1
|
Liu Q, Ye X, Zhao Z, Li Q, Wei C, Wang J. Progress of ABA function in endosperm cellularization and storage product accumulation. PLANT CELL REPORTS 2024; 43:287. [PMID: 39565413 DOI: 10.1007/s00299-024-03378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Seed development is a complex process and co-regulated by genetic and environmental factors, which significantly affects the seed vigor, yield and quality of crops, especially in cereal crops. Abscisic acid (ABA) regulates various biological processes in seed development, including endosperm and embryo development, accumulation of storage materials, achievement of desiccation tolerance and dormancy. Compared to the functional investigation of ABA in germination and stress response, the role of ABA in early seed development and storage product accumulation has not been collectively elucidated. Here, ABA origin in seed was concluded: both maternal source and de novo synthesis of ABA in seed play an important role in seed development. This review also provided an overview of the current knowledge on ABA in early seed development, mainly in endosperm cellularization. ABA promotes endosperm cellularization in Arabidopsis, but this notion has not been spread into cereal crops. Besides, the increasing importance of ABA in seed reserve accumulation was also emphatically described. In the last section, the key problems and challenges (e.g., where dose ABA come from at each stage of seed development? whether same regulators in response to ABA in Arabidopsis apply equally to cereal crops) were addressed.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Xin Ye
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Zhiwen Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Qian Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Juan Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Chen XM, Wang ZW, Liang XG, Li FY, Li BB, Wu G, Yi F, Setter TL, Shen S, Zhou SL. Incomplete filling in the basal region of maize endosperm: timing of development of starch synthesis and cell vitality. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1142-1158. [PMID: 39348485 DOI: 10.1111/tpj.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/02/2024]
Abstract
Starch synthesis in maize endosperm adheres to the basipetal sequence from the apex downwards. However, the mechanism underlying nonuniformity among regions of the endosperm in starch accumulation and its significance is poorly understood. Here, we examined the spatiotemporal transcriptomes and starch accumulation dynamics in apical (AE), middle (ME), and basal (BE) regions of endosperm throughout the filling stage. Results demonstrated that the BE had lower levels of gene transcripts and enzymes facilitating starch synthesis, corresponding to incomplete starch storage at maturity, compared with AE and ME. Contrarily, the BE showed abundant gene expression for genetic processing and slow progress in physiological development (quantified by an index calculated from the expression values of development progress marker genes), revealing a sustained cell vitality of the BE. Further analysis demonstrated a significant parabolic correlation between starch synthesis and physiological development. An in-depth examination showed that the BE had more active signaling pathways of IAA and ABA than the AE throughout the filling stage, while ethylene showed the opposite pattern. Besides, SNF1-related protein kinase1 (SnRK1) activity, a regulator for starch synthesis modulated by trehalose-6-phosphate (T6P) signaling, was kept at a lower level in the BE than the AE and ME, corresponding to the distinct gene expression in the T6P pathway in starch synthesis regulation. Collectively, the findings support an improved understanding of the timing of starch synthesis and cell vitality in regions of the endosperm during development, and potential regulation from hormone signaling and T6P/SnRK1 signaling.
Collapse
Affiliation(s)
- Xian-Min Chen
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhi-Wei Wang
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiao-Gui Liang
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Agronomy College, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Feng-Yuan Li
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bin-Bin Li
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Gong Wu
- Agronomy College, Anhui Agricultural University, Hefei, 230036, China
| | - Fei Yi
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Tim L Setter
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Si Shen
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, 061802, China
| | - Shun-Li Zhou
- State Key Laboratory of Maize Bio-breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, 061802, China
| |
Collapse
|
3
|
Li K, Li Y, Liu C, Li M, Bao R, Wang H, Zeng C, Zhou X, Chen Y, Wang W, Chen X. Protein kinase MeSnRK2.3 positively regulates starch biosynthesis by interacting with the transcription factor MebHLH68 in cassava. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6369-6387. [PMID: 39139055 DOI: 10.1093/jxb/erae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Starch biosynthesis involves numerous enzymes and is a crucial metabolic activity in plant storage organs. Sucrose non-fermenting related protein kinase 2 (SnRK2) is an abscisic acid (ABA)-dependent kinase and a significant regulatory enzyme in the ABA signaling pathway. However, whether SnRK2 kinases regulate starch biosynthesis is unclear. In this study, we identified that MeSnRK2.3, encoding an ABA-dependent kinase, was highly expressed in the storage roots of cassava (Manihot esculenta) and was induced by ABA. Overexpression of MeSnRK2.3 in cassava significantly increased the starch content in the storage roots and promoted plant growth. MeSnRK2.3 was further found to interact with the cassava basic helix-loop-helix 68 (MebHLH68) transcription factor in vivo and in vitro. MebHLH68 directly bound to the promoters of sucrose synthase 1 (MeSUS1), granule-bound starch synthase I a (MeGBSSIa), and starch-branching enzyme 2.4 (MeSBE2.4), thereby up-regulating their transcriptional activities. Additionally, MebHLH68 negatively regulated the transcriptional activity of sucrose phosphate synthase B (MeSPSB). Moreover, MebHLH68 phosphorylated by MeSnRK2.3 up-regulated the transcription activity of MeSBE2.4. These findings demonstrated that the MeSnRK2.3-MebHLH68 module connects the ABA signaling pathway and starch biosynthesis in cassava, thereby providing direct evidence of ABA-mediated participation in the sucrose metabolism and starch biosynthesis pathways.
Collapse
Affiliation(s)
- Ke Li
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Yajun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
| | - Chen Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Mengtao Li
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Ruxue Bao
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Haiyan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
| | - Changying Zeng
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Xincheng Zhou
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, Hainan, China
| | - Yinhua Chen
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Wenquan Wang
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Xin Chen
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, Hainan, China
| |
Collapse
|
4
|
Lu XH, Wang YJ, Zhen XH, Yu H, Pan M, Fu DQ, Li RM, Liu J, Luo HY, Hu XW, Yao Y, Guo JC. Functional Characterization of the MeSSIII-1 Gene and Its Promoter from Cassava. Int J Mol Sci 2024; 25:4711. [PMID: 38731930 PMCID: PMC11083483 DOI: 10.3390/ijms25094711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.
Collapse
Affiliation(s)
- Xiao-Hua Lu
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-H.L.); (X.-H.Z.); (M.P.); (X.-W.H.)
| | - Ya-Jie Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-J.W.); (H.Y.); (R.-M.L.); (J.L.)
| | - Xing-Hou Zhen
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-H.L.); (X.-H.Z.); (M.P.); (X.-W.H.)
| | - Hui Yu
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-J.W.); (H.Y.); (R.-M.L.); (J.L.)
| | - Mu Pan
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-H.L.); (X.-H.Z.); (M.P.); (X.-W.H.)
| | - Dong-Qing Fu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Rui-Mei Li
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-J.W.); (H.Y.); (R.-M.L.); (J.L.)
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-J.W.); (H.Y.); (R.-M.L.); (J.L.)
| | - Hai-Yan Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Xin-Wen Hu
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-H.L.); (X.-H.Z.); (M.P.); (X.-W.H.)
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-J.W.); (H.Y.); (R.-M.L.); (J.L.)
| | - Jian-Chun Guo
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.-J.W.); (H.Y.); (R.-M.L.); (J.L.)
| |
Collapse
|
5
|
Liang Y, Li X, Lei F, Yang R, Bai W, Yang Q, Zhang D. Transcriptome Profiles Reveals ScDREB10 from Syntrichia caninervis Regulated Phenylpropanoid Biosynthesis and Starch/Sucrose Metabolism to Enhance Plant Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:205. [PMID: 38256758 PMCID: PMC10820175 DOI: 10.3390/plants13020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Desiccation is a kind of extreme form of drought stress and desiccation tolerance (DT) is an ancient trait of plants that allows them to survive tissue water potentials reaching -100 MPa or lower. ScDREB10 is a DREB A-5 transcription factor gene from a DT moss named Syntrichia caninervis, which has strong comprehensive tolerance to osmotic and salt stresses. This study delves further into the molecular mechanism of ScDREB10 stress tolerance based on the transcriptome data of the overexpression of ScDREB10 in Arabidopsis under control, osmotic and salt treatments. The transcriptional analysis of weight gene co-expression network analysis (WGCNA) showed that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" were key pathways in the network of cyan and yellow modules. Meanwhile, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes (DEGs) also showed that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways demonstrate the highest enrichment in response to osmotic and salt stress, respectively. Quantitative real-time PCR (qRT-PCR) results confirmed that most genes related to phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways in overexpressing ScDREB10 Arabidopsis were up-regulated in response to osmotic and salt stresses, respectively. In line with the results, the corresponding lignin, sucrose, and trehalose contents and sucrose phosphate synthase activities were also increased in overexpressing ScDREB10 Arabidopsis under osmotic and salt stress treatments. Additionally, cis-acting promoter element analyses and yeast one-hybrid experiments showed that ScDREB10 was not only able to bind with classical cis-elements, such as DRE and TATCCC (MYBST1), but also bind with unknown element CGTCCA. All of these findings suggest that ScDREB10 may regulate plant stress tolerance by effecting phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways. This research provides insights into the molecular mechanisms underpinning ScDREB10-mediated stress tolerance and contributes to deeply understanding the A-5 DREB regulatory mechanism.
Collapse
Affiliation(s)
- Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| | - Feiya Lei
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| | - Wenwan Bai
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| |
Collapse
|
6
|
Sybilska E, Daszkowska-Golec A. Alternative splicing in ABA signaling during seed germination. FRONTIERS IN PLANT SCIENCE 2023; 14:1144990. [PMID: 37008485 PMCID: PMC10060653 DOI: 10.3389/fpls.2023.1144990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Seed germination is an essential step in a plant's life cycle. It is controlled by complex physiological, biochemical, and molecular mechanisms and external factors. Alternative splicing (AS) is a co-transcriptional mechanism that regulates gene expression and produces multiple mRNA variants from a single gene to modulate transcriptome diversity. However, little is known about the effect of AS on the function of generated protein isoforms. The latest reports indicate that alternative splicing (AS), the relevant mechanism controlling gene expression, plays a significant role in abscisic acid (ABA) signaling. In this review, we present the current state of the art about the identified AS regulators and the ABA-related changes in AS during seed germination. We show how they are connected with the ABA signaling and the seed germination process. We also discuss changes in the structure of the generated AS isoforms and their impact on the functionality of the generated proteins. Also, we point out that the advances in sequencing technology allow for a better explanation of the role of AS in gene regulation by more accurate detection of AS events and identification of full-length splicing isoforms.
