1
|
Bursali F, Touray M. The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: A minireview. Vet Med Sci 2024; 10:e1580. [PMID: 39171609 PMCID: PMC11339650 DOI: 10.1002/vms3.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| | - Mustapha Touray
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| |
Collapse
|
2
|
Bezerra-Santos MA, Benelli G, Germinara GS, Volf P, Otranto D. Smelly interactions: host-borne volatile organic compounds triggering behavioural responses in mosquitoes, sand flies, and ticks. Parasit Vectors 2024; 17:227. [PMID: 38755646 PMCID: PMC11100076 DOI: 10.1186/s13071-024-06299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physiological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposition site selection for gravid females. Furthermore, deadly vector-borne pathogens such as Plasmodium falciparum and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks toward their vertebrate hosts, as well as potential tools for diagnosis of vector-borne diseases (VBDs). Herein, we provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.
Collapse
Affiliation(s)
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy.
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Wang C, Lin Y, Ptukhin Y, Liu S. Air quality in the car: How CO 2 and body odor affect drivers' cognition and driving performance? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168785. [PMID: 37996033 DOI: 10.1016/j.scitotenv.2023.168785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Elevated indoor levels of CO2 and the presence of body odor have been shown to have adverse effects on the cognitive function of building occupants. These factors may also contribute to impaired in-car driving performance, potentially posing a threat to transportation and public safety. To investigate the effects of CO2 and body odor on driving performance, we enrolled 25 participants in highway driving tasks under three indoor CO2 levels (800, 1800, and 3500 ppm) and two body odor conditions (presence and absence). CO2 was injected in the cabin to increase CO2 levels. In addition, we assessed working memory and reaction time using N-back tasks during driving. We found that driving speed, acceleration, and lateral control were not significantly affected by either CO2 or body odor. We observed no significant differences in sleepiness or emotion under varying CO2 or body odor conditions, except for a lower level of emotion valence with exposure to body odor. Task load was also not significantly impacted by CO2 or body odor levels, except for a higher reported effort at 1800 ppm compared to 800 ppm CO2. However, participants did demonstrate significantly higher accuracy with increased body odor exposure, suggesting a complex effect of volatile organic compounds on driver cognition. Our findings also revealed moderating effects of task difficulty of N-back tests and exposure duration on cognition and driving performance. This is one of the first few in-depth studies regarding environmental factors and their effect on drivers' cognition and driving performance, and these results provide valuable insights for car-cabin environmental design for air quality and driving safety.
Collapse
Affiliation(s)
- Chao Wang
- Civil, Environmental, and Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| | - Yingzi Lin
- Intelligent Human Machine Systems Lab, Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, USA
| | - Yevgeniy Ptukhin
- Accounting, Finance, Economics and Decision Science, Western Illinois University, Macomb, IL, USA
| | - Shichao Liu
- Civil, Environmental, and Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
4
|
Wooding M, Dodgen T, Rohwer ER, Naudé Y. Advancing the analytical toolkit in the investigation of vector mosquito host biting site selection. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e4992. [PMID: 38108549 DOI: 10.1002/jms.4992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
High-resolution mass spectrometry and ion mobility spectrometry provide additional confidence in biological marker discovery and elucidation by adding additional peak capacity through physiochemical separation orthogonal to chromatography. Sophisticated analytical techniques have proved valuable in the identification of human skin surface chemicals used by vector mosquitoes to find their human host. Polydimethylsiloxane (PDMS) was used as a non-invasive passive wearable sampler to concentrate skin surface non-volatile and semi-volatile compounds prior to solvent desorption directly in an LC vial, thereby simplifying the link between extraction and analysis. Ultra-performance liquid chromatography with ion mobility spectrometry coupled with high-resolution mass spectrometry (UPLC-IMS-HRMS) was used for compound separation and detection. A comparison of the skin chemical profiles between the ankle and wrist skin surface region sampled over a 5-day period for a human volunteer was done. Twenty-three biomarkers were tentatively identified with the aid of a collision cross-section (CCS) prediction tool, seven associated with the ankle skin surface region and 16 closely associated with the wrist skin surface. Ten amino acids were detected and unequivocally identified on the human skin surface for the first time. Furthermore, 22 previously unreported skin surface compounds were tentatively identified on the human skin surface using accurate mass, CCS values and fragmentation patterns. Method limits of detection for the passive skin sampling method ranged from 8.7 (sulfadimethoxine) to 95 ng (taurine). This approach enabled the detection and identification of as-yet unknown human skin surface compounds and provided corresponding CCS values.
Collapse
Affiliation(s)
- Madelien Wooding
- Department of Chemistry, University of Pretoria, Pretoria, South Africa
| | - Tyren Dodgen
- Waters Corporation, Rydalmere, New South Wales, Australia
| | - Egmont R Rohwer
- Department of Chemistry, University of Pretoria, Pretoria, South Africa
| | - Yvette Naudé
- Department of Chemistry, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Biological studies with comprehensive 2D-GC-HRMS screening: Exploring the human sweat volatilome. Talanta 2023; 257:124333. [PMID: 36801554 DOI: 10.1016/j.talanta.2023.124333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
A key issue in GCxGC-HRMS data analysis is how to approach large-sample studies in an efficient and comprehensive way. We have developed a semi-automated data-driven workflow from identification to suspect screening, which allows highly selective monitoring of each identified chemical in a large-sample dataset. The example dataset used to illustrate the potential of the approach consisted of human sweat samples from 40 participants, including field blanks (80 samples). These samples have been collected in a Horizon 2020 project to investigate the capacity of body odour to communicate emotion and influence social behaviour. We used dynamic headspace extraction, which allows comprehensive extraction with high preconcentration capability, and has to date only been used for a few biological applications. We were able to detect a set of 326 compounds from a diverse range of chemical classes (278 identified compounds, 39 class unknowns, and 9 true unknowns). Unlike partitioning-based extraction methods, the developed method detects semi-polar (log P < 2) nitrogen and oxygen-containing compounds. However, it is unable to detect certain acids due to the pH conditions of unmodified sweat samples. We believe that our framework will open up the possibility of efficiently using GCxGC-HRMS for large-sample studies in a wide range of applications such as biological and environmental studies.
