1
|
Zheng J, Yang X, An N, Yang D. Correlation analysis between Radix Pseudostelariae quality and rhizosphere soil factors of Pseudostellaria heterophylla in a cultivation region, China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39268856 DOI: 10.1002/jsfa.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/10/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Pseudostellaria heterophylla, known for its significant bioactive ingredients, offers potential health benefits. Amounts of bioactive compounds of the tuberous root of cultivated Pseudostellaria heterophylla are sensitive to environmental conditions. We selected 22 sampling sites in Guizhou Province, China, a primary Pseudostellaria heterophylla planting area. We analyzed polysaccharides, water-soluble extractives, total ash and inorganic elements (Fe, Mn, Zn, Mg and Ca) in Radix Pseudostellariae, and pH, organic carbon (OC), available nitrogen (AN), available phosphorus (AP), available potassium (AK) and inorganic elements in the soil. RESULTS Our study revealed a substantial presence of polysaccharides (85.00-181.00 mg g-1), water-soluble extractives (47.52-57.63%) and total ash (1.87-3.39%) in Radix Pseudostellariae. Polysaccharides and total ash showed no sensitivity to soil pH. Radix Pseudostellariae collected from soil with pH > 7 exhibited slightly higher levels of water-soluble extractives, Mg and Ca than that from soil with pH < 5. Conversely, soil with a pH less than 5 had higher OC, AN, AP and AK contents. Water-soluble extractives in Radix Pseudostellariae were negatively correlated with soil pH but positively correlated with OC and AN. CONCLUSION The results imply that the sequestration of soil nutrients over long-term Pseudostellaria heterophylla cultivation could negatively impact the accumulation of some bioactive ingredients in Radix Pseudostellariae. This study has a profound implication for enhancing the quality of Radix Pseudostellariae of artificially cultivated Pseudostellaria heterophylla. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiao Zheng
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Xin Yang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Na An
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Dan Yang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Yuan QS, Gao Y, Wang L, Wang X, Wang L, Ran J, Ou X, Wang Y, Xiao C, Jiang W, Guo L, Zhou T, Huang L. Pathogen-driven Pseudomonas reshaped the phyllosphere microbiome in combination with Pseudostellaria heterophylla foliar disease resistance via the release of volatile organic compounds. ENVIRONMENTAL MICROBIOME 2024; 19:61. [PMID: 39182153 PMCID: PMC11344943 DOI: 10.1186/s40793-024-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Continuous monocropping obstacles are common in plants, especially medicinal plants, resulting in disease outbreaks and productivity reductions. Foliar disease, mainly caused by Fusarium oxysporum, results in a severe decrease in the yield of Pseudostellaria heterophylla annually. Determining an effective biomethod to alleviate this disease is urgently needed to improve its productivity and quality. RESULTS This study screened thirty-two keystone bacterial genera induced by pathogens in P. heterophylla rhizosphere soil under continuous monocropping conditions. Pseudomonas, Chryseobacterium, and Flavobacterium, referred to as the beneficial microbiota, were significantly attracted by pathogen infection. The P. palleroniana strain B-BH16-1 can directly inhibit the growth and spore formation of seven primary pathogens of P. heterophylla foliar disease by disrupting fusaric acid production via the emission of volatile organic compounds (VOCs). In addition, strain B-BH16-1 enhances the disease resistance of P. heterophylla by obliterating the pathogen and assembling beneficial microbiota. CONCLUSION Pathogen-induced Pseudomonas reshaped phyllosphere microbial communities via direct antagonism of pathogens and indirect disruption of the pathogen virulence factor biosynthesis to enhance disease suppression and improve yields. These results show that inhibiting pathogen virulence biosynthesis to reshape the plant microbial community using disease-induing probiotics will be an innovative strategy for managing plant disease, especially under continuous monoculture conditions.
Collapse
Affiliation(s)
- Qing-Song Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Yanping Gao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaoai Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lingling Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jiayue Ran
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaohong Ou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanhong Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Weike Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lanping Guo
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Luqi Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
3
|
Gajdošová Z, Caboň M, Kolaříková Z, Sudová R, Rydlová J, Turisová I, Turis P, Kučera J, Slovák M. Environmental heterogeneity structures root-associated fungal communities in Daphne arbuscula (Thymelaeaceae), a shrub adapted to extreme rocky habitats. Mol Ecol 2024; 33:e17441. [PMID: 38923648 DOI: 10.1111/mec.17441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Rocky habitats, globally distributed ecosystems, harbour diverse biota, including numerous endemic and endangered species. Vascular plants thriving in these environments face challenging abiotic conditions, requiring diverse morphological and physiological adaptations. Their engagement with the surrounding microbiomes is, however, equally vital for their adaptation, fitness, and long-term survival. Nevertheless, there remains a lack of understanding surrounding this complex interplay within this fascinating biotic ecosystem. Using microscopic observations and metabarcoding analyses, we examined the fungal abundance and diversity in the root system of the rock-dwelling West Carpathian endemic shrub, Daphne arbuscula (Thymelaeaceae). We explored the diversification of root-associated fungal communities in relation to microclimatic variations across the studied sites. We revealed extensive colonization of the Daphne roots by diverse taxonomic fungal groups attributed to different ecological guilds, predominantly plant pathogens, dark septate endophytes (DSE), and arbuscular mycorrhizal fungi (AMF). Notably, differences in taxonomic composition and ecological guilds emerged between colder and warmer microenvironments. Apart from omnipresent AMF, warmer sites exhibited a prevalence of plant pathogens, while colder sites were characterized by a dominance of DSE. This mycobiome diversification, most likely triggered by the environment, suggests that D. arbuscula populations in warmer areas may be more vulnerable to fungal diseases, particularly in the context of global climate change.
Collapse
Affiliation(s)
- Zuzana Gajdošová
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Caboň
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Kolaříková
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Radka Sudová
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Jana Rydlová
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Ingrid Turisová
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Banská Bystrica, Slovakia
| | - Peter Turis
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Banská Bystrica, Slovakia
| | - Jaromír Kučera
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Slovák
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Praha, Czech Republic
| |
Collapse
|
4
|
Lv G, Li Z, Zhao Z, Liu H, Li L, Li M. The factors affecting the development of medicinal plants from a value chain perspective. PLANTA 2024; 259:108. [PMID: 38555562 DOI: 10.1007/s00425-024-04380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
MAIN CONCLUSION From a value chain perspective, this paper examines the important factors from the selection of planting areas to storage, which restrict the development of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants. Medicinal plants have significant economic and medicinal value. Due to the gradual depletion of wild medicinal plant resources, cultivators of medicinal plants must resort to artificial cultivation to cope. However, there are still many problems in the production process of medicinal plants, resulting in decreases in both yield and quality, thus hindering sustainable development. To date, research on the value chain of medicinal plants is still limited. Therefore, this paper analyzes the factors affecting the development of medicinal plants from the perspective of the value chain, including the selection of growing areas to the storage process of medicinal plants, and summarizes the challenges faced in the production process of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants.
Collapse
Affiliation(s)
- Guoshuai Lv
- University Engineering Research Center of Chinese (Mongolia), Ecological Planting Medicinal Materials (Nurture) in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Minzu University, Tongliao, China
| | - Zhihe Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zeyuan Zhao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Haolin Liu
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ling Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Minhui Li
- University Engineering Research Center of Chinese (Mongolia), Ecological Planting Medicinal Materials (Nurture) in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Minzu University, Tongliao, China.
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, Inner Mongolia, China.
| |
Collapse
|
5
|
He D, Yao X, Zhang P, Liu W, Huang J, Sun H, Wang N, Zhang X, Wang H, Zhang H, Ao X, Xie F. Effects of continuous cropping on fungal community diversity and soil metabolites in soybean roots. Microbiol Spectr 2023; 11:e0178623. [PMID: 37811990 PMCID: PMC10715103 DOI: 10.1128/spectrum.01786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/11/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Soybean yield can be affected by soybean soil fungal communities in different tillage patterns. Soybean is an important food crop with great significance worldwide. Continuous cultivation resulted in soil nutrient deficiencies, disordered metabolism of root exudates, fungal pathogen accumulation, and an altered microbial community, which brought a drop in soybean output. In this study, taking the soybean agroecosystem in northeast China, we revealed the microbial ecology and soil metabolites spectrum, especially the diversity and composition of soil fungi and the correlation of pathogenic fungi, and discussed the mechanisms and the measures of alleviating the obstacles.