Collapse
Affiliation(s)
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
7
|
Li H, He X, Gao Y, Liu W, Song J, Zhang J. Integrative Analysis of Transcriptome, Proteome, and Phosphoproteome Reveals Potential Roles of Photosynthesis Antenna Proteins in Response to Brassinosteroids Signaling in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:1290. [PMID: 36986978 PMCID: PMC10058427 DOI: 10.3390/plants12061290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Brassinosteroids are a recently discovered group of substances that promote plant growth and productivity. Photosynthesis, which is vital for plant growth and high productivity, is strongly influenced by brassinosteroid signaling. However, the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize remains obscure. Here, we performed integrated transcriptome, proteome, and phosphoproteomic analyses to identify the key photosynthesis pathway that responds to brassinosteroid signaling. Transcriptome analysis suggested that photosynthesis antenna proteins and carotenoid biosynthesis, plant hormone signal transduction, and MAPK signaling in CK VS EBR and CK VS Brz were significantly enriched in the list of differentially expressed genes upon brassinosteroids treatment. Consistently, proteome and phosphoproteomic analyses indicated that photosynthesis antenna and photosynthesis proteins were significantly enriched in the list of differentially expressed proteins. Thus, transcriptome, proteome, and phosphoproteome analyses showed that major genes and proteins related to photosynthesis antenna proteins were upregulated by brassinosteroids treatment in a dose-dependent manner. Meanwhile, 42 and 186 transcription factor (TF) responses to brassinosteroid signals in maize leaves were identified in the CK VS EBR and CK VS Brz groups, respectively. Our study provides valuable information for a better understanding of the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize.
Collapse
Affiliation(s)
- Hui Li
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China
| | - Xuewu He
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yuanfen Gao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Wenjuan Liu
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China
| | - Jun Song
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
8
|
Kang X, Zhu W, Xu T, Sui J, Gao W, Liu Z, Jing H, Cui B, Qiao X, Abd El-Aty AM. Characterization of starch structures isolated from the grains of waxy, sweet, and hybrid sorghum ( Sorghum bicolor L. Moench). Front Nutr 2022; 9:1052285. [PMID: 36583213 PMCID: PMC9792479 DOI: 10.3389/fnut.2022.1052285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, starches were isolated from inbred (sweet and waxy) and hybrid (sweet and waxy) sorghum grains. Structural and property differences between (inbred and hybrid) sweet and waxy sorghum starches were evaluated and discussed. The intermediate fraction and amylose content present in hybrid sweet starch were lower than those in inbred sweet starch, while the opposite trend occurred with waxy starch. Furthermore, there was a higher A chain (30.93-35.73% waxy, 13.73-31.81% sweet) and lower B2 + B3 chain (18.04-16.56% waxy, 24.07-17.43% sweet) of amylopectin in hybrid sorghum starch. X-ray diffraction (XRD) and Fourier transform infrared reflection measurements affirm the relative crystalline and ordered structures of both varieties as follows: inbred waxy > hybrid waxy > hybrid sweet > inbred sweet. Small angle X-ray scattering and 13C CP/MAS nuclear magnetic resonance proved that the amylopectin content of waxy starch was positively correlated with lamellar ordering. In contrast, an opposite trend was observed in sweet sorghum starch due to its long B2 + B3 chain content. Furthermore, the relationship between starch granule structure and function was also concluded. These findings could provide a basic theory for the accurate application of existing sorghum varieties precisely.
Collapse
Affiliation(s)
- Xuemin Kang
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Wentao Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Tongcheng Xu
- Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jie Sui
- Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Zhiquan Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Haichun Jing
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Cui
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China,*Correspondence: Bo Cui,
| | - Xuguang Qiao
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,Xuguang Qiao,
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey,A. M. Abd El-Aty,
| |
Collapse
|
9
|
Huang J, Tang B, Ren R, Wu M, Liu F, Lv Y, Shi T, Deng J, Chen Q. Understanding the Potential Gene Regulatory Network of Starch Biosynthesis in Tartary Buckwheat by RNA-Seq. Int J Mol Sci 2022; 23:ijms232415774. [PMID: 36555415 PMCID: PMC9779217 DOI: 10.3390/ijms232415774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Starch is a major component of crop grains, and its content affects food quality and taste. Tartary buckwheat is a traditional pseudo-cereal used in food as well as medicine. Starch content, granule morphology, and physicochemical properties have been extensively studied in Tartary buckwheat. However, the complex regulatory network related to its starch biosynthesis needs to be elucidated. Here, we performed RNA-seq analyses using seven Tartary buckwheat varieties differing in starch content and combined the RNA-seq data with starch content by weighted correlation network analysis (WGCNA). As a result, 10,873 differentially expressed genes (DEGs) were identified and were functionally clustered to six hierarchical clusters. Fifteen starch biosynthesis genes had higher expression level in seeds. Four trait-specific modules and 3131 hub genes were identified by WGCNA, with the lightcyan and brown modules positively correlated with starch-related traits. Furthermore, two potential gene regulatory networks were proposed, including the co-expression of FtNAC70, FtPUL, and FtGBSS1-3 in the lightcyan module and FtbHLH5, C3H, FtBE2, FtISA3, FtSS3-5, and FtSS1 in the brown. All the above genes were preferentially expressed in seeds, further suggesting their role in seed starch biosynthesis. These results provide crucial guidance for further research on starch biosynthesis and its regulatory network in Tartary buckwheat.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Bin Tang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Rongrong Ren
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Min Wu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Fei Liu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Yong Lv
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
10
|
Filyushin MA, Kochieva EZ, Shchennikova AV. ZmDREB2.9 Gene in Maize ( Zea mays L.): Genome-Wide Identification, Characterization, Expression, and Stress Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:3060. [PMID: 36432789 PMCID: PMC9694119 DOI: 10.3390/plants11223060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Dehydration-responsive element-binding (DREB) transcription factors of the A2 subfamily play key roles in plant stress responses. In this study, we identified and characterized a new A2-type DREB gene, ZmDREB2.9, in the Zea mays cv. B73 genome and compared its expression profile with those of the known A2-type maize genes ZmDREB2.1-2.8. ZmDREB2.9 was mapped to chromosome 8, contained 18 predicted hormone- and stress-responsive cis-elements in the promoter, and had two splice isoforms: short ZmDREB2.9-S preferentially expressed in the leaves, embryos, and endosperm and long ZmDREB2.9-L expressed mostly in the male flowers, stamens, and ovaries. Phylogenetically, ZmDREB2.9 was closer to A. thaliana DREB2A than the other ZmDREB2 factors. ZmDREB2.9-S, ZmDREB2.2, and ZmDREB2.1/2A were upregulated in response to cold, drought, and abscisic acid and may play redundant roles in maize stress resistance. ZmDREB2.3, ZmDREB2.4, and ZmDREB2.6 were not expressed in seedlings and could be pseudogenes. ZmDREB2.7 and ZmDREB2.8 showed similar transcript accumulation in response to cold and abscisic acid and could be functionally redundant. Our results provide new data on Z. mays DREB2 factors, which can be used for further functional studies as well as in breeding programs to improve maize stress tolerance.
Collapse
|
11
|
Guo J, Qu L, Wei Q, Lu D. Effects of post-silking low temperature on the starch and protein metabolism, endogenous hormone contents, and quality of grains in waxy maize. FRONTIERS IN PLANT SCIENCE 2022; 13:988172. [PMID: 36407592 PMCID: PMC9673756 DOI: 10.3389/fpls.2022.988172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Waxy maize has many excellent characteristics in food and nonfood industries. However, post-silking low temperature (LT) has severe limitations on its grain yield and quality. In this study, field and pot trials were conducted to investigate the effects of post-silking LT on the physiological, biochemical, and functional characteristics of two waxy maize grains. The field and pot trials were performed with sowing date and artificial climate chamber, respectively, for LT treatment from silking stage to maturity. Results in pot trial were used to explain and validate the findings in field trial. Compared with the ambient treatment, the LT treatment significantly reduced kernel weight during the grain filling stage (P < 0.05). LT treatment in both environments resulted in an average decrease in dry weight of SYN5 and YN7 at maturity by 36.6% and 42.8%, respectively. Enzymatic activities related to starch and protein biosynthesis decreased under the LT treatment during the filling stage, accompanied by a decrease in the accumulation amounts and contents of soluble sugar and starch, and a decrease in protein accumulation amount. Meanwhile, the contents of abscisic acid, indole-3-acetic acid, and gibberellin 3 in grains decreased under the LT treatment during the filling stage. Peak, trough, breakdown, final, and setback viscosities of grains decreased by LT. LT treatment decreased the gelatinization enthalpy of grains and increased the retrogradation percentage. In conclusion, post-silking LT stress altered the content of grain components by inhibiting the production of phytohormones and down-regulating the enzymatic activities involved in starch and protein metabolism, which resulted in the deterioration of grain pasting and thermal properties.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
| | - Qi Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Abscisic Acid Induces Adventitious Rooting in Cucumber (Cucumis sativus L.) by Enhancing Sugar Synthesis. PLANTS 2022; 11:plants11182354. [PMID: 36145755 PMCID: PMC9505232 DOI: 10.3390/plants11182354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Abscisic acid (ABA) affects many important plant processes, such as seed germination, root elongation and stomatal movement. However, little information is available about the relationship between ABA and sugar synthesis during adventitious root formation. The aim of this study was to evaluate the effect of ABA on adventitious root formation in cucumber and whether the effect of this plant hormone on sugar synthesis could be included as a causative factor for adventitious root development. We determined the contents of glucose, sucrose, starch, total sugar and sugar-related enzymes, including sucrose synthase (SS), sucrose phosphate synthase (SPS), hexokinase (HK) and pyruvate kinase (PK) activities in ABA treatment. We also quantified the relative expression of sucrose or glucose synthesis genes during this process. Increasing ABA concentrations significantly improved adventitious root formation, with the most considerable effect at 0.05 μM. Compared to the control, ABA treatment showed higher glucose, sucrose, starch and total sugar contents. Moreover, ABA treatment increased glucose-6-phosphate (G6P), fructose-6-phosphate (F6P) and glucose-1-phosphate (G1P) contents in cucumber explants during adventitious root development, which was followed by an increase of activities of sucrose-related enzymes SS and SPS, glucose-related enzymes HK and PK. ABA, meanwhile, upregulated the expression levels of sucrose or glucose synthesis-related genes, including CsSuSy1, CsSuSy6, CsHK1 and CsHK3. These results suggest that ABA may promote adventitious root development by increasing the contents of glucose, sucrose, starch, total sugar, G6P, F6P and G1P, the activities of SS, SPS, HK, SPS and the expression levels of CsSuSy1, CsSuSy6, CsHK1 and CsHK3 genes. These findings provide evidence for the physiological role of ABA during adventitious root formation and provide a new understanding of the possible relationship between ABA and sugar synthesis during adventitious rooting in plants.