Collapse
|
6
|
Long J, Maskell K, Gries R, Nayani S, Gooding C, Gries G. Synergistic attraction of Western black-legged ticks, Ixodes pacificus, to CO 2 and odorant emissions from deer-associated microbes. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230084. [PMID: 37206969 PMCID: PMC10189596 DOI: 10.1098/rsos.230084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Foraging ticks reportedly exploit diverse cues to locate their hosts. Here, we tested the hypothesis that host-seeking Western black-legged ticks, Ixodes pacificus, and black-legged ticks, I. scapularis, respond to microbes dwelling in sebaceous gland secretions of white-tailed deer, Odocoileus virginianus, the ticks' preferred host. Using sterile wet cotton swabs, microbes were collected from the pelage of a sedated deer near forehead, preorbital, tarsal, metatarsal and interdigital glands. Swabs were plated on agar, and isolated microbes were identified by 16S rRNA amplicon sequencing. Of 31 microbial isolates tested in still-air olfactometers, 10 microbes induced positive arrestment responses by ticks, whereas 10 others were deterrent. Of the 10 microbes prompting arrestment by ticks, four microbes-including Bacillus aryabhattai (isolates A4)-also attracted ticks in moving-air Y-tube olfactometers. All four of these microbes emitted carbon dioxide and ammonia as well as volatile blends with overlapping blend constituents. The headspace volatile extract (HVE) of B. aryabhattai (HVE-A4) synergistically enhanced the attraction of I. pacificus to CO2. A synthetic blend of HVE-A4 headspace volatiles in combination with CO2 synergistically attracted more ticks than CO2 alone. Future research should aim to develop a least complex host volatile blend that is attractive to diverse tick taxa.
Collapse
Affiliation(s)
- Justin Long
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Keiran Maskell
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Saif Nayani
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Claire Gooding
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
7
|
Fikrig K, Rose N, Burkett-Cadena N, Kamgang B, Leisnham PT, Mangan J, Ponlawat A, Rothman SE, Stenn T, McBride CS, Harrington LC. Aedes albopictus host odor preference does not drive observed variation in feeding patterns across field populations. Sci Rep 2023; 13:130. [PMID: 36599854 DOI: 10.1038/s41598-022-26591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Laboratory and field-based studies of the invasive mosquito Aedes albopictus demonstrate its competency to transmit over twenty different pathogens linked to a broad range of vertebrate hosts. The vectorial capacity of Ae. albopictus to transmit these pathogens remains unclear, partly due to knowledge gaps regarding its feeding behavior. Blood meal analyses from field-captured specimens have shown vastly different feeding patterns, with a wide range of anthropophagy (human feeding) and host diversity. To address this knowledge gap, we asked whether differences in innate host preference may drive observed variation in Ae. albopictus feeding patterns in nature. Low generation colonies (F2-F4) were established with field-collected mosquitoes from three populations with high reported anthropophagy (Thailand, Cameroon, and Florida, USA) and three populations in the United States with low reported anthropophagy (New York, Maryland, and Virginia). The preference of these Ae. albopictus colonies for human versus non-human animal odor was assessed in a dual-port olfactometer along with control Ae. aegypti colonies already known to show divergent behavior in this assay. All Ae. albopictus colonies were less likely (p < 0.05) to choose the human-baited port than the anthropophilic Ae. aegypti control, instead behaving similarly to zoophilic Ae. aegypti. Our results suggest that variation in reported Ae. albopictus feeding patterns are not driven by differences in innate host preference, but may result from differences in host availability. This work is the first to compare Ae. albopictus and Ae. aegypti host preference directly and provides insight into differential vectorial capacity and human feeding risk.
Collapse
Affiliation(s)
| | - Noah Rose
- Princeton University, Princeton, NJ, USA
| | | | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | | | | | - Alongkot Ponlawat
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | | | | | | |
Collapse
|
8
|
Dekel A, Sar-Shalom E, Vainer Y, Yakir E, Bohbot JD. The ovipositor cue indole inhibits animal host attraction in Aedes aegypti (Diptera: Culicidae) mosquitoes. Parasit Vectors 2022; 15:422. [PMID: 36369215 PMCID: PMC9652956 DOI: 10.1186/s13071-022-05545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mosquitoes are responsible for disease transmission worldwide. They possess the ability to discriminate between different ecological resources, including nectar sources, animal hosts and oviposition sites, a feature mediated by their olfactory system. Insect repellents, such as N,N-diethyl-meta-toluamide (also called DEET), have been shown to activate and inhibit mosquito odorant receptors, resulting in behavioral modulation. This and other repellents currently available for personal protection against mosquitoes are topically applied to the skin and operate at a short range. In our search for potential long-range inhibitors of attractants to human hosts, we have hypothesized that the shared chemical similarities between indole and DEET may confer the former with the ability to block odorant receptor function and inhibit human host attraction in a similar way as DEET. Methods We used the two-electrode voltage clamp system to assay Xenopus laevis oocytes as a platform to compare the pharmacological effect of commercially available insect repellents and indole on the Aedes aegypti (R)-1-octen-3-ol receptor, OR8, a receptor involved in the decision-making of female mosquitoes to identify human hosts. We also conducted arm-in-a-cage and wind-tunnel bioassays to explore the effect of indole on human host-seeking female Aedes aegypti mosquitoes. Results Our results demonstrate that indole inhibited the Aedes aegypti (R)-1-octen-3-ol receptor OR8. In our arm-in-a-cage assay, 1 M of DEET reduced mosquito visits on average by 69.3% while the same indole concentration achieved 97.8% inhibition. This effect of indole on flight visits was dose-dependent and disappeared at 1 μM. In the flight tunnel, indole elicited on average 27.5% lower speed, 42.3% lower upwind velocity and 30.4% higher tortuosity compared to the control. Conclusions Indole significantly inhibits OR8 activation by (R)-1-octen-3-ol, mosquito visits to a human hand and long-range human host-seeking. The volatility of indole may be leveraged to develop a novel insect repellent in the context of personal mosquito protection. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05545-8.
Collapse
|
9
|
The Human Skin Volatolome: A Systematic Review of Untargeted Mass Spectrometry Analysis. Metabolites 2022; 12:metabo12090824. [PMID: 36144228 PMCID: PMC9504915 DOI: 10.3390/metabo12090824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The analysis of volatile organic compounds (VOCs) can provide important clinical information (entirely non-invasively); however, the exact extent to which VOCs from human skin can be signatures of health and disease is unknown. This systematic review summarises the published literature concerning the methodology, application, and volatile profiles of skin VOC studies. An online literature search was conducted in accordance with the preferred reporting items for systematic reviews and meta-analysis, to identify human skin VOC studies using untargeted mass spectrometry (MS) methods. The principal outcome was chemically verified VOCs detected from the skin. Each VOC was cross-referenced using the CAS number against the Human Metabolome and KEGG databases to evaluate biological origins. A total of 29 studies identified 822 skin VOCs from 935 participants. Skin VOCs were commonly sampled from the hand (n = 9) or forearm (n = 7) using an absorbent patch (n = 15) with analysis by gas chromatography MS (n = 23). Twenty-two studies profiled the skin VOCs of healthy subjects, demonstrating a volatolome consisting of aldehydes (18%), carboxylic acids (12%), alkanes (12%), fatty alcohols (9%), ketones (7%), benzenes and derivatives (6%), alkenes (2%), and menthane monoterpenoids (2%). Of the VOCs identified, 13% had putative endogenous origins, 46% had tentative exogenous origins, and 40% were metabolites from mixed metabolic pathways. This review has comprehensively profiled the human skin volatolome, demonstrating the presence of a distinct VOC signature of healthy skin, which can be used as a reference for future researchers seeking to unlock the clinical potential of skin volatolomics. As significant proportions of identified VOCs have putative exogenous origins, strategies to minimise their presence through methodological refinements and identifying confounding compounds are discussed.
