1
|
Thillainadesan S, Lambert A, Cooke KC, Stöckli J, Yau B, Masson SWC, Howell A, Potter M, Fuller OK, Jiang YL, Kebede MA, Morahan G, James DE, Madsen S, Hocking SL. The metabolic consequences of 'yo-yo' dieting are markedly influenced by genetic diversity. Int J Obes (Lond) 2024; 48:1170-1179. [PMID: 38961153 PMCID: PMC11281900 DOI: 10.1038/s41366-024-01542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/09/2024] [Accepted: 05/10/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Weight loss can improve the metabolic complications of obesity. However, it is unclear whether insulin resistance persists despite weight loss and whether any protective benefits are preserved following weight regain (weight cycling). The impact of genetic background on weight cycling is undocumented. We aimed to investigate the effects of weight loss and weight cycling on metabolic outcomes and sought to clarify the role of genetics in this relationship. METHOD Both C57BL/6 J and genetically heterogeneous Diversity Outbred Australia (DOz) mice were alternately fed high fat Western-style diet (WD) and a chow diet at 8-week intervals. Metabolic measures including body composition, glucose tolerance, pancreatic beta cell activity, liver lipid levels and adipose tissue insulin sensitivity were determined. RESULTS After diet switch from WD (8-week) to chow (8-week), C57BL/6 J mice displayed a rapid normalisation of body weight, adiposity, hyperinsulinemia, liver lipid levels and glucose uptake into adipose tissue comparable to chow-fed controls. In response to the same dietary intervention, genetically diverse DOz mice conversely maintained significantly higher fat mass and insulin levels compared to chow-fed controls and exhibited much more profound interindividual variability than C57BL/6 J mice. Weight cycled (WC) animals were re-exposed to WD (8-week) and compared to age-matched controls fed 8-week WD for the first time (LOb). In C57BL/6 J but not DOz mice, WC animals had significantly higher blood insulin levels than LOb controls. All WC animals exhibited significantly greater beta cell activity than LOb controls despite similar fat mass, glucose tolerance, liver lipid levels and insulin-stimulated glucose uptake in adipose tissue. CONCLUSION Following weight loss, metabolic outcomes return to baseline in C57BL/6 J mice with obesity. However, genetic diversity significantly impacts this response. A period of weight loss does not provide lasting benefits after weight regain, and weight cycling is detrimental and associated with hyperinsulinemia and elevated basal insulin secretion.
Collapse
Affiliation(s)
- Senthil Thillainadesan
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Aaron Lambert
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jacqueline Stöckli
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Belinda Yau
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Stewart W C Masson
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anna Howell
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Meg Potter
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Oliver K Fuller
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yi Lin Jiang
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Grant Morahan
- Australian Centre for Advancing Diabetes Innovations, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - David E James
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia.
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Søren Madsen
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Samantha L Hocking
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia.
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
2
|
Hargett S, Lahiri S, Kowalski GM, Corley S, Nelson ME, Lackner C, Olzomer EM, Aleksovska I, Hearn BA, Shrestha R, Janitz M, Gorrell MD, Bruce CR, Wilkins M, Hoehn KL, Byrne FL. Bile acids mediate fructose-associated liver tumour growth in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167029. [PMID: 38325224 DOI: 10.1016/j.bbadis.2024.167029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
High fructose diets are associated with an increased risk of liver cancer. Previous studies in mice suggest increased lipogenesis is a key mechanism linking high fructose diets to liver tumour growth. However, these studies administered fructose to mice at supraphysiological levels. The aim of this study was to determine whether liver tumour growth and lipogenesis were altered in mice fed fructose at physiological levels. To test this, we injected male C57BL/6 mice with the liver carcinogen diethylnitrosamine and then fed them diets without fructose or fructose ranging from 10 to 20 % total calories. Results showed mice fed diets with ≥15 % fructose had significantly increased liver tumour numbers (2-4-fold) and total tumour burden (∼7-fold) vs mice fed no-fructose diets. However, fructose-associated tumour burden was not associated with lipogenesis. Conversely, unbiased metabolomic analyses revealed bile acids were elevated in the sera of mice fed a 15 % fructose diet vs mice fed a no-fructose diet. Using a syngeneic ectopic liver tumour model, we show that ursodeoxycholic acid, which decreases systemic bile acids, significantly reduced liver tumour growth in mice fed the 15 % fructose diet but not mice fed a no-fructose diet. These results point to a novel role for systemic bile acids in mediating liver tumour growth associated with a high fructose diet. Overall, our study shows fructose intake at or above normal human consumption (≥15 %) is associated with increased liver tumour numbers and growth and that modulating systemic bile acids inhibits fructose-associated liver tumour growth in mice.
Collapse
Affiliation(s)
- Stefan Hargett
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908-0735, USA
| | - Sujoy Lahiri
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908-0735, USA
| | - Greg M Kowalski
- School of Exercise & Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Waurn Ponds, Victoria 3216, Australia
| | - Susan Corley
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marin E Nelson
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908-0735, USA
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Ellen M Olzomer
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Isabella Aleksovska
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brandon A Hearn
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Riya Shrestha
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael Janitz
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark D Gorrell
- Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Clinton R Bruce
- School of Exercise & Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Waurn Ponds, Victoria 3216, Australia
| | - Marc Wilkins
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kyle L Hoehn
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908-0735, USA; School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Frances L Byrne
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Barrera C, Castillo V, Valenzuela R, Valenzuela CA, Garcia-Diaz DF, Llanos M. Effects on Fetal Metabolic Programming and Endocannabinoid System of a Normocaloric Diet during Pregnancy and Lactation of Female Mice with Pregestational Obesity. Nutrients 2023; 15:3531. [PMID: 37630722 PMCID: PMC10458167 DOI: 10.3390/nu15163531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Fetal programming provides explanatory mechanisms for the currently high prevalence of gestational obesity. The endocannabinoid system (ECS) participates in the regulation of energy balance, and with a high-fat diet (HFD), it is overactivated. The aim of this study was to determine the effects of a nutritional intervention during pregnancy and lactation on obese female progenitors, on metabolic alterations of the offspring and on the involvement of ECS. Female mice (C57/BL/6-F0), 45 days old, and their offspring (males) were separated according to type of diet before and during gestation and lactation: CON-F1: control diet; HFD-F1 group: HFD (fat: 60% Kcal); INT-F1 group: HFD until mating and control diet (fat: 10% Kcal) afterward. Glucose tolerance and insulin sensitivity (IS) were tested at 2 and 4 months. At 120 days, mice were sacrificed, plasma was extracted for the determination of hormones, and livers for gene expression and the protein level determination of ECS components. INT-F1 group presented a lower IS compared to CON-F1, and normal levels of adiponectin and corticosterone in relation to the HFD-F1 group. The intervention increased hepatic gene expression for fatty-acid amide hydrolase and monoacylglycerol lipase enzymes; however, these differences were not observed at the protein expression level. Our results suggest that this intervention model normalized some hormonal parameters and hepatic mRNA levels of ECS components that were altered in the offspring of progenitors with pre-pregnancy obesity.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (C.B.); (R.V.); (D.F.G.-D.)
