1
|
Assa G, Kalter N, Rosenberg M, Beck A, Markovich O, Gontmakher T, Hendel A, Yakhini Z. Quantifying allele-specific CRISPR editing activity with CRISPECTOR2.0. Nucleic Acids Res 2024; 52:e78. [PMID: 39077930 PMCID: PMC11381363 DOI: 10.1093/nar/gkae651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Off-target effects present a significant impediment to the safe and efficient use of CRISPR-Cas genome editing. Since off-target activity is influenced by the genomic sequence, the presence of sequence variants leads to varying on- and off-target profiles among different alleles or individuals. However, a reliable tool that quantifies genome editing activity in an allelic context is not available. Here, we introduce CRISPECTOR2.0, an extended version of our previously published software tool CRISPECTOR, with an allele-specific editing activity quantification option. CRISPECTOR2.0 enables reference-free, allele-aware, precise quantification of on- and off-target activity, by using de novo sample-specific single nucleotide variant (SNV) detection and statistical-based allele-calling algorithms. We demonstrate CRISPECTOR2.0 efficacy in analyzing samples containing multiple alleles and quantifying allele-specific editing activity, using data from diverse cell types, including primary human cells, plants, and an original extensive human cell line database. We identified instances where an SNV induced changes in the protospacer adjacent motif sequence, resulting in allele-specific editing. Intriguingly, differential allelic editing was also observed in regions carrying distal SNVs, hinting at the involvement of additional epigenetic factors. Our findings highlight the importance of allele-specific editing measurement as a milestone in the adaptation of efficient, accurate, and safe personalized genome editing.
Collapse
Affiliation(s)
- Guy Assa
- Arazi School of Computer Science, Reichman University, Herzliya 4610101, Israel
| | - Nechama Kalter
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Michael Rosenberg
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Avigail Beck
- Arazi School of Computer Science, Reichman University, Herzliya 4610101, Israel
| | - Oshry Markovich
- Rahan Meristem (1998) Ltd. Kibbutz Rosh-Hanikra, Western Galilee 2282500, Israel
| | - Tanya Gontmakher
- Rahan Meristem (1998) Ltd. Kibbutz Rosh-Hanikra, Western Galilee 2282500, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Zohar Yakhini
- Arazi School of Computer Science, Reichman University, Herzliya 4610101, Israel
- The Henry & Marilyn Taub Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
2
|
Schep R, Trauernicht M, Vergara X, Friskes A, Morris B, Gregoricchio S, Manzo SG, Zwart W, Beijersbergen R, Medema RH, van Steensel B. Chromatin context-dependent effects of epigenetic drugs on CRISPR-Cas9 editing. Nucleic Acids Res 2024; 52:8815-8832. [PMID: 38953163 PMCID: PMC11347147 DOI: 10.1093/nar/gkae570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
The efficiency and outcome of CRISPR/Cas9 editing depends on the chromatin state at the cut site. It has been shown that changing the chromatin state can influence both the efficiency and repair outcome, and epigenetic drugs have been used to improve Cas9 editing. However, because the target proteins of these drugs are not homogeneously distributed across the genome, the efficacy of these drugs may be expected to vary from locus to locus. Here, we systematically analyzed this chromatin context-dependency for 160 epigenetic drugs. We used a human cell line with 19 stably integrated reporters to induce a double-stranded break in different chromatin environments. We then measured Cas9 editing efficiency and repair pathway usage by sequencing the mutational signatures. We identified 58 drugs that modulate Cas9 editing efficiency and/or repair outcome dependent on the local chromatin environment. For example, we find a subset of histone deacetylase inhibitors that improve Cas9 editing efficiency throughout all types of heterochromatin (e.g. PCI-24781), while others were only effective in euchromatin and H3K27me3-marked regions (e.g. apicidin). In summary, this study reveals that most epigenetic drugs alter CRISPR editing in a chromatin-dependent manner, and provides a resource to improve Cas9 editing more selectively at the desired location.
