1
|
Tamayo A, Danowski W, Han B, Jeong Y, Samorì P. Light-Modulated Humidity Sensing in Spiropyran Functionalized MoS 2 Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404633. [PMID: 39263764 DOI: 10.1002/smll.202404633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Indexed: 09/13/2024]
Abstract
The optically tuneable nature of hybrid organic/inorganic heterostructures tailored by interfacing photochromic molecules with 2D semiconductors (2DSs) can be exploited to endow multi-responsiveness to the exceptional physical properties of 2DSs. In this study, a spiropyran-molybdenum disulfide (MoS2) light-switchable bi-functional field-effect transistor is realized. The spiropyran-merocyanine reversible photo-isomerization has been employed to remotely control both the electron transport and wettability of the hybrid structure. This manipulation is instrumental for tuning the sensitivity in humidity sensing. The hybrid organic/inorganic heterostructure is subjected to humidity testing, demonstrating its ability to accurately monitor relative humidity (RH) across a range of 10%-75%. The electrical output shows good sensitivity of 1.0% · (%) RH-1. The light-controlled modulation of the sensitivity in chemical sensors can significantly improve their selectivity, versatility, and overall performance in chemical sensing.
Collapse
Affiliation(s)
- Adrián Tamayo
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Wojciech Danowski
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
- Faculty of Chemistry, University of Warsaw, Warsaw, 02-093, Poland
| | - Bin Han
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Yeonsu Jeong
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
2
|
Wani SS, Hsu CC, Kuo YZ, Darshana Kumara Kimbulapitiya KM, Chung CC, Cyu RH, Chen CT, Liu MJ, Chaudhary M, Chiu PW, Zhong YL, Chueh YL. Enhanced Electrical Transport Properties of Molybdenum Disulfide Field-Effect Transistors by Using Alkali Metal Fluorides as Dielectric Capping Layers. ACS NANO 2024; 18:10776-10787. [PMID: 38587200 PMCID: PMC11044573 DOI: 10.1021/acsnano.3c11025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
The electronic properties of 2D materials are highly influenced by the molecular activity at their interfaces. A method was proposed to address this issue by employing passivation techniques using monolayer MoS2 field-effect transistors (FETs) while preserving high performance. Herein, we have used alkali metal fluorides as dielectric capping layers, including lithium fluoride (LiF), sodium fluoride (NaF), and potassium fluoride (KF) dielectric capping layers, to mitigate the environmental impact of oxygen and water exposure. Among them, the LiF dielectric capping layer significantly improved the transistor performance, specifically in terms of enhanced field effect mobility from 74 to 137 cm2/V·s, increased current density from 17 μA/μm to 32.13 μA/μm at a drain voltage of Vd of 1 V, and decreased subthreshold swing to 0.8 V/dec The results have been analytically verified by X-ray photoelectron spectroscopy (XPS) and Raman, and photoluminescence (PL) spectroscopy, and the demonstrated technique can be extended to other transition metal dichalcogenide (TMD)-based FETs, which can become a prospect for cutting-edge electronic applications. These findings highlight certain important trade-offs and provide insight into the significance of interface control and passivation material choice on the electrical stability, performance, and enhancement of the MoS2 FET.