Collapse
|
13
|
Wu H, Li G, Zhan J, Zhang S, Beall BD, Yadegari R, Becraft PW. Rearrangement with the nkd2 promoter contributed to allelic diversity of the r1 gene in maize (Zea mays). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1701-1716. [PMID: 35876146 PMCID: PMC9546038 DOI: 10.1111/tpj.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The maize red1 (r1) locus regulates anthocyanin accumulation and is a classic model for allelic diversity; changes in regulatory regions are responsible for most of the variation in gene expression patterns. Here, an intrachromosomal rearrangement between the distal upstream region of r1 and the region of naked endosperm 2 (nkd2) upstream to the third exon generated a nkd2 null allele lacking the first three exons, and the R1-st (stippled) allele with a novel r1 5' promoter region homologous to 5' regions from nkd2-B73. R1-sc:124 (an R1-st derivative) shows increased and earlier expression than a standard R1-g allele, as well as ectopic expression in the starchy endosperm compartment. Laser capture microdissection and RNA sequencing indicated that ectopic R1-sc:124 expression impacted expression of genes associated with RNA modification. The expression of R1-sc:124 resembled nkd2-W22 expression, suggesting that nkd2 regulatory sequences may influence the expression of R1-sc:124. The r1-sc:m3 allele is derived from R1-sc:124 by an insertion of a Ds6 transposon in intron 4. This insertion blocks anthocyanin regulation by causing mis-splicing that eliminates exon 5 from the mRNA. This allele serves as an important launch site for Ac/Ds mutagenesis studies, and two Ds6 insertions believed to be associated with nkd2 mutant alleles were actually located in the r1 5' region. Among annotated genomes of teosinte and maize varieties, the nkd2 and r1 loci showed conserved overall gene structures, similar to the B73 reference genome, suggesting that the nkd2-r1 rearrangement may be a recent event.
Collapse
Affiliation(s)
- Hao Wu
- Genetics, Development and Cell Biology DepartmentIowa State UniversityAmesIowaUSA
- Present address:
School of Integrative Plant ScienceCornell UniversityIthacaNew York14853USA
| | - Guosheng Li
- School of Plant SciencesUniversity of ArizonaTucsonArizona85721USA
| | - Junpeng Zhan
- School of Plant SciencesUniversity of ArizonaTucsonArizona85721USA
- Present address:
Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
| | - Shanshan Zhang
- School of Plant SciencesUniversity of ArizonaTucsonArizona85721USA
| | - Brandon D. Beall
- Genetics, Development and Cell Biology DepartmentIowa State UniversityAmesIowaUSA
- Agronomy DepartmentIowa State UniversityAmesIowa50011USA
| | - Ramin Yadegari
- School of Plant SciencesUniversity of ArizonaTucsonArizona85721USA
| | - Philip W. Becraft
- Genetics, Development and Cell Biology DepartmentIowa State UniversityAmesIowaUSA
- Agronomy DepartmentIowa State UniversityAmesIowa50011USA
| |
Collapse
|
14
|
Xiao Q, Huang T, Cao W, Ma K, Liu T, Xing F, Ma Q, Duan H, Ling M, Ni X, Liu Z. Profiling of transcriptional regulators associated with starch biosynthesis in sorghum ( Sorghum bicolor L.). FRONTIERS IN PLANT SCIENCE 2022; 13:999747. [PMID: 36110358 PMCID: PMC9468648 DOI: 10.3389/fpls.2022.999747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Starch presents as the major component of grain endosperm of sorghum (Sorghum bicolor L.) and other cereals, serving as the main energy supplier for both plants and animals, as well as important industrial raw materials of human beings, and was intensively concerned world widely. However, few documents focused on the pathway and transcriptional regulations of starch biosynthesis in sorghum. Here we presented the RNA-sequencing profiles of 20 sorghum tissues at different developmental stages to dissect key genes associated with sorghum starch biosynthesis and potential transcriptional regulations. A total of 1,708 highly expressed genes were detected, namely, 416 in grains, 736 in inflorescence, 73 in the stalk, 215 in the root, and 268 genes in the leaf. Besides, 27 genes encoded key enzymes associated with starch biosynthesis in sorghum were identified, namely, six for ADP-glucose pyrophosphorylase (AGPase), 10 for starch synthases (SSs), four for both starch-branching enzymes (SBE) and starch-debranching enzymes (DBEs), two for starch phosphorylases (SPs), and one for Brittle-1 (BT1). In addition, 65 transcription factors (TFs) that are highly expressed in endosperm were detected to co-express with 16 out of 27 genes, and 90 cis-elements were possessed by all 27 identified genes. Four NAC TFs were cloned, and the further assay results showed that three of them could in vitro bind to the CACGCAA motif within the promoters of SbBt1 and SbGBSSI, two key genes associated with starch biosynthesis in sorghum, functioning in similar ways that reported in other cereals. These results confirmed that sorghum starch biosynthesis might share the same or similar transcriptional regulations documented in other cereals, and provided informative references for further regulatory mechanism dissection of TFs involved in starch biosynthesis in sorghum.
Collapse
Affiliation(s)
- Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Tianhui Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wan Cao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Kuang Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Tingting Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Fangyu Xing
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qiannan Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hong Duan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Min Ling
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xianlin Ni
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
- Sichuan Sub Center, National Sorghum Improvement Center, Luzhou, China
| | - Zhizhai Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Ajayo BS, Li Y, Wang Y, Dai C, Gao L, Liu H, Yu G, Zhang J, Huang Y, Hu Y. The novel ZmTCP7 transcription factor targets AGPase-encoding gene ZmBt2 to regulate storage starch accumulation in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:943050. [PMID: 35909761 PMCID: PMC9335043 DOI: 10.3389/fpls.2022.943050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 05/27/2023]
Abstract
The process of starch biosynthesis is a major developmental event that affects the final grain yield and quality in maize (Zea mays L.), and transcriptional regulation plays a key role in modulating the expression of the main players in the pathway. ZmBt2, which encodes the small subunits of AGPase, is a rate-controlling gene of the pathway; however, much remains unknown about its transcriptional regulation. Our earlier study identifies a short functional fragment of ZmBt2 promoter (394-bp), and further shows it contains multiple putative cis-acting regulatory elements, demonstrating that several transcription factors may govern ZmBt2 expression. Here, we identified a novel TCP transcription factor (TF), ZmTCP7, that interacted with the functional fragment of the ZmBt2 promoter in a yeast one hybrid screening system. We further showed that ZmTCP7 is a non-autonomous TF targeted to the nucleus and predominantly expressed in maize endosperm. Using promoter deletion analyzes by transient expression in maize endosperm protoplasts combined with electrophoretic mobility shift assays, we found that ZmTCP7 bound to GAACCCCAC elements on the ZmBt2 promoter to suppress its expression. Transgenic overexpression of ZmTCP7 in maize caused a significant repression of ZmBt2 transcription by ~77.58%, resulting in a 21.51% decrease in AGPase activity and a 9.58% reduction in the endosperm starch content of transgenic maize. Moreover, the expressions of ZmBt1, ZmSSI, ZmSSIIa, and ZmSSIIIa were increased, while those of ZmSh2 and ZmSSIV reduced significantly in the endosperm of the transgenic maize. Overall, this study shows that ZmTCP7 functions as a transcriptional repressor of ZmBt2 and a negative regulator of endosperm starch accumulation, providing new insights into the regulatory networks that govern ZmBt2 expression and starch biosynthesis pathway in maize.
Collapse
Affiliation(s)
- Babatope Samuel Ajayo
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yangping Li
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yayun Wang
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chengdong Dai
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Lei Gao
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Hanmei Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Guowu Yu
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Junjie Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yubi Huang
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Zhang X, Li B, Duan R, Han C, Wang L, Yang J, Wang L, Wang S, Su Y, Xue H. Transcriptome Analysis Reveals Roles of Sucrose in Anthocyanin Accumulation in 'Kuerle Xiangli' ( Pyrus sinkiangensis Yü). Genes (Basel) 2022; 13:genes13061064. [PMID: 35741826 PMCID: PMC9222499 DOI: 10.3390/genes13061064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
Pear (Pyrus L.) is one of the most important temperate fruit crops worldwide, with considerable economic value and significant health benefits. Red-skinned pears have an attractive appearance and relatively high anthocyanin accumulation, and are especially favored by customers. Abnormal weather conditions usually reduce the coloration of red pears. The application of exogenous sucrose obviously promotes anthocyanins accumulation in ‘Kuerle Xiangli’ (Pyrus sinkiangensis Yü); however, the underlying molecular mechanism of sucrose-mediated fruit coloration remains largely unknown. In this study, comprehensive transcriptome analysis was performed to identify the essential regulators and pathways associated with anthocyanin accumulation. The differentially expressed genes enriched in Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes items were analyzed. The transcript levels of some anthocyanin biosynthetic regulatory genes and structural genes were significantly induced by sucrose treatment. Sucrose application also stimulated the expression of some sugar transporter genes. Further RT-qPCR analysis confirmed the induction of anthocyanin biosynthetic genes. Taken together, the results revealed that sucrose promotes pear coloration most likely by regulating sugar metabolism and anthocyanin biosynthesis, and this study provides a comprehensive understanding of the complex molecular mechanisms underlying the coloration of red-skinned pear.
Collapse
Affiliation(s)
- Xiangzhan Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Bo Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ruiwei Duan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chunhong Han
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- College of Horticulture and Plant Conservation, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Long Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Suke Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yanli Su
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Huabai Xue
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Correspondence:
| |
Collapse
|
17
|
Finegan C, Boehlein SK, Leach KA, Madrid G, Hannah LC, Koch KE, Tracy WF, Resende MFR. Genetic Perturbation of the Starch Biosynthesis in Maize Endosperm Reveals Sugar-Responsive Gene Networks. FRONTIERS IN PLANT SCIENCE 2022; 12:800326. [PMID: 35211133 PMCID: PMC8861272 DOI: 10.3389/fpls.2021.800326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/27/2021] [Indexed: 05/28/2023]
Abstract
In maize, starch mutants have facilitated characterization of key genes involved in endosperm starch biosynthesis such as large subunit of AGPase Shrunken2 (Sh2) and isoamylase type DBE Sugary1 (Su1). While many starch biosynthesis enzymes have been characterized, the mechanisms of certain genes (including Sugary enhancer1) are yet undefined, and very little is understood about the regulation of starch biosynthesis. As a model, we utilize commercially important sweet corn mutations, sh2 and su1, to genetically perturb starch production in the endosperm. To characterize the transcriptomic response to starch mutations and identify potential regulators of this pathway, differential expression and coexpression network analysis was performed on near-isogenic lines (NILs) (wildtype, sh2, and su1) in six genetic backgrounds. Lines were grown in field conditions and kernels were sampled in consecutive developmental stages (blister stage at 14 days after pollination (DAP), milk stage at 21 DAP, and dent stage at 28 DAP). Kernels were dissected to separate embryo and pericarp from the endosperm tissue and 3' RNA-seq libraries were prepared. Mutation of the Su1 gene led to minimal changes in the endosperm transcriptome. Responses to loss of sh2 function include increased expression of sugar (SWEET) transporters and of genes for ABA signaling. Key regulators of starch biosynthesis and grain filling were identified. Notably, this includes Class II trehalose 6-phosphate synthases, Hexokinase1, and Apetala2 transcription factor-like (AP2/ERF) transcription factors. Additionally, our results provide insight into the mechanism of Sugary enhancer1, suggesting a potential role in regulating GA signaling via GRAS transcription factor Scarecrow-like1.