Collapse
|
10
|
Wang Y, He X, Qiao L, Yu Z, Chen B, He Z. CRISPR/Cas9 mediates efficient site-specific mutagenesis of the odorant receptor co-receptor (Orco) in the malaria vector Anopheles sinensis. PEST MANAGEMENT SCIENCE 2022; 78:3294-3304. [PMID: 35484862 DOI: 10.1002/ps.6954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Anopheles sinensis is the most widely distributed mosquito species and is the main transmitter of Plasmodium vivax malaria in China. Most previous research has focused on the mechanistic understanding of biological processes in An. sinensis and novel ways of interrupting malaria transmission. However, the development of functional genomics and genetics-based vector control strategies against An. sinensis remain limited because of insufficient site-specific genome editing tools. RESULTS We report the first successful application of the CRISPR/Cas9 mediated knock-in for highly efficient, site-specific mutagenesis in An. sinensis. The EGFP marker gene driven by the 3 × P3 promoter was precisely integrated into the odorant receptor co-receptor (Orco) by direct injections of Cas9 protein, double-stranded DNA donor, and Orco-gRNA. We achieved a mutation rate of 3.77%, similar to rates in other mosquito species. Precise knock-in at the intended locus was confirmed by polymerase chain reaction (PCR) amplification and sequencing. The Orco mutation severely impaired mosquito sensitivity to some odors and their ability to locate and discriminate a human host. CONCLUSION Orco was confirmed as a key mediator of multiple olfactory-driven behaviors in the An. sinensis life cycle, highlighting the importance of Orco as a key molecular target for malaria control. The results also demonstrated that CRISPR/Cas9 was a simple and highly efficient genome editing technique for An. sinensis and could be used to develop genetic control tools for this vector. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- You Wang
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Xingfei He
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zhengrong Yu
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zhengbo He
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
11
|
Showering A, Martinez J, Benavente ED, Gezan SA, Jones RT, Oke C, Tytheridge S, Pretorius E, Scott D, Allen RL, D'Alessandro U, Lindsay SW, Armour JAL, Pickett J, Logan JG. Skin microbiome alters attractiveness to Anopheles mosquitoes. BMC Microbiol 2022; 22:98. [PMID: 35410125 PMCID: PMC9004177 DOI: 10.1186/s12866-022-02502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Some people produce specific body odours that make them more attractive than others to mosquitoes, and consequently are at higher risk of contracting vector-borne diseases. The skin microbiome can break down carbohydrates, fatty acids and peptides on the skin into volatiles that mosquitoes can differentiate. RESULTS Here, we examined how skin microbiome composition of women differs in relation to level of attractiveness to Anopheles coluzzii mosquitoes, to identify volatiles in body odour and metabolic pathways associated with individuals that tend to be poorly-attractive to mosquitoes. We used behavioural assays to measure attractiveness of participants to An. coluzzii mosquitoes, 16S rRNA amplicon sequencing of the bacteria sampled from the skin and gas chromatography of volatiles in body odour. We found differences in skin microbiome composition between the poorly- and highly-attractive groups, particularly eight Amplicon Sequence Variants (ASVs) belonging to the Proteobacteria, Actinobacteria and Firmicutes phyla. Staphylococcus 2 ASVs are four times as abundant in the highly-attractive compared to poorly-attractive group. Associations were found between these ASVs and volatiles known to be attractive to Anopheles mosquitoes. Propanoic pathways are enriched in the poorly-attractive participants compared to those found to be highly-attractive. CONCLUSIONS Our findings suggest that variation in attractiveness of people to mosquitoes is related to the composition of the skin microbiota, knowledge that could improve odour-baited traps or other next generation vector control tools.
Collapse
Affiliation(s)
- Alicia Showering
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK.
| | - Julien Martinez
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Ernest Diez Benavente
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Robert T Jones
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Catherine Oke
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Scott Tytheridge
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Elizabeth Pretorius
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Darren Scott
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Rachel L Allen
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | | | - John A L Armour
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - John Pickett
- School of Chemistry, Cardiff University, Cardiff, Wales, UK
| | - James G Logan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
12
|
Skin bacterial volatiles: propelling the future of vector control. Trends Parasitol 2021; 38:15-22. [PMID: 34548253 DOI: 10.1016/j.pt.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
The skin microbiota plays an essential role in the protection against pathogens. It is our skin microbiota that makes us smell different from each other, rendering us more or less attractive to mosquitoes. Mosquitoes exploit skin bacterial odours to locate their hosts and are vectors of pathogens that can cause severe diseases such as malaria and dengue fever. A novel solution for long-lasting protection against insect vectors of disease could be attained by manipulating the bacterial commensals on human skin. The current options for protection against biting insects usually require topical application of repellents that evaporate within hours. We discuss possible routes for the use of commensal bacteria to create a microbial-based repellent.
Collapse
|
13
|
Konopka JK, Task D, Afify A, Raji J, Deibel K, Maguire S, Lawrence R, Potter CJ. Olfaction in Anopheles mosquitoes. Chem Senses 2021; 46:6246230. [PMID: 33885760 DOI: 10.1093/chemse/bjab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As vectors of disease, mosquitoes are a global threat to human health. The Anopheles mosquito is the deadliest mosquito species as the insect vector of the malaria-causing parasite, which kills hundreds of thousands every year. These mosquitoes are reliant on their sense of smell (olfaction) to guide most of their behaviors, and a better understanding of Anopheles olfaction identifies opportunities for reducing the spread of malaria. This review takes a detailed look at Anopheles olfaction. We explore a range of topics from chemosensory receptors, olfactory neurons, and sensory appendages to behaviors guided by olfaction (including host-seeking, foraging, oviposition, and mating), to vector management strategies that target mosquito olfaction. We identify many research areas that remain to be addressed.