Collapse
Affiliation(s)
- Sumayah-Shakil Wani
- Department
of Materials Science and Engineering, National
Tsing-Hua University, Hsinchu, 30013, Taiwan
- College
of Semiconductor Research, National Tsing-Hua
University, Hsinchu, 30013, Taiwan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chen Chieh Hsu
- Department
of Physics and Quantum Information Center, Chung Yuan Christian University, Taoyuan, 32034, Taiwan
| | - Yao-Zen Kuo
- Department
of Materials Science and Engineering, National
Tsing-Hua University, Hsinchu, 30013, Taiwan
- College
of Semiconductor Research, National Tsing-Hua
University, Hsinchu, 30013, Taiwan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Kimbulapitiya Mudiyanselage
Madhusanka Darshana Kumara Kimbulapitiya
- Department
of Materials Science and Engineering, National
Tsing-Hua University, Hsinchu, 30013, Taiwan
- College
of Semiconductor Research, National Tsing-Hua
University, Hsinchu, 30013, Taiwan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chia-Chen Chung
- Department
of Materials Science and Engineering, National
Tsing-Hua University, Hsinchu, 30013, Taiwan
- College
of Semiconductor Research, National Tsing-Hua
University, Hsinchu, 30013, Taiwan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Ruei-Hong Cyu
- Department
of Materials Science and Engineering, National
Tsing-Hua University, Hsinchu, 30013, Taiwan
- College
of Semiconductor Research, National Tsing-Hua
University, Hsinchu, 30013, Taiwan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chieh-Ting Chen
- Department
of Materials Science and Engineering, National
Tsing-Hua University, Hsinchu, 30013, Taiwan
- College
of Semiconductor Research, National Tsing-Hua
University, Hsinchu, 30013, Taiwan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Ming-Jin Liu
- Department
of Materials Science and Engineering, National
Tsing-Hua University, Hsinchu, 30013, Taiwan
- College
of Semiconductor Research, National Tsing-Hua
University, Hsinchu, 30013, Taiwan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Mayur Chaudhary
- Department
of Materials Science and Engineering, National
Tsing-Hua University, Hsinchu, 30013, Taiwan
- College
of Semiconductor Research, National Tsing-Hua
University, Hsinchu, 30013, Taiwan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Po-Wen Chiu
- College
of Semiconductor Research, National Tsing-Hua
University, Hsinchu, 30013, Taiwan
- Institute
of Electronics Engineering, National Tsing
Hua University, Hsinchu, 30013, Taiwan
| | - Yuan-Liang Zhong
- Department
of Physics and Quantum Information Center, Chung Yuan Christian University, Taoyuan, 32034, Taiwan
| | - Yu-Lun Chueh
- Department
of Materials Science and Engineering, National
Tsing-Hua University, Hsinchu, 30013, Taiwan
- College
of Semiconductor Research, National Tsing-Hua
University, Hsinchu, 30013, Taiwan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Park J, Leem JW, Park M, Kim JO, Ku Z, Chegal W, Kang SW, Kim YL. Heteronanostructured Field-Effect Transistors for Enhancing Entropy and Parameter Space in Electrical Unclonable Primitives. ACS NANO 2024; 18:1041-1053. [PMID: 38117976 PMCID: PMC10786166 DOI: 10.1021/acsnano.3c10308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
Hardware security is not a new problem but is ever-growing in consumer and medical domains owing to hyperconnectivity. A physical unclonable function (PUF) offers a promising hardware security solution for cryptographic key generation, identification, and authentication. However, electrical PUFs using nanomaterials or two-dimensional (2D) transition metal dichalcogenides (TMDCs) often have limited entropy and parameter space sources, both of which increase the vulnerability to attacks and act as bottlenecks for practical applications. We report an electrical PUF with enhanced entropy as well as parameter space by incorporating 2D TMDC heteronanostructures into field-effect transistors (FETs). Lateral heteronanostructures of 2D molybdenum disulfide and tungsten disulfide serve as a potent entropy source. The variable feature of FETs is further leveraged to enhance the parameter space that provides multiple challenge-response pairs, which are essential for PUFs. This combination results in stably repeatable yet highly variable FET characteristics as alternative electrical PUFs. Comprehensive PUF performance analyses validate the bit uniformity, reproducibility, uniqueness, randomness, false rates, and encoding capacity. The 2D material heteronanostructure-driven electrical PUFs with strong FET-to-FET variability can potentially be augmented as an immediately deployable and scalable security solution for various hardware devices.