Collapse
Affiliation(s)
- Christina Finegan
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Susan K. Boehlein
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Kristen A. Leach
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Gabriela Madrid
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - L. Curtis Hannah
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Karen E. Koch
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - William F. Tracy
- Department of Agronomy, University of Wisconsin- Madison, Madison, WI, United States
| | - Marcio F. R. Resende
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
18
|
Molecular Aspects of Seed Development Controlled by Gibberellins and Abscisic Acids. Int J Mol Sci 2022; 23:ijms23031876. [PMID: 35163798 PMCID: PMC8837179 DOI: 10.3390/ijms23031876] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved seeds to permit the survival and dispersion of their lineages by providing nutrition for embryo growth and resistance to unfavorable environmental conditions. Seed formation is a complicated process that can be roughly divided into embryogenesis and the maturation phase, characterized by accumulation of storage compound, acquisition of desiccation tolerance, arrest of growth, and acquisition of dormancy. Concerted regulation of several signaling pathways, including hormonal and metabolic signals and gene networks, is required to accomplish seed formation. Recent studies have identified the major network of genes and hormonal signals in seed development, mainly in maturation. Gibberellin (GA) and abscisic acids (ABA) are recognized as the main hormones that antagonistically regulate seed development and germination. Especially, knowledge of the molecular mechanism of ABA regulation of seed maturation, including regulation of dormancy, accumulation of storage compounds, and desiccation tolerance, has been accumulated. However, the function of ABA and GA during embryogenesis still remains elusive. In this review, we summarize the current understanding of the sophisticated molecular networks of genes and signaling of GA and ABA in the regulation of seed development from embryogenesis to maturation.
Collapse
|
19
|
Li R, Zheng W, Jiang M, Zhang H. A review of starch biosynthesis in cereal crops and its potential breeding applications in rice ( Oryza Sativa L.). PeerJ 2022; 9:e12678. [PMID: 35036154 PMCID: PMC8710062 DOI: 10.7717/peerj.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Starch provides primary storage of carbohydrates, accounting for approximately 85% of the dry weight of cereal endosperm. Cereal seeds contribute to maximum annual starch production and provide the primary food for humans and livestock worldwide. However, the growing demand for starch in food and industry and the increasing loss of arable land with urbanization emphasizes the urgency to understand starch biosynthesis and its regulation. Here, we first summarized the regulatory signaling pathways about leaf starch biosynthesis. Subsequently, we paid more attention to how transcriptional factors (TFs) systematically respond to various stimulants via the regulation of the enzymes during starch biosynthesis. Finally, some strategies to improve cereal yield and quality were put forward based on the previous reports. This review would collectively help to design future studies on starch biosynthesis in cereal crops.
Collapse
Affiliation(s)
- Ruiqing Li
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China.,College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wenyin Zheng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Meng Jiang
- State Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
20
|
Analysis of Global Gene Expression in Maize (Zea mays) Vegetative and Reproductive Tissues That Differ in Accumulation of Starch and Sucrose. PLANTS 2022; 11:plants11030238. [PMID: 35161219 PMCID: PMC8838981 DOI: 10.3390/plants11030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Carbon allocation between vegetative and reproductive tissues impacts cereal grain production. Despite great agricultural importance, sink–source relationships have not been fully characterized at the early reproductive stages in maize. Here, we quantify the accumulation of non-structural carbohydrates and patterns of gene expression in the top internode of the stem and the female inflorescence of maize at the onset of grain filling (reproductive stage R1). Top internode stem and female inflorescence tissues of the Puma maize inbred line were collected at reproductive stage R1 (without pollination) and non-structural carbohydrates were quantified by spectrophotometry. The female inflorescence accumulated starch at higher levels than the top internode of the stem. Global mRNA transcript levels were then evaluated in both tissues by RNA sequencing. Gene expression analysis identified 491 genes differentially expressed between the female inflorescence and the top stem internode. Gene ontology classification of differentially expressed genes showed enrichment for sucrose synthesis, the light-dependent reactions of photosynthesis, and transmembrane transporters. Our results suggest that sugar transporters play a key role in sugar partitioning in the maize stem and reveal previously uncharacterized differences between the female inflorescence and the top internode of the stem at early reproductive stages.
Collapse
|
21
|
Hu X, Li S, Lin X, Fang H, Shi Y, Grierson D, Chen K. Transcription Factor CitERF16 Is Involved in Citrus Fruit Sucrose Accumulation by Activating CitSWEET11d. FRONTIERS IN PLANT SCIENCE 2021; 12:809619. [PMID: 35003195 PMCID: PMC8733390 DOI: 10.3389/fpls.2021.809619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 06/12/2023]
Abstract
Sugars are the primary products of photosynthesis and play an important role in plant growth and development. They contribute to sweetness and flavor of fleshy fruits and are pivotal to fruit quality, and their translocation and allocation are mainly dependent on sugar transporters. Genome-wide characterization of Satsuma mandarin identified eighteen SWEET family members that encode transporters which facilitate diffusion of sugar across cell membranes. Analysis of the expression profiles in tissues of mandarin fruit at different developmental stages showed that CitSWEET11d transcripts were significantly correlated with sucrose accumulation. Further studies indicated that overexpression of CitSWEET11d in citrus callus and tomato fruit showed a higher sucrose level compared to wild-type, suggesting that CitSWEET11d could enhance sucrose accumulation. In addition, we identified an ERF transcription factor CitERF16 by yeast one-hybrid screening assay which could directly bind to the DRE cis-element on the promoter of CitSWEET11d. Overexpression of CitERF16 in citrus callus significantly induced CitSWEET11d expression and elevated sucrose content, suggesting that CitERF16 acts as a positive regulator to promote sucrose accumulation via trans-activation of CitSWEET11d expression.
Collapse
Affiliation(s)
- Xiaobo Hu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Shaojia Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xiahui Lin
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Heting Fang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yanna Shi
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
NnABI4-Mediated ABA Regulation of Starch Biosynthesis in Lotus ( Nelumbo nucifera Gaertn). Int J Mol Sci 2021; 22:ijms222413506. [PMID: 34948298 PMCID: PMC8705639 DOI: 10.3390/ijms222413506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Starch is an important component in lotus. ABA is an important plant hormone, which plays a very crucial role in regulating plant starch synthesis. Using ‘MRH’ as experimental materials, the leaves were sprayed with exogenous ABA before the rhizome expansion. The results showed that stomatal conductance and transpiration rate decreased while net photosynthetic rate increased. The total starch content of the underground rhizome of lotus increased significantly. Meanwhile, qPCR results showed that the relative expression levels of NnSS1, NnSBE1 and NnABI4 were all upregulated after ABA treatment. Then, yeast one-hybrid and dual luciferase assay suggested that NnABI4 protein can promote the expression of NnSS1 by directly binding to its promoter. In addition, subcellular localization results showed that NnABI4 encodes a nuclear protein, and NnSS1 protein was located in the chloroplast. Finally, these results indicate that ABA induced the upregulated expression of NnABI4, and NnABI4 promoted the expression of NnSS1 and thus enhanced starch accumulation in lotus rhizomes. This will provide a theoretical basis for studying the molecular mechanism of ABA regulating starch synthesis in plant.
Collapse
|
23
|
Li R, Tan Y, Zhang H. Regulators of Starch Biosynthesis in Cereal Crops. Molecules 2021; 26:molecules26237092. [PMID: 34885674 PMCID: PMC8659000 DOI: 10.3390/molecules26237092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023] Open
Abstract
Starch is the main food source for human beings and livestock all over the world, and it is also the raw material for production of industrial alcohol and biofuel. A considerable part of the world’s annual starch production comes from crops and their seeds. With the increasing demand for starch from food and non-food industries and the growing loss of arable land due to urbanization, understanding starch biosynthesis and its regulators is essential to produce the desirable traits as well as more and better polymers via biotechnological approaches in cereal crops. Because of the complexity and flexibility of carbon allocation in the formation of endosperm starch, cereal crops require a broad range of enzymes and one matching network of regulators to control the providential functioning of these starch biosynthetic enzymes. Here, we comprehensively summarize the current knowledge about regulatory factors of starch biosynthesis in cereal crops, with an emphasis on the transcription factors that directly regulate starch biosynthesis. This review will provide new insights for the manipulation of bioengineering and starch biosynthesis to improve starch yields or qualities in our diets and in industry.
Collapse
Affiliation(s)
- Ruiqing Li
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310029, China;
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yuanyuan Tan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China;
| | - Huali Zhang
- State Key Laboratory of Rice Biology, Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310029, China;
- Correspondence:
| |
Collapse
|
24
|
Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. PLANT COMMUNICATIONS 2021; 2:100237. [PMID: 34746765 PMCID: PMC8554040 DOI: 10.1016/j.xplc.2021.100237] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/13/2023]
Abstract
Starch is a vital energy source for living organisms and is a key raw material and additive in the food and non-food industries. Starch has received continuous attention in multiple research fields. The endosperm of cereals (e.g., rice, corn, wheat, and barley) is the most important site for the synthesis of storage starch. Around 2010, several excellent reviews summarized key progress in various fields of starch research, serving as important references for subsequent research. In the past 10 years, many achievements have been made in the study of starch synthesis and regulation in cereals. The present review provides an update on research progress in starch synthesis of cereal endosperms over the past decade, focusing on new enzymes and non-enzymatic proteins involved in starch synthesis, regulatory networks of starch synthesis, and the use of elite alleles of starch synthesis-related genes in cereal breeding programs. We also provide perspectives on future research directions that will further our understanding of cereal starch biosynthesis and regulation to support the rational design of ideal quality grain.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
25
|
Yue K, Lingling L, Xie J, Coulter JA, Luo Z. Synthesis and regulation of auxin and abscisic acid in maize. PLANT SIGNALING & BEHAVIOR 2021; 16:1891756. [PMID: 34057034 PMCID: PMC8205056 DOI: 10.1080/15592324.2021.1891756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Indole-3-acetic acid (IAA), the primary auxin in higher plants, and abscisic acid (ABA) play crucial roles in the ability of maize (Zea mays L.) to acclimatize to various environments by mediating growth, development, defense and nutrient allocation. Although understanding the biochemical reactions for IAA and ABA biosynthesis and signal transduction has progressed, the mechanisms by which auxin and ABA are synthesized and transduced in maize have not been fully elucidated to date. The synthesis and signal transduction pathway of IAA and ABA in maize can be analyzed using an existing model. This article focuses on the research progress toward understanding the synthesis and signaling pathways of IAA and ABA, as well as IAA and ABA regulation of maize growth, providing insight for future development and the significance of IAA and ABA for maize improvement.