| | - Valeska Castillo
- Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 8380453, Chile;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (C.B.); (R.V.); (D.F.G.-D.)
| | - Carina A. Valenzuela
- Eating Behavior Research Center, School of Nutrition and Dietetics, Faculty of Pharmacy, Universidad de Valparaíso Playa Ancha, Valparaíso 2360102, Chile;
| | - Diego F. Garcia-Diaz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (C.B.); (R.V.); (D.F.G.-D.)
| | - Miguel Llanos
- Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 8380453, Chile;
| |
Collapse
|
4
|
Tsan L, Sun S, Hayes AMR, Bridi L, Chirala LS, Noble EE, Fodor AA, Kanoski SE. Early life Western diet-induced memory impairments and gut microbiome changes in female rats are long-lasting despite healthy dietary intervention. Nutr Neurosci 2022; 25:2490-2506. [PMID: 34565305 PMCID: PMC8957635 DOI: 10.1080/1028415x.2021.1980697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Western diet consumption during adolescence results in hippocampus (HPC)-dependent memory impairments and gut microbiome dysbiosis. Whether these adverse outcomes persist in adulthood following healthy dietary intervention is unknown. Here we assessed the short- and long-term effects of adolescent consumption of a Western diet enriched with either sugar or both sugar and fat on metabolic outcomes, HPC function, and gut microbiota. METHODS Adolescent female rats (PN 26) were fed a standard chow diet (CHOW), chow with access to 11% sugar solution (SUG), or a junk food cafeteria-style diet (CAF) containing various foods high in fat and/or sugar. During adulthood (PN 65+), metabolic outcomes, HPC-dependent memory, and gut microbial populations were evaluated. In a subsequent experiment, these outcomes were evaluated following a 5-week dietary intervention where CAF and SUG groups were maintained on standard chow alone. RESULTS Both CAF and SUG groups demonstrated impaired HPC-dependent memory, increased adiposity, and altered gut microbial populations relative to the CHOW group. However, impaired peripheral glucose regulation was only observed in the SUG group. When examined following a healthy dietary intervention in a separate experiment, metabolic dysfunction was not observed in either the CAF or SUG group, whereas HPC-dependent memory impairments were observed in the CAF but not the SUG group. In both groups the composition of the gut microbiota remained distinct from CHOW rats after the dietary intervention. CONCLUSIONS While the metabolic impairments associated with adolescent junk food diet consumption are not present in adulthood following dietary intervention, the HPC-dependent memory impairments and the gut microbiome dysbiosis persist.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anna M. R. Hayes
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lana Bridi
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lekha S. Chirala
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Emily E. Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Scott E. Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Fryklund C, Neuhaus M, Morén B, Borreguero-Muñoz A, Lundmark R, Stenkula KG. Expansion of the Inguinal Adipose Tissue Depot Correlates With Systemic Insulin Resistance in C57BL/6J Mice. Front Cell Dev Biol 2022; 10:942374. [PMID: 36158197 PMCID: PMC9489915 DOI: 10.3389/fcell.2022.942374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
To accommodate surplus energy, the adipose tissue expands by increasing adipocyte size (hypertrophy) and number (hyperplasia). The presence of hypertrophic adipocytes is a key characteristic of adipose tissue dysfunction. High-fat diet (HFD) fed C57BL/6J mice are a commonly used model to study obesity and obesity-related complications. In the present study, we have characterized adipose plasticity, at both the cellular and tissue level, by examining the temporal development of systemic insulin resistance and adiposity in response to HFD-feeding for 4, 8, and 12 weeks (4w, 8w, and 12w). Within the same time frame, we examined systemic metabolic flexibility and adipose plasticity when switching from HFD- to chow-diet during the last 2 weeks of diet intervention (referred to as the reverse (REV) group: 4wREV (2w HFD+2w chow), 8wREV (6w HFD+2w chow), 12wREV (10w HFD+2w chow)). In response to HFD-feeding over time, the 12w group had impaired systemic insulin sensitivity compared to both the 4w and 8w groups, accompanied by an increase in hypertrophic inguinal adipocytes and liver triglycerides. After reversing from HFD- to chow-feeding, most parameters were completely restored to chow control levels for 4wREV and 8wREV groups. In contrast, the 12wREV group had a significantly increased number of hypertrophic adipocytes, liver triglycerides accumulation, and impaired systemic insulin sensitivity compared to chow-fed mice. Further, image analysis at the single-cell level revealed a cell-size dependent organization of actin filaments for all feeding conditions. Indeed, the impaired adipocyte size plasticity in the 12wREV group was accompanied by increased actin filamentation and reduced insulin-stimulated glucose uptake compared with chow-fed mice. In summary, these results demonstrate that the C57BL/6J HFD-feeding model has a large capacity to restore adipocyte cell size and systemic insulin sensitivity, and that a metabolic tipping point occurs between 8 and 12w of HFD-feeding where this plasticity deteriorates. We believe these findings provide substantial understanding of C57BL/6J mice as an obesity model, and that an increased pool of hypertrophic ING adipocytes could contribute to aggravated insulin resistance.