Collapse
Affiliation(s)
- Joanna K Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Katelynn Deibel
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Sarah Maguire
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Randy Lawrence
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| |
Collapse
|
14
|
Shetewi T, Finnegan M, Fitzgerald S, Xu S, Duffy E, Morrin A. Investigation of the relationship between skin-emitted volatile fatty acids and skin surface acidity in healthy participants - a pilot study. J Breath Res 2021; 15. [PMID: 33765666 DOI: 10.1088/1752-7163/abf20a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
Volatile organic compounds (VOCs) emitted from human skin are of great interest in general in research fields including disease diagnostics and comprise various compound classes including acids, alcohols, ketones and aldehydes. The objective of this research is to investigate the volatile fatty acid (VFA) emission as recovered from healthy participant skin VOC samples and to characterise its association with skin surface acidity. VOC sampling was performed via headspace-solid phase microextraction (HS-SPME) with analysis via gas chromatography-mass spectrometry (GC-MS). Several VFAs were recovered from participants, grouped based on gender and site (female forehead, female forearm, male forearm). Saturated VFAs (C9, C12, C14, C15, C16) and the unsaturated VFA C16:1 (recovered only from the female forehead) were considered for this study. VFA compositions and abundances are discussed in the context of body site and corresponding gland type and distribution, and their quantitative association with skin acidity investigated. Normalised chromatographic peak areas of the recovered VFAs were found to linearly correlate with hydrogen ion concentration measured at each of the different sites considered and is the first report to our knowledge to demonstrate such an association. Our observations are explained in terms of the free fatty acid (FFA) content at the skin surface which is well-established as being a major contributor to skin surface acidity. Furthermore, it is interesting to consider that these VFA emissions from skin, governed by equilibrium vapour pressures exhibited at the skin surface, will be dependent on skin pH. It is proposed that these pH-modulated equilibrium vapour pressures of the acids could be resulting in an enhanced VFA emission sensitivity with respect to skin surface pH. To translate our observations made here for future wearable biodiagnostic applications, the measurement of skin surface pH based on the volatile emission was demonstrated using a pH indicator dye in the form of a planar colorimetric sensor, which was incorporated into a wearable platform and worn above the palm surface. As acidic skin surface pH is required for optimal skin barrier function and cutaneous antimicrobial defence, it is envisaged that these colorimetric volatile acid sensors could be deployed in robust wearable formats for monitoring health and disease applications in the future.
Collapse
Affiliation(s)
- Tasneem Shetewi
- Insight SFI Research Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin City University, Dublin, IRELAND
| | - Melissa Finnegan
- Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland, Dublin, 9, IRELAND
| | - Shane Fitzgerald
- Insight SFI Research Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin City University, Dublin, IRELAND
| | - Steve Xu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Northwestern University, Evanston, Illinois, IL 60611, UNITED STATES
| | - Emer Duffy
- Insight SFI Research Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin City University, Dublin, IRELAND
| | - Aoife Morrin
- Insight SFI Research Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin City University, Dublin, IRELAND
| |
Collapse
|
15
|
Dormont L, Mulatier M, Carrasco D, Cohuet A. Mosquito Attractants. J Chem Ecol 2021; 47:351-393. [PMID: 33725235 DOI: 10.1007/s10886-021-01261-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
Vector control and personal protection against anthropophilic mosquitoes mainly rely on the use of insecticides and repellents. The search for mosquito-attractive semiochemicals has been the subject of intense studies for decades, and new compounds or odor blends are regularly proposed as lures for odor-baited traps. We present a comprehensive and up-to-date review of all the studies that have evaluated the attractiveness of volatiles to mosquitoes, including individual chemical compounds, synthetic blends of compounds, or natural host or plant odors. A total of 388 studies were analysed, and our survey highlights the existence of 105 attractants (77 volatile compounds, 17 organism odors, and 11 synthetic blends) that have been proved effective in attracting one or several mosquito species. The exhaustive list of these attractants is presented in various tables, while the most common mosquito attractants - for which effective attractiveness has been demonstrated in numerous studies - are discussed throughout the text. The increasing knowledge on compounds attractive to mosquitoes may now serve as the basis for complementary vector control strategies, such as those involving lure-and-kill traps, or the development of mass trapping. This review also points out the necessity of further improving the search for new volatile attractants, such as new compound blends in specific ratios, considering that mosquito attraction to odors may vary over the life of the mosquito or among species. Finally, the use of mosquito attractants will undoubtedly have an increasingly important role to play in future integrated vector management programs.
Collapse
Affiliation(s)
- Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Margaux Mulatier
- Institut Pasteur de Guadeloupe, Laboratoire d'étude sur le contrôle des vecteurs (LeCOV), Lieu-Dit Morne Jolivièrex, 97139, Les Abymes, Guadeloupe, France
| | - David Carrasco
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
16
|
Huff RM, Pitts RJ. Carboxylic acid responses by a conserved odorant receptor in culicine vector mosquitoes. INSECT MOLECULAR BIOLOGY 2020; 29:523-530. [PMID: 32715523 DOI: 10.1111/imb.12661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Many mosquito behaviours that are critical for survival and reproduction depend upon timely responses to chemical cues. Of interest are the effects of volatile organic compounds like carboxylic acids (CAs) that are released by potential blood meal hosts. Short chain CAs are among the primary attractants for host-seeking females and influence host selection in vector species. Although the behavioural relevance of CA's has been established, less is known about the molecular receptive events that evoke responses to specific compounds, with the Ir family of chemoreceptors being broadly implicated in their detection. In this study, we demonstrate that Or orthologs from two vector species, Aedes aegypti (L.) and Aedes albopictus (Skuse), are selectively activated by straight chain carboxylic acids and that these responses are attenuated by the commercial insect repellant N,N-Diethyl-meta-toluamide. Our results suggest that multiple chemoreceptors, representing diverse families, are able to mediate molecular responses to CAs and may therefore underlie important behaviours that directly impact disease-transmission cycles.
Collapse
Affiliation(s)
- Robert M Huff
- Department of Biology, Baylor University, Waco, TX, USA
| | - R Jason Pitts
- Department of Biology, Baylor University, Waco, TX, USA
| |
Collapse
|
17
|
Wooding M, Rohwer ER, Naudé Y. Non-invasive sorptive extraction for the separation of human skin surface chemicals using comprehensive gas chromatography coupled to time-of-flight mass spectrometry: A mosquito-host biting site investigation. J Sep Sci 2020; 43:4202-4215. [PMID: 32902131 DOI: 10.1002/jssc.202000522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 11/12/2022]
Abstract
Variation in inter-human attractiveness to mosquitoes, and the preference of mosquitoes to bite certain regions on the human host, are possible avenues for identifying lead compounds as potential mosquito attractants or repellents. We report a practical, non-invasive method for the separation and detection of skin surface chemical compounds and comparison of skin chemical profiles between the ankle and wrist skin surface area sampled over a 5-day period of a human volunteer using comprehensive gas chromatography coupled to time-of-flight mass spectrometry. An in-house made polydimethylsiloxane passive mini-sampler, worn as an anklet or a bracelet, was used to concentrate skin volatiles and semi-volatiles prior to thermal desorption directly in the gas chromatography. A novel method for the addition of an internal standard to sorptive samplers was introduced through solvent modification. This approach enabled a more reliable comparison of human skin surface chemical profiles. Compounds that were closely associated with the wrist included 6-methyl-1-heptanol, 3-(4-isopropylphenyl)-2-methylpropionaldehyde, 2-phenoxyethyl isobutyrate, and 2,4,6-trimethyl-pyridine. Conversely, compounds only detected on the ankle region included 2-butoxyethanol phosphate, 2-heptanone, and p-menthan-8-ol. In addition to known human skin compounds we report two compounds, carvone and (E)-2-decenal, not previously reported. Limits of detection ranged from 1 pg (carvone) to 362 pg (indole).