Collapse
Affiliation(s)
- Kai Yue
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Li Lingling
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- CONTACT Lingling Li College of Agronomy/Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhong Xie
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jeffrey A. Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Zhuzhu Luo
- College of Resource and Environment, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
26
|
Zhong X, Feng X, Li Y, Guzmán C, Lin N, Xu Q, Zhang Y, Tang H, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Genome-wide identification of bZIP transcription factor genes related to starch synthesis in barley ( Hordeum vulgare L.). Genome 2021; 64:1067-1080. [PMID: 34058097 DOI: 10.1139/gen-2020-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The basic leucine zipper (bZIP) family of genes encode transcription factors that play key roles in plant growth and development. In this study, a total of 92 HvbZIP genes were identified and compared with previous studies using recently released barley genome data. Two novel genes were characterized in this study, and some misannotated and duplicated genes from previous studies have been corrected. Phylogenetic analysis results showed that 92 HvbZIP genes were classified into 10 groups and three unknown groups. The gene structure and motif distribution of the three unknown groups implied that the genes of the three groups may be functionally different. Expression profiling indicated that the HvbZIP genes exhibited different patterns of spatial and temporal expression. Using qRT-PCR, more than 10 HvbZIP genes were identified with expression patterns similar to those of starch synthase genes in barley. Yeast one-hybrid analysis revealed that two of the HvbZIP genes exhibited in vitro binding activity to the promoter of HvAGP-S. The two HvbZIP genes may be candidate genes for further study to explore the mechanism by which they regulate the synthesis of barley starch.
Collapse
Affiliation(s)
- Xiaojuan Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiuqin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yulong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Cordoba, 14071, Spain
| | - Na Lin
- College of Sichuan Tea, Yibin University, Yibin, Sichuan 644000, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
27
|
Zhu Y, Li X, Gao X, Sun J, Ji X, Feng G, Shen G, Xiang B, Wang Y. Molecular mechanism underlying the effect of maleic hydrazide treatment on starch accumulation in S. polyrrhiza 7498 fronds. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:99. [PMID: 33874980 PMCID: PMC8056677 DOI: 10.1186/s13068-021-01932-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/19/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Duckweed is considered a promising feedstock for bioethanol production due to its high biomass and starch production. The starch content can be promoted by plant growth regulators after the vegetative reproduction being inhibited. Maleic hydrazide (MH) has been reported to inhibit plant growth, meantime to increase biomass and starch content in some plants. However, the molecular explanation on the mechanism of MH action is still unclear. RESULTS To know the effect and action mode of MH on the growth and starch accumulation in Spirodela polyrrhiza 7498, the plants were treated with different concentrations of MH. Our results showed a substantial inhibition of the growth in both fronds and roots, and increase in starch contents of plants after MH treatment. And with 75 µg/mL MH treatment and on the 8th day of the experiment, starch content was the highest, about 40 mg/g fresh weight, which is about 20-fold higher than the control. The I2-KI staining and TEM results confirmed that 75 µg/mL MH-treated fronds possessed more starch and big starch granules than that of the control. No significant difference for both in the photosynthetic pigment content and the chlorophyll fluorescence parameters of PII was found. Differentially expressed transcripts were analyzed in S. polyrrhiza 7498 after 75 µg/mL MH treatment. The results showed that the expression of some genes related to auxin response reaction was down-regulated; while, expression of some genes involved in carbon fixation, C4 pathway of photosynthesis, starch biosynthesis and ABA signal transduction pathway was up-regulated. CONCLUSION The results provide novel insights into the underlying mechanisms of growth inhibition and starch accumulation by MH treatment, and provide a selective way for the improvement of starch production in duckweed.
Collapse
Affiliation(s)
- Yerong Zhu
- College of Life Science, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Xiaoxue Li
- College of Life Science, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Xuan Gao
- College of Life Science, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Jiqi Sun
- College of Life Science, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Xiaoyuan Ji
- College of Life Science, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Guodong Feng
- College of Life Science, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Guangshuang Shen
- College of Life Science, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Beibei Xiang
- School of Chinese Material Medica, Tianjin University of Traditional Chinese Medicine, Poyang Lake Road 10, Tianjin, 301617, China
| | - Yong Wang
- College of Life Science, Nankai University, Weijin Road 94, Tianjin, 300071, China.
| |
Collapse
|
28
|
Yue X, Liu S, Wei S, Fang Y, Zhang Z, Ju Y. Transcriptomic and Metabolic Analyses Provide New Insights into the Effects of Exogenous Sucrose on Monoterpene Synthesis in "Muscat Hamburg" Grapes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4164-4176. [PMID: 33787258 DOI: 10.1021/acs.jafc.1c00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monoterpenes provide strong floral and fruit aromas to grapes and wines. In the present study, the effects of exogenous sucrose on the monoterpenes metabolites were studied at the metabolomic and transcriptomic levels in "Muscat Hamburg" grape berries. 6% sucrose aqueous solution was used as treatment, applied at the berry color change stage and 8 days after the first application. Transcriptomics analysis was carried out on berries collected at three phenological stages (berries with intermediate Brix values, E-L 36; berries not quite ripe, E-L 37; and berries harvest-ripe, E-L 38). Our results showed that the sucrose application induced the accumulation of monoterpenes at harvest, especially geraniol and geranic acid. The summary of the number of differentially expressed genes between the control and treatment was 3465, 977, and 2843 at E-L 36, E-L 37, and E-L 38, respectively. Weighted gene correlation network analysis was constructed based on the RNA-seq data, and the MElightyellow module was probably correlated with monoterpene metabolism, comprising 131 unigenes. Quantitative real-time polymerase chain expression analysis of five key differentially expressed genes in terpenoid pathways validated the RNA-seq-derived expression profiles (R2 = 0.8143). Our findings provided new insights into the regulation of monoterpene biosynthesis in grape berries under exogenous sucrose.
Collapse
Affiliation(s)
- Xiaofeng Yue
- College of Enology, Northwest A&F University, Yangling 712100, P. R. China
| | - Shiqiu Liu
- Moet Hennessy Chandon (Ningxia) Vineyards Co., Limited, Yinchuan 750000, Ningxia, China
| | - Shichao Wei
- College of Enology, Northwest A&F University, Yangling 712100, P. R. China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling 712100, P. R. China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, P. R.China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling 712100, P. R. China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, P. R.China
| | - Yanlun Ju
- College of Enology, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
29
|
Fu J, Zhu C, Wang C, Liu L, Shen Q, Xu D, Wang Q. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:257-267. [PMID: 33395583 DOI: 10.1016/j.plaphy.2020.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/23/2020] [Indexed: 05/22/2023]
Abstract
Soil salinity severely limits agricultural crop production worldwide. As one of the biggest plant specific transcription factor families, AP2/ERF members have been extensively studied to regulate plant growth, development and stress responses. However, the role of AP2/ERF family in maize salt tolerance remains largely unknown. In this study, we identified a maize AP2-ERF family member ZmEREB20 as a positive salinity responsive gene. Overexpression of ZmEREB20in Arabidopsis enhanced ABA sensitivity and resulted in delayed seed germination under salt stress through regulating ABA and GA related genes. ZmEREB20 overexpression lines also showed higher survival rates with elevated ROS scavenging toward high salinity. Furthermore, root hair growth inhibition by salt stress was markedly rescued in ZmEREB20 overexpression lines. Auxin transport inhibitor TIBA drastically enhanced root hair growth in ZmEREB20 overexpression Arabidopsis under salt stress, together with the increased expression of auxin-related genes, ion transporter genes and root hair growth genes by RNA-seq analysis. ZmEREB20 positively regulated salt tolerance through the molecular mechanism associated with hormone signaling, ROS scavenging and root hair plasticity, proving the potential target for crop breeding to improve salt resistance.
Collapse
Affiliation(s)
- Jingye Fu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chenying Zhu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijun Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dongbei Xu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China.
| |
Collapse
|
30
|
Shah AN, Tanveer M, Abbas A, Yildirim M, Shah AA, Ahmad MI, Wang Z, Sun W, Song Y. Combating Dual Challenges in Maize Under High Planting Density: Stem Lodging and Kernel Abortion. FRONTIERS IN PLANT SCIENCE 2021; 12:699085. [PMID: 34868101 PMCID: PMC8636062 DOI: 10.3389/fpls.2021.699085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/13/2021] [Indexed: 05/09/2023]
Abstract
High plant density is considered a proficient approach to increase maize production in countries with limited agricultural land; however, this creates a high risk of stem lodging and kernel abortion by reducing the ratio of biomass to the development of the stem and ear. Stem lodging and kernel abortion are major constraints in maize yield production for high plant density cropping; therefore, it is very important to overcome stem lodging and kernel abortion in maize. In this review, we discuss various morphophysiological and genetic characteristics of maize that may reduce the risk of stem lodging and kernel abortion, with a focus on carbohydrate metabolism and partitioning in maize. These characteristics illustrate a strong relationship between stem lodging resistance and kernel abortion. Previous studies have focused on targeting lignin and cellulose accumulation to improve lodging resistance. Nonetheless, a critical analysis of the literature showed that considering sugar metabolism and examining its effects on lodging resistance and kernel abortion in maize may provide considerable results to improve maize productivity. A constructive summary of management approaches that could be used to efficiently control the effects of stem lodging and kernel abortion is also included. The preferred management choice is based on the genotype of maize; nevertheless, various genetic and physiological approaches can control stem lodging and kernel abortion. However, plant growth regulators and nutrient application can also help reduce the risk for stem lodging and kernel abortion in maize.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Mehmet Yildirim
- Department of Field Crop, Faculty of Agriculture, Dicle University, Diyarbakir, Turkey
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | | | - Zhiwei Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Weiwei Sun
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, China
- *Correspondence: Youhong Song
| |
Collapse
|
31
|
Ding J, Karim H, Li Y, Harwood W, Guzmán C, Lin N, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Re-examination of the APETALA2/Ethylene-Responsive Factor Gene Family in Barley ( Hordeum vulgare L.) Indicates a Role in the Regulation of Starch Synthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:791584. [PMID: 34925430 PMCID: PMC8672199 DOI: 10.3389/fpls.2021.791584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/11/2021] [Indexed: 05/07/2023]
Abstract
The APETALA2/Ethylene-Responsive factor (AP2/ERF) gene family is a large plant-specific transcription factor family, which plays important roles in regulating plant growth and development. A role in starch synthesis is among the multiple functions of this family of transcription factors. Barley (Hordeum vulgare L.) is one of the most important cereals for starch production. However, there are limited data on the contribution of AP2 transcription factors in barley. In this study, we used the recently published barley genome database (Morex) to identify 185 genes of the HvAP2/ERF family. Compared with previous work, we identified 64 new genes in the HvAP2/ERF gene family and corrected some previously misannotated and duplicated genes. After phylogenetic analysis, HvAP2/ERF genes were classified into four subfamilies and 18 subgroups. Expression profiling showed different patterns of spatial and temporal expression for HvAP2/ERF genes. Most of the 12 HvAP2/ERF genes analyzed using quantitative reverse transcription-polymerase chain reaction had similar expression patterns when compared with those of starch synthase genes in barley, except for HvAP2-18 and HvERF-73. HvAP2-18 is homologous to OsRSR1, which negatively regulates the synthesis of rice starch. Luciferase reporter gene, and yeast one-hybrid assays showed that HvAP2-18 bound the promoter of AGP-S and SBE1 in vitro. Thus, HvAP2-18 might be an interesting candidate gene to further explore the mechanisms involved in the regulation of starch synthesis in barley.
