tolerance to oxidative stress tolerance on improving yield. Using in vitro and in silico methods, a C4H gene, RgC4H, from R. glutinosa was isolated and characterized. RgC4H has 86.34-93.89% amino acid sequence identity with the equivalent protein in other plants and localized to the endoplasmic reticulum. An association between the RgC4H expression and total phenolics content observed in non-transgenic and transgenic R. glutinosa plants suggests that this gene is involved in the process of phenolics biosynthesis. Furthermore, the tolerance of R. glutinosa to drought, salinity and H2O2 stresses was positively or negatively altered in plants with the overexpression or knockdown of RgC4H, respectively, as indicated by the analysis in some antioxidant physiological and molecular indices. Our study highlights the important role of RgC4H in the phenolics/phenylpropanoid pathway and reveals the involvement of phenolic-mediated regulation in oxidative stress tolerance in R. glutinosa.
Collapse
Affiliation(s)
- Yan Hui Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China.
| | - Heng Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Rui Fang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Cui Xiang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Lei Zeng
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Chao Jie Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Na Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| | - Zhuang Luo
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou, 450001, Henan, China
| |
Collapse
|
18
|
Yang Y, Zhang Z, Li R, Yi Y, Yang H, Wang C, Wang Z, Liu Y. RgC3H Involves in the Biosynthesis of Allelopathic Phenolic Acids and Alters Their Release Amount in Rehmannia glutinosa Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E567. [PMID: 32365552 PMCID: PMC7284580 DOI: 10.3390/plants9050567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Rehmannia glutinosa production is affected by replanting disease, in which autotoxic harm to plants is mediated by endogenous phenolic acids as allelopathic compounds found in root exudates. These phenolic acids are mostly phenylpropanoid products of plants' secondary metabolisms. The molecular mechanism of their biosynthesis and release has not been explored in R. glutinosa. P-coumarate-3-hydroxylase (C3H) is the second hydroxylase gene involved in the phenolic acid/phenylpropanoid biosynthesis pathways. C3Hs have been functionally characterized in several plants. However, limited information is available on the C3H gene in R. glutinosa. Here, we identified a putative RgC3H gene and predicted its potential function by in silico analysis and subcellular localization. Overexpression or repression of RgC3H in the transgenic R. glutinosa roots indicated that the gene was involved in allelopathic phenolic biosynthesis. Moreover, we found that these phenolic acid release amount of the transgenic R. glutinosa roots were altered, implying that RgC3H positively promotes their release via the molecular networks of the activated phenolic acid/phenylpropanoid pathways. This study revealed that RgC3H plays roles in the biosynthesis and release of allelopathic phenolic acids in R. glutinosa roots, laying a basis for further clarifying the molecular mechanism of the replanting disease development.
Collapse
Affiliation(s)
- Yanhui Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou 350002, China;
| | - Ruifang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Yanjie Yi
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Heng Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Chaojie Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Zushiqi Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Yunyi Liu
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| |
Collapse
|
19
|
Bu C, Zhang Q, Zeng J, Cao X, Hao Z, Qiao D, Cao Y, Xu H. Identification of a novel anthocyanin synthesis pathway in the fungus Aspergillus sydowii H-1. BMC Genomics 2020; 21:29. [PMID: 31914922 PMCID: PMC6950803 DOI: 10.1186/s12864-019-6442-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/29/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Anthocyanins are common substances with many agro-food industrial applications. However, anthocyanins are generally considered to be found only in natural plants. Our previous study isolated and purified the fungus Aspergillus sydowii H-1, which can produce purple pigments during fermentation. To understand the characteristics of this strain, a transcriptomic and metabolomic comparative analysis was performed with A. sydowii H-1 from the second and eighth days of fermentation, which confer different pigment production. RESULTS We found five anthocyanins with remarkably different production in A. sydowii H-1 on the eighth day of fermentation compared to the second day of fermentation. LC-MS/MS combined with other characteristics of anthocyanins suggested that the purple pigment contained anthocyanins. A total of 28 transcripts related to the anthocyanin biosynthesis pathway was identified in A. sydowii H-1, and almost all of the identified genes displayed high correlations with the metabolome. Among them, the chalcone synthase gene (CHS) and cinnamate-4-hydroxylase gene (C4H) were only found using the de novo assembly method. Interestingly, the best hits of these two genes belonged to plant species. Finally, we also identified 530 lncRNAs in our datasets, and among them, three lncRNAs targeted the genes related to anthocyanin biosynthesis via cis-regulation, which provided clues for understanding the underlying mechanism of anthocyanin production in fungi. CONCLUSION We first reported that anthocyanin can be produced in fungus, A. sydowii H-1. Totally, 31 candidate transcripts were identified involved in anthocyanin biosynthesis, in which CHS and C4H, known as the key genes in anthocyanin biosynthesis, were only found in strain H1, which indicated that these two genes may contribute to anthocyanins producing in H-1. This discovery expanded our knowledges of the biosynthesis of anthocyanins and provided a direction for the production of anthocyanin.