Collapse
Affiliation(s)
- Madelien Wooding
- Department of Chemistry, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Egmont R Rohwer
- Department of Chemistry, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Yvette Naudé
- Department of Chemistry, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
18
|
Wooding M, Rohwer ER, Naudé Y. Chemical profiling of the human skin surface for malaria vector control via a non-invasive sorptive sampler with GC×GC-TOFMS. Anal Bioanal Chem 2020; 412:5759-5777. [PMID: 32681223 DOI: 10.1007/s00216-020-02799-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022]
Abstract
Volatile organic compounds (VOCs) and semi-VOCs detected on the human skin surface are of great interest to researchers in the fields of metabolomics, diagnostics, and skin microbiota and in the study of anthropophilic vector mosquitoes. Mosquitoes use chemical cues to find their host, and humans can be ranked for attractiveness to mosquitoes based on their skin chemical profile. Additionally, mosquitoes show a preference to bite certain regions on the human host. In this study, the chemical differences in the skin surface profiles of 20 human volunteers were compared based on inter-human attractiveness to mosquitoes, as well as inter- and intra-human mosquito biting site preference. A passive, non-invasive approach was followed to sample the wrist and ankle skin surface region. An in-house developed polydimethylsiloxane (PDMS) passive sampler was used to concentrate skin VOCs and semi-VOCs prior to thermal desorption directly in the GC inlet with comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS). Compounds from a broad range of chemical classes were detected and identified as contributing to the differences in the surface skin chemical profiles. 5-Ethyl-1,2,3,4-tetrahydronaphthalene, 1,1'-oxybisoctane, 2-(dodecyloxy)ethanol, α,α-dimethylbenzene methanol, methyl salicylate, 2,6,10,14-tetramethylhexadecane, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester, 4-methylbenzaldehyde, 2,6-diisopropylnaphthalene, n-hexadecanoic acid, and γ-oxobenzenebutanoic acid ethyl ester were closely associated with individuals who perceived themselves as attractive for mosquitoes. Additionally, biological lead compounds as potential attractants or repellants in vector control strategies were tentatively identified. Results augment current knowledge on human skin chemical profiles and show the potential of using a non-invasive sampling approach to investigate anthropophilic mosquito-host interactions. Graphical abstract.
Collapse
Affiliation(s)
- Madelien Wooding
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Egmont R Rohwer
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Yvette Naudé
- Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
19
|
Wooding M, Naudé Y, Rohwer E, Bouwer M. Controlling mosquitoes with semiochemicals: a review. Parasit Vectors 2020; 13:80. [PMID: 32066499 PMCID: PMC7027039 DOI: 10.1186/s13071-020-3960-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
The use of semiochemicals in odour-based traps for surveillance and control of vector mosquitoes is deemed a new and viable component for integrated vector management programmes. Over 114 semiochemicals have been identified, yet implementation of these for management of infectious diseases such as malaria, dengue, chikungunya and Rift Valley fever is still a major challenge. The difficulties arise due to variation in how different mosquito species respond to not only single chemical compounds but also complex chemical blends. Additionally, mosquitoes respond to different volatile blends when they are looking for a mating partner, oviposition sites or a meal. Analytically the challenge lies not only in correctly identifying these semiochemical signals and cues but also in developing formulations that effectively mimic blend ratios that different mosquito species respond to. Only then can the formulations be used to enhance the selectivity and efficacy of odour-based traps. Understanding how mosquitoes use semiochemical cues and signals to survive may be key to unravelling these complex interactions. An overview of the current studies of these chemical messages and the chemical ecology involved in complex behavioural patterns is given. This includes an updated list of the semiochemicals which can be used for integrated vector control management programmes. A thorough understanding of these semiochemical cues is of importance for the development of new vector control methods that can be integrated into established control strategies.
Collapse
Affiliation(s)
- Madelien Wooding
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Yvette Naudé
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Egmont Rohwer
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Marc Bouwer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
20
|
Tavares DS, Mesquita PRR, Salgado VR, Rodrigues FDM, Miranda JC, Barral-Netto M, de Andrade JB, Barral A. Determination and Profiling of Human Skin Odors Using Hair Samples. Molecules 2019; 24:molecules24162964. [PMID: 31443290 PMCID: PMC6720966 DOI: 10.3390/molecules24162964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022] Open
Abstract
Background. There is no gold standard method for human skin odor determination; several techniques can be applied to collect, extract, transfer, and detect human skin odors. However, none of these methods are suitable for field sampling of a large number of individuals. Objective. The present study aimed to develop a simple, fast, non-invasive, and low-cost method for such a purpose. Methods. Considering that hair from legs can act as a retention mesh of volatile organic compounds (VOCs), samples of leg hairs provided by healthy adult males were collected and solid-phase microextraction (SPME), in headspace (HS) mode, coupled to gas chromatography (GC) and mass spectrometry (MS) analysis of the samples was carried out. A pilot test was applied to detect five quality markers that are frequently reported in human skin odors. Then, several steps were performed for method standardization. The method was applied to 36 different individuals (3 sampled under laboratory conditions and 33 under field conditions), aiming to evaluate its applicability in both environments. Findings. A total of 49 VOCs were identified, and 73.5% of these have been reported in previous studies. Main Conclusions. Hair from legs can be considered an efficient tool for human skin odor sampling and a suitable and practical matrix for human skin odor profile determination by using HS-SPME/GC-MS.
Collapse
Affiliation(s)
- Diva S Tavares
- Faculdade de Medicina do Centro Universitário Christus (UNICHRISTUS), Fortaleza, CE 60190-060, Brazil.