Collapse
Affiliation(s)
- Jinjin Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yulong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wendy Harwood
- John Innes Center, Norwich Research Park, Norwich, United Kingdom
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Na Lin
- College of Sichuan Tea, Yibin University, Yibin, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Qiantao Jiang,
| |
Collapse
|
32
|
Yoon J, Cho LH, Tun W, Jeon JS, An G. Sucrose signaling in higher plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110703. [PMID: 33288016 DOI: 10.1016/j.plantsci.2020.110703] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 05/27/2023]
Abstract
Sucrose controls various developmental and metabolic processes in plants. In this review, we evaluate whether sucrose could be a preferred signaling molecule that controls processes like carbohydrate metabolism, accumulation of storage proteins, sucrose transport, anthocyanin accumulation, and floral induction. We summarize putative sucrose-dependent signaling pathways. Sucrose, but not other sugars, stimulates the genes that encode ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase I, and UDP-glucose pyrophosphorylase in several species. The class-1 patatin promoter is induced under high sucrose conditions in potato (Solanum tuberosum). Exogenous sucrose reduces the loading of sucrose to the phloem by inhibiting the expression of the sucrose transporter and its protein activity in sugar beet (Beta vulgaris). Sucrose also influences a wide range of growth processes, including cell division, ribosome synthesis, cotyledon development, far-red light signaling, and tuber development. Floral induction is promoted by sucrose in several species. The molecular mechanisms by which sucrose functions as a signal are largely unknown. Sucrose enhances the expression of transcription factors such as AtWRKY20 and MYB75, which function upstream of the sucrose-responsive genes. Sucrose controls the expression of AtbZIP11 at the post-transcriptional level by the peptide encoded by uORF2. Sucrose levels affect translation of a group of mRNAs in Arabidopsis. Sucrose increases the activity of AGPase by posttranslational redox-modification. Sucrose interrupts the interaction between sucrose transporter SUT4 and cytochrome b5. In addition, the SNF-related protein kinase-1 appears to be involved in sucrose-dependent pathways by controlling sucrose synthase (SUS4) expression.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, South Korea
| | - Win Tun
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Jong-Seong Jeon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
33
|
Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. Int J Mol Sci 2020; 22:E318. [PMID: 33396811 PMCID: PMC7795015 DOI: 10.3390/ijms22010318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
C and N are the most important essential elements constituting organic compounds in plants. The shoots and roots depend on each other by exchanging C and N through the xylem and phloem transport systems. Complex mechanisms regulate C and N metabolism to optimize plant growth, agricultural crop production, and maintenance of the agroecosystem. In this paper, we cover the recent advances in understanding C and N metabolism, regulation, and transport in plants, as well as their underlying molecular mechanisms. Special emphasis is given to the mechanisms of starch metabolism in plastids and the changes in responses to environmental stress that were previously overlooked, since these changes provide an essential store of C that fuels plant metabolism and growth. We present general insights into the system biology approaches that have expanded our understanding of core biological questions related to C and N metabolism. Finally, this review synthesizes recent advances in our understanding of the trade-off concept that links C and N status to the plant's response to microorganisms.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Kuni Sueyoshi
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Takuji Ohyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
34
|
Wang J, Chen Z, Zhang Q, Meng S, Wei C. The NAC Transcription Factors OsNAC20 and OsNAC26 Regulate Starch and Storage Protein Synthesis. PLANT PHYSIOLOGY 2020; 184:1775-1791. [PMID: 32989010 PMCID: PMC7723083 DOI: 10.1104/pp.20.00984] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Starch and storage proteins determine the weight and quality of cereal grains. Synthesis of these two grain components has been comprehensively investigated, but the transcription factors responsible for their regulation remain largely unknown. In this study, we investigated the roles of NAM, ATAF, and CUC (NAC) transcription factors, OsNAC20, and OsNAC26 in starch and storage protein synthesis in rice (Oryza sativa) endosperm. OsNAC20 and OsNAC26 showed high levels of amino acid sequence similarity. Both were localized in the aleurone layer, starchy endosperm, and embryo. Mutation of OsNAC20 or OsNAC26 alone had no effect on the grain, while the osnac20/26 double mutant had significantly decreased starch and storage protein content. OsNAC20 and OsNAC26 alone could directly transactivate the expression of starch synthaseI (SSI), pullulanase (Pul), glutelin A1 (GluA1), glutelin B4/5 (GluB4/5), α-globulin, and 16 kD prolamin and indirectly influenced plastidial disproportionating enzyme1 (DPE1) expression to regulate starch and storage protein synthesis. Although they could also bind to the promoters of ADP-Glc pyrophosphorylase small subunit 2b (AGPS2b), ADP-Glc pyrophosphorylase large subunit 2 (AGPL2), and starch branching enzymeI (SBEI), and the expression of the three genes was largely decreased in the osnac20/26 mutant, ADP-Glc pyrophosphorylase and starch branching enzyme activities were unchanged in this double mutant. In addition, OsNAC20 and OsNAC26 are main regulators of Pul, GluB4, α-globulin, and 16 kD prolamin In conclusion, OsNAC20 and OsNAC26 play an essential and redundant role in the regulation of starch and storage protein synthesis.
Collapse
Affiliation(s)
- Juan Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zichun Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qing Zhang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Shanshan Meng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
35
|
Liu Y, Hou J, Wang X, Li T, Majeed U, Hao C, Zhang X. The NAC transcription factor NAC019-A1 is a negative regulator of starch synthesis in wheat developing endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5794-5807. [PMID: 32803271 DOI: 10.1093/jxb/eraa333] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 05/20/2023]
Abstract
Starch is a major component of wheat (Triticum aestivum L.) endosperm and is an important part of the human diet. The functions of many starch synthesis genes have been elucidated. However, little is known about their regulatory mechanisms in wheat. Here, we identified a novel NAC transcription factor, TaNAC019-A1 (TraesCS3A02G077900), that negatively regulates starch synthesis in wheat and rice (Oryza sativa L.) endosperms. TaNAC019-A1 was highly expressed in the endosperm of developing grains and encoded a nucleus-localized transcriptional repressor. Overexpression of TaNAC019-A1 in rice and wheat led to significantly reduced starch content, kernel weight, and kernel width. The TaNAC019-A1-overexpression wheat lines had smaller A-type starch granules and fewer B-type starch granules than wild-type. Moreover, TaNAC019-A1 could directly bind to the 'ACGCAG' motif in the promoter regions of ADP-glucose pyrophosphorylase small subunit 1 (TaAGPS1-A1, TraesCS7A02G287400) and TaAGPS1-B1 (TraesCS7B02G183300) and repress their expression, thereby inhibiting starch synthesis in wheat endosperm. One haplotype of TaNAC019-B1 (TaNAC019-B1-Hap2, TraesCS3B02G092800) was positively associated with thousand-kernel weight and underwent positive selection during the Chinese wheat breeding process. Our data demonstrate that TaNAC019-A1 is a negative regulator of starch synthesis in wheat endosperm and provide novel insight into wheat yield improvement.
Collapse
Affiliation(s)
- Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Uzma Majeed
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Hou J, Liu Y, Hao C, Li T, Liu H, Zhang X. Starch Metabolism in Wheat: Gene Variation and Association Analysis Reveal Additive Effects on Kernel Weight. FRONTIERS IN PLANT SCIENCE 2020; 11:562008. [PMID: 33123177 PMCID: PMC7573188 DOI: 10.3389/fpls.2020.562008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Kernel weight is a key determinant of yield in wheat (Triticum aestivum L.). Starch consists of amylose and amylopectin and is the major constituent of mature grain. Therefore, starch metabolism in the endosperm during grain filling can influence kernel weight. In this study, we sequenced 87 genes involved in starch metabolism from 300 wheat accessions and detected 8,141 polymorphic sites. We also characterized yield-related traits across different years in these accessions. Although the starch contents fluctuated, thousand kernel weight (TKW) showed little variation. Polymorphisms in six genes were significantly associated with TKW. These genes were located on chromosomes 2A, 2B, 4A, and 7A; none were associated with starch content or amylose content. Variations of 15 genes on chromosomes 1A and 7A formed haplotype blocks in 26 accessions. Notably, accessions with higher TKWs had more of the favorable haplotypes. We thus conclude that these haplotypes contribute additive effects to TKW.
Collapse
Affiliation(s)
- Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
37
|
Daba SD, Liu X, Aryal U, Mohammadi M. A proteomic analysis of grain yield-related traits in wheat. AOB PLANTS 2020; 12:plaa042. [PMID: 33133478 PMCID: PMC7586745 DOI: 10.1093/aobpla/plaa042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/19/2020] [Indexed: 05/13/2023]
Abstract
Grain yield, which is mainly contributed by tillering capacity as well as kernel number and weight, is the most important trait to plant breeders and agronomists. Label-free quantitative proteomics was used to analyse yield-contributing organs in wheat. These were leaf sample, tiller initiation, spike initiation, ovary and three successive kernel development stages at 5, 10 and 15 days after anthesis (DAA). We identified 3182 proteins across all samples. The largest number was obtained for spike initiation (1673), while the smallest was kernel sample at 15 DAA (709). Of the 3182 proteins, 296 of them were common to all seven organs. Organ-specific proteins ranged from 148 in ovary to 561 in spike initiation. When relative protein abundances were compared to that of leaf sample, 347 and 519 proteins were identified as differentially abundant in tiller initiation and spike initiation, respectively. When compared with ovary, 81, 35 and 96 proteins were identified as differentially abundant in kernels sampled at 5, 10 and 15 DAA, respectively. Our study indicated that two Argonaute proteins were solely expressed in spike initiation. Of the four expansin proteins detected, three of them were mainly expressed during the first 10 days of kernel development after anthesis. We also detected cell wall invertases and sucrose and starch synthases mainly during the kernel development period. The manipulation of these proteins could lead to increases in tillers, kernels per spike or final grain weight, and is worth exploring in future studies.
Collapse
Affiliation(s)
- Sintayehu D Daba
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Xiaoqin Liu
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Uma Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Mohsen Mohammadi
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
38
|
Durán-Soria S, Pott DM, Osorio S, Vallarino JG. Sugar Signaling During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:564917. [PMID: 32983216 PMCID: PMC7485278 DOI: 10.3389/fpls.2020.564917] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 05/14/2023]
Abstract
Sugars play a key role in fruit quality, as they directly influence taste, and thus consumer acceptance. Carbohydrates are the main resources needed by the plant for carbon and energy supply and have been suggested to be involved in all the important developmental processes, including embryogenesis, seed germination, stress responses, and vegetative and reproductive growth. Recently, considerable progresses have been made in understanding regulation of fruit ripening mechanisms, based on the role of ethylene, auxins, abscisic acid, gibberellins, or jasmonic acid, in both climacteric and non-climacteric fruits. However, the role of sugar and its associated molecular network with hormones in the control of fruit development and ripening is still poorly understood. In this review, we focus on sugar signaling mechanisms described up to date in fruits, describing their involvement in ripening-associated processes, such as pigments accumulation, and their association with hormone transduction pathways, as well as their role in stress-related responses.