Collapse
Affiliation(s)
- Congfan Bu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Qian Zhang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Xiyue Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Zhaonan Hao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| |
Collapse
|
20
|
Effects of Metaxenia on Stone Cell Formation in Pear (Pyrus bretschneideri) Based on Transcriptomic Analysis and Functional Characterization of the Lignin-Related Gene PbC4H2. FORESTS 2020. [DOI: 10.3390/f11010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The deposition of lignin in flesh parenchyma cells for pear stone cells, and excessive stone cells reduce the taste and quality of the fruit. The effect of metaxenia on the quality of fruit has been heavily studied, but the effect of metaxenia on stone cell formation has not been fully elucidated to date. This study used P. bretschneideri (Chinese white pear) cv. ‘Yali’ (high-stone cell content) and P. pyrifolia (Sand pear) cv. ‘Cuiguan’ (low-stone cell content) as pollination trees to pollinate P. bretschneideri cv. ‘Lianglizaosu’ separately to fill this gap in the literature. The results of quantitative determination, histochemical staining and electron microscopy indicated that the content of stone cells and lignin in YL fruit (‘Yali’ (pollen parent) × ‘Lianglizaosu’ (seed parent)) was significantly higher than that in CL fruit (‘Cuiguan’ (pollen parent) × ‘Lianglizaosu’ (seed parent)). The transcriptome sequencing results that were obtained from the three developmental stages of the two types of hybrid fruits indicated that a large number of differentially expressed genes (DEGs) related to auxin signal transduction (AUX/IAAs and ARFs), lignin biosynthesis, and lignin metabolism regulation (MYBs, LIMs, and KNOXs) between the CL and YL fruits at the early stage of fruit development. Therefore, metaxenia might change the signal transduction process of auxin in pear fruit, thereby regulating the expression of transcription factors (TFs) related to lignin metabolism, and ultimately affecting lignin deposition and stone cell development. In addition, we performed functional verification of a differentially expressed gene, PbC4H2 (cinnamate 4-hydroxylase). Heterologous expression of PbC4H2 in the c4h mutant not only restored its collapsed cell wall, but also significantly increased the lignin content in the inflorescence stem. The results of our research help to elucidate the metaxenia-mediated regulation of pear stone cell development and clarify the function of PbC4H2 in cell wall development and lignin synthesis, which establishes a foundation for subsequent molecular breeding.
Collapse
|
21
|
Nair P, Mall M, Sharma P, Khan F, Nagegowda DA, Rout PK, Gupta MM, Pandey A, Shasany AK, Gupta AK, Shukla AK. Characterization of a class III peroxidase from Artemisia annua: relevance to artemisinin metabolism and beyond. PLANT MOLECULAR BIOLOGY 2019; 100:527-541. [PMID: 31093899 DOI: 10.1007/s11103-019-00879-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/04/2019] [Indexed: 05/25/2023]
Abstract
A class III peroxidase from Artemisia annua has been shown to indicate the possibility of cellular localization-based role diversity, which may have implications in artemisinin catabolism as well as lignification. Artemisia annua derives its importance from the antimalarial artemisinin. The -O-O- linkage in artemisinin makes peroxidases relevant to its metabolism. Earlier, we identified three peroxidase-coding genes from A. annua, whereby Aa547 showed higher expression in the low-artemisinin plant stage whereas Aa528 and Aa540 showed higher expression in the artemisinin-rich plant stage. Here we carried out tertiary structure homology modelling of the peroxidases for docking studies. Maximum binding affinity for artemisinin was shown by Aa547. Further, Aa547 showed greater binding affinity for post-artemisinin metabolite, deoxyartemisinin, as compared to pre-artemisinin metabolites (dihydroartemisinic hydroperoxide, artemisinic acid, dihydroartemisinic acid). It also showed significant binding affinity for the monolignol, coniferyl alcohol. Moreover, Aa547 expression was related inversely to artemisinin content and directly to total lignin content as indicated by its transient silencing and overexpression in A. annua. Artemisinin reduction assay also indicated inverse relationship between Aa547 expression and artemisinin content. Subcellular localization using GFP fusion suggested that Aa547 is peroxisomal. Nevertheless, dual localization (intracellular/extracellular) of Aa547 could not be ruled out due to its effect on both, artemisinin and lignin. Taken together, this indicates possibility of localization-based role diversity for Aa547, which may have implications in artemisinin catabolism as well as lignification in A. annua.