- Instituto Gonçalo Moniz (IGM)-Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA 40296-710, Brazil.
| | - Paulo R R Mesquita
- Instituto de Química da Universidade Federal da Bahia (UFBA), Salvador, BA 40170-115, Brazil
- Programa de Pós-graduação em Desenvolvimento Regional e Meio Ambiente, Faculdade Maria Milza (FAMAM), Governador Mangabeira, BA 44350-000, Brazil
| | - Vanessa R Salgado
- Faculdade de Medicina Veterinária da União Metropolitana de Educação e Cultura (UNIME), Lauro de Freitas, BA 42700-000, Brazil
| | - Frederico de Medeiros Rodrigues
- Instituto de Química da Universidade Federal da Bahia (UFBA), Salvador, BA 40170-115, Brazil
- Programa de Pós-graduação em Desenvolvimento Regional e Meio Ambiente, Faculdade Maria Milza (FAMAM), Governador Mangabeira, BA 44350-000, Brazil
| | - José Carlos Miranda
- Instituto Gonçalo Moniz (IGM)-Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA 40296-710, Brazil
| | - Manoel Barral-Netto
- Instituto Gonçalo Moniz (IGM)-Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA 40296-710, Brazil
- Faculdade de Medicina da Universidade Federal da Bahia (UFBA), Salvador, BA 40026-010, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), São Paulo, SP 05403-900, Brazil
| | - Jailson B de Andrade
- Instituto de Química da Universidade Federal da Bahia (UFBA), Salvador, BA 40170-115, Brazil
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente (INCT-EA), Salvador, BA 40170-115, Brazil
| | - Aldina Barral
- Instituto Gonçalo Moniz (IGM)-Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA 40296-710, Brazil.
- Faculdade de Medicina da Universidade Federal da Bahia (UFBA), Salvador, BA 40026-010, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), São Paulo, SP 05403-900, Brazil.
| |
Collapse
|
21
|
Vinauger C, Lahondère C, Wolff GH, Locke LT, Liaw JE, Parrish JZ, Akbari OS, Dickinson MH, Riffell JA. Modulation of Host Learning in Aedes aegypti Mosquitoes. Curr Biol 2019; 28:333-344.e8. [PMID: 29395917 DOI: 10.1016/j.cub.2017.12.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/07/2017] [Accepted: 12/07/2017] [Indexed: 12/27/2022]
Abstract
How mosquitoes determine which individuals to bite has important epidemiological consequences. This choice is not random; most mosquitoes specialize in one or a few vertebrate host species, and some individuals in a host population are preferred over others. Mosquitoes will also blood feed from other hosts when their preferred is no longer abundant, but the mechanisms mediating these shifts between hosts, and preferences for certain individuals within a host species, remain unclear. Here, we show that olfactory learning may contribute to Aedes aegypti mosquito biting preferences and host shifts. Training and testing to scents of humans and other host species showed that mosquitoes can aversively learn the scent of specific humans and single odorants and learn to avoid the scent of rats (but not chickens). Using pharmacological interventions, RNAi, and CRISPR gene editing, we found that modification of the dopamine-1 receptor suppressed their learning abilities. We further show through combined electrophysiological and behavioral recordings from tethered flying mosquitoes that these odors evoke changes in both behavior and antennal lobe (AL) neuronal responses and that dopamine strongly modulates odor-evoked responses in AL neurons. Not only do these results provide direct experimental evidence that olfactory learning in mosquitoes can play an epidemiological role, but collectively, they also provide neuroanatomical and functional demonstration of the role of dopamine in mediating this learning-induced plasticity, for the first time in a disease vector insect.
Collapse
Affiliation(s)
- Clément Vinauger
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Chloé Lahondère
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Gabriella H Wolff
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Lauren T Locke
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jessica E Liaw
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Omar S Akbari
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Haidamak J, Davila Dos Santos G, Lima BJFDS, Soares VM, de Menezes RV, Bisson AA, Talevi AS, Gomes RR, Vicente VA, Valero MA, Klisiowicz DDR. Scalp microbiota alterations in children with pediculosis. INFECTION GENETICS AND EVOLUTION 2019; 73:322-331. [PMID: 31121305 DOI: 10.1016/j.meegid.2019.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/27/2022]
Abstract
Pediculosis is a disease caused by the insect Pediculus humanus capitis that mainly occurs in childhood. A comparative study was carried out evaluating groups of schoolchildren with (group A) and without pediculosis (group B) to analyse the characteristics of the scalp microbiota. Samples were collected by swab using Stuart transport medium and incubate in Sabouraud dextrose agar with tetracycline to analyse the fungal microbiota and in blood agar to assess the bacterial microbiota. The isolates identity was confirmed by sequencing of the 16S and 18S regions of the ribosomal DNA gene for bacteria and fungi, respectively. The analysis of the 186 isolates led to the identification of 35 bacteria and 40 fungi in group A and 47 bacteria and 64 fungi in group B. The results indicate differences in bacterial and fungal species in the groups analysed. In the observed bacterial microbiota, Staphylococcus capitis occurred more frequently than Staphylococcus epidermidis in group A vs B. Among fungal isolates, Debaryomyces sp. was more frequent in group B vs A. Our findings showed scalp microbiota alterations in children with pediculosis, meriting future studies to analyse the relationship between these agents and their impact on human health.
Collapse
Affiliation(s)
- Juciliane Haidamak
- Post-Graduate Program in Microbiology, Parasitology and Pathology, Basic Pathology Department, Federal University of Parana, Curitiba, Brazil
| | - Germana Davila Dos Santos
- Post-Graduate Program in Microbiology, Parasitology and Pathology, Basic Pathology Department, Federal University of Parana, Curitiba, Brazil
| | | | | | | | | | | | - Renata Rodrigues Gomes
- Post-Graduate Program in Microbiology, Parasitology and Pathology, Basic Pathology Department, Federal University of Parana, Curitiba, Brazil; Basic Pathology Department, Federal University of Parana, Curitiba, Brazil
| | - Vânia Aparecida Vicente
- Post-Graduate Program in Microbiology, Parasitology and Pathology, Basic Pathology Department, Federal University of Parana, Curitiba, Brazil; Basic Pathology Department, Federal University of Parana, Curitiba, Brazil
| | - Maria Adela Valero
- Parasitology Department, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Débora do Rocio Klisiowicz
- Post-Graduate Program in Microbiology, Parasitology and Pathology, Basic Pathology Department, Federal University of Parana, Curitiba, Brazil; Basic Pathology Department, Federal University of Parana, Curitiba, Brazil.
| |
Collapse
|
23
|
Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Analysis of Scent Profiles from Human Skin. COSMETICS 2018. [DOI: 10.3390/cosmetics5040062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Volatile organic compounds (VOCs) emanating from human skin contribute to an individual’s body odour. Understanding the modulation of human odour by a fragrance is of significant importance to the cosmetic sector in the design, development and evaluation of new products. The present research describes an in vivo approach for passive headspace sampling of skin volatile emissions in human participants. A wearable headspace solid-phase microextraction (HS-SPME) method has been employed to investigate baseline endogenous skin volatiles and the subsequent modulation of skin volatile profiles after application of a fragrance to skin. Coupled with gas chromatography-mass spectrometry (GC-MS) this method enables characterisation of scent profiles and fragrance longevity in vivo. A total of 51 compounds were identified in participants’ skin, including 19 endogenous and 32 fragrance-derived compounds. The temporal variation in volatile profiles at different times after fragrance application was investigated. Fragrance diffusion from skin varied between participants resulting in diversified scent profiles over time. This non-invasive approach could be employed during cosmetic product development for in vivo evaluation of fragrance profiles and for assessment of the retention of fragrance components in skin to reduce reliance on expert panels during product development.