Collapse
Affiliation(s)
- Claes Fryklund
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Claes Fryklund,
| | - Mathis Neuhaus
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Björn Morén
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | | | - Karin G. Stenkula
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
7
|
Mazzoli A, Gatto C, Crescenzo R, Spagnuolo MS, Nazzaro M, Iossa S, Cigliano L. Gut and liver metabolic responses to dietary fructose - are they reversible or persistent after switching to a healthy diet? Food Funct 2021; 12:7557-7568. [PMID: 34286786 DOI: 10.1039/d1fo00983d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The link between increased fructose intake and induction of gut and liver dysfunction has been established, while it remains to be understood whether this damage is reversible, particularly in the young population, in which the intake of fructose has reached dramatic levels. To this end, young (30 days old) rats were fed a fructose-rich or control diet for 3 weeks to highlight the early response of the gut and liver to increased fructose intake. After this period, fructose-fed rats were returned to a control diet for 3 weeks and compared to the rats that received the control diet for the entire period to identify whether fructose-induced changes in the gut-liver axis persist or not after switching back to a control diet. Glucose transporter 5 and the tight junction protein occludin were assessed in the ileum and colon. Markers of inflammation and redox homeostasis as well as fructose and uric acid levels were also evaluated in the ileum, colon and liver. From the whole data, it is seen that metabolic derangement elicited by a fructose-rich diet, even after a brief period of intake, is fully reversed in the liver by a period of fructose withdrawal, while the alterations persist in the gut, especially in the ileum. In conclusion, given the increasing consumption of fructose-rich foods in young populations, the present results highlight the risk arising from gut persistent alterations even after the end of a fructose-rich diet. Therefore, dietary recommendations of reducing the intake of this simple sugar is mandatory to avoid not only the related metabolic alterations but also the persistence of these detrimental changes.
Collapse
Affiliation(s)
- Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Bruce CR, Hamley S, Ang T, Howlett KF, Shaw CS, Kowalski GM. Translating glucose tolerance data from mice to humans: Insights from stable isotope labelled glucose tolerance tests. Mol Metab 2021; 53:101281. [PMID: 34175474 PMCID: PMC8313600 DOI: 10.1016/j.molmet.2021.101281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
Objective The glucose tolerance test (GTT) is widely used in human and animal biomedical and pharmaceutical research. Despite its prevalent use, particularly in mouse metabolic phenotyping, to the best of our knowledge we are not aware of any studies that have attempted to qualitatively compare the metabolic events during a GTT in mice with those performed in humans. Methods Stable isotope labelled oral glucose tolerance tests (siOGTTs; [6,6-2H2]glucose) were performed in both human and mouse cohorts to provide greater resolution into postprandial glucose kinetics. The siOGTT allows for the partitioning of circulating glucose into that derived from exogenous and endogenous sources. Young adults spanning the spectrum of normal glucose tolerance (n = 221), impaired fasting (n = 14), and impaired glucose tolerance (n = 19) underwent a 75g siOGTT, whereas a 50 mg siOGTT was performed on chow (n = 43) and high-fat high-sucrose fed C57Bl6 male mice (n = 46). Results During the siOGTT in humans, there is a long period (>3hr) of glucose absorption and, accordingly, a large, sustained insulin response and robust suppression of lipolysis and endogenous glucose production (EGP), even in the presence of glucose intolerance. In contrast, mice appear to be highly reliant on glucose effectiveness to clear exogenous glucose and experience only modest, transient insulin responses with little, if any, suppression of EGP. In addition to the impaired stimulation of glucose uptake, mice with the worst glucose tolerance appear to have a paradoxical and persistent rise in EGP during the OGTT, likely related to handling stress. Conclusions The metabolic response to the OGTT in mice and humans is highly divergent. The potential reasons for these differences and their impact on the interpretation of mouse glucose tolerance data and their translation to humans are discussed. We compared the mechanisms governing glucose handling in humans and mice. Humans and mice underwent stable isotope labelled oral glucose tolerance tests. Metabolic responses between humans and mice were highly divergent. Unlike humans, most mice exhibit little EGP suppression or insulin response.
Collapse
Affiliation(s)
- Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Steven Hamley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia; Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
9
|
Allerton TD, Kowalski GM, Stampley J, Irving BA, Lighton JRB, Floyd ZE, Stephens JM. An Ethanolic Extract of Artemisia dracunculus L. Enhances the Metabolic Benefits of Exercise in Diet-induced Obese Mice. Med Sci Sports Exerc 2021; 53:712-723. [PMID: 33105388 PMCID: PMC9045727 DOI: 10.1249/mss.0000000000002516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this study was to determine the effect of an ethanolic extract of Artemisia dracunculus L. (5011) combined with exercise on in vivo glucose and fat metabolism in diet-induced obese male mice. METHODS After 8 wk of high-fat diet (HFD) feeding, 52 mice were randomly allocated to a voluntary wheel running group (HFD Ex), a 5011 + HFD sedentary group (5011 Sed), a 5011 + HFD Ex (5011 Ex), or an HFD sedentary group (HFD Sed) for 4 wk. Real-time energy expenditure and substrate utilization were measured by indirect calorimetry. A stable isotope glucose tolerance test was performed before and after the 4-wk wheel running period to determine changes in endogenous glucose production and glucose disposal. We also performed an analysis of genes and proteins associated with the early response to exercise and exercise adaptations in skeletal muscle and liver. RESULTS When compared with HFD Ex mice, 5011 Ex mice had increased fat oxidation during speed- and distance-matched wheel running bouts. Both HFD Ex and 5011 Ex mice had reduced endogenous glucose during the glucose tolerance test, whereas only the 5011 Sed and the 5011 Ex mice had improved glucose disposal after the 4-wk experimental period when compared with HFD Sed and HFD Ex mice. 5011 Ex mice had increased Pgc1-α and Tfam expression in skeletal muscle when compared with HFD Ex mice, whereas Pdk4 expression was reduced in the liver of HFD Ex and 5011 Ex mice. CONCLUSIONS Our study demonstrates that 5011, an ethanolic extract of A. dracunculus L., with a history of medicinal use, enhances the metabolic benefits of exercise to improve in vivo fat and glucose metabolism.