Collapse
Affiliation(s)
- Jaeseo Park
- Advanced
Instrumentation Institute, Korea Research
Institute of Standard & Science, Daejeon 34113, Republic of Korea
- Precision
Measurement, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jung Woo Leem
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Minji Park
- Advanced
Instrumentation Institute, Korea Research
Institute of Standard & Science, Daejeon 34113, Republic of Korea
| | - Jun Oh Kim
- Advanced
Instrumentation Institute, Korea Research
Institute of Standard & Science, Daejeon 34113, Republic of Korea
| | - Zahyun Ku
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Won Chegal
- Advanced
Instrumentation Institute, Korea Research
Institute of Standard & Science, Daejeon 34113, Republic of Korea
| | - Sang-Woo Kang
- Advanced
Instrumentation Institute, Korea Research
Institute of Standard & Science, Daejeon 34113, Republic of Korea
- Precision
Measurement, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young L. Kim
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
- Purdue
Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Waltl M, Knobloch T, Tselios K, Filipovic L, Stampfer B, Hernandez Y, Waldhör D, Illarionov Y, Kaczer B, Grasser T. Perspective of 2D Integrated Electronic Circuits: Scientific Pipe Dream or Disruptive Technology? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201082. [PMID: 35318749 DOI: 10.1002/adma.202201082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Within the last decade, considerable efforts have been devoted to fabricating transistors utilizing 2D semiconductors. Also, small circuits consisting of a few transistors have been demonstrated, including inverters, ring oscillators, and static random access memory cells. However, for industrial applications, both time-zero and time-dependent variability in the performance of the transistors appear critical. While time-zero variability is primarily related to immature processing, time-dependent drifts are dominated by charge trapping at defects located at the channel/insulator interface and in the insulator itself, which can substantially degrade the stability of circuits. At the current state of the art, 2D transistors typically exhibit a few orders of magnitude higher trap densities than silicon devices, which considerably increases their time-dependent variability, resulting in stability and yield issues. Here, the stability of currently available 2D electronics is carefully evaluated using circuit simulations to determine the impact of transistor-related issues on the overall circuit performance. The results suggest that while the performance parameters of transistors based on certain material combinations are already getting close to being competitive with Si technologies, a reduction in variability and defect densities is required. Overall, the criteria for parameter variability serve as guidance for evaluating the future development of 2D technologies.
Collapse
Affiliation(s)
- Michael Waltl
- Christian Doppler Laboratory for Single-Defect Spectroscopy at the Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29, Vienna, 1040, Austria
| | - Theresia Knobloch
- Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29, Vienna, 1040, Austria
| | - Konstantinos Tselios
- Christian Doppler Laboratory for Single-Defect Spectroscopy at the Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29, Vienna, 1040, Austria
| | - Lado Filipovic
- Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29, Vienna, 1040, Austria
| | - Bernhard Stampfer
- Christian Doppler Laboratory for Single-Defect Spectroscopy at the Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29, Vienna, 1040, Austria
| | - Yoanlys Hernandez
- Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29, Vienna, 1040, Austria
| | - Dominic Waldhör
- Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29, Vienna, 1040, Austria
| | - Yury Illarionov
- Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29, Vienna, 1040, Austria
- Ioffe Institute, Polytechnicheskaya 26, St-Petersburg, 194021, Russia
| | - Ben Kaczer
- imec, Kapeldreef 75, Leuven, 3001, Belgium
| | - Tibor Grasser
- Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29, Vienna, 1040, Austria
| |
Collapse
|
5
|
Ding G, Yang B, Chen RS, Mo WA, Zhou K, Liu Y, Shang G, Zhai Y, Han ST, Zhou Y. Reconfigurable 2D WSe 2 -Based Memtransistor for Mimicking Homosynaptic and Heterosynaptic Plasticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103175. [PMID: 34528382 DOI: 10.1002/smll.202103175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The mimicking of both homosynaptic and heterosynaptic plasticity using a high-performance synaptic device is important for developing human-brain-like neuromorphic computing systems to overcome the ever-increasing challenges caused by the conventional von Neumann architecture. However, the commonly used synaptic devices (e.g., memristors and transistors) require an extra modulate terminal to mimic heterosynaptic plasticity, and their capability of synaptic plasticity simulation is limited by the low weight adjustability. In this study, a WSe2 -based memtransistor for mimicking both homosynaptic and heterosynaptic plasticity is fabricated. By applying spikes on either