Collapse
|
24
|
Paskewitz S, Irwin P, Konwinski N, Larson S. Impact of Consumption of Bananas on Attraction of Anopheles stephensi to Humans. INSECTS 2018; 9:insects9040129. [PMID: 30274200 PMCID: PMC6315685 DOI: 10.3390/insects9040129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Humans vary in attractiveness to mosquitoes, a phenomenon that is largely attributed to differences in physical cues such as heat and volatile odors emanating from breath and skin. Diet can change human odors but whether specific dietary components alter host attractiveness is largely unexplored. We identified bananas as a target for study following a survey of the internet for advice on avoiding mosquito bites. Human attractiveness to Anopheles stephensi Liston was measured using a glass vial bioassay where mosquito contacts were measured before and 1–3 h after ingestion of bananas or grapes. Consumption of grapes had no effect on the number of contacts but banana ingestion resulted in a significant increase in the overall number of contacts in spite of individual variation that included some subjects who showed no effect or decreases in contacts. Further tests with a single volunteer showed that the effect was repeatable and consistent across 15 trials. The magnitude of the increase was not affected by the number of bananas eaten. Increased contact counts after banana ingestion were also observed when A. gambiae Giles was tested. These results support the hypothesis that diet plays an important role in mediating host attractiveness to anopheline mosquitoes.
Collapse
Affiliation(s)
- Susan Paskewitz
- Department of Entomology, University of Wisconsin, Madison, WI 53706, USA.
| | - Patrick Irwin
- Department of Entomology, University of Wisconsin, Madison, WI 53706, USA.
| | - Nic Konwinski
- Department of Entomology, University of Wisconsin, Madison, WI 53706, USA.
| | - Scott Larson
- Department of Entomology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
25
|
Roodt AP, Naudé Y, Stoltz A, Rohwer E. Human skin volatiles: Passive sampling and GC × GC-ToFMS analysis as a tool to investigate the skin microbiome and interactions with anthropophilic mosquito disease vectors. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1097-1098:83-93. [PMID: 30212730 DOI: 10.1016/j.jchromb.2018.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/16/2018] [Accepted: 09/01/2018] [Indexed: 12/18/2022]
Abstract
Volatile organic compounds (VOCs) emanating from the surfaces of human skin are of great interest to researchers in medical and forensic fields, as well as to biologists studying the ecology of blood-feeding insect vectors of human disease. Research involving the comparison of relative abundances of VOCs emanating from human skin is currently limited by the methodology used for sample collection and pre-concentration. The use of in-house developed silicone rubber (polydimethylsiloxane (PDMS)) passive sampling devices constructed in the form of bracelets and anklets was explored to address this need. The easy-to-use samplers were employed as non-invasive passive sampling devices for the non-targeted collection and concentration of volatile human skin emissions prior to thermal desorption thereof coupled with comprehensive gas chromatographic time-of-flight mass spectrometric (GC × GC-TOFMS) analysis. Compounds collected were from a wide range of compound classes. Several compounds, notably cyclic ketones, identified have not been previously reported in skin volatile literature. Comparison of normalized unique mass peak area signals has revealed relative quantitative differences and similarities between the samples collected from two individuals' wrists and as well as between an individual's wrist and ankle. The sampling method was evaluated based on its ability to provide many candidate compounds for potential biomarker discovery. The results show the ability of the new sampling method for augmenting the current knowledge on human skin volatile emissions. The samplers are both easy to use and economical. Applications explored include the study of the complex relationships between the human skin microbiome and the attractiveness of individuals to anthropophilic blood host seeking mosquitoes.
Collapse
Affiliation(s)
- Alexis P Roodt
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Yvette Naudé
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| | - Anton Stoltz
- Division of Infectious Diseases, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Egmont Rohwer
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Moore EL, Scott MA, Rodriguez SD, Mitra S, Vulcan J, Cordova JJ, Chung HN, Linhares Lino de Souza D, Gonzales KK, Hansen IA. An online survey of personal mosquito-repellent strategies. PeerJ 2018; 6:e5151. [PMID: 30002979 PMCID: PMC6034598 DOI: 10.7717/peerj.5151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Mosquito repellents can be an effective method for personal protection against mosquito bites that are a nuisance and carry the risk of transmission of mosquito-borne pathogens like plasmodia, dengue virus, chikungunya virus, and Zika virus. A multitude of commercially available products are currently on the market, some of them highly effective while others have low or no efficacy. Many home remedies of unknown efficacy are also widely used. Methods We conducted a survey study to determine what kind of mosquito repellents and other mosquito control strategies people use. Our online survey was focused on unconventional methods and was answered by 5,209 participants. Results The majority of participants resided in the United States, were female (67%), had higher education (81% had a university degree), and were 18 to 37 years old (50%). The most commonly used repellent was DEET spray (48%), followed closely by citronella candles (43%) and ‘natural’ repellent sprays (36%). We collected a plethora of home remedies and other strategies people use that warrant further research into their effectiveness. Discussion Our study lays the foundation for future research in alternative, unconventional methods to repel mosquitoes that may be culturally acceptable and accessible for people.
Collapse
Affiliation(s)
- Emily Lucille Moore
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Mary Alice Scott
- Department of Anthropology, New Mexico State University, Las Cruces, NM, United States of America
| | - Stacy Deadra Rodriguez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Soumi Mitra
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Julia Vulcan
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Joel Javierla Cordova
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Hae-Na Chung
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | | | - Kristina Kay Gonzales
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Immo Alex Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America.,Institute for Applied Biosciences, New Mexico State University, Las Cruces, NM, United States of America
| |
Collapse
|
27
|
Abstract
Malaria parasites (Plasmodium) can change the attractiveness of their vertebrate hosts to Anopheles vectors, leading to a greater number of vector-host contacts and increased transmission. Indeed, naturally Plasmodium-infected children have been shown to attract more mosquitoes than parasite-free children. Here, we demonstrate Plasmodium-induced increases in the attractiveness of skin odor in Kenyan children and reveal quantitative differences in the production of specific odor components in infected vs. parasite-free individuals. We found the aldehydes heptanal, octanal, and nonanal to be produced in greater amounts by infected individuals and detected by mosquito antennae. In behavioral experiments, we demonstrated that these, and other, Plasmodium-induced aldehydes enhanced the attractiveness of a synthetic odor blend mimicking "healthy" human odor. Heptanal alone increased the attractiveness of "parasite-free" natural human odor. Should the increased production of these aldehydes by Plasmodium-infected humans lead to increased mosquito biting in a natural setting, this would likely affect the transmission of malaria.