Collapse
Affiliation(s)
- Dexin He
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xingdong Yao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
- Postdoctoral Station of Agricultural Resources and Environment, Land and Environment College, Shenyang Agricultural University, Shenyang, China
| | - Pengyu Zhang
- Inner Mongolia Agronomy and Animal Husbandry Technology Extension Center, Hohhot, Inner Mongolia, China
| | - Wenbo Liu
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Junxia Huang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Hexiang Sun
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Nan Wang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xuejing Zhang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Haiying Wang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Huijun Zhang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xue Ao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Futi Xie
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Wang Y, Zhou Y, Ye J, Jin C, Hu Y. Continuous Cropping Inhibits Photosynthesis of Polygonatum odoratum. PLANTS (BASEL, SWITZERLAND) 2023; 12:3374. [PMID: 37836114 PMCID: PMC10574191 DOI: 10.3390/plants12193374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Polygonatum odoratum (Mill.) Druce possesses widespread medicinal properties; however, the continuous cropping (CC) often leads to a severe consecutive monoculture problem (CMP), ultimately causing a decline in yield and quality. Photosynthesis is the fundamental process for plant growth development. Improving photosynthesis is one of the most promising approaches to increase plant yields. To better understand how P. odoratum leaves undergo photosynthesis in response to CC, this study analyzed the physiochemical indexes and RNA-seq. The physiochemical indexes, such as the content of chlorophyll (chlorophyll a, b, and total chlorophyll), light response curves (LRCs), and photosynthetic parameters (Fv/Fm, Fv/F0, Fm/F0, Piabs, ABS/RC, TRo/RC, ETo/RC, and DIo/RC) were all changed in P. odoratum under the CC system. Furthermore, 13,798 genes that exhibited differential expression genes (DEGs) were identified in the P. odoratum leaves of CC and first cropping (FC) plants. Among them, 7932 unigenes were upregulated, while 5860 unigenes were downregulated. Here, the DEGs encoding proteins associated with photosynthesis and carbon assimilation showed a significant decrease in expression under the CC system, such as the PSII protein complex, PSI protein complex, Cytochorome b6/f complex, the photosynthetic electron transport chain, light-harvesting chlorophyll protein complex, and Calvin cycle, etc., -related gene. This study demonstrates that CC can suppress photosynthesis and carbon mechanism in P. odoratum, pinpointing potential ways to enhance photosynthetic efficiency in the CC of plants.
Collapse
Affiliation(s)
- Yan Wang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China; (Y.W.); (Y.Z.); (J.Y.)
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Yunyun Zhou
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China; (Y.W.); (Y.Z.); (J.Y.)
- Biodiversity Institute, Hunan Academy of Forestry, Changsha 410018, China
| | - Jing Ye
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China; (Y.W.); (Y.Z.); (J.Y.)
| | - Chenzhong Jin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China; (Y.W.); (Y.Z.); (J.Y.)
| | - Yihong Hu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China; (Y.W.); (Y.Z.); (J.Y.)
| |
Collapse
|
7
|
Zeeshan Ul Haq M, Yu J, Yao G, Yang H, Iqbal HA, Tahir H, Cui H, Liu Y, Wu Y. A Systematic Review on the Continuous Cropping Obstacles and Control Strategies in Medicinal Plants. Int J Mol Sci 2023; 24:12470. [PMID: 37569843 PMCID: PMC10419402 DOI: 10.3390/ijms241512470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Continuous cropping (CC) is a common practice in agriculture, and usually causes serious economic losses due to soil degeneration, decreased crop yield and quality, and increased disease incidence, especially in medicinal plants. Continuous cropping obstacles (CCOs) are mainly due to changes in soil microbial communities, nutrient availability, and allelopathic effects. Recently, progressive studies have illustrated the molecular mechanisms of CCOs, and valid strategies to overcome them. Transcriptomic and metabolomics analyses revealed that identified DEGs (differently expressed genes) and metabolites involved in the response to CCOs are involved in various biological processes, including photosynthesis, carbon metabolism, secondary metabolite biosynthesis, and bioactive compounds. Soil improvement is an effective strategy to overcome this problem. Soil amendments can improve the microbial community by increasing the abundance of beneficial microorganisms, soil fertility, and nutrient availability. In this review, we sum up the recent status of the research on CCOs in medicinal plants, the combination of transcriptomic and metabolomics studies, and related control strategies, including uses of soil amendments, crop rotation, and intercropping. Finally, we propose future research trends for understanding CCOs, and strategies to overcome these obstacles and promote sustainable agriculture practices in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya Liu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yougen Wu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
8
|
Song X, Mei P, Dou T, Liu Q, Li L. Multi-Omics Analysis Reveals the Resistance Mechanism and the Pathogens Causing Root Rot of Coptis chinensis. Microbiol Spectr 2023; 11:e0480322. [PMID: 36809123 PMCID: PMC10101010 DOI: 10.1128/spectrum.04803-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Coptis chinensis is a traditional Chinese medicinal herb used for more than 2,000 years. Root rot in C. chinensis can cause brown discoloration (necrosis) in the fibrous roots and rhizomes, leading to plants wilting and dying. However, little information exists about the resistance mechanism and the potential pathogens of the root rot of C. chinensis plants. As a result, in order to investigate the relationship between the underlying molecular processes and the pathogenesis of root rot, transcriptome and microbiome analyses were performed on healthy and diseased C. chinensis rhizomes. This study found that root rot can lead to the significant reduction of medicinal components of Coptis, including thaliotrine, columbamine, epiberberin, coptisine, palmatine chloride, and berberine, affecting its efficacy quality. In the present study, Diaporthe eres, Fusarium avenaceum, and Fusarium solani were identified as the main pathogens causing root rot in C. chinensis. At the same time, the genes in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction, and alkaloid synthesis pathways were involved in the regulation of root rot resistance and medicinal component synthesis. In addition, harmful pathogens (D. eres, F. avenaceum and F. solani) also induce the expression of related genes in C. chinensis root tissues to reduce active medicinal ingredients. These results provide insights into the root rot tolerance study and pave the way for process disease resistance breeding and quality production of C. chinensis. IMPORTANCE Root rot disease significantly reduces the medicinal quality of Coptis chinensis. In the present study, results found that the C. chinensis fibrous and taproot have different tactics in response to rot pathogen infection. Diaporthe eres, Fusarium avenaceum, and Fusarium solani were isolated and identified to cause different degrees of C. chinensis root rot. These results are helpful for researchers to further explore the mechanism of resistance to rhizoma Coptis root rot.
Collapse
Affiliation(s)
- Xuhong Song
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Pengying Mei
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Tao Dou
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Qundong Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Longyun Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| |
Collapse
|
9
|
Cui R, Geng G, Wang G, Stevanato P, Dong Y, Li T, Yu L, Wang Y. The response of sugar beet rhizosphere micro-ecological environment to continuous cropping. Front Microbiol 2022; 13:956785. [PMID: 36160206 PMCID: PMC9490479 DOI: 10.3389/fmicb.2022.956785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Continuous cropping can lead to increased soil-borne diseases of sugar beet (Beta vulgaris L.), resulting in a reduction in its yield quality. However, our understanding of the influence of continuous cropping on sugar beet-associated microbial community is limited and their interactions remain unclear. Here, we described and analyzed microbial diversity (N = 30) from three sugar beet belowground compartments (bulk soil, rhizosphere soil, and beetroot) using 16S rRNA and ITS sequencing. The continuous cropping showed lower bacterial alpha diversity in three belowground compartments and higher fungal alpha diversity in roots compared to the non-continuous cropping. There were significant differences in fungal community composition between the two groups. Compared with non-continuous cropping, continuous cropping increased the relative abundance of potentially pathogenic fungi such as Tausonia, Gilbellulopsis, and Fusarium, but decreased the relative abundance of Olpidium. The fungal flora in the three compartments displayed different keystone taxa. Fungi were more closely related to environmental factors than bacteria. Overall, changes in microbial diversity and composition under continuous cropping were more pronounced in the fungal communities, and the results of the study could guide development strategies to mitigate continuous crop adversity.
Collapse
Affiliation(s)
- Rufei Cui
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
| | - Gui Geng
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Science, Heilongjiang University, Harbin, China
| | - Gang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Science, Heilongjiang University, Harbin, China
| | - Piergiorgio Stevanato
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente (DAFNAE), Università degli Studi di Padova, Padua, Italy
| | - Yinzhuang Dong
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Science, Heilongjiang University, Harbin, China
| | - Tai Li
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
| | - Lihua Yu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuguang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Science, Heilongjiang University, Harbin, China
- *Correspondence: Yuguang Wang,
| |
Collapse
|
10
|
Song X, Huang L, Li Y, Zhao C, Tao B, Zhang W. Characteristics of Soil Fungal Communities in Soybean Rotations. FRONTIERS IN PLANT SCIENCE 2022; 13:926731. [PMID: 35812925 PMCID: PMC9260669 DOI: 10.3389/fpls.2022.926731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Soybean continuous cropping (SC) leads to continuous cropping obstacles, and soil-borne fungal diseases occur frequently. Rotation can alleviate continuous cropping obstacles. However, the long-term effects of continuous cropping and rotation on the structure and function of the fungal community in soil are not clear. In this study, five cropping systems, SC, fallow (CK), fallow-soybean (FS), corn-soybean (CS), and wheat-soybean (WS), were implemented in the long-term continuous cropping area of soybean. After 13 years of planting, high-throughput sequencing was used to evaluate the structure and diversity of soil fungal communities and to study the relationship between fungal communities and soil environmental factors. The results showed that the abundance and diversity of fungal flora in SC soil were the highest. There were significant differences in the formation of soil fungal communities between soybean continuous cropping and the other treatments. There were 355 species of endemic fungi in SC soil. There were 231 and 120 endemic species in WS and CS, respectively. The relative abundance of the potential pathogens Lectera, Gibberella, and Fusarium in the SC treatment soil was significantly high, and the abundance of all potential pathogens in CK was significantly the lowest. The abundance of Lectera and Fusarium in CS was significantly the lowest. There was a positive correlation between potential pathogens in the soil. The relative abundance of potential pathogens in the soil was significantly positively correlated with the relative abundance of Ascomycetes and negatively correlated with the relative abundance of Basidiomycetes. Potential pathogenic genera had a significant negative correlation with soil OM, available Mn, K and soil pH and a significant positive correlation with the contents of soil available Cu, Fe, and Zn. In general, the fungal communities of SC, FS, WS, and CS were divided into one group, which was significantly different from CK. WS and CS were more similar in fungal community structure. The CK and CS treatments reduced the relative abundance of soil fungi and potential pathogens. Our study shows that SC and FS lead to selective stress on fungi and pathogenic fungi and lead to the development of fungal community abundance and diversity, while CK and CS can reduce this development, which is conducive to plant health.