the drain or gate terminal, the memtransistor can mimic common homosynaptic plasticity, including spiking rate dependent plasticity, paired pulse facilitation/depression, synaptic potentiation/depression, and filtering. Benefitting from the multi-terminal input and high adjustability, the resistance state number and linearity of the memtransistor can be improved by optimizing the conditions of the two inputs. Moreover, the device can successfully mimic heterosynaptic plasticity without introducing an extra terminal and can simultaneously offer versatile reconfigurability of excitatory and inhibitory plasticity. These highly adjustable and reconfigurable characteristics offer memtransistors more freedom of choice for tuning synaptic weight, optimizing circuit design, and building artificial neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Baidong Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ruo-Si Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wen-Ai Mo
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yang Liu
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongbiao Zhai
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
6
|
Farigliano LM, Paredes-Olivera PA, Patrito EM. Oxidative etching of S-vacancy defective MoS 2 monolayer upon reaction with O 2. Phys Chem Chem Phys 2021; 23:10225-10235. [PMID: 33881024 DOI: 10.1039/d0cp06502a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The reactions of O2 with S vacancy sites within a MoS2 monolayer were investigated using density functional theory calculations. We considered the following defects: single S vacancy, double S vacancy, two adjacent S vacancies and two S vacancies separated by a sulphur atom. We found that the surface distribution of S vacancy sites plays a key role in determining the surface reactivity towards O2. We observed the desorption of SO2 only for the last vacancy distribution. For the other cases, the surface becomes passivated with very stable structures having O atoms on the original vacancy sites and in some cases an SO group in an adjacent position. The ab initio molecular dynamics simulations showed that the impingement of the O2 molecule on an S vacancy site produces a stable chemisorbed O2 molecule with an upright configuration. The surface reactions initiate after the O2 molecule switches to the lying-down configuration which favours the breakage of the O-O bond and the concurrent formation of S-O bonds. In the most reactive vacancy site configuration, the dissociation of the first O2 molecule produces an SO intermediate which finally leads to desorption of SO2 after oxygen abstraction from the other adjacent O2 molecule. The formation of a MoO3 moiety within the monolayer was also observed in the molecular dynamic simulations at higher oxidation levels.
Collapse
Affiliation(s)
- Lucas M Farigliano
- Departamento de Fisicoquímica, Instituto de Investigaciones en Físico Química de Córdoba (INFIQC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| | - Patricia A Paredes-Olivera
- Departamento de Química Teórica y Computacional, Instituto de Investigaciones en Físico Química de Córdoba (INFIQC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Eduardo M Patrito
- Departamento de Fisicoquímica, Instituto de Investigaciones en Físico Química de Córdoba (INFIQC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| |
Collapse
|
7
|
Cysteine-Induced Hybridization of 2D Molybdenum Disulfide Films for Efficient and Stable Hydrogen Evolution Reaction. MATERIALS 2021; 14:ma14051165. [PMID: 33801322 PMCID: PMC7958329 DOI: 10.3390/ma14051165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
The noble, metal-free materials capable of efficiently catalyzing water splitting reactions currently hold a great deal of promise. In this study, we reported the structure and electrochemical performance of new MoS2-based material synthesized with L-cysteine. For this, a facile one-pot hydrothermal process was developed and an array of densely packed nanoplatelet-shaped hybrid species directly on a conductive substrate were obtained. The crucial role of L-cysteine was determined by numerous methods on the structure and composition of the synthesized material and its activity and stability for hydrogen evolution reaction (HER) from the acidic water. A low Tafel slope of 32.6 mV dec−1, close to a Pt cathode, was registered for the first time. The unique HER performance at the surface of this hybrid material in comparison with recently reported MoS2-based electrocatalysts was attributed to the formation of more defective 1T, 2H-MoS2/MoOx, C nanostructures with the dominant 1T-MoS2 phase and thermally degraded cysteine residues entrapped. Numerous stacks of metallic (1T-MoS2 and MoO2) and semiconducting (2H-MoS2 and MoO3) fragments relayed the formation of highly active layered nanosheets possessing a low hydrogen adsorption free energy and much greater durability, whereas intercalated cysteine fragments had a low Tafel slope of the HER reaction. X-ray photoelectron spectroscopy, scanning electron microscopy, thermography with mass spectrometry, high-resolution transmission electron microscopy, Raman spectroscopy techniques, and linear sweep voltammetry were applied to verify our findings.