Collapse
|
28
|
Haverkamp A, Hansson BS, Knaden M. Combinatorial Codes and Labeled Lines: How Insects Use Olfactory Cues to Find and Judge Food, Mates, and Oviposition Sites in Complex Environments. Front Physiol 2018; 9:49. [PMID: 29449815 PMCID: PMC5799900 DOI: 10.3389/fphys.2018.00049] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Insects, including those which provide vital ecosystems services as well as those which are devastating pests or disease vectors, locate their resources mainly based on olfaction. Understanding insect olfaction not only from a neurobiological but also from an ecological perspective is therefore crucial to balance insect control and conservation. However, among all sensory stimuli olfaction is particularly hard to grasp. Our chemical environment is made up of thousands of different compounds, which might again be detected by our nose in multiple ways. Due to this complexity, researchers have only recently begun to explore the chemosensory ecology of model organisms such as Drosophila, linking the tools of chemical ecology to those of neurogenetics. This cross-disciplinary approach has enabled several studies that range from single odors and their ecological relevance, via olfactory receptor genes and neuronal processing, up to the insects' behavior. We learned that the insect olfactory system employs strategies of combinatorial coding to process general odors as well as labeled lines for specific compounds that call for an immediate response. These studies opened new doors to the olfactory world in which insects feed, oviposit, and mate.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
29
|
Verhulst NO, Umanets A, Weldegergis BT, Maas JPA, Visser TM, Dicke M, Smidt H, Takken W. Do apes smell like humans? The role of skin bacteria and volatiles of primates in mosquito host selection. J Exp Biol 2018; 221:jeb.185959. [DOI: 10.1242/jeb.185959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
Abstract
Anthropophilic mosquitoes are effective vectors of human diseases because of their biting preference. To find their host, these mosquitoes are guided by human odours, primarily produced by human skin bacteria. By analysing the skin bacterial and skin volatile profiles of humans, bonobos, chimpanzees, gorillas, lemurs and cows, we investigated whether primates that are more closely related to humans have a skin bacterial community and odour profile that is similar to humans. We then investigated whether this affected discrimination between humans and closely related primates by anthropophilic and zoophilic mosquitoes that search for hosts. Humans had a lower skin bacterial diversity than the other animals and their skin bacterial composition was more similar to the other primates than to the skin bacterial composition of cows. Like the skin bacterial profiles, the volatile profiles of the animal groups were clearly different from each other. The cow and lemur volatile profiles were more closely related to the human profiles than expected. Human volatiles were indeed preferred above cow volatiles by anthropophilic mosquitoes and no preference was observed when tested against non-human primate odour, except for bonobo volatiles that were preferred over human volatiles. Unravelling the differences between mosquito hosts and their effect on host selection is important for a better understanding of cross-species transmission of vector-borne diseases.
Collapse
Affiliation(s)
- Niels O. Verhulst
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
- National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - Alexander Umanets
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700 EH, Wageningen, the Netherlands
| | - Berhane T. Weldegergis
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Jeroen P. A. Maas
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Tessa M. Visser
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Hauke Smidt
- National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
30
|
Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions. Sci Rep 2017; 7:9283. [PMID: 28839251 PMCID: PMC5570919 DOI: 10.1038/s41598-017-08978-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/17/2017] [Indexed: 11/29/2022] Open
Abstract
Malaria parasites are thought to influence mosquito attraction to human hosts, a phenomenon that may enhance parasite transmission. This is likely mediated by alterations in host odour because of its importance in mosquito host-searching behaviour. Here, we report that the human skin odour profile is affected by malaria infection. We compared the chemical composition and attractiveness to Anopheles coluzzii mosquitoes of skin odours from participants that were infected by Controlled Human Malaria Infection with Plasmodium falciparum. Skin odour composition differed between parasitologically negative and positive samples, with positive samples collected on average two days after parasites emerged from the liver into the blood, being associated with low densities of asexual parasites and the absence of gametocytes. We found a significant reduction in mosquito attraction to skin odour during infection for one experiment, but not in a second experiment, possibly due to differences in parasite strain. However, it does raise the possibility that infection can affect mosquito behaviour. Indeed, several volatile compounds were identified that can influence mosquito behaviour, including 2- and 3-methylbutanal, 3-hydroxy-2-butanone, and 6-methyl-5-hepten-2-one. To better understand the impact of our findings on Plasmodium transmission, controlled studies are needed in participants with gametocytes and higher parasite densities.
Collapse
|
31
|
Kumar R, Saravu K. Severe vivax malaria: a prospective exploration at a tertiary healthcare centre in Southwestern India. Pathog Glob Health 2017; 111:148-160. [PMID: 28367735 DOI: 10.1080/20477724.2017.1309342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plasmodium vivax is recognized to cause severe malaria and mortality. We aimed to determine the proportion of disease severity, the spectrum of complications, underlying non-infectious comorbidities and predictors of severity in monoinfection P. vivax malaria among adults at a tertiary healthcare centre in Southwestern India. A prospective cohort study was conducted among microscopically confirmed monoinfection P. vivax acute malaria patients aged, ≥18 years. Cases with pregnancy and concomitant febrile illnesses including mixed malaria were excluded. Cases were distinguished as either 'severe' or 'non-severe' P. vivax malaria as per the definitions laid by the World Health Organization. Of total 511 acute P. vivax cases studied, 23.9% (122/511) had severe malaria. The proportion of severity did not vary between microscopy alone and additional nPCR proved monoinfection P. vivax subgroups. There was no significant difference (p = 0.296) in the occurrence of non-infectious comorbidities among non-severe (9.0%, 35/389) and severe (12.3%, 15/122) vivax groups. Multiple complications despite early parasite clearance resulted in delayed casualty in two cases, indicating overall case fatality rate of 3/1000 cases. Age >40 years, rising respiratory rate, total bilirubin, serum creatinine and falling hemoglobin were the independent predictors of disease severity in this vivax malaria cohort. Total and direct bilirubin and serum urea had good discriminatory performance for severe vivax malaria. Total bilirubin should be considered as an important prognostic marker while managing P. vivax malaria. Patients with multiple complications must be treated cautiously as there may be delayed deterioration leading to mortality despite parasite clearance.
Collapse
Affiliation(s)
- Rishikesh Kumar
- a Department of Medicine, Kasturba Medical College , Manipal University , Manipal , India
| | - Kavitha Saravu
- a Department of Medicine, Kasturba Medical College , Manipal University , Manipal , India.,b Manipal McGill Center for Infectious Diseases (MAC-ID) , Manipal University , Manipal , India
| |
Collapse
|