Collapse
Affiliation(s)
- Xiuli Song
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Lei Huang
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Yanqing Li
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Chongzhao Zhao
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Bo Tao
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Wu Zhang
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
11
|
Yuan QS, Wang L, Wang H, Wang X, Jiang W, Ou X, Xiao C, Gao Y, Xu J, Yang Y, Cui X, Guo L, Huang L, Zhou T. Pathogen-Mediated Assembly of Plant-Beneficial Bacteria to Alleviate Fusarium Wilt in Pseudostellaria heterophylla. Front Microbiol 2022; 13:842372. [PMID: 35432244 PMCID: PMC9005978 DOI: 10.3389/fmicb.2022.842372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt (FW) is a primary replant disease that affects Pseudostellaria heterophylla (Taizishen) and is caused by Fusarium oxysporum, which occurs widely in China under the continuous monocropping regime. However, the ternary interactions among the soil microbiota, P. heterophylla, and F. oxysporum remain unknown. We investigated the potential interaction relationship by which the pathogen-mediated P. heterophylla regulates the soil and the tuberous root microbiota via high-throughput sequencing. Plant-pathogen interaction assays were conducted to measure the arrival of F. oxysporum and Pseudomonas poae at the tuberous root via qPCR and subsequent seedling disease incidence. A growth assay was used to determine the effect of the tuberous root crude exudate inoculated with the pathogen on P. poae. We observed that pathogen-mediated P. heterophylla altered the diversity and the composition of the microbial communities in its rhizosphere soil and tuberous root. Beneficial microbe P. poae and pathogen F. oxysporum were significantly enriched in rhizosphere soil and within the tuberous root in the FW group with high severity. Correlation analysis showed that, accompanied with FW incidence, P. poae co-occurred with F. oxysporum. The aqueous extract of P. heterophylla tuberous root infected by F. oxysporum substantially promoted the growth of P. poae isolates (H1-3-A7, H2-3-B7, H4-3-C1, and N3-3-C4). These results indicated that the extracts from the tuberous root of P. heterophylla inoculated with F. oxysporum might attract P. poae and promote its growth. Furthermore, the colonization assay found that the gene copies of sucD in the P. poae and F. oxysporum treatment (up to 6.57 × 1010) group was significantly higher than those in the P. poae treatment group (3.29 × 1010), and a pathogen-induced attraction assay found that the relative copies of sucD of P. poae in the F. oxysporum treatment were significantly higher than in the H2O treatment. These results showed that F. oxysporum promoted the colonization of P. poae on the tuberous root via F. oxysporum mediation. In addition, the colonization assay found that the disease severity index in the P. poae and F. oxysporum treatment group was significantly lower than that in the F. oxysporum treatment group, and a pathogen-induced attraction assay found that the disease severity index in the F. oxysporum treatment group was significantly higher than that in the H2O treatment group. Together, these results suggest that pathogen-mediated P. heterophylla promoted and assembled plant-beneficial microbes against plant disease. Therefore, deciphering the beneficial associations between pathogen-mediated P. heterophylla and microbes can provide novel insights into the implementation and design of disease management strategies.
Collapse
Affiliation(s)
- Qing-Song Yuan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lu Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoai Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaohong Ou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yanping Gao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiao Xu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Zhou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
12
|
Li H, Li C, Song X, Liu Y, Gao Q, Zheng R, Li J, Zhang P, Liu X. Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Sci Rep 2022; 12:2758. [PMID: 35177784 PMCID: PMC8854431 DOI: 10.1038/s41598-022-06789-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/07/2022] [Indexed: 01/16/2023] Open
Abstract
Long-term monocultures have severely inhibited the cultivation of Chinese peanut (Arachis hypogaea L.). In this study, the effects of continuous cropping on soil chemical properties and microbial communities were investigated in peanut fields that had been in crop rotation for 10 years and in monoculture for 10 years. The results found that long-term monoculture increased the activities of available potassium, available phosphorus, available nitrogen, soil organic matter, urease, acid phosphatase and catalase; while decreasing the activity of catalase. The diversity and abundance of soil bacteria and fungi is higher under continuous peanut cultivation. At the genus level, the relative abundance of potentially beneficial microflora genera was higher in the rhizosphere soil of rotational cropping than in continuous cropping, while the opposite was true for the relative abundance of potentially pathogenic fungal genera. Principal coordinates and cluster analysis indicated that continuous cropping altered the structure of the microbial community. The results of the functional predictions showed significant differences in the functioning of the rhizosphere microbial community between continuous and rotational cropping. In conclusion, long-term continuous cropping changed the chemical properties of the soil, altered the structure and function of the soil bacterial and fungal communities in peanut rhizosphere, which to some extent reduced the relative abundance of potentially beneficial microbial genera and increased the relative abundance of potentially pathogenic fungal genera, thus increasing the potential risk of soil-borne diseases and reducing the yield and quality of peanut. Therefore, in the actual production process, attention should be paid not only to the application of chemical fertilizers, but also to crop rotation and the application of microbial fertilizers.
Collapse
Affiliation(s)
- Huying Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China.,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, China
| | - Chaohui Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Xin Song
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Yue Liu
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Qixiong Gao
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Rui Zheng
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Jintai Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Pengcheng Zhang
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Xunli Liu
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China. .,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, China.
| |
Collapse
|
13
|
Ma H, Xie C, Zheng S, Li P, Cheema HN, Gong J, Xiang Z, Liu J, Qin J. Potato tillage method is associated with soil microbial communities, soil chemical properties, and potato yield. J Microbiol 2022; 60:156-166. [DOI: 10.1007/s12275-022-1060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022]
|
14
|
Autotoxin Rg 1 Induces Degradation of Root Cell Walls and Aggravates Root Rot by Modifying the Rhizospheric Microbiome. Microbiol Spectr 2021; 9:e0167921. [PMID: 34908454 PMCID: PMC8672892 DOI: 10.1128/spectrum.01679-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Management of crop root rot disease is one of the key factors in ensuring sustainable development in agricultural production. The accumulation of autotoxins and pathogens in soil has been reported as a primary driver of root rot diseases; however, less is known about the correlation of plants, their associated pathogens and microbiome mediated by autotoxins as well as the contributions autotoxins make to the occurrence of root rot disease. Here, we integrated metabolomic, transcriptomic, and rhizosphere microbiome analyses to identify the root cell wall degradants cellobiose and d-galacturonic acid as being induced by the autotoxic ginsenoside Rg1 of Panax notoginseng, and we found that exogenous cellobiose and d-galacturonic acid in addition to Rg1 could aggravate root rot disease by modifying the rhizosphere microbiome. Microorganisms that correlated positively with root rot disease were enriched and those that correlated negatively were suppressed by exogenous cellobiose, d-galacturonic acid, and Rg1. In particular, they promoted the growth and infection of the soilborne pathogen Ilyonectria destructans by upregulating pathogenicity-related genes. Cellobiose showed the highest ability to modify the microbiome and enhance pathogenicity, followed by Rg1 and then d-galacturonic acid. Collectively, autotoxins damaged root systems to release a series of cell wall degradants, some of which modified the rhizosphere microbiome so that the host plant became more susceptible to root rot disease. IMPORTANCE The accumulation of autotoxins and pathogens in soil has been reported as a primary driver of root rot disease and one of the key factors limiting sustainable development in agricultural production. However, less is known about the correlation of plants, their associated pathogens, and the microbiome mediated by autotoxins, as well as the contributions autotoxins make to the occurrence of root rot disease. In our study, we found that autotoxins can damage root systems, thus releasing a series of cell wall degradants, and both autotoxins and the cell wall degradants they induce could aggravate root rot disease by reassembling the rhizosphere microbiome, resulting in the enrichment of pathogens and microorganisms positively related to the disease but the suppression of beneficial microorganisms. Deciphering this mechanism among plants, their associated pathogens, and the microbiome mediated by autotoxins will advance our fundamental knowledge of and ability to degrade autotoxins or employ microbiome to alleviate root rot disease in agricultural systems.