Collapse
|
8
|
Wen S, Lan C, Li C, Zhou S, He T, Zhang R, Zou R, Hu H, Yin Y, Liu Y. Gate-bias instability of few-layer WSe 2 field effect transistors. RSC Adv 2021; 11:6818-6824. [PMID: 35423215 PMCID: PMC8694931 DOI: 10.1039/d0ra09376a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/03/2021] [Indexed: 11/26/2022] Open
Abstract
Semiconducting two-dimensional (2D) layered materials have shown great potential in next-generation electronics due to their novel electronic properties. However, the performance of field effect transistors (FETs) based on 2D materials is always environment-dependent and unstable under gate bias stress. Here, we report the environment-dependent performance and gate-induced instability of few-layer p-type WSe2-based FETs. We found that the hole mobility of the transistor drastically reduces in vacuum and further decreases after in situ annealing in vacuum compared with that in air, which can be recovered after exposure to air. The on-current of the WSe2 FET increases with positive gate bias stress time but decreases with negative gate bias stress time. For the double sweeping transfer curve, the transistor shows prominent hysteresis, which depends on both the sweeping rate and the sweeping range. Large hysteresis can be observed when a slow sweeping rate or large sweeping range is applied. In addition, such gate-induced instability can be reduced in vacuum and further reduced after in situ vacuum annealing. However, the gate-induced instability cannot be fully eliminated, which suggests both gases adsorbed on the device and defects in the WSe2 channel and/or the interface of WSe2/SiO2 are responsible for the gate-induced instability. Our results provide a deep understanding of the gate-induced instability in p-type WSe2 based transistors, which may shed light on the design of high-performance 2D material-based electronics. The performance of the few-layer p-type WSe2-based field effect transistor is sensitive to the environment and gate bias stress.![]()
Collapse
|
9
|
Doherty JL, Noyce SG, Cheng Z, Abuzaid H, Franklin AD. Capping Layers to Improve the Electrical Stress Stability of MoS 2 Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35698-35706. [PMID: 32805797 PMCID: PMC7895421 DOI: 10.1021/acsami.0c08647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Two-dimensional (2D) materials offer exciting possibilities for numerous applications, including next-generation sensors and field-effect transistors (FETs). With their atomically thin form factor, it is evident that molecular activity at the interfaces of 2D materials can shape their electronic properties. Although much attention has focused on engineering the contact and dielectric interfaces in 2D material-based transistors to boost their drive current, less is understood about how to tune these interfaces to improve the long-term stability of devices. In this work, we evaluated molybdenum disulfide (MoS2) transistors under continuous electrical stress for periods lasting up to several days. During stress in ambient air, we observed temporary threshold voltage shifts that increased at higher gate voltages or longer stress durations, correlating to changes in interface trap states (ΔNit) of up to 1012 cm-2. By modifying the device to include either SU-8 or Al2O3 as an additional dielectric capping layer on top of the MoS2 channel, we were able to effectively reduce or even eliminate this unstable behavior. However, we found this encapsulating material must be selected carefully, as certain choices actually amplified instability or compromised device yield, as was the case for Al2O3, which reduced yield by 20% versus all other capping layers. Further refining these strategies to preserve stability in 2D devices will be crucial for their continued integration into future technologies.