Collapse
Affiliation(s)
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, AUSTRALIA
| | - James Stampley
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA
| | - Brian A Irving
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA
| | | | | | | |
Collapse
|
10
|
Guerra-Cantera S, Frago LM, Collado-Pérez R, Canelles S, Ros P, Freire-Regatillo A, Jiménez-Hernaiz M, Barrios V, Argente J, Chowen JA. Sex Differences in Metabolic Recuperation After Weight Loss in High Fat Diet-Induced Obese Mice. Front Endocrinol (Lausanne) 2021; 12:796661. [PMID: 34975768 PMCID: PMC8716724 DOI: 10.3389/fendo.2021.796661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary intervention is a common tactic employed to curtail the current obesity epidemic. Changes in nutritional status alter metabolic hormones such as insulin or leptin, as well as the insulin-like growth factor (IGF) system, but little is known about restoration of these parameters after weight loss in obese subjects and if this differs between the sexes, especially regarding the IGF system. Here male and female mice received a high fat diet (HFD) or chow for 8 weeks, then half of the HFD mice were changed to chow (HFDCH) for 4 weeks. Both sexes gained weight (p < 0.001) and increased their energy intake (p < 0.001) and basal glycemia (p < 0.5) on the HFD, with these parameters normalizing after switching to chow but at different rates in males and females. In both sexes HFD decreased hypothalamic NPY and AgRP (p < 0.001) and increased POMC (p < 0.001) mRNA levels, with all normalizing in HFDCH mice, whereas the HFD-induced decrease in ObR did not normalize (p < 0.05). All HFD mice had abnormal glucose tolerance tests (p < 0.001), with males clearly more affected, that normalized when returned to chow. HFD increased insulin levels and HOMA index (p < 0.01) in both sexes, but only HFDCH males normalized this parameter. Returning to chow normalized the HFD-induced increase in circulating leptin (p < 0.001), total IGF1 (p < 0.001), IGF2 (p < 0.001, only in females) and IGFBP3 (p < 0.001), whereas free IGF1 levels remained elevated (p < 0.01). In males IGFBP2 decreased with HFD and normalized with chow (p < 0.001), with no changes in females. Although returning to a healthy diet improved of most metabolic parameters analyzed, fIGF1 levels remained elevated and hypothalamic ObR decreased in both sexes. Moreover, there was sex differences in both the response to HFD and the switch to chow including circulating levels of IGF2 and IGFBP2, factors previously reported to be involved in glucose metabolism. Indeed, glucose metabolism was also differentially modified in males and females, suggesting that these observations could be related.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Purificación Ros
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pediatrics, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- *Correspondence: Julie A. Chowen, ; Jesús Argente,
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- *Correspondence: Julie A. Chowen, ; Jesús Argente,
| |
Collapse
|
11
|
He X, Zhao Z, Wang S, Kang J, Zhang M, Bu J, Cai X, Jia C, Li Y, Li K, Reinach PS, Quantock AJ, Liu Z, Li W. High-Fat Diet-Induced Functional and Pathologic Changes in Lacrimal Gland. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2387-2402. [PMID: 32919976 DOI: 10.1016/j.ajpath.2020.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022]
Abstract
The lacrimal gland is critical for maintaining the homeostasis of the ocular surface microenvironment through secreting aqueous tears in mammals. Many systemic diseases such as Sjögren syndrome, rheumatoid arthritis, and diabetes can alter the lacrimal gland function, eventually resulting in aqueous tear-deficient dry eye. Here, a high-fat diet (HFD) experimental mouse model was used to clarify how hyperlipidemia affects lacrimal gland function. Aqueous tear secretion fell about 50% after 1 month on a HFD. Lipid droplets accumulated in the matrix and acinar cells of the lacrimal gland after this period, along with changes in the lipid metabolism, changes in gene expression levels, and disruption of fatty acid oxidative activity. Immune cell infiltration and rises in the gene expression levels of the inflammation-related cytokines Il1β, Tnfα, Tsg6, Il10, Mmp2, and Mmp9 were found. HFD also induced mitochondrial hypermegasoma, increased apoptosis, and decreased lacrimal gland acinar cell proliferation. Replacement of the HFD with the standard diet partially reversed pathologic changes in the lacrimal gland. Similarly, supplementing the HFD with fenofibrate also partially reversed the inhibited tear secretion and reduced lipid accumulation, inflammation, and oxidative stress levels. The authors conclude that a HFD induces pathophysiological changes and functional decompensation of the lacrimal gland. Therefore, ingestion of a HFD may be a causative factor of dry eye disease.
Collapse
Affiliation(s)
- Xin He
- Eye Institute of Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
| | - Zhongyang Zhao
- Eye Institute of Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
| | - Shaopan Wang
- Eye Institute of Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
| | - Jie Kang
- Eye Institute of Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China; Xiang'an Hospital of Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
| | - Minjie Zhang
- Eye Institute of Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
| | - Jinghua Bu
- Eye Institute of Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
| | - Xiaoxin Cai
- Eye Institute of Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
| | - Changkai Jia
- Eye Institute of Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
| | - Yixuan Li
- School of Medicine, Xiamen University, Xiamen, China
| | | | | | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China; Xiang'an Hospital of Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, China.
| | - Wei Li
- Eye Institute of Xiamen University, Xiamen, China; School of Medicine, Xiamen University, Xiamen, China; Xiang'an Hospital of Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, China.
| |
Collapse
|
12
|
Allerton TD, Kowalski G, Hang H, Stephens J. Dynamic Glucose Disposal is Driven by Reduced Endogenous Glucose Production in Response to Voluntary Wheel Running: A Stable Isotope Approach. Am J Physiol Endocrinol Metab 2020; 319:E2-E10. [PMID: 32343613 PMCID: PMC7468781 DOI: 10.1152/ajpendo.00450.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
To resolve both the systems level and molecular mechanisms responsible for exercise induced improvements in glucose tolerance, we sought to test the effect of voluntary wheel running exercise on postprandial glucose dynamics. We utilized a stable isotope labeled oral glucose tolerance test (SI-OGTT) incorporating complimentary deuterium glucose tracers at 1:1 ratio (2-2H-glucose and 6-6 2H-glucose; 2g/kg lean body mass) to distinguish between endogenous glucose production (EGP) and whole-body glucose disposal. SI-OGTT was performed in C57BL/6J mice after 8 weeks on a high fat diet (45% fat). Mice were then randomized to either a wheel running cage (n=13, HFD Ex) or normal cage (n=13, HFD Sed) while maintaining the HFD for 4 weeks prior to performing a SI-OGTT. HFD Ex mice demonstrated improvements in whole blood glucose total AUC that was attributed primarily to a reduction in EGP AUC. Serum insulin levels measured at 0 and 15-minutes post glucose gavage were significantly elevated in the HFD Sed mice, whereas HFD Ex mice demonstrated the expected reduction in insulin at both time points. Overall, exercise improved hepatic insulin sensitivity by reducing postprandial EGP, but also increased whole-body glucose disposal. Finally, these results demonstrate the benefits of exercise on hepatic insulin sensitivity by combining a more physiological route of glucose administration (oral glucose) with the resolution of stable isotope tracers. These novel observations clearly demonstrate that SI-OGTT is a sensitive and cost-effective method to measure exercise adaptations in obese mice with as little as 2 µl of tail blood.