Collapse
Affiliation(s)
| | | | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
39
|
Song Y, Luo G, Shen L, Yu K, Yang W, Li X, Sun J, Zhan K, Cui D, Liu D, Zhang A. TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homologue from Triticum aestivum, enhance starch synthesis in wheat. THE NEW PHYTOLOGIST 2020; 226:1384-1398. [PMID: 31955424 DOI: 10.1111/nph.16435] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/07/2020] [Indexed: 05/20/2023]
Abstract
Starch in wheat grain provides humans with carbohydrates and influences the quality of wheaten food. However, no transcriptional regulator of starch synthesis has been identified first in common wheat (Triticum aestivum) due to the complex genome. Here, a novel basic leucine zipper (bZIP) family transcription factor TubZIP28 was found to be preferentially expressed in the endosperm throughout grain-filling stages in Triticum urartu, the A genome donor of common wheat. When TubZIP28 was overexpressed in common wheat, the total starch content increased by c. 4%, which contributed to c. 5% increase in the thousand kernel weight. The grain weight per plant of overexpression wheat was also elevated by c. 9%. Both in vitro and in vivo assays showed that TubZIP28 bound to the promoter of cytosolic AGPase and enhanced both the transcription and activity of the latter. Knockout of the homologue TabZIP28 in common wheat resulted in declines of both the transcription and activity of cytosolic AGPase in developing endosperms and c. 4% reduction of the total starch in mature grains. To the best of our knowledge, TubZIP28 and TabZIP28 are transcriptional activators of starch synthesis first identified in wheat, and they could be superior targets to improve the starch content and yield potential of wheat.
Collapse
Affiliation(s)
- Yanhong Song
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Kehui Zhan
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Dangqun Cui
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Agriculture and Biology Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Aimin Zhang
- Agronomy College, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
40
|
Falagán N, Miclo T, Terry LA. Graduated Controlled Atmosphere: A Novel Approach to Increase "Duke" Blueberry Storage Life. FRONTIERS IN PLANT SCIENCE 2020; 11:221. [PMID: 32256505 PMCID: PMC7092723 DOI: 10.3389/fpls.2020.00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Blueberries (Vaccinium corymbosum L.) are highly valued for their health-promoting potential, yet they are extremely perishable. Controlled atmosphere (CA) strategies reduce blueberry respiratory metabolism, slowing down senescence. However, the sudden change of atmosphere could elicit a physical abiotic stress in the fruit, negatively affecting quality. We propose an innovative approach based on controlled graduation to slowly reach optimum gas storage conditions as an alternative to standard CA. For two consecutive seasons, "Duke" blueberries were subjected to four different storage conditions: control (air); standard CA (sudden exposure to 5 kPa O2 and 10 kPa CO2 across the experiment); GCA3 and GCA7 (gradually reaching 5 kPa O2 and 10 kPa CO2 in 3 and 7 days, respectively). Fruit were stored for 28 days at 0 ± 0.5°C. Real-time respirometry provided an in-depth insight to the respiratory response of blueberries to their gas environment. Blueberries subjected to the graduated application of CA (GCA) treatments had a lower steady-state respiration rate compared to control and standard CA fruit. This indicated a reduction in metabolic activity that positively impacted quality and storage life extension. For example, GCA3 and GCA7 blueberries had a 25% longer storage life when compared to control, based on reduced decay incidence. In addition, GCA fruit were 27% firmer than control and CA fruit after 28 days of cold storage. GCA3 had a positive effect on maintaining individual sugars concentrations throughout the experiment, and both GCA treatments maintained ascorbic acid content close to initial values compared to a decrease of 44% in the control fruit at the end of the experiment. This work provides a paradigm shift in how CA could be applied and a better understanding of blueberry physiology and postharvest behavior.
Collapse
|
41
|
Hu S, Sprintall J, Guan C, McPhaden MJ, Wang F, Hu D, Cai W. Deep-reaching acceleration of global mean ocean circulation over the past two decades. SCIENCE ADVANCES 2020; 105:108-123. [PMID: 32076640 DOI: 10.1111/tpj.15043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 09/21/2020] [Indexed: 05/06/2023]
Abstract
Ocean circulation redistributes Earth's energy and water masses and influences global climate. Under historical greenhouse warming, regional ocean currents show diverse tendencies, but whether there is an emerging trend of the global mean ocean circulation system is not yet clear. Here, we show a statistically significant increasing trend in the globally integrated oceanic kinetic energy since the early 1990s, indicating a substantial acceleration of global mean ocean circulation. The increasing trend in kinetic energy is particularly prominent in the global tropical oceans, reaching depths of thousands of meters. The deep-reaching acceleration of the ocean circulation is mainly induced by a planetary intensification of surface winds since the early 1990s. Although possibly influenced by wind changes associated with the onset of a negative Pacific decadal oscillation since the late 1990s, the recent acceleration is far larger than that associated with natural variability, suggesting that it is principally part of a long-term trend.
Collapse
Affiliation(s)
- Shijian Hu
- CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Janet Sprintall
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Cong Guan
- CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Fan Wang
- CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dunxin Hu
- CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenju Cai
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- CSIRO Oceans and Atmosphere Flagship, Aspendale, Victoria 3195, Australia
- Centre for Southern Hemisphere Oceans Research (CSHOR), CSIRO Oceans and Atmosphere, Hobart, Tasmania 7004, Australia
| |
Collapse
|
42
|
Aminian-Dehkordi J, Mousavi SM, Jafari A, Mijakovic I, Marashi SA. Manually curated genome-scale reconstruction of the metabolic network of Bacillus megaterium DSM319. Sci Rep 2019; 9:18762. [PMID: 31822710 PMCID: PMC6904757 DOI: 10.1038/s41598-019-55041-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Bacillus megaterium is a microorganism widely used in industrial biotechnology for production of enzymes and recombinant proteins, as well as in bioleaching processes. Precise understanding of its metabolism is essential for designing engineering strategies to further optimize B. megaterium for biotechnology applications. Here, we present a genome-scale metabolic model for B. megaterium DSM319, iJA1121, which is a result of a metabolic network reconciliation process. The model includes 1709 reactions, 1349 metabolites, and 1121 genes. Based on multiple-genome alignments and available genome-scale metabolic models for other Bacillus species, we constructed a draft network using an automated approach followed by manual curation. The refinements were performed using a gap-filling process. Constraint-based modeling was used to scrutinize network features. Phenotyping assays were performed in order to validate the growth behavior of the model using different substrates. To verify the model accuracy, experimental data reported in the literature (growth behavior patterns, metabolite production capabilities, metabolic flux analysis using 13C glucose and formaldehyde inhibitory effect) were confronted with model predictions. This indicated a very good agreement between in silico results and experimental data. For example, our in silico study of fatty acid biosynthesis and lipid accumulation in B. megaterium highlighted the importance of adopting appropriate carbon sources for fermentation purposes. We conclude that the genome-scale metabolic model iJA1121 represents a useful tool for systems analysis and furthers our understanding of the metabolism of B. megaterium.
Collapse
Affiliation(s)
- Javad Aminian-Dehkordi
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Arezou Jafari
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
43
|
ABA and sucrose co-regulate strawberry fruit ripening and show inhibition of glycolysis. Mol Genet Genomics 2019; 295:421-438. [PMID: 31807909 DOI: 10.1007/s00438-019-01629-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
Abscisic acid (ABA) and sucrose play an important role in strawberry fruit ripening, but how ABA and sucrose co-regulate this ripening progress remains unclear. The intention of this study was to examine the effect of ABA and sucrose on strawberry fruit ripening and to evaluate the ABA/sucrose interaction mechanism on the strawberry fruit ripening process. Here, we report that there is an acute synergistic effect between ABA and sucrose in accelerating strawberry fruit ripening. The time frame of fruit development and ripening was shortened after the application of ABA, sucrose, and ABA + sucrose, but most of the major quality parameters in treated-ripe fruit, including fruit weight, total soluble solids, anthocyanin, ascorbic acid, the total phenolic content, lightness (L*), chroma (C*), and hue angle (h°) values were not affected. Meanwhile, the endogenous ABA and sucrose levels, and the expression of ABA and sucrose signaling genes and ripening-related genes, such as NCED1, NCED2, SnRK2.2, SuSy, MYB5, CEL1, and CEL2, was all significantly enhanced by ABA or sucrose treatment alone, but in particular, by the ABA + sucrose treatment. Therefore, improving the ripening regulation efficiency is one synergetic action of ABA/sucrose. Another synergetic action of ABA/sucrose shows that a short inhibition of glycolysis occurs during accelerated strawberry ripening. ABA and sucrose can induce higher accumulation of H2O2, leading to a transient decrease in glycolysis. Conversely, lower endogenous H2O2 levels caused by reduced glutathione (GSH) treatment resulted in a transient increase in glycolysis while delaying strawberry fruit ripening. Collectively, this study demonstrates that the ABA/sucrose interaction affects the ripening regulation efficiency and shows inhibition of glycolysis.
Collapse
|
44
|
Cao H, Zhou Y, Chang Y, Zhang X, Li C, Ren D. Comparative phosphoproteomic analysis of developing maize seeds suggests a pivotal role for enolase in promoting starch synthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110243. [PMID: 31623796 DOI: 10.1016/j.plantsci.2019.110243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/01/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Maize (Zea mays) seeds are the major source of starch all over the world and the excellent model for researching starch synthesis. Seed starch content is a typical quantitative phenotype and many reports revealed that the glycolytic enzymes are involved in regulating starch synthesis, however the regulatory mechanism is still unclear. Here, we present a comparative phosphoproteomic study of three maize inbred lines with different seed starch content. It reveals that abundances of 62 proteins and 63 phosphoproteins were regulated during maize seed development. Dynamics of 17 enzymes related to glycolysis and starch synthesis were used to construct a phosphorylation regulatory network of starch synthesis. It shows that starch synthesis and glycolysis in maize seeds utilize the same hexose phosphates pool coming from sorbitol and sucrose as carbon source, and phosphorylation of ZmENO1 are suggested to contribute to increase starch content, because it is positively related to seed starch content in different developmental stages and different lines, and the phosphor-mimic mutant (ZmENO1S43D) damaged its enzyme activity which is vital in glycolysis. Our results provide a new sight into regulatory process of seed starch synthesis and can be used in maize breeding for high starch content.