Collapse
|
15
|
Xiang L, Wang M, Jiang W, Wang Y, Chen X, Yin C, Mao Z. Key indicators for renewal and reconstruction of perennial trees soil: Microorganisms and phloridzin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112723. [PMID: 34481354 DOI: 10.1016/j.ecoenv.2021.112723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 05/25/2023]
Abstract
Perennial tree soil inhibits the growth of replanting apples, but the mechanism that underlies this inhibition is poorly understood. A total of 57 perennial tree soils were selected for the collection of soil samples in the Bohai Bay in May 2018. The severity of apple replant disease (ARD) for each soil was determined by calculating the rate of inhibition of growth replanted apple trees. A high-throughput sequencing analysis of internal transcribed spacer (ITS) was used to determine the soil fungal community. A correlation analysis was used to determine the relationship between the rate of inhibition of apple growth and soil factors. The degree of inhibition of plant growth varied substantially among the 57 soil samples examined. Different perennial tree soils have varying degrees of ARD. There was no significant difference in the composition of fungal community at the phylum level, but the genus level differed substantially. The abundances of Fusarium and Mortierella species and the contents of phloridin in the soil and soil organic matter (SOM) were significantly correlated with ARD severity. Structural equation modeling also emphasized that the degree of occurrence of ARD was directly or indirectly affected by Fusarium, Mortierella, phloridin and SOM. A correlation analysis can only be used as an indicator, and further research is merited to reveal how soil parameters affect ARD.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Mei Wang
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Weitao Jiang
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yanfang Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chengmiao Yin
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Zhiquan Mao
- State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
16
|
Effects of Continuous Cropping of Codonopsis tangshen on Rhizospheric Soil Bacterial Community as Determined by Pyrosequencing. DIVERSITY 2021. [DOI: 10.3390/d13070317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Codonopsis tangshen, a perennial herbaceous, has been shown to be affected by continuous cropping, with significant decline in both yield and quality. In this study, we studied the effect of continuous cropping on the abundance and composition of rhizospheric soil bacterial community. Results showed that continuous cropping causes a significant decline in both yield and quality. The nutrient content in continuous cropping soil was higher than that of soil in main cropping. Pyrosequencing analyses revealed Proteobacteria and Acidobacteria as the main phyla in two types of soils. Relative abundance of Acidobacteria, Nitrospirae, TM7, and AD3 phyla was observed to be high in continuous cropping soils, whereas Chloroflexi, Bacteroidetes, and Planctomycetes phyla were richer in main cropping soils. At the genus level, high relative abundance of Pseudomonas (γ-Proteobacteria), Rhodanobacter, Candidatus Koribacter, and Candidatus were observed in continuous cropping soil. Different patterns of bacterial community structure were observed between different soils. Redundancy analysis indicated that organic matter content and available nitrogen content exhibited the strongest effect on bacterial community structure in the continuous cropping soil. Taken together, continuous cropping led to a significant decline in yield and quality, decrease in rhizospheric soil bacterial abundance, and alteration of rhizospheric soil microbial community structure, thereby resulting in poor growth of C. tangshen in the continuous cropping system.
Collapse
|
17
|
Chen J, Zhou L, Din IU, Arafat Y, Li Q, Wang J, Wu T, Wu L, Wu H, Qin X, Pokhrel GR, Lin S, Lin W. Antagonistic Activity of Trichoderma spp. Against Fusarium oxysporum in Rhizosphere of Radix pseudostellariae Triggers the Expression of Host Defense Genes and Improves Its Growth Under Long-Term Monoculture System. Front Microbiol 2021; 12:579920. [PMID: 33790872 PMCID: PMC8005620 DOI: 10.3389/fmicb.2021.579920] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Under consecutive monoculture, the abundance of pathogenic fungi, such as Fusarium oxysporum in the rhizosphere of Radix pseudostellariae, negatively affects the yield and quality of the plant. Therefore, it is pertinent to explore the role of antagonistic fungi for the management of fungal pathogens such as F. oxysporum. Our PCR-denatured gradient gel electrophoresis (DGGE) results revealed that the diversity of Trichoderma spp. was significantly declined due to extended monoculture. Similarly, quantitative PCR analysis showed a decline in Trichoderma spp., whereas a significant increase was observed in F. oxysporum. Furthermore, seven Trichoderma isolates from the R. pseudostellariae rhizosphere were identified and evaluated in vitro for their potentiality to antagonize F. oxysporum. The highest and lowest percentage of inhibition (PI) observed among these isolates were 47.91 and 16.67%, respectively. In in vivo assays, the R. pseudostellariae treated with four Trichoderma isolates, having PI > 30%, was used to evaluate the biocontrol efficiency against F. oxysporum in which T. harzianum ZC51 enhanced the growth of the plant without displaying any disease symptoms. Furthermore, the expression of eight defense-related genes of R. pseudostellariae in response to a combination of F. oxysporum and T. harzianum ZC51 treatment was checked, and most of these defense genes were found to be upregulated. In conclusion, this study reveals that the extended monoculture of R. pseudostellariae could alter the Trichoderma communities in the plant rhizosphere leading to relatively low level of antagonistic microorganisms. However, T. harzianum ZC51 could inhibit the pathogenic F. oxysporum and induce the expression of R. pseudostellariae defense genes. Hence, T. harzianum ZC51 improves the plant resistance and reduces the growth inhibitory effect of consecutive monoculture problem.
Collapse
Affiliation(s)
- Jun Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Genetic Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liuting Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Israr Ud Din
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Yasir Arafat
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Genetic Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Wildlife and Ecology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Qian Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Genetic Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juanying Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Academy of Environmental Science, Fujian Provincial Technology Center of Emission Storage and Management, Fujian, China
| | - Linkun Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Genetic Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongmiao Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Genetic Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianjin Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Genetic Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Sheng Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Genetic Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Study on the Diversity of Fungal and Bacterial Communities in Continuous Cropping Fields of Chinese Chives ( Allium tuberosum). BIOMED RESEARCH INTERNATIONAL 2020; 2020:3589758. [PMID: 33381549 PMCID: PMC7762660 DOI: 10.1155/2020/3589758] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022]
Abstract
In this study, high-throughput sequencing technology was used to analyse the diversity and composition of fungal and bacterial communities in continuous cropping soil of Chinese chives. The soil nutrient was also measured to explore the rationality of current fertilization management. These results can provide a basis for the prevention and control of the continuous cropping obstacles of Chinese chives and further scientific management. Soil samples from fields continuously cropped with Chinese chives for one year, three years, and five years were collected and analysed. The results showed that the nutrient content of TP, AP, AK and TK increased significantly with increasing continuous cropping years. Short-term continuous cropping soil nutrients have not deteriorated. Alpha-diversity analysis showed that significant differences were not found in the diversity of the fungal and bacterial community among different years. Ascomycota, Basidiomycota and Mortierellomycota were the three most dominant fungal phyla. Proteobacteria, Actinobacteria, Chloroflexi and Acidobacteria were the dominant bacterial phyla. Continuous cropping makes Fusarium increase, and the beneficial bacteria Pseudomonas decreased significantly. According to the correlation heat map analysis of environmental factors, excessive phosphorus may lead to the increase of Fusarium, potassium may promote the proliferation of beneficial bacteria in the continuous cropping process, and it is necessary to regulate the application of phosphate and potassium fertilizer.
Collapse
|
19
|
Li Q, Wu Y, Wang J, Yang B, Chen J, Wu H, Zhang Z, Lu C, Lin W, Wu L. Linking Short-Chain N-Acyl Homoserine Lactone-Mediated Quorum Sensing and Replant Disease: A Case Study of Rehmannia glutinosa. FRONTIERS IN PLANT SCIENCE 2020; 11:787. [PMID: 32625222 PMCID: PMC7311668 DOI: 10.3389/fpls.2020.00787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Rehmannia glutinosa, a perennial medicinal plant, suffers from severe replant disease under consecutive monoculture. The rhizosphere microbiome is vital for soil suppressiveness to diseases and for plant health. Moreover, N-acyl homoserine lactone (AHL)-mediated quorum sensing (QS) regulates diverse behavior in rhizosphere-inhabiting and plant pathogenic bacteria. The dynamics of short-chain AHL-mediated QS bacteria driven by consecutive monoculture and its relationships with R. glutinosa replant disease were explored in this study. The screening of QS bacteria showed that 65 out of 200 strains (32.5%) randomly selected from newly planted soil of R. glutinosa were detected as QS bacteria, mainly consisting of Pseudomonas spp. (55.4%). By contrast, 34 out of 200 (17%) strains from the diseased replant soil were detected as QS bacteria, mainly consisting of Enterobacteriaceae (73.5%). Functional analysis showed most of the QS bacteria belonging to the Pseudomonas genus showed strong antagonistic activities against Fusarium oxysporum or Aspergillus flavus, two main causal agents of R. glutinosa root rot disease. However, the QS strains dominant in the replant soil caused severe wilt disease in the tissue culture seedlings of R. glutinosa. Microbial growth assays demonstrated a concentration-dependent inhibitory effect on the growth of beneficial QS bacteria (i.e., Pseudomonas brassicacearum) by a phenolic acid mixture identified in the root exudates of R. glutinosa, but the opposite was true for harmful QS bacteria (i.e., Enterobacter spp.). Furthermore, it was found that the population of quorum quenching (QQ) bacteria that could disrupt the beneficial P. brassicacearum SZ50 QS system was significantly higher in the replant soil than in the newly planted soil. Most of these QQ bacteria in the replant soil were detected as Acinetobacter spp. The growth of specific QQ bacteria could be promoted by a phenolic acid mixture at a ratio similar to that found in the R. glutinosa rhizosphere. Moreover, these quorum-quenching bacteria showed strong pathogenicity toward the tissue culture seedlings of R. glutinosa. In conclusion, consecutive monoculture of R. glutinosa contributed to the imbalance between beneficial and harmful short-chain AHL-mediated QS bacteria in the rhizosphere, which was mediated not only by specific root exudates but also by the QQ bacterial community.