Collapse
Affiliation(s)
- Ruben Schep
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Max Trauernicht
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Xabier Vergara
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Anoek Friskes
- Oncode Institute, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Ben Morris
- Division of Molecular Carcinogenesis, 1066 CX Amsterdam, The Netherlands
| | - Sebastian Gregoricchio
- Oncode Institute, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Stefano G Manzo
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Oncode Institute, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - René H Medema
- Oncode Institute, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Bas van Steensel
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
3
|
Ishidoya M, Fujita T, Tasaka S, Fujii H. Real-time MBDi-RPA using methyl-CpG binding protein 2: A real-time detection method for simple and rapid estimation of CpG methylation status. Anal Chim Acta 2024; 1302:342486. [PMID: 38580404 DOI: 10.1016/j.aca.2024.342486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Analysis of CpG methylation is informative for cancer diagnosis. Previously, we developed a novel method to discriminate CpG methylation status in target DNA by blocking recombinase polymerase amplification (RPA), an isothermal DNA amplification technique, using methyl-CpG binding domain (MBD) protein 2 (MBD2). The method was named MBD protein interference-RPA (MBDi-RPA). In this study, MBDi-RPA was performed using methyl-CpG binding protein 2 (MeCP2), another MBD family protein, as the blocking agent. RESULTS MBDi-RPA using MeCP2 detected low levels of CpG methylation, showing that it had higher sensitivity than MBDi-RPA using MBD2. We also developed real-time RPA, which enabled rapid analysis of DNA amplification without the need for laborious agarose gel electrophoresis and used it in combination with MBDi-RPA. We termed this method real-time MBDi-RPA. The method using MeCP2 could determine the abundance ratio of CpG-methylated target DNA simply and rapidly, although highly sensitive detection was challenging. SIGNIFICANCE AND NOVELTY Real-time MBDi-RPA using MeCP2 could be potentially useful for estimating CpG methylation status in target DNA prior to more detailed analyses.
Collapse
Affiliation(s)
- Mina Ishidoya
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
4
|
Fujita T, Fujii H. iChIP-SILAC analysis identifies epigenetic regulators of CpG methylation of the p16 INK4A gene. FEBS Lett 2024; 598:1094-1109. [PMID: 38627195 DOI: 10.1002/1873-3468.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/12/2024]
Abstract
Allele-specific epigenetic events regulate the expression of specific genes such as tumor suppressor genes. Methods to biochemically identify epigenetic regulators remain limited. Here, we used insertional chromatin immunoprecipitation (iChIP) to address this issue. iChIP combined with quantitative mass spectrometry identified DNA methyltransferase 1 (DNMT1) and epigenetic regulators as proteins that potentially interact with a region of the p16INK4A gene that is CpG-methylated in one allele in HCT116 cells. Some of the identified proteins are involved in the CpG methylation of this region, and of these, DEAD-box helicase 24 (DDX24) contributes to CpG methylation by regulating the protein levels of DNMT1. Thus, iChIP is a useful method to identify proteins which bind to a target locus of interest.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Japan
| |
Collapse
|
5
|
Sakamoto N, Watanabe K, Awazu A, Yamamoto T. CRISPR-Cas9-Mediated Gene Knockout in a Non-Model Sea Urchin, Heliocidaris crassispina. Zoolog Sci 2024; 41:159-166. [PMID: 38587910 DOI: 10.2108/zs230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/25/2023] [Indexed: 04/10/2024]
Abstract
Sea urchins have been used as model organisms in developmental biology research and the genomes of several sea urchin species have been sequenced. Recently, genome editing technologies have become available for sea urchins, and methods for gene knockout using the CRISPRCas9 system have been established. Heliocidaris crassispina is an important marine fishery resource with edible gonads. Although H. crassispina has been used as a biological research material, its genome has not yet been published, and it is a non-model sea urchin for molecular biology research. However, as recent advances in genome editing technology have facilitated genome modification in non-model organisms, we applied genome editing using the CRISPR-Cas9 system to H. crassispina. In this study, we targeted genes encoding ETS transcription factor (HcEts) and pigmentation-related polyketide synthase (HcPks1). Gene fragments were isolated using primers designed by inter-specific sequence comparisons within Echinoidea. When Ets gene was targeted using two sgRNAs, one successfully introduced mutations and impaired skeletogenesis. In the Pks1 gene knockout, when two sgRNAs targeting the close vicinity of the site corresponding to the target site that showed 100% mutagenesis efficiency of the Pks1 gene in Hemicentrotus pulcherrimus, mutagenesis was not observed. However, two other sgRNAs targeting distant sites efficiently introduced mutations. In addition, Pks1 knockout H. crassispina exhibited an albino phenotype in the pluteus larvae and adult sea urchins after metamorphosis. This indicates that the CRISPRCas9 system can be used to modify the genome of the non-model sea urchin H. crassispina.