Collapse
Affiliation(s)
| | - Greg Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Hardy Hang
- Pennington Biomedical Research Center, Baton Rouge LA, United States
| | | |
Collapse
|
13
|
Abstract
Adipose tissue is highly dynamic and increases its size dependent on the status of nutrition. Generally, an increase of adipose tissue mass is attributed to two mechanisms, namely hypertrophy (increase in adipocyte size) and hyperplasia (increase in adipocyte number). Here, we analyzed the proliferation capacity of a pool of nutrition sensing preadipocytes after short-term high fat diet (HFD) feeding. We show that this process is age independent and that adipocyte hyperplasia seems not to be dependent on adipocyte hypertrophy. Further, we could show that the subsequent development into adipocytes is influenced by the duration of HFD feeding after proliferation. Our data also demonstrate that the studied pool of preadipocytes seems to be finite and cannot be reactivated by multiple bouts of HFD feeding. In conclusion, our results indicate an important link between stem cells, nutrition status and homeostasis in the epididymal adipose tissue.
Collapse
Affiliation(s)
- Elisabeth Kulenkampff
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| |
Collapse
|
14
|
Steatosis and gut microbiota dysbiosis induced by high-fat diet are reversed by 1-week chow diet administration. Nutr Res 2019; 71:72-88. [PMID: 31757631 DOI: 10.1016/j.nutres.2019.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Many studies have recently shown that diet and its impact on gut microbiota are closely related to obesity and metabolic diseases including nonalcoholic fatty liver disease. Gut microbiota may be an important intermediate link, causing gastrointestinal and metabolic diseases under the influence of changes in diet and genetic predisposition. The aim of this study was to assess the reversibility of liver phenotype in parallel with exploring the resilience of the mice gut microbiota by switching high-fat diet (HFD) to chow diet (CD). Mice were fed an HF for 8 weeks. A part of the mice was euthanized, whereas the rest were then fed a CD. These mice were euthanized after 3 and 7 days of feeding with CD, respectively. Gut microbiota composition, serum parameters, and liver morphology were assessed. Eight weeks of HFD treatment induced marked liver steatosis in mice with a perturbed microbiome. Interestingly, only 7 days of CD was enough to recover the liver to a normal status, whereas the microbiome was accordingly reshaped to a close to initial pattern. The abundance of some of the bacteria including Prevotella, Parabacteroides, Lactobacillus, and Allobaculum was reversible upon diet change from HFD to CD. This suggests that microbiome modifications contribute to the metabolic effects of HFD feeding and that restoration of a normal microbiota may lead to improvement of the liver phenotype. In conclusion, we found that steatosis and gut microbiota dysbiosis induced by 8 weeks of high-fat diet can be reversed by 1 week of chow diet administration, and we identified gut bacteria associated with the metabolic phenotype.
Collapse
|
15
|
Townsend LK, Medak KD, Peppler WT, Meers GM, Rector RS, LeBlanc PJ, Wright DC. High-saturated-fat diet-induced obesity causes hepatic interleukin-6 resistance via endoplasmic reticulum stress. J Lipid Res 2019; 60:1236-1249. [PMID: 31085628 DOI: 10.1194/jlr.m092510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
The relationship between liver interleukin-6 (IL-6) resistance following high-fat diet (HFD)-induced obesity and glucose intolerance is unclear. The purpose of this study was to assess the temporal development of hepatic IL-6 resistance and the role of endoplasmic reticulum (ER) stress in this process. We hypothesized that HFD would rapidly induce hepatic IL-6 resistance through a mechanism involving ER stress. Male C57BL/6N mice consumed chow or a HFD (60%) derived from lard (saturated) or olive oil (monounsaturated) for 4 days or 7 weeks before being injected intraperitoneally with IL-6 (6 ng·kg-1). Glucose, insulin, and pyruvate tolerance tests were used as proxies for systemic glucose metabolism and hepatic glucose production, respectively. Primary mouse hepatocytes were incubated with palmitate (saturated) and oleate (unsaturated) overnight, then treated with 20 ng/ml IL-6. ER stress was induced via tunicamycin or prevented by sodium phenylbutyrate (PBA). Seven weeks of a saturated, but not monounsaturated, HFD reduced hepatic IL-6 signaling in conjunction with hepatic ER stress. Palmitate directly impaired IL-6 signaling in hepatocytes along with inducing ER stress. Pharmacologically induced ER stress caused hepatic IL-6 resistance, whereas PBA reversed HFD-induced IL-6 resistance. Chronic HFD-induced obesity is associated with hepatic IL-6 resistance due to saturated FA-induced ER stress.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Grace M Meers
- Division of Gastroenterology and Hepatology, School of Medicine University of Missouri, Columbia, MO.,Research Service, Harry S Truman Memorial VA Hospital, Columbia, MO
| | - R Scott Rector
- Nutrition and Exercise Physiology University of Guelph, Guelph, ON, Canada.,Division of Gastroenterology and Hepatology, School of Medicine University of Missouri, Columbia, MO.,Research Service, Harry S Truman Memorial VA Hospital, Columbia, MO
| | - Paul J LeBlanc
- Department of Health Sciences Brock University, St. Catharines, ON, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
16
|
Masuda A, Seino Y, Murase M, Hidaka S, Shibata M, Takayanagi T, Sugimura Y, Hayashi Y, Suzuki A. Short-Term High-Starch, Low-Protein Diet Induces Reversible Increase in β-cell Mass Independent of Body Weight Gain in Mice. Nutrients 2019; 11:nu11051045. [PMID: 31083314 PMCID: PMC6566232 DOI: 10.3390/nu11051045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022] Open
Abstract
Long-term exposure to a high starch, low-protein diet (HSTD) induces body weight gain and hyperinsulinemia concomitantly with an increase in β-cell mass (BCM) and pancreatic islets number in mice; however, the effect of short-term exposure to HSTD on BCM and islet number has not been elucidated. In the present study, we investigated changes in body weight, plasma insulin levels, BCM and islet number in mice fed HSTD for 5 weeks followed by normal chow (NC) for 2 weeks. BCM and islet number were increased in mice fed HSTD for 5 weeks compared with those in mice fed NC. On the other hand, mice fed HSTD for 5 weeks followed by NC for 2 weeks (SN) showed decreased BCM and insulin levels, compared to mice fed HSTD for 7 weeks, and no significant differences in these parameters were observed between SN and the control NC at 7 weeks. No significant difference in body weight was observed among HSTD, NC and SN fed groups. These results suggest that a high-starch diet induces an increase in BCM in a manner independent of body weight gain, and that 2 weeks of NC feeding is sufficient for the reversal of the morphological changes induced in islets by HSTD feeding.