Collapse
Affiliation(s)
- Qian Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhong Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juanying Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongmiao Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongyi Zhang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuihong Lu
- Wenxian Institute of Agricultural Sciences, Jiaozuo, China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linkun Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Li J, Chen X, Li S, Zuo Z, Zhan R, He R. Variations of rhizospheric soil microbial communities in response to continuous Andrographis paniculata cropping practices. BOTANICAL STUDIES 2020; 61:18. [PMID: 32542518 PMCID: PMC7295922 DOI: 10.1186/s40529-020-00295-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/06/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Changes of soil microbial communities are one of the main factors of continuous cropping problem. Andrographis paniculata has been reported to have replant problem in cultivation. However, little is known about the variations of rhizosphere soil microbial communities of A. paniculata under a continuous cropping system. Here, Illumina MiSeq was used to investigate the shifts of rhizospheric bacterial and fungal communities after continuous cropping of A. paniculata. RESULTS The bacterial diversity increased whereas the fungal diversity decreased in rhizosphere soil after consecutive A. paniculata monoculture; and the soil microbial community structure differed between newly plant soil and continuous cropped soil. Taxonomic analyses further revealed that the bacterial phyla Proteobacteria, Acidobacteria and Bacteroidetes and the fungal phyla Zygomycota, Ascomycota and Cercozoa were the dominant phyla across all soil samples. The relative abundance of phyla Acidobacteria and Zygomycota were significantly increased after continuous cropping. Additionally, the most abundant bacterial genus Pseudolabrys significantly decreased, while the predominant fungal genus Mortierella increased considerably in abundance after continuous cropping. CONCLUSIONS Our results revealed the changes on diversity and composition of bacterial and fungal communities in rhizospheric soil under continuous cropping of A. paniculata. These data contributed to the understanding of soil micro-ecological environments in the rhizosphere of A. paniculata.
Collapse
Affiliation(s)
- Junren Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Xiuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Simin Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Zimei Zuo
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Rui He
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
21
|
Arafat Y, Ud Din I, Tayyab M, Jiang Y, Chen T, Cai Z, Zhao H, Lin X, Lin W, Lin S. Soil Sickness in Aged Tea Plantation Is Associated With a Shift in Microbial Communities as a Result of Plant Polyphenol Accumulation in the Tea Gardens. FRONTIERS IN PLANT SCIENCE 2020; 11:601. [PMID: 32547573 PMCID: PMC7270330 DOI: 10.3389/fpls.2020.00601] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/20/2020] [Indexed: 06/01/2023]
Abstract
In conventional tea plantations, a large amount of pruned material returns to the soil surface, putting a high quantity of polyphenols into the soil. The accumulation of active allelochemicals in the tea rhizosphere and subsequent shift in beneficial microbes may be the cause of acidification, soil sickness, and regeneration problem, which may be attributed to hindrance of plant growth, development, and low yield in long-term monoculture tea plantation. However, the role of pruning leaf litter in soil sickness under consecutive tea monoculture is unclear. Here, we investigated soil samples taken from conventional tea gardens of different ages (2, 15, and 30 years) and under the effect of regular pruning. Different approaches including liquid chromatography-mass spectrometry (LC-MS) analysis of the leaf litter, metagenomic study of root-associated bacterial communities, and in vitro interaction of polyphenols with selected bacteria were applied to understand the effect of leaf litter-derived polyphenols on the composition and structure of the tea rhizosphere microbial community. Our results indicated that each pruning practice returns a large amount of leaf litter to each tea garden. LC-MS results showed that leaf litter leads to the accumulation of various allelochemicals in the tea rhizosphere, including epigallocatechin gallate, epigallocatechin, epicatechin gallate, catechin, and epicatechin with increasing age of the tea plantation. Meanwhile, in the tea garden grown consecutively for 30 years (30-Y), the phenol oxidase and peroxidase activities increased significantly. Pyrosequencing identified Burkholderia and Pseudomonas as the dominant genera, while plant growth-promoting bacteria, especially Bacillus, Prevotella, and Sphingomonas, were significantly reduced in the long-term tea plantation. The qPCR results of 30-Y soil confirmed that the copy numbers of bacterial genes per gram of the rhizosphere soil were significantly reduced, while that of Pseudomonas increased significantly. In vitro study showed that the growth of catechin-degrading bacteria (e.g., Pseudomonas) increased and plant-promoting bacteria (e.g., Bacillus) decreased significantly with increasing concentration of these allelochemicals. Furthermore, in vitro interaction showed a 0.36-fold decrease in the pH of the broth after 72 h with the catechin degradation. In summary, the increase of Pseudomonas and Burkholderia in the 30-Y garden was found to be associated with the accumulation of catechin substrates. In response to the long-term monoculture of tea, the variable soil pH along with the litter distribution negatively affect the population of plant growth-promoting bacteria (e.g., Sphingomonas, Bacillus, and Prevotella). Current research suggests that the removal of pruned branches from tea gardens can prevent soil sickness and may lead to sustainable tea production.
Collapse
Affiliation(s)
- Yasir Arafat
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Israr Ud Din
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Muhammad Tayyab
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhang Jiang
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Chen
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaoying Cai
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanyu Zhao
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangmin Lin
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Lin
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
22
|
Effect Study of Continuous Monoculture on the Quality of Salvia miltiorrhiza Bge Roots. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4284385. [PMID: 32596308 PMCID: PMC7275237 DOI: 10.1155/2020/4284385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/28/2020] [Accepted: 04/29/2020] [Indexed: 11/19/2022]
Abstract
High-efficiency monoculture severely inhibits the growth of Salvia miltiorrhiza Bge and decreases the yield and quality of crude drug, thus resulting in serious economic losses in China. Here, we selected four replanted field soils with 1, 2, 3, and 4 years of monoculture history to investigate the influence of continuous monocropping soil on the property of medicinal materials by pot experiments. Results showed that the commodity appearance and active ingredient contents of Salvia miltiorrhiza were significantly affected by soil with different continuous monocropping years. Along the time series of plantation soil, the diameter of main roots, weight of fresh roots, and total contents of hydrophilic and lipophilic components demonstrated a decline tendency. With the method of PCA, the property of medicinal materials affected by continuous monocropping soil was evaluated by the following formula: F = (0.3762 × F1 + 0.2320 × F2 + 0.1913 × F3 + 0.0994 × F4)/0.8989. Eventually, crude drug properties ranked according to comprehensive scores were as follows: CK (0.380) > 1 year (0.360) > 2 years (0.348) > 3 years (0.337) > 4 years (0.245). For the medicinal plant of Salvia miltiorrhiza Bge, continuous monocropping soil had significant effects on the property of Salvia miltiorrhiza and should be ameliorated by some measures. The results provide support for the optimal continuous cropping year selection and continuous cropping obstacle abatement of Salvia miltiorrhiza Bge.
Collapse
|
23
|
Wu H, Xia J, Qin X, Wu H, Zhang S, Zhao Y, Rensing C, Lin W. Underlying Mechanism of Wild Radix pseudostellariae in Tolerance to Disease Under the Natural Forest Cover. Front Microbiol 2020; 11:1142. [PMID: 32528459 PMCID: PMC7266878 DOI: 10.3389/fmicb.2020.01142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022] Open
Abstract
Replanting disease caused by negative plant-soil feedback in continuous monoculture of Radix pseudostellariae is a critical factor restricting the development of this common and popular Chinese medicine, although wild R. pseudostellariae plants were shown to grow well without occurrence of disease in the same site for multiple years. Therefore, we aimed to identify the changes in microbial community composition in the rhizosphere soil of wild R. pseudostellariae thus providing a potential method for controlling soil-borne diseases. We analyzed differences in soil physicochemical properties, changes in soil microbial community structure, and root exudates of wild R. pseudostellariae under different biotopes. And then, simple sequence repeats amplification was used to isolate and collect significantly different formae speciales of Fusarium oxysporum. Finally, we analyzed the pathogenicity testing and influence of root exudates on the growth of F. oxysporum. We found that the different biotopes of R. pseudostellariae had significant effects on the soil microbial diversity. The soil fungal and bacterial abundances were significantly higher and the abundance of F. oxysporum was significantly lower under the rhizosphere environment of wild R. pseudostellariae than under consecutive monoculture. The relative abundances of most genera were Penicillium, Aspergillus, Fusarium, Nitrobacter, Nitrospira, Streptomyces, Actinoplanes, and Pseudomonas. Venn diagram and LEfSe analyses indicated numerously specific microbiome across all the samples, and the numbers of specific fungi were higher than the shared ones in the four biotopes. Eight types of phenolic acids were identified across all the rhizosphere soils. Mixed phenolic acids and most of the examined single phenolic acids had negative effects on the growth of isolated pathogenic F. oxysporum strains and promoted the growth of non-pathogenic strains. Similarly, correlation analysis suggested that most of the identified phenolic acids were positively associated with beneficial Pseudomonas, Nitrobacter, Nitrospira, Streptomyces, and Bacillus. This study suggested that wild R. pseudostellariae was able to resist or tolerate disease by increasing soil microbial diversity, and reducing the accumulation of soil-borne pathogens.