Collapse
Affiliation(s)
- Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan,
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Kaichi Watanabe
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Akinori Awazu
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
6
|
Tavleeva MM, Rasova EE, Rybak AV, Belykh ES, Fefilova EA, Pnachina EM, Velegzhaninov IO. Dose-Dependent Effect of Mitochondrial Superoxide Dismutase Gene Overexpression on Radioresistance of HEK293T Cells. Int J Mol Sci 2023; 24:17315. [PMID: 38139144 PMCID: PMC10744337 DOI: 10.3390/ijms242417315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Over the last two decades, a multitude of gain-of-function studies have been conducted on genes that encode antioxidative enzymes, including one of the key enzymes, manganese superoxide dismutase (SOD2). The results of such studies are often contradictory, as they strongly depend on many factors, such as the gene overexpression level. In this study, the effect of altering the ectopic expression level of major transcript variants of the SOD2 gene on the radioresistance of HEK293T cells was investigated using CRISPRa technology. A significant increase in cell viability in comparison with the transfection control was detected in cells with moderate SOD2 overexpression after irradiation at 2 Gy, but not at 3 or 5 Gy. A further increase in the level of SOD2 ectopic expression up to 22.5-fold resulted in increased cell viability detectable only after irradiation at 5 Gy. Furthermore, a 15-20-fold increase in SOD2 expression raised the clonogenic survival of cells after irradiation at 5 Gy. Simultaneous overexpression of genes encoding SOD2 and Catalase (CAT) enhanced clonogenic cell survival after irradiation more effectively than separate overexpression of both. In conjunction with the literature data on the suppression of the procarcinogenic effects of superoxide dismutase overexpression by ectopic expression of CAT, the data presented here suggest the potential efficacy of simultaneous overexpression of SOD2 and CAT to reduce oxidative stress occurring in various pathological processes. Moreover, these results illustrate the importance of selecting the degree of SOD2 overexpression to obtain a protective effect.
Collapse
Affiliation(s)
- Marina M. Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia; (M.M.T.); (E.E.R.); (A.V.R.); (E.S.B.)
| | - Elena E. Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia; (M.M.T.); (E.E.R.); (A.V.R.); (E.S.B.)
| | - Anna V. Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia; (M.M.T.); (E.E.R.); (A.V.R.); (E.S.B.)
| | - Elena S. Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia; (M.M.T.); (E.E.R.); (A.V.R.); (E.S.B.)
| | - Elizaveta A. Fefilova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia;
| | - Elizaveta M. Pnachina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia;
| | - Ilya O. Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia; (M.M.T.); (E.E.R.); (A.V.R.); (E.S.B.)
| |
Collapse
|
7
|
Molugu K, Khajanchi N, Lazzarotto CR, Tsai SQ, Saha K. Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem Cells. CRISPR J 2023; 6:473-485. [PMID: 37676985 PMCID: PMC10611976 DOI: 10.1089/crispr.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Genome-edited human-induced pluripotent stem cells (iPSCs) have broad applications in disease modeling, drug discovery, and regenerative medicine. Despite the development of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system, the gene editing process is inefficient and can take several weeks to months to generate edited iPSC clones. We developed a strategy to improve the efficiency of the iPSC gene editing process via application of a small-molecule, trichostatin A (TSA), a Class I and II histone deacetylase inhibitor. We observed that TSA decreased global chromatin condensation and further resulted in increased gene-editing efficiency of iPSCs by twofold to fourfold while concurrently ensuring no increased off-target effects. The edited iPSCs could be clonally expanded while maintaining genomic integrity and pluripotency. The rapid generation of therapeutically relevant gene-edited iPSCs could be enabled by these findings.