Collapse
Affiliation(s)
- James L. Doherty
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Steven G. Noyce
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Zhihui Cheng
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Hattan Abuzaid
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Aaron D. Franklin
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Corresponding Author:
| |
Collapse
|
10
|
Jain A, Szabó Á, Parzefall M, Bonvin E, Taniguchi T, Watanabe K, Bharadwaj P, Luisier M, Novotny L. One-Dimensional Edge Contacts to a Monolayer Semiconductor. NANO LETTERS 2019; 19:6914-6923. [PMID: 31513426 DOI: 10.1021/acs.nanolett.9b02166] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Integration of electrical contacts into van der Waals (vdW) heterostructures is critical for realizing electronic and optoelectronic functionalities. However, to date no scalable methodology for gaining electrical access to buried monolayer two-dimensional (2D) semiconductors exists. Here we report viable edge contact formation to hexagonal boron nitride (hBN) encapsulated monolayer MoS2. By combining reactive ion etching, in situ Ar+ sputtering and annealing, we achieve a relatively low edge contact resistance, high mobility (up to ∼30 cm2 V-1 s-1) and high on-current density (>50 μA/μm at VDS = 3V), comparable to top contacts. Furthermore, the atomically smooth hBN environment also preserves the intrinsic MoS2 channel quality during fabrication, leading to a steep subthreshold swing of 116 mV/dec with a negligible hysteresis. Hence, edge contacts are highly promising for large-scale practical implementation of encapsulated heterostructure devices, especially those involving air sensitive materials, and can be arbitrarily narrow, which opens the door to further shrinkage of 2D device footprint.
Collapse
Affiliation(s)
- Achint Jain
- Photonics Laboratory , ETH Zürich , 8093 Zürich , Switzerland
| | - Áron Szabó
- Integrated Systems Laboratory , ETH Zürich , 8092 Zürich , Switzerland
| | | | - Eric Bonvin
- Photonics Laboratory , ETH Zürich , 8093 Zürich , Switzerland
| | - Takashi Taniguchi
- National Institute for Material Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Kenji Watanabe
- National Institute for Material Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Palash Bharadwaj
- Department of Electrical and Computer Engineering , Rice University , Houston , Texas 77005 , United States
| | - Mathieu Luisier
- Integrated Systems Laboratory , ETH Zürich , 8092 Zürich , Switzerland
| | - Lukas Novotny
- Photonics Laboratory , ETH Zürich , 8093 Zürich , Switzerland
| |
Collapse
|
11
|
Hoffman AN, Stanford MG, Zhang C, Ivanov IN, Oyedele AD, Sales MG, McDonnell SJ, Koehler MR, Mandrus DG, Liang L, Sumpter BG, Xiao K, Rack PD. Atmospheric and Long-term Aging Effects on the Electrical Properties of Variable Thickness WSe 2 Transistors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36540-36548. [PMID: 30256093 DOI: 10.1021/acsami.8b12545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atmospheric and long-term aging effects on electrical properties of WSe2 transistors with various thicknesses are examined. Although countless published studies report electrical properties of transition-metal dichalcogenide materials, many are not attentive to testing environment or to age of samples, which we have found significantly impacts results. Our as-fabricated exfoliated WSe2 pristine devices are predominantly n-type, which is attributed to selenium vacancies. Transfer characteristics of as-fabricated devices measured in air then vacuum reveal physisorbed atmospheric molecules significantly reduced n-type conduction in air. First-principles calculations suggest this short-term reversible atmospheric effect can be attributed primarily to physisorbed H2O on pristine WSe2, which is easily removed from the pristine surface in vacuum due to the low adsorption energy. Devices aged in air for over 300 h demonstrate irreversibly increased p-type conduction and decreased n-type conduction. Additionally, they develop an extended time constant for recovery of the atmospheric adsorbents effect. Short-term atmospheric aging (up to approximately 900 h) is attributed to O2 and H2O molecules physisorbed to selenium vacancies where electron transfer from the bulk and adsorbed binding energies are higher than the H2O-pristine WSe2. The residual/permanent aging component is attributed to electron trapping molecular O2 and isoelectronic O chemisorption at selenium vacancies, which also passivates the near-conduction band gap state, p-doping the material, with very high binding energy. All effects demonstrated have the expected thickness dependence, namely, thinner devices are more sensitive to atmospheric and long-term aging effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Gabriela Sales
- Department of Materials Science & Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Stephen J McDonnell
- Department of Materials Science & Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | | | | | | | | | | | | |
Collapse
|
12
|
Xu J, Wen M, Zhao X, Liu L, Song X, Lai PT, Tang WM. Effects of HfO 2 encapsulation on electrical performances of few-layered MoS 2 transistor with ALD HfO 2 as back-gate dielectric. NANOTECHNOLOGY 2018; 29:345201. [PMID: 29808825 DOI: 10.1088/1361-6528/aac853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The carrier mobility of MoS2 transistors can be greatly improved by the screening role of high-k gate dielectric. In this work, atomic-layer deposited (ALD) HfO2 annealed in NH3 is used to replace SiO2 as the gate dielectric to fabricate back-gated few-layered MoS2 transistors, and good electrical properties are achieved with field-effect mobility (μ) of 19.1 cm2 V-1 s-1, subthreshold swing (SS) of 123.6 mV dec-1 and on/off ratio of 3.76 × 105. Furthermore, enhanced device performance is obtained when the surface of the MoS2 channel is coated by an ALD HfO2 layer with different thicknesses (10, 15 and 20 nm), where the transistor with a 15 nm HfO2 encapsulation layer exhibits the best overall electrical properties: μ = 42.1 cm2 V-1 s-1, SS = 87.9 mV dec-1 and on/off ratio of 2.72 × 106. These improvements should be associated with the enhanced screening effect on charged-impurity scattering and protection from absorption of environmental gas molecules by the high-k encapsulation. The capacitance equivalent thickness of the back-gate dielectric (HfO2) is only 6.58 nm, which is conducive to scaling of the MoS2 transistors.
Collapse
Affiliation(s)
- Jingping Xu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Prasad B, Pfanzelt G, Fillis-Tsirakis E, Zachman MJ, Kourkoutis LF, Mannhart J. Integrated Circuits Comprising Patterned Functional Liquids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802598. [PMID: 30015987 DOI: 10.1002/adma.201802598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Solid-state heterostructures are the cornerstone of modern electronics. To enhance the functionality and performance of integrated circuits, the spectrum of materials used in the heterostructures is being expanded by an increasing number of compounds and elements of the periodic table. While the integration of liquids and solid-liquid interfaces into such systems would allow unique and advanced functional properties and would enable integrated nanoionic circuits, solid-state heterostructures that incorporate liquids have not been considered thus far. Here solid-state heterostructures with integrated liquids are proposed, realized, and characterized, thereby opening a vast, new phase space of materials and interfaces for integrated circuits. Devices containing tens of microscopic capacitors and field-effect transistors are fabricated by using integrated patterned NaCl aqueous solutions. This work paves the way to integrated electronic circuits that include highly integrated liquids, thus yielding a wide array of novel research and application opportunities based on microscopic solid/liquid systems.
Collapse
Affiliation(s)
- Bhagwati Prasad
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Georg Pfanzelt
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | | | - Michael J Zachman
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jochen Mannhart
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| |
Collapse
|
14
|
Ahn JH, Parkin WM, Naylor CH, Johnson ATC, Drndić M. Ambient effects on electrical characteristics of CVD-grown monolayer MoS 2 field-effect transistors. Sci Rep 2017. [PMID: 28642472 PMCID: PMC5481332 DOI: 10.1038/s41598-017-04350-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Monolayer materials are sensitive to their environment because all of the atoms are at their surface. We investigate how exposure to the environment affects the electrical properties of CVD-grown monolayer MoS2 by monitoring electrical parameters of MoS2 field-effect transistors as their environment is changed from atmosphere to high vacuum. The mobility increases and contact resistance decreases simultaneously as either the pressure is reduced or the sample is annealed in vacuum. We see a previously unobserved, non-monotonic change in threshold voltage with decreasing pressure. This result could be explained by charge transfer on the MoS2 channel and Schottky contact formation due to adsorbates at the interface between the gold contacts and MoS2. Additionally, from our electrical measurements it is plausible to infer that at room temperature and pressure water and oxygen molecules adsorbed on the surface act as interface traps and scattering centers with a density of several 1012 cm-2 eV-1, degrading the electrical properties of monolayer MoS2.
Collapse
Affiliation(s)
- Jae-Hyuk Ahn
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States.,Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - William M Parkin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
| | - Carl H Naylor
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
| | - A T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States.
| |
Collapse
|