Collapse
Affiliation(s)
- Hanwei Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuwei Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Chang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiuyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
45
|
Chen T, Li G, Islam MR, Fu W, Feng B, Tao L, Fu G. Abscisic acid synergizes with sucrose to enhance grain yield and quality of rice by improving the source-sink relationship. BMC PLANT BIOLOGY 2019; 19:525. [PMID: 31775620 PMCID: PMC6882056 DOI: 10.1186/s12870-019-2126-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/08/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Abscisic acid (ABA) and sucrose act as molecular signals in response to abiotic stress. However, how their synergy regulates the source-sink relationship has rarely been studied. This study aimed to reveal the mechanism underlying the synergy between ABA and sucrose on assimilates allocation to improve grain yield and quality of rice. The early indica rice cultivar Zhefu802 was selected and planted in an artificial climate chamber at 32/24 °C (day/night) under natural sunlight conditions. Sucrose and ABA were exogenously sprayed (either alone or in combination) onto rice plants at flowering and 10 days after flowering. RESULTS ABA plus sucrose significantly improved both the grain yield and quality of rice, which was mainly a result of the higher proportion of dry matter accumulation and non-structural carbohydrates in panicles. These results were mainly ascribed to the large improvement in sucrose transport in the sheath-stems in response to the ABA plus sucrose treatment. In this process, ABA plus sucrose significantly enhanced the contents of starch, gibberellic acids, and zeatin ribosides as well as the activities and gene expression of enzymes involved in starch synthesis in grains. Additionally, remarkable increases in trehalose content and expression levels of trehalose-6-phosphate synthase1, trehalose-6-phosphate phosphatase7, and sucrose non-fermenting related protein kinase 1A were also found in grains treated with ABA plus sucrose. CONCLUSION The synergy between ABA and sucrose increased grain yield and quality by improving the source-sink relationship through sucrose and trehalose metabolism in grains.
Collapse
Affiliation(s)
- Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Mohammad Rezaul Islam
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
- Department of Agricultural Extension, Ministry of Agriculture, Dhaka, 1215 Bangladesh
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 People’s Republic of China
| |
Collapse
|
46
|
Qu J, Xu S, Tian X, Li T, Wang L, Zhong Y, Xue J, Guo D. Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents. PeerJ 2019; 7:e7528. [PMID: 31523504 PMCID: PMC6717500 DOI: 10.7717/peerj.7528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
In seeds, the endosperm is a crucial organ that plays vital roles in supporting embryo development and determining seed weight and quality. Starch is the predominant storage carbohydrate of the endosperm and accounts for ∼70% of the mature maize kernel weight. Nonetheless, because starch biosynthesis is a complex process that is orchestrated by multiple enzymes, the gene regulatory networks of starch biosynthesis, particularly amylose and amylopectin biosynthesis, have not been fully elucidated. Here, through high-throughput RNA sequencing, we developed a temporal transcriptome atlas of the endosperms of high-amylose maize and common maize at 5-, 10-, 15- and 20-day after pollination and found that 21,986 genes are involved in the programming of the high-amylose and common maize endosperm. A coexpression analysis identified multiple sequentially expressed gene sets that are closely correlated with cellular and metabolic programmes and provided valuable insight into the dynamic reprogramming of the transcriptome in common and high-amylose maize. In addition, a number of genes and transcription factors were found to be strongly linked to starch synthesis, which might help elucidate the key mechanisms and regulatory networks underlying amylose and amylopectin biosynthesis. This study will aid the understanding of the spatiotemporal patterns and genetic regulation of endosperm development in different types of maize and provide valuable genetic information for the breeding of starch varieties with different contents.
Collapse
Affiliation(s)
- Jianzhou Qu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Xiaokang Tian
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Ting Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Licheng Wang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Yuyue Zhong
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Dongwei Guo
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| |
Collapse
|
47
|
Zhang X, Xie S, Han J, Zhou Y, Liu C, Zhou Z, Wang F, Cheng Z, Zhang J, Hu Y, Hao Z, Li M, Zhang D, Yong H, Huang Y, Weng J, Li X. Integrated transcriptome, small RNA, and degradome analysis reveals the complex network regulating starch biosynthesis in maize. BMC Genomics 2019; 20:574. [PMID: 31296166 PMCID: PMC6625009 DOI: 10.1186/s12864-019-5945-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Starch biosynthesis in endosperm is a key process influencing grain yield and quality in maize. Although a number of starch biosynthetic genes have been well characterized, the mechanisms by which the expression of these genes is regulated, especially in regard to microRNAs (miRNAs), remain largely unclear. Results Sequence data for small RNAs, degradome, and transcriptome of maize endosperm at 15 and 25 d after pollination (DAP) from inbred lines Mo17 and Ji419, which exhibit distinct starch content and starch granule structure, revealed the mediation of starch biosynthetic pathways by miRNAs. Transcriptome analysis of these two lines indicated that 33 of 40 starch biosynthetic genes were differentially expressed, of which 12 were up-regulated in Ji419 at 15 DAP, one was up-regulated in Ji419 at 25 DAP, 14 were up-regulated in Ji419 at both 15 and 25 DAP, one was down-regulated in Ji419 at 15 DAP, two were down-regulated in Ji419 at 25 DAP, and three were up-regulated in Ji419 at 15 DAP and down-regulated in Ji419 at 25 DAP, compared with Mo17. Through combined analyses of small RNA and degradome sequences, 22 differentially expressed miRNAs were identified, including 14 known and eight previously unknown miRNAs that could target 35 genes. Furthermore, a complex co-expression regulatory network was constructed, in which 19 miRNAs could modulate starch biosynthesis in endosperm by tuning the expression of 19 target genes. Moreover, the potential operation of four miRNA-mediated pathways involving transcription factors, miR169a-NF-YA1-GBSSI/SSIIIa and miR169o-GATA9-SSIIIa/SBEIIb, was validated via analyses of expression pattern, transient transformation assays, and transactivation assays. Conclusion Our results suggest that miRNAs play a critical role in starch biosynthesis in endosperm, and that miRNA-mediated networks could modulate starch biosynthesis in this tissue. These results have provided important insights into the molecular mechanism of starch biosynthesis in developing maize endosperm. Electronic supplementary material The online version of this article (10.1186/s12864-019-5945-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaocong Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sidi Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feifei Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixiang Cheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yufeng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
48
|
López-González C, Juárez-Colunga S, Morales-Elías NC, Tiessen A. Exploring regulatory networks in plants: transcription factors of starch metabolism. PeerJ 2019; 7:e6841. [PMID: 31328026 PMCID: PMC6625501 DOI: 10.7717/peerj.6841] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022] Open
Abstract
Biological networks are complex (non-linear), redundant (cyclic) and compartmentalized at the subcellular level. Rational manipulation of plant metabolism may have failed due to inherent difficulties of a comprehensive understanding of regulatory loops. We first need to identify key factors controlling the regulatory loops of primary metabolism. The paradigms of plant networks are revised in order to highlight the differences between metabolic and transcriptional networks. Comparison between animal and plant transcription factors (TFs) reveal some important differences. Plant transcriptional networks function at a lower hierarchy compared to animal regulatory networks. Plant genomes contain more TFs than animal genomes, but plant proteins are smaller and have less domains as animal proteins which are often multifunctional. We briefly summarize mutant analysis and co-expression results pinpointing some TFs regulating starch enzymes in plants. Detailed information is provided about biochemical reactions, TFs and cis regulatory motifs involved in sucrose-starch metabolism, in both source and sink tissues. Examples about coordinated responses to hormones and environmental cues in different tissues and species are listed. Further advancements require combined data from single-cell transcriptomic and metabolomic approaches. Cell fractionation and subcellular inspection may provide valuable insights. We propose that shuffling of promoter elements might be a promising strategy to improve in the near future starch content, crop yield or food quality.
Collapse
Affiliation(s)
| | | | | | - Axel Tiessen
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, México.,Laboratorio Nacional PlanTECC, Irapuato, México
| |
Collapse
|
49
|
Basunia MA, Nonhebel HM. Hormonal regulation of cereal endosperm development with a focus on rice (Oryza sativa). FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:493-506. [PMID: 30955506 DOI: 10.1071/fp18323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 05/07/2023]
Abstract
The endosperm of cereal grain forms the staple diet for most of the world's population, and feeds much of their stock. Grain size and quality are determined largely by events taking place during coenocytic nuclear division, endosperm cellularisation and cell differentiation, and the production of storage molecules. Thus, understanding the complex signalling processes occurring at each of these steps is essential for maintaining and improving our food supply. Here, we critically review evidence for the effects of phytohormones on grain size, as well as hormone homeostasis, signalling and crosstalk. We focus on rice endosperm due to the importance of rice as a food crop and a model grass, as well as its relative neglect in recent reviews; however, data from other cereals are also discussed due to strong evidence for conserved signalling networks operating during grain development. Discussion is restricted to auxin, cytokinin, ethylene, abscisic acid and gibberellin. Our review highlights the need for accurate hormone determinations combined with information on gene expression. We present evidence for separate, localised signalling roles for auxin at different stages of grain development and highlight key research questions for other hormones where much less data are available.
Collapse
Affiliation(s)
- Mafroz A Basunia
- School of Science and Technology, University of New England, Armidale, NSW 2350, Australia
| | - Heather M Nonhebel
- School of Science and Technology, University of New England, Armidale, NSW 2350, Australia; and Corresponding author.
| |
Collapse
|
50
|
NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc Natl Acad Sci U S A 2019; 116:11223-11228. [PMID: 31110006 DOI: 10.1073/pnas.1904995116] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Grain starch and protein are synthesized during endosperm development, prompting the question of what regulatory mechanism underlies the synchronization of the accumulation of secondary and primary gene products. We found that two endosperm-specific NAC transcription factors, ZmNAC128 and ZmNAC130, have such a regulatory function. Knockdown of expression of ZmNAC128 and ZmNAC130 with RNA interference (RNAi) caused a shrunken kernel phenotype with significant reduction of starch and protein. We could show that ZmNAC128 and ZmNAC130 regulate the transcription of Bt2 and then reduce its protein level, a rate-limiting step in starch synthesis of maize endosperm. Lack of ZmNAC128 and ZmNAC130 also reduced accumulation of zeins and nonzeins by 18% and 24% compared with nontransgenic siblings, respectively. Although ZmNAC128 and ZmNAC130 affected expression of zein genes in general, they specifically activated transcription of the 16-kDa γ-zein gene. The two transcription factors did not dimerize with each other but exemplified redundancy, whereas individual discovery of their function was not amenable to conventional genetics but illustrated the power of RNAi. Given that both the Bt2 and the 16-kDa γ-zein genes were activated by ZmNAC128 or ZmNAC130, we could identify a core binding site ACGCAA contained within their target promoter regions by combining Dual-Luciferase Reporter and Electrophoretic Mobility Shift assays. Consistent with these properties, transcriptomic profiling uncovered that lack of ZmNAC128 and ZmNAC130 had a pleiotropic effect on the utilization of carbohydrates and amino acids.
Collapse
|