Collapse
Affiliation(s)
- Hongmiao Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinshen Xia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianjin Qin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiming Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengkai Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
24
|
Chen M, Zhang J, Liu H, Wang M, Pan L, Chen N, Wang T, Jing Y, Chi X, Du B. Long-term continuously monocropped peanut significantly disturbed the balance of soil fungal communities. J Microbiol 2020; 58:563-573. [PMID: 32329018 DOI: 10.1007/s12275-020-9573-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/30/2023]
Abstract
Balancing soil microbial diversity and abundance is critical to sustaining soil health, and understanding the dynamics of soil microbes in a monocropping system can help determine how continuous monocropping practices induce soil sickness mediated by microorganisms. This study used previously constructed gradient continuous monocropping plots and four varieties with different monocropping responses were investigated. The feedback responses of their soil fungal communities to short-term and long-term continuous monocropping were tracked using high-throughput sequencing techniques. The analyses indicated that soil samples from 1 and 2 year monocropped plots were grouped into one class, and samples from the 11 and 12 year plots were grouped into another, regardless of variety. At the species level, the F. solani, Fusarium oxysporum, Neocosmospora striata, Acrophialophora levis, Aspergillus niger, Aspergillus corrugatus, Thielavia hyrcaniae, Emericellopsis minima, and Scedosporium aurantiacum taxa showed significantly increased abundances in the long-term monocropping libraries compared to the short-term cropping libraries. In contrast, Talaromyces flavus, Talaromyces purpureogenus, Mortierella alpina, Paranamyces uniporus, and Volutella citrinella decreased in the long-term monocropping libraries compared to the short-term libraries. This study, combined with our previous study, showed that fungal community structure was significantly affected by the length of the monocropping period, but peanut variety and growth stages were less important. The increase in pathogen abundances and the decrease in beneficial fungi abundances seem to be the main cause for the yield decline and poor growth of long-term monocultured peanut. Simplification of fungal community diversity could also contribute to peanut soil sickness under long-term monocropping. Additionally, the different responses of peanut varieties to monocropping may be related to variations in their microbial community structure.
Collapse
Affiliation(s)
- Mingna Chen
- Shandong Peanut Research Institute, Qingdao, P. R. China
- College of Life Sciences, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, P. R. China
| | | | - Hu Liu
- College of Life Sciences, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, P. R. China
| | - Mian Wang
- Shandong Peanut Research Institute, Qingdao, P. R. China
| | - LiJuan Pan
- Shandong Peanut Research Institute, Qingdao, P. R. China
| | - Na Chen
- Shandong Peanut Research Institute, Qingdao, P. R. China
| | - Tong Wang
- Shandong Peanut Research Institute, Qingdao, P. R. China
| | - Yu Jing
- Shandong Peanut Research Institute, Qingdao, P. R. China
| | - Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, P. R. China.
| | - Binghai Du
- College of Life Sciences, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, P. R. China.
| |
Collapse
|
25
|
Structure, Function, Diversity, and Composition of Fungal Communities in Rhizospheric Soil of Coptis chinensis Franch under a Successive Cropping System. PLANTS 2020; 9:plants9020244. [PMID: 32070003 PMCID: PMC7076387 DOI: 10.3390/plants9020244] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
Soil types and cropping systems influence the diversity and composition of the rhizospheric microbial communities. Coptis chinensis Franch is one of the most important medicinal plants in China. In the current study, we provide detailed information regarding the diversity and composition of rhizospheric fungal communities of the C. chinensis plants in continuous cropping fields and fallow fields in two seasons (winter and summer), using next-generation sequencing. Alpha diversity was higher in the five-year C. chinensis field and lower in fallow fields. Significant differences analysis confirmed more fungi in the cultivated field soil than in fallow fields. Additionally, PCoA of beta diversity indices revealed that samples associated with the cultivated fields and fallow fields in different seasons were separated. Five fungal phyla (Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Mucoromycota) were identified from the soil samples in addition to the unclassified fungal taxa and Cryptomycota, and among these phyla, Ascomycota was predominantly found. FUNGuild fungal functional prediction revealed that saprotroph was the dominant trophic type in all two time-series soil samples. Redundancy analysis (RDA) of the dominant phyla data and soil physiochemical properties revealed the variations in fungal community structure in the soil samples. Knowledge from the present study could provide a valuable reference for solving the continuous cropping problems and promote the sustainable development of the C. chinensis industry.
Collapse
|
26
|
Structure, Diversity, and Composition of Bacterial Communities in Rhizospheric Soil of Coptis chinensis Franch under Continuously Cropped Fields. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soil microorganisms are critical factors of plant productivity in terrestrial ecosystems. Coptis chinensis Franch is one of the most important medicinal plants in China. Soil types and cropping systems influence the diversity and composition of the rhizospheric microbial communities. In the current study, we provide detailed information regarding the diversity and composition of the rhizospheric bacterial communities of the C. chinensis plants in continuously cropped fields and fallow fields in two seasons (i.e., winter and summer) using next-generation sequencing. The alpha diversity was higher in the five-year cultivated C. chinensis field (CyS5) and lower in fallow fields (NCS). Significant differences analysis confirmed more biomarkers in the cultivated field soil than in fallow fields. Additionally, the principal coordinate analysis (PcoA) of the beta diversity indices revealed that samples associated with the cultivated fields and fallow fields in different seasons were separated. Besides, Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, Gemmatimonadetes were the top bacterial phyla. Among these phyla, Proteobacteria were found predominantly and showed a decreasing trend with the continuous cropping of C. chinensis. A phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) revealed that the abundance of C and N functional genes had a significant difference between the soil samples from cultivated (CyS1, CyS3, and CyS5) and fallow (NCS) fields in two seasons (winter and summer). The principal coordinate analysis (PCoA) based on UniFrac distances (i.e., unweighted and weighted) revealed the variations in bacterial community structures in the soil samples. This study could provide a reference for solving the increasingly severe cropping obstacles and promote the sustainable development of the C. chinensis industry.
Collapse
|
27
|
Jiao XL, Zhang XS, Lu XH, Qin R, Bi YM, Gao WW. Effects of maize rotation on the physicochemical properties and microbial communities of American ginseng cultivated soil. Sci Rep 2019; 9:8615. [PMID: 31197229 PMCID: PMC6565631 DOI: 10.1038/s41598-019-44530-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 05/13/2019] [Indexed: 11/26/2022] Open
Abstract
The production of American ginseng (Panax quinquefolius L.) is severely limited by the replant disorders in China. Crop rotation with maize might reduce the replant problems, but little information is available on the effect of maize rotation on soil cultivated with ginseng. In this study, we analyzed nutrients, phenolic acids, and microbial communities in soils from the fields with continuous maize, mono-culture ginseng, and 1-, 3-, and 5-year maize rotation after ginseng. Pot experiments were also conducted to evaluate the performance of replanting ginseng in these soils. The results showed that Mn, Cu, and 5 phenolic acids in ginseng-cultivated soil were significantly decreased by maize rotation. A 5-year maize rotation significantly increased the relative abundance of beneficial soil bacteria, such as Arthrobacter, rather than decreasing the abundances of potential pathogenic genera. Clustering analysis revealed that the physicochemical properties and microbial communities of 3- and 5-year maize rotation soil were more similar to CM than to G soil. The biomass of replanted ginseng root was improved, and root disease was reduced over 3 years of maize rotation. Overall, the results showed that at least a 3-year maize rotation is needed to overcome the replant failure of American ginseng.
Collapse
Affiliation(s)
- Xiao-Lin Jiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xue-Song Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xiao-Hong Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruijun Qin
- Oregon State University-Hermiston Agricultural Research and Extension Center, Hermiston, OR, 97838, USA
| | - Yan-Meng Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Wei-Wei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
28
|
Hu DJ, Shakerian F, Zhao J, Li SP. Chemistry, pharmacology and analysis of Pseudostellaria heterophylla: a mini-review. Chin Med 2019; 14:21. [PMID: 31139247 PMCID: PMC6533724 DOI: 10.1186/s13020-019-0243-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudostellaria heterophylla is one of the well-known traditional Chinese medicines and has been used in clinics for 100 years in China. The chemistry and pharmacology of P. heterophylla were reviewed to understand its active compounds. Then analysis of these compounds related to quality control of this herb was discussed. For the analysis of chemicals, three aspects have been discussed in this review. The first two aspects focused on the methodologies for analysis of cyclic peptides and carbohydrates in P. heterophylla, respectively. The last one dealt with the other methods used for identification of P. heterophylla. Some rich chemicals such as oligosaccharides in this plant were rarely evaluated. Many analyses were performed on this plant, however, few of them were accepted as quality control method.