Collapse
Affiliation(s)
- Priya Nair
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Maneesha Mall
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Pooja Sharma
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Dinesh A Nagegowda
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, 560065, India
| | - Prasant K Rout
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Madan M Gupta
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Alok Pandey
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Ajit K Shasany
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Anil K Gupta
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Ashutosh K Shukla
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India.
| |
Collapse
|
22
|
Liu F, Chen JR, Tang YH, Chang HT, Yuan YM, Guo Q. Isolation and characterization of cinnamate 4-hydroxylase gene from cultivated ramie ( Boehmeria nivea). BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2017.1418675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Fang Liu
- College of Agriculture, Ramie Institute, Hunan Agricultural University, Changsha, PR China
- Laboratory of Economic Animal and Plant Quality Control and Application, College of Biological and Environmental Engineering, Changsha University, Changsha, PR China
| | - Jian-Rong Chen
- Laboratory of Economic Animal and Plant Quality Control and Application, College of Biological and Environmental Engineering, Changsha University, Changsha, PR China
| | - Ying-Hong Tang
- College of Agriculture, Ramie Institute, Hunan Agricultural University, Changsha, PR China
| | - Hong-Tao Chang
- College of Agriculture, Ramie Institute, Hunan Agricultural University, Changsha, PR China
| | - You-Mei Yuan
- College of Agriculture, Ramie Institute, Hunan Agricultural University, Changsha, PR China
| | - Qingquan Guo
- College of Agriculture, Ramie Institute, Hunan Agricultural University, Changsha, PR China
| |
Collapse
|
23
|
Liu XY, Yu HN, Gao S, Wu YF, Cheng AX, Lou HX. The isolation and functional characterization of three liverwort genes encoding cinnamate 4-hydroxylase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 117:42-50. [PMID: 28587992 DOI: 10.1016/j.plaphy.2017.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 05/04/2023]
Abstract
The plant phenylpropanoid pathway is responsible for the synthesis of a wide variety of secondary metabolites. The second step in phenylpropanoid synthesis is carried out by the cytochrome P450 monooxygenase enzyme cinnamate 4-hydroxylase (C4H), which catalyzes the p-hydroxylation of trans-cinnamic acid to p-coumarate. Genes encoding C4H have been characterized in many vascular plant species, but as yet not in any bryophyte species. Here, a survey of the transcriptome sequences of four liverwort species was able to identify eight putative C4Hs. The three liverwort C4H genes taken forward for isolation and functional characterization were harbored by Plagiochasma appendiculatum (PaC4H) and Marchantia paleacea (MpC4H1 and MpC4H2). When the genes were heterologously expressed in yeast culture, an assay of enzyme activity indicated that PaC4H and MpC4H1 had a higher level of activity than MpC4H2. The favored substrate (trans-cinnamic acid) of all three liverwort C4Hs was the same as that of higher plant C4Hs. The co-expression of PaC4H in yeast cells harboring PaPAL (a P. appendiculatum ene encoding phenylalanine ammonia lyase) allowed the conversion of L-phenylalanine to p-coumaric acid. Furthermore, the expression level of PaC4H was enhanced after treatment with abiotic stress inducers UV irradiation or salicylic acid in the thallus of P. appendiculatum. The likelihood is that high activity C4Hs evolved in the liverworts and have remained highly conserved across the plant kingdom.
Collapse
Affiliation(s)
- Xin-Yan Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hai-Na Yu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yi-Feng Wu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
24
|
Clifford M, Jaganath IB, Ludwig IA, Crozier A. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 2017; 34:1391-1421. [DOI: 10.1039/c7np00030h] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review is focussed upon the acyl-quinic acids, the most studied group within theca.400 chlorogenic acids so far reported.
Collapse
Affiliation(s)
- Michael N. Clifford
- School of Biosciences and Medicine
- Faculty of Health and Medical Sciences
- University of Surrey
- Guildford
- UK
| | - Indu B. Jaganath
- Malaysian Agricultural Research and Development Institute
- Kuala Lumpur
- Malaysia
| | - Iziar A. Ludwig
- Department of Food Technology
- University of Lleida
- Lleida
- Spain
| | - Alan Crozier
- Department of Nutrition
- University of California
- Davis
- USA
| |
Collapse
|