Collapse
Affiliation(s)
- Atsushi Masuda
- Department of Endocrinology and Metabolism, Fujita Health University, Graduate School of Medicine, Toyoake 470-1192, Japan.
| | - Yusuke Seino
- Department of Endocrinology and Metabolism, Fujita Health University, Graduate School of Medicine, Toyoake 470-1192, Japan.
| | - Masatoshi Murase
- Departments of Endocrinology and Diabetes, Toyota Memorial Hospital, Toyota 471-8513, Japan.
| | - Shihomi Hidaka
- Department of Endocrinology and Metabolism, Fujita Health University, Graduate School of Medicine, Toyoake 470-1192, Japan.
| | - Megumi Shibata
- Department of Endocrinology and Metabolism, Fujita Health University, Graduate School of Medicine, Toyoake 470-1192, Japan.
| | - Takeshi Takayanagi
- Department of Endocrinology and Metabolism, Fujita Health University, Graduate School of Medicine, Toyoake 470-1192, Japan.
| | - Yoshihisa Sugimura
- Department of Endocrinology and Metabolism, Fujita Health University, Graduate School of Medicine, Toyoake 470-1192, Japan.
| | - Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 467-8601 Japan.
| | - Atsushi Suzuki
- Department of Endocrinology and Metabolism, Fujita Health University, Graduate School of Medicine, Toyoake 470-1192, Japan.
| |
Collapse
|
17
|
Chambers ES, Byrne CS, Rugyendo A, Morrison DJ, Preston T, Tedford C, Bell JD, Thomas L, Akbar AN, Riddell NE, Sharma R, Thursz MR, Manousou P, Frost G. The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease. Diabetes Obes Metab 2019; 21:372-376. [PMID: 30098126 PMCID: PMC6667894 DOI: 10.1111/dom.13500] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022]
Abstract
The short chain fatty acid (SCFA) propionate, produced through fermentation of dietary fibre by the gut microbiota, has been shown to alter hepatic metabolic processes that reduce lipid storage. We aimed to investigate the impact of raising colonic propionate production on hepatic steatosis in adults with non-alcoholic fatty liver disease (NAFLD). Eighteen adults were randomized to receive 20 g/d of an inulin-propionate ester (IPE), designed to deliver propionate to the colon, or an inulin control for 42 days in a parallel design. The change in intrahepatocellular lipid (IHCL) following the supplementation period was not different between the groups (P = 0.082), however, IHCL significantly increased within the inulin-control group (20.9% ± 2.9% to 26.8% ± 3.9%; P = 0.012; n = 9), which was not observed within the IPE group (22.6% ± 6.9% to 23.5% ± 6.8%; P = 0.635; n = 9). The predominant SCFA from colonic fermentation of inulin is acetate, which, in a background of NAFLD and a hepatic metabolic profile that promotes fat accretion, may provide surplus lipogenic substrate to the liver. The increased colonic delivery of propionate from IPE appears to attenuate this acetate-mediated increase in IHCL.
Collapse
Affiliation(s)
- Edward S. Chambers
- Section for Nutrition Research, Faculty of MedicineImperial College London, Hammersmith HospitalLondonUK
| | - Claire S. Byrne
- Section for Nutrition Research, Faculty of MedicineImperial College London, Hammersmith HospitalLondonUK
| | - Annette Rugyendo
- Section for Nutrition Research, Faculty of MedicineImperial College London, Hammersmith HospitalLondonUK
| | - Douglas J. Morrison
- Stable Isotope Biochemistry LaboratoryScottish Universities Environmental Research Centre, University of GlasgowGlasgowUK
| | - Tom Preston
- Stable Isotope Biochemistry LaboratoryScottish Universities Environmental Research Centre, University of GlasgowGlasgowUK
| | | | - Jimmy D. Bell
- Department of Life Sciences, Faculty of Science and Technology, Research Centre for Optimal HealthUniversity of WestminsterLondonUK
| | - Louise Thomas
- Department of Life Sciences, Faculty of Science and Technology, Research Centre for Optimal HealthUniversity of WestminsterLondonUK
| | - Arne N. Akbar
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | | | - Rohini Sharma
- Department of Surgery and CancerImperial College LondonLondonUK
| | - Mark R. Thursz
- Department of Surgery and CancerImperial College LondonLondonUK
| | | | - Gary Frost
- Section for Nutrition Research, Faculty of MedicineImperial College London, Hammersmith HospitalLondonUK
| |
Collapse
|
18
|
Perron IJ, Keenan BT, Chellappa K, Lahens NF, Yohn NL, Shockley KR, Pack AI, Veasey SC. Dietary challenges differentially affect activity and sleep/wake behavior in mus musculus: Isolating independent associations with diet/energy balance and body weight. PLoS One 2018; 13:e0196743. [PMID: 29746501 PMCID: PMC5945034 DOI: 10.1371/journal.pone.0196743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Associated with numerous metabolic and behavioral abnormalities, obesity is classified by metrics reliant on body weight (such as body mass index). However, overnutrition is the common cause of obesity, and may independently contribute to these obesity-related abnormalities. Here, we use dietary challenges to parse apart the relative influence of diet and/or energy balance from body weight on various metabolic and behavioral outcomes. MATERIALS AND METHODS Seventy male mice (mus musculus) were subjected to the diet switch feeding paradigm, generating groups with various body weights and energetic imbalances. Spontaneous activity patterns, blood metabolite levels, and unbiased gene expression of the nutrient-sensing ventral hypothalamus (using RNA-sequencing) were measured, and these metrics were compared using standardized multivariate linear regression models. RESULTS Spontaneous activity patterns were negatively related to body weight (p<0.0001) but not diet/energy balance (p = 0.63). Both body weight and diet/energy balance predicted circulating glucose and insulin levels, while body weight alone predicted plasma leptin levels. Regarding gene expression within the ventral hypothalamus, only two genes responded to diet/energy balance (neuropeptide y [npy] and agouti-related peptide [agrp]), while others were related only to body weight. CONCLUSIONS Collectively, these results demonstrate that individual components of obesity-specifically obesogenic diets/energy imbalance and elevated body mass-can have independent effects on metabolic and behavioral outcomes. This work highlights the shortcomings of using body mass-based indices to assess metabolic health, and identifies novel associations between blood biomarkers, neural gene expression, and animal behavior following dietary challenges.