Collapse
Affiliation(s)
- De-Jun Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Farid Shakerian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,2College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
29
|
Liu H, Pan F, Han X, Song F, Zhang Z, Yan J, Xu Y. Response of Soil Fungal Community Structure to Long-Term Continuous Soybean Cropping. Front Microbiol 2019; 9:3316. [PMID: 30687292 PMCID: PMC6333693 DOI: 10.3389/fmicb.2018.03316] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/20/2018] [Indexed: 11/23/2022] Open
Abstract
Long-term continuous soybean cropping can lead to the aggravation of soil fungal disease. However, the manner in which the fungal community and functional groups of fungi are affected by continuous soybean cropping remains unclear. We investigated the fungal abundance, composition and diversity during soybean rotation (RS), 2-year (SS) and long-term (CS) continuous soybean cropping systems using quantitative real-time PCR and high-throughput sequencing. The results showed that the fungal abundance was significantly higher in CS than in SS and RS. CS altered the fungal composition. Compared with RS, SS had an increase of 29 and a decrease of 12 genera in fungal relative abundance, and CS increased 38 and decreased 17 genera. The Shannon index was significantly higher in CS and SS than in RS. The result of principal coordinate analysis (PCoA) showed that CS and SS grouped together and were clearly separated from RS on the PCoA1. A total of 32 features accounted for the differences in fungal composition across RS, SS, and CS. The relative abundance of 10 potentially pathogenic and 10 potentially beneficial fungi changed, and most of their relative abundances dramatically increased in SS and CS compared with RS. Our study indicated that CS results in selective stress on pathogenic and beneficial fungi and causes the development of the fungal community structure that is antagonistic to plant health.
Collapse
Affiliation(s)
- Hang Liu
- National Observation Station of Hailun Agro-ecology System, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengjuan Pan
- National Observation Station of Hailun Agro-ecology System, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaozeng Han
- National Observation Station of Hailun Agro-ecology System, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Fengbin Song
- National Observation Station of Hailun Agro-ecology System, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhiming Zhang
- National Observation Station of Hailun Agro-ecology System, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jun Yan
- National Observation Station of Hailun Agro-ecology System, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yanli Xu
- National Observation Station of Hailun Agro-ecology System, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
30
|
Gene mutation associated with esl mediates shifts on fungal community composition in rhizosphere soil of rice at grain-filling stage. Sci Rep 2018; 8:17521. [PMID: 30504850 PMCID: PMC6269515 DOI: 10.1038/s41598-018-35578-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/15/2018] [Indexed: 02/04/2023] Open
Abstract
Generally, plant roots shape the rhizosphere fungal community but how individual plant genes involved in senescence affect this shaping is less studied. We used an early senescence leaf (esl) mutant rice and compared it with its isogenic wild type variety to evaluate the effect of the vacuolar H+-ATPase (VHA-A1) gene mutation on the rhizosphere fungal community structure and composition using a metagenomic pyrosequencing approach. The most predominate fungal phyla identified for both isogenic lines belonged to Ascomycota, Basidiomycota and Glomeromycota, where Ascomycota were more prevalent in the esl mutant than the wild type variety. Real-time quantitative PCR analysis confirmed a significant rise in the richness of Cladosporium cladosporioides in esl mutant rice than the wild type variety. Correlation analysis revealed four most abundant genera identified for the esl mutant and their close association with yield and biomass decline, lipid peroxidation, lower root vitality, chlorophyll degradation and limited VHA activity. Higher K+ efflux, H+ and a lower Ca2+ influx was also observed in the esl mutant which could be the reason for abnormal functioning of mutant plants. These results illustrate that besides the well-known effect of senescence on plant physiology and yield decline, it can further shape the rhizosphere fungal community.
Collapse
|
31
|
Li H, Wang J, Liu Q, Zhou Z, Chen F, Xiang D. Effects of consecutive monoculture of sweet potato on soil bacterial community as determined by pyrosequencing. J Basic Microbiol 2018; 59:181-191. [PMID: 30288775 DOI: 10.1002/jobm.201800304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 11/11/2022]
Abstract
Soil bacteria play key roles in determining soil health and plant growth. In this study, four sweet potato fields that had been consecutively monocultured for 1, 2, 3, and 4 years were used to investigate the effect of monoculture on soil physicochemical properties and soil bacterial communities. The results revealed that continuous cropping led to a significant decline in soil pH, soil organic carbon, and soil bacterial abundance. Miseq pyrosequencing analysis of 16S rRNA genes revealed that Proteobacteria and Bacteroidetes were the main phyla in the sweet potato monoculture soils, comprising up to 66.24% of the total sequences. The relative abundances of beneficial bacteria, including Actinobacteria, Gemmatimonadetes, Firmicutes, Xanthomonadaceae, Rhodospirillaceae, and Syntrophobacteraceae, as well as their subgroups at the genus and operational taxonomic unit (OTU) levels, decreased considerably as the number of continuous cropping years increased. In contrast, the number of potentially pathogenic bacteria, such as Acidobacteria, Sphingomonadaceae, and Pedobacter accumulated with increasing years. The results also showed the alterations to the bacterial community in the sweet potato monoculture soils were mainly driven by soil pH and soil organic matter. Overall, the decline in soil quality after successive sweet potato monoculture can be attributed to the imbalance in soil properties and soil microbes, including the decrease in soil pH and soil organic carbon, and the enrichment of pathogenic bacteria at the expense of plant-beneficial bacteria.
Collapse
Affiliation(s)
- Huan Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Jinqiang Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Qing Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Zhengfeng Zhou
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Falin Chen
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Dan Xiang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
32
|
Song X, Pan Y, Li L, Wu X, Wang Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. PLoS One 2018. [PMID: 29538438 PMCID: PMC5851603 DOI: 10.1371/journal.pone.0193811] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis.
Collapse
Affiliation(s)
- Xuhong Song
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Longyun Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
- * E-mail:
| | - Xiaoli Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| |
Collapse
|
33
|
Qin X, Wu H, Chen J, Wu L, Lin S, Khan MU, Boorboori MR, Lin W. Transcriptome analysis of Pseudostellaria heterophylla in response to the infection of pathogenic Fusarium oxysporum. BMC PLANT BIOLOGY 2017; 17:155. [PMID: 28923015 PMCID: PMC5604279 DOI: 10.1186/s12870-017-1106-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/08/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Pseudostellaria heterophylla (P. heterophylla), a herbaceous perennial, belongs to Caryophyllaceae family and is one of the Chinese herbal medicine with high pharmacodynamic value. It can be used to treat the spleen deficiency, anorexia, weakness after illness and spontaneous perspiration symptoms. Our previous study found that consecutive monoculture of Pseudostellaria heterophylla could lead to the deterioration of the rhizosphere microenvironment. The specialized forms of pathogenic fungus Fusarium oxysporum f.Sp. heterophylla (F. oxysporum) in rhizosphere soils of P. heterophylla plays an important role in the consecutive monoculture of P. heterophylla. RESULTS In this study, F. oxysporum was used to infect the tissue culture plantlets of P. heterophylla to study the responding process at three different infection stages by using RNA-sequencing. We obtained 127,725 transcripts and 47,655 distinct unigenes by de novo assembly and obtained annotated information in details for 25,882 unigenes. The Kyoto Encyclopedia of Genes and Genomes pathway analysis and the real-time quantitative PCR results suggest that the calcium signal system and WRKY transcription factor in the plant-pathogen interaction pathway may play an important role in the response process, and all of the WRKY transcription factor genes were divided into three different types. Moreover, we also found that the stimulation of F. oxysporum may result in the accumulation of some phenolics in the plantlets and the programmed cell death of the plantlets. CONCLUSIONS This study has partly revealed the possible molecular mechanism of the population explosion of F. oxysporum in rhizosphere soils and signal response process, which can be helpful in unraveling the role of F. oxysporum in consecutive monoculture problems of P. heterophylla.
Collapse
Affiliation(s)
- Xianjin Qin
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
| | - Hongmiao Wu
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Jun Chen
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Linkun Wu
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Sheng Lin
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Muhammad Umar Khan
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Mohammad Reza Boorboori
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Wenxiong Lin
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, People's Republic of China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| |
Collapse
|
34
|
Chen J, Wu L, Xiao Z, Wu Y, Wu H, Qin X, Wang J, Wei X, Khan MU, Lin S, Lin W. Assessment of the Diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae Rhizosphere under Monoculture by Combining DGGE and Quantitative PCR. Front Microbiol 2017; 8:1748. [PMID: 28966607 PMCID: PMC5605650 DOI: 10.3389/fmicb.2017.01748] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/28/2017] [Indexed: 11/13/2022] Open
Abstract
Radix pseudostellariae is a perennial tonic medicinal plant, with high medicinal value. However, consecutive monoculture of this plant in the same field results in serious decrease in both yield and quality. In this study, a 3-year field experiment was performed to identify the inhibitory effect of growth caused by prolonged monoculture of R. pseudostellariae. DGGE analysis was used to explore the shifts in the structure and diversity of soil Fusarium and Pseudomonas communities along a 3-year gradient of monoculture. The results demonstrated that extended monoculture significantly boosted the diversity of Fusarium spp., but declined Pseudomonas spp. diversity. Quantitative PCR analysis showed a significant increase in Fusarium oxysporum, but a decline in Pseudomonas spp. Furthermore, abundance of antagonistic Pseudomonas spp. possessing antagonistic ability toward F. oxysporum significantly decreased in consecutively monocultured soils. Phenolic acid mixture at the same ratio as detected in soil could boost mycelial and sporular growth of pathogenic F. oxysporum while inhibit the growth of antagonistic Pseudomonas sp. CJ313. Moreover, plant bioassays showed that Pseudomonas sp. CJ313 had a good performance that protected R. pseudostellariae from infection by F. oxysporum. In conclusion, this study demonstrated that extended monoculture of R. pseudostellariae could alter the Fusarium and Pseudomonas communities in the plant rhizosphere, leading to relatively low level of antagonistic microorganisms, but with relatively high level of pathogenic microorganisms.