Collapse
Affiliation(s)
- Isaac J. Perron
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: ,
| | - Brendan T. Keenan
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karthikeyani Chellappa
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas F. Lahens
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicole L. Yohn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Allan I. Pack
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sigrid C. Veasey
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
19
|
Fischer IP, Irmler M, Meyer CW, Sachs SJ, Neff F, Hrabě de Angelis M, Beckers J, Tschöp MH, Hofmann SM, Ussar S. A history of obesity leaves an inflammatory fingerprint in liver and adipose tissue. Int J Obes (Lond) 2018; 42:507-517. [PMID: 28901330 PMCID: PMC5880583 DOI: 10.1038/ijo.2017.224] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/28/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND/OBJECTIVES Dieting is a popular yet often ineffective way to lower body weight, as the majority of people regain most of their pre-dieting weights in a relatively short time. The underlying molecular mechanisms driving weight regain and the increased risk for metabolic disease are still incompletely understood. Here we investigate the molecular alterations inherited from a history of obesity. METHODS In our model, male high-fat diet (HFD)-fed obese C57BL/6J mice were switched to a low caloric chow diet, resulting in a decline of body weight to that of lean mice. We measured body composition, as well as metrics of glucose, insulin and lipid homeostasis. This was accompanied by histological and gene expression analysis of adipose tissue and liver to assess adipose tissue inflammation and hepatosteatosis. Moreover, acute hypothalamic response to (re-) exposure to HFD was assessed by qPCR. RESULTS & CONCLUSIONS Within 7 weeks after diet switch, most obesity-associated phenotypes, such as body mass, glucose intolerance and blood metabolite levels were reversed. However, hepatic inflammation, hepatic steatosis as well as hypertrophy and inflammation of perigonadal, but not subcutaneous, adipocytes persisted in formerly obese mice. Transcriptional profiling of liver and perigonadal fat revealed an upregulation of pathways associated with immune function and cellularity. Thus, we show that weight reduction leaves signs of inflammation in liver and perigonadal fat, indicating that persisting proinflammatory signals in liver and adipose tissue could contribute to an increased risk of formerly obese subjects to develop the metabolic syndrome upon recurring weight gain.
Collapse
Affiliation(s)
- I P Fischer
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Garching, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - M Irmler
- Institute for Experimental Genetics, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - C W Meyer
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - S J Sachs
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV der LMU, Munich, Germany
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, Garching, Germany
| | - F Neff
- Institute for Pathology, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - M Hrabě de Angelis
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Experimental Genetics, Helmholtz Zentrum München, München-Neuherberg, Germany
- Technische Universität München, Lehrstuhl für Experimentelle Genetik, Freising, Germany
| | - J Beckers
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Experimental Genetics, Helmholtz Zentrum München, München-Neuherberg, Germany
- Technische Universität München, Lehrstuhl für Experimentelle Genetik, Freising, Germany
| | - M H Tschöp
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Garching, Germany
| | - S M Hofmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV der LMU, Munich, Germany
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, Garching, Germany
| | - S Ussar
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Garching, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
20
|
Small L, Brandon AE, Turner N, Cooney GJ. Modeling insulin resistance in rodents by alterations in diet: what have high-fat and high-calorie diets revealed? Am J Physiol Endocrinol Metab 2018; 314:E251-E265. [PMID: 29118016 DOI: 10.1152/ajpendo.00337.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For over half a century, researchers have been feeding different diets to rodents to examine the effects of macronutrients on whole body and tissue insulin action. During this period, the number of different diets and the source of macronutrients employed have grown dramatically. Because of the large heterogeneity in both the source and percentage of different macronutrients used for studies, it is not surprising that different high-calorie diets do not produce the same changes in insulin action. Despite this, diverse high-calorie diets continue to be employed in an attempt to generate a "generic" insulin resistance. The high-fat diet in particular varies greatly between studies with regard to the source, complexity, and ratio of dietary fat, carbohydrate, and protein. This review examines the range of rodent dietary models and methods for assessing insulin action. In almost all studies reviewed, rodents fed diets that had more than 45% of dietary energy as fat or simple carbohydrates had reduced whole body insulin action compared with chow. However, different high-calorie diets produced significantly different effects in liver, muscle, and whole body insulin action when insulin action was measured by the hyperinsulinemic-euglycemic clamp method. Rodent dietary models remain an important tool for exploring potential mechanisms of insulin resistance, but more attention needs to be given to the total macronutrient content and composition when interpreting dietary effects on insulin action.