Collapse
Affiliation(s)
- Jun Chen
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Linkun Wu
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhigang Xiao
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yanhong Wu
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Hongmiao Wu
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xianjin Qin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China.,College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Juanying Wang
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xiaoya Wei
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Muhammad U Khan
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Sheng Lin
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China.,Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
35
|
Arafat Y, Wei X, Jiang Y, Chen T, Saqib HSA, Lin S, Lin W. Spatial Distribution Patterns of Root-Associated Bacterial Communities Mediated by Root Exudates in Different Aged Ratooning Tea Monoculture Systems. Int J Mol Sci 2017; 18:E1727. [PMID: 28786955 PMCID: PMC5578117 DOI: 10.3390/ijms18081727] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 11/17/2022] Open
Abstract
Positive plant-soil feedback depends on beneficial interactions between roots and microbes for nutrient acquisition; growth promotion; and disease suppression. Recent pyrosequencing approaches have provided insight into the rhizosphere bacterial communities in various cropping systems. However; there is a scarcity of information about the influence of root exudates on the composition of root-associated bacterial communities in ratooning tea monocropping systems of different ages. In Southeastern China; tea cropping systems provide the unique natural experimental environment to compare the distribution of bacterial communities in different rhizo-compartments. High performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) was performed to identify and quantify the allelochemicals in root exudates. A high-throughput sequence was used to determine the structural dynamics of the root-associated bacterial communities. Although soil physiochemical properties showed no significant differences in nutrients; long-term tea cultivation resulted in the accumulation of catechin-containing compounds in the rhizosphere and a lowering of pH. Moreover; distinct distribution patterns of bacterial taxa were observed in all three rhizo-compartments of two-year and 30-year monoculture tea; mediated strongly by soil pH and catechin-containing compounds. These results will help to explore the reasons why soil quality and fertility are disturbed in continuous ratooning tea monocropping systems; and to clarify the associated problems.
Collapse
Affiliation(s)
- Yasir Arafat
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Ministry of Education for Crop Genetics/Breeding and Integrative Utilization, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Institute of Agroecological Ecology, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Xiaoya Wei
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Ministry of Education for Crop Genetics/Breeding and Integrative Utilization, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Yuhang Jiang
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Ministry of Education for Crop Genetics/Breeding and Integrative Utilization, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Institute of Agroecological Ecology, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Ting Chen
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Ministry of Education for Crop Genetics/Breeding and Integrative Utilization, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Institute of Agroecological Ecology, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Hafiz Sohaib Ahmed Saqib
- Institute of Agroecological Ecology, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Sheng Lin
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Ministry of Education for Crop Genetics/Breeding and Integrative Utilization, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Institute of Agroecological Ecology, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| | - Wenxiong Lin
- Key Laboratory of Fujian Province for Agroecological Process and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Key Laboratory of Ministry of Education for Crop Genetics/Breeding and Integrative Utilization, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
- Institute of Agroecological Ecology, Fujian Agriculture and Forestry University, Fuzhou 35002, China.
| |
Collapse
|
36
|
Wu H, Wu L, Zhu Q, Wang J, Qin X, Xu J, Kong L, Chen J, Lin S, Umar Khan M, Amjad H, Lin W. The role of organic acids on microbial deterioration in the Radix pseudostellariae rhizosphere under continuous monoculture regimes. Sci Rep 2017; 7:3497. [PMID: 28615734 PMCID: PMC5471291 DOI: 10.1038/s41598-017-03793-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/05/2017] [Indexed: 01/01/2023] Open
Abstract
A three-year field monoculture trial of Radix pseudostellariae and complementary laboratory studies were conducted to further elucidate the underlying mechanism responsible for significant decreases in the biomass yield and quality of R. pseudostellariae under continuous monoculture regimes. HPLC analysis indicated that continuous monoculture soil was rich in organic acids, which had cumulative effects over time. Further analysis suggested that the application of a mixture of organic acids significantly promoted growth of pathogenic fungi, and increased the expression of chemotaxis-related gene (cheA) and biofilm formation of the specific pathogenic Kosakonia sacchari. However, opposite reactions were observed in the case of Bacillus megaterium and Bacillus pumilus. Concurrently, the present results revealed that the mixed organic acids stimulated the production of toxins, as well as H2O2 in the pathogenic fungi. Furthermore, the presence of organic acids reflecting environmental conditions under monocropping had negative effects on the expression of the biocontrol-related genes, which resulted in attenuated antagonistic activities of plant growth-promoting rhizobacteria (PGPR) to suppress mycelial growth of the pathogenic fungi. These results help to unveil the mechanisms associated with how accumulated organic acids differentially mediate deterioration of soil microbial composition and structure in monocropping system.
Collapse
Affiliation(s)
- Hongmiao Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China
| | - Linkun Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China
| | - Quan Zhu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China
| | - Juanying Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China
| | - Xianjin Qin
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China.,Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Jiahui Xu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China
| | - Lufei Kong
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China
| | - Jun Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China
| | - Muhammad Umar Khan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China
| | - Hira Amjad
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China. .,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 350002, P. R. China. .,Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.
| |
Collapse
|
37
|
Webster A, Pradel E, Souza UA, Martins JR, Reck J, Schrank A, Klafke G. Does the effect of a Metarhizium anisopliae isolate on Rhipicephalus microplus depend on the tick population evaluated? Ticks Tick Borne Dis 2016; 8:270-274. [PMID: 27908773 DOI: 10.1016/j.ttbdis.2016.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
The filamentous fungus Metarhizium anisopliae is an arthropod pathogen used in the biological control of pests in agriculture and livestock. The effect of the fungus M. anisopliae on ticks has been shown in experiments in vitro. The aim of the present study was to compare the susceptibility of different field isolates of Rhipicephalus microplus to M. anisopliae. A total of 67 field isolates were evaluated. Rhipicephalus microplus larvae were immersed in an M. anisopliae suspension (108 conidia/mL) for 5min. The median lethal times (LT50) ranged from 2.6 to 24.9days. Mortality observed at the 15th day after treatment ranged from 26.3 to 100% in the tested samples. The effect of M. anisopliae on tick isolates was not associated with their susceptibility to any acaricide tested, animal stocking rate, cattle breed, rotational grazing, cultivated pasture, production system, presence of wet areas or biome. The integration of livestock and agriculture practices in the farm and the frequency of acaricide treatment seem to be associated with tick susceptibility to M. anisopliae. These results demonstrated that field populations of R. microplus show a high variation in their susceptibility to M. anisopliae.
Collapse
Affiliation(s)
- Anelise Webster
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Programa de pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil.
| | - Endrigo Pradel
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - Ugo Araújo Souza
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - João Ricardo Martins
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - José Reck
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Programa de pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Guilherme Klafke
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| |
Collapse
|
38
|
Wu L, Chen J, Wu H, Qin X, Wang J, Wu Y, Khan MU, Lin S, Xiao Z, Luo X, Zhang Z, Lin W. Insights into the Regulation of Rhizosphere Bacterial Communities by Application of Bio-organic Fertilizer in Pseudostellaria heterophylla Monoculture Regime. Front Microbiol 2016; 7:1788. [PMID: 27899917 PMCID: PMC5110535 DOI: 10.3389/fmicb.2016.01788] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022] Open
Abstract
The biomass and quality of Pseudostellariae heterophylla suffers a significant decline under monoculture. Since rhizosphere miobiome plays crucial roles in soil health, deep pyrosequencing combined with qPCR was applied to characterize the composition and structure of soil bacterial community under monoculture and different amendments. The results showed compared with the 1st-year planted (FP), 2nd-year monoculture of P. heterophylla (SP) led to a significant decline in yield and resulted in a significant increase in Fusarium oxysporum but a decline in Burkholderia spp. Bio-organic fertilizer (MT) formulated by combining antagonistic bacteria with organic matter could significantly promote the yield by regulating rhizosphere bacterial community. However, organic fertilizer (MO) without antagonistic bacteria could not suppress Fusarium wilt. Multivariate statistics analysis showed a distinct separation between the healthy samples (FP and MT) and the unhealthy samples (SP and MO), suggesting a strong relationship between soil microbial community and plant performance. Furthermore, we found the application of bio-organic fertilizer MT could significantly increase the bacterial community diversity and restructure microbial community with relatively fewer pathogenic F. oxysporum and more beneficial Burkholderia spp. In conclusion, the application of novel bio-organic fertilizer could effectively suppress Fusarium wilt by enriching the antagonistic bacteria and enhancing the bacterial diversity.
Collapse
Affiliation(s)
- Linkun Wu
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jun Chen
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Hongmiao Wu
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xianjin Qin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China; College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Juanying Wang
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yanhong Wu
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Muhammad U Khan
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Sheng Lin
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhigang Xiao
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xiaomian Luo
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhongyi Zhang
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|