Collapse
Affiliation(s)
- Lewin Small
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
| | - Amanda E Brandon
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
- Sydney Medical School, Charles Perkins Centre, The University of Sydney , New South Wales , Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Science, University of New South Wales , Sydney, New South Wales , Australia
| | - Gregory J Cooney
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
- Sydney Medical School, Charles Perkins Centre, The University of Sydney , New South Wales , Australia
| |
Collapse
|
21
|
Soares AF, Duarte JMN, Gruetter R. Increased hepatic fatty acid polyunsaturation precedes ectopic lipid deposition in the liver in adaptation to high-fat diets in mice. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:341-354. [PMID: 29027041 DOI: 10.1007/s10334-017-0654-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We monitored hepatic lipid content (HLC) and fatty acid (FA) composition in the context of enhanced lipid handling induced by a metabolic high-fat diet (HFD) challenge and fasting. MATERIALS AND METHODS Mice received a control diet (10% of kilocalories from fat, N = 14) or an HFD (45% or 60% of kilocalories from fat, N = 10 and N = 16, respectively) for 26 weeks. A subset of five mice receiving an HFD (60% of kilocalories from fat) were switched to the control diet for the final 7 weeks. At nine time points, magnetic resonance spectroscopy was performed in vivo at 14.1 T, interleaved with glucose tolerance tests. RESULTS Glucose intolerance promptly developed with the HFD, followed by a progressive increase of fasting insulin level, simultaneously with that of HLC. These metabolic defects were normalized by dietary reversal. HFD feeding immediately increased polyunsaturation of hepatic FA, before lipid accumulation. Fasting-induced changes in hepatic lipids (increased HLC and FA polyunsaturation, decreased FA monounsaturation) in control-diet-fed mice were not completely reproduced in HFD-fed mice, not even after dietary reversal. CONCLUSION A similar adaptation of hepatic lipids to both fasting and an HFD suggests common mechanisms of lipid trafficking from adipose tissue to the liver. Altered hepatic lipid handling with fasting indicates imperfect metabolic recovery from HFD exposure.
Collapse
Affiliation(s)
- Ana Francisca Soares
- Laboratory for Functional and Metabolic Imaging, Swiss Federal Institute of Technology, Bâtiment CH, Station 6, 1015, Lausanne, Switzerland.
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, Swiss Federal Institute of Technology, Bâtiment CH, Station 6, 1015, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Swiss Federal Institute of Technology, Bâtiment CH, Station 6, 1015, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Kowalski GM, Kraakman MJ, Mason SA, Murphy AJ, Bruce CR. Resolution of glucose intolerance in long-term high-fat, high-sucrose-fed mice. J Endocrinol 2017; 233:269-279. [PMID: 28360081 DOI: 10.1530/joe-17-0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/30/2017] [Indexed: 02/03/2023]
Abstract
The high-fat, high-sucrose diet (HFSD)-fed C57Bl/6 mouse is a widely used model of prediabetes. However, studies typically implement a relatively short dietary intervention lasting between 4 and 16 weeks; as a result, little is known about how a long-term HFSD influences the metabolic profile of these mice. Therefore, the aim of this investigation was to examine the effects of consuming a HFSD for 42 weeks on the development of hyperinsulinaemia and glucose intolerance in male C57Bl/6 mice. Two cohorts of HFSD mice were studied at independent institutes and they underwent an oral glucose tolerance test (OGTT) with measures of plasma insulin and free fatty acids (FFA). Age-matched chow-fed control mice were also studied. The HFSD-fed mice were hyperinsulinaemic and grossly obese, being over 25 g heavier than chow-fed mice, which was due to a marked expansion of subcutaneous adipose tissue. This was associated with a 3-fold increase in liver lipid content. Glucose tolerance, however, was either the same or better than control mice due to the preservation of glucose disposal as revealed by a dynamic stable isotope-labelled OGTT. In addition, plasma FFAs were suppressed to lower levels in HFSD mice during the OGTT. In conclusion, we have made the paradoxical observation that long-term HFSD feeding results in the resolution of glucose intolerance in the C57Bl/6 mouse. Mechanistically, we propose that the gross expansion of subcutaneous adipose tissue increases the glucose disposal capacity of the HFSD-fed mouse, which overcomes the prevailing insulin resistance to improve glucose tolerance.
Collapse
Affiliation(s)
- Greg M Kowalski
- Institute for Physical Activity and NutritionSchool of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Michael J Kraakman
- Haematopoiesis and Leukocyte Biology LaboratoryBaker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of MedicineColumbia University College of Physicians and Surgeons, New York, New York, USA
| | - Shaun A Mason
- Institute for Physical Activity and NutritionSchool of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology LaboratoryBaker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and NutritionSchool of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
23
|
Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry. Metabolites 2016; 6:metabo6040034. [PMID: 27754354 PMCID: PMC5192440 DOI: 10.3390/metabo6040034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Deuterated water (²H₂O), a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules), thus permitting the calculation of their synthesis rates. Here, we have combined ²H₂O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids) from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation), protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines). Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both 'self-made' and exogenously-derived fatty acid.
Collapse
|
24
|
Srivastava A, Kowalski GM, Callahan DL, Meikle PJ, Creek DJ. Strategies for Extending Metabolomics Studies with Stable Isotope Labelling and Fluxomics. Metabolites 2016; 6:metabo6040032. [PMID: 27706078 PMCID: PMC5192438 DOI: 10.3390/metabo6040032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
This is a perspective from the peer session on stable isotope labelling and fluxomics at the Australian & New Zealand Metabolomics Conference (ANZMET) held from 30 March to 1 April 2016 at La Trobe University, Melbourne, Australia. This report summarizes the key points raised in the peer session which focused on the advantages of using stable isotopes in modern metabolomics and the challenges in conducting flux analyses. The session highlighted the utility of stable isotope labelling in generating reference standards for metabolite identification, absolute quantification, and in the measurement of the dynamic activity of metabolic pathways. The advantages and disadvantages of different approaches of fluxomics analyses including flux balance analysis, metabolic flux analysis and kinetic flux profiling were also discussed along with the use of stable isotope labelling in in vivo dynamic metabolomics. A number of crucial technical considerations for designing experiments and analyzing data with stable isotope labelling were discussed which included replication, instrumentation, methods of labelling, tracer dilution and data analysis. This report reflects the current viewpoint on the use of stable isotope labelling in metabolomics experiments, identifying it as a great tool with the potential to improve biological interpretation of metabolomics data in a number of ways.
Collapse
Affiliation(s)
- Anubhav Srivastava
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Melbourne, Victoria, Australia.
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia.
| | - Damien L Callahan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Burwood 3125, Victoria, Australia.
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia.
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Melbourne, Victoria, Australia.
| |
Collapse
|