Collapse
Affiliation(s)
- Kaivalya Molugu
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Namita Khajanchi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Biomedical and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cicera R. Lazzarotto
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shengdar Q. Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Biomedical and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Comprehensive computational analysis of epigenetic descriptors affecting CRISPR-Cas9 off-target activity. BMC Genomics 2022; 23:805. [PMID: 36474180 PMCID: PMC9724382 DOI: 10.1186/s12864-022-09012-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A common issue in CRISPR-Cas9 genome editing is off-target activity, which prevents the widespread use of CRISPR-Cas9 in medical applications. Among other factors, primary chromatin structure and epigenetics may influence off-target activity. METHODS In this work, we utilize crisprSQL, an off-target database, to analyze the effect of 19 epigenetic descriptors on CRISPR-Cas9 off-target activity. Termed as 19 epigenetic features/scores, they consist of 6 experimental epigenetic and 13 computed nucleosome organization-related features. In terms of novel features, 15 of the epigenetic scores are newly considered. The 15 newly considered scores consist of 13 freshly computed nucleosome occupancy/positioning scores and 2 experimental features (MNase and DRIP). The other 4 existing scores are experimental features (CTCF, DNase I, H3K4me3, RRBS) commonly used in deep learning models for off-target activity prediction. For data curation, MNase was aggregated from existing experimental nucleosome occupancy data. Based on the sequence context information available in crisprSQL, we also computed nucleosome occupancy/positioning scores for off-target sites. RESULTS To investigate the relationship between the 19 epigenetic features and off-target activity, we first conducted Spearman and Pearson correlation analysis. Such analysis shows that some computed scores derived from training-based models and training-free algorithms outperform all experimental epigenetic features. Next, we evaluated the contribution of all epigenetic features in two successful machine/deep learning models which predict off-target activity. We found that some computed scores, unlike all 6 experimental features, significantly contribute to the predictions of both models. As a practical research contribution, we make the off-target dataset containing all 19 epigenetic features available to the research community. CONCLUSIONS Our comprehensive computational analysis helps the CRISPR-Cas9 community better understand the relationship between epigenetic features and CRISPR-Cas9 off-target activity.
Collapse
|
9
|
Přibylová A, Fischer L, Pyott DE, Bassett A, Molnar A. DNA methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in a target-specific manner. THE NEW PHYTOLOGIST 2022; 235:2285-2299. [PMID: 35524464 PMCID: PMC9545110 DOI: 10.1111/nph.18212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 05/31/2023]
Abstract
The impact of epigenetic modifications on the efficacy of CRISPR/Cas9-mediated double-stranded DNA breaks and subsequent DNA repair is poorly understood, especially in plants. In this study, we investigated the effect of the level of cytosine methylation on the outcome of CRISPR/Cas9-induced mutations at multiple Cas9 target sites in Nicotiana benthamiana leaf cells using next-generation sequencing. We found that high levels of promoter methylation, but not gene-body methylation, decreased the frequency of Cas9-mediated mutations. DNA methylation also influenced the ratio of insertions and deletions and potentially the type of Cas9 cleavage in a target-specific manner. In addition, we detected an over-representation of deletion events governed by a single 5'-terminal nucleotide at Cas9-induced DNA breaks. Our findings suggest that DNA methylation can indirectly impair Cas9 activity and subsequent DNA repair, probably through changes in the local chromatin structure. In addition to the well described Cas9-induced blunt-end double-stranded DNA breaks, we provide evidence for Cas9-mediated staggered DNA cuts in plant cells. Both types of cut may direct microhomology-mediated DNA repair by a novel, as yet undescribed, mechanism.
Collapse
Affiliation(s)
- Adéla Přibylová
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Lukáš Fischer
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Douglas E. Pyott
- The Wellcome Trust Center for Cell BiologyInstitute of Cell BiologyThe University of EdinburghEdinburghEH9 3BFUK
| | - Andrew Bassett
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonCB10 1SAUK
| | - Attila Molnar
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
| |
Collapse
|
10
|
Fujita H, Fujita T, Fujii H. IL-3-Induced Immediate Expression of c- fos and c- jun Is Modulated by the IKK2-JNK Axis. Cells 2022; 11:cells11091451. [PMID: 35563758 PMCID: PMC9105775 DOI: 10.3390/cells11091451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Interleukin (IL)-3 is a pleiotropic cytokine that regulates the survival, proliferation, and differentiation of hematopoietic cells. The binding of IL-3 to its receptor activates intracellular signaling, inducing transcription of immediate early genes (IEGs) such as c-fos, c-jun, and c-myc; however, transcriptional regulation under IL-3 signaling is not fully understood. This study assessed the role of the inhibitor of nuclear factor-κB kinases (IKKs) in inducing IL-3-mediated expression of IEGs. We show that IKK1 and IKK2 are required for the IL-3-induced immediate expression of c-fos and c-jun in murine hematopoietic Ba/F3 cells. Although IKK2 is well-known for its pivotal role as a regulator of the canonical nuclear factor-κB (NF-κB) pathway, activation of IKKs did not induce the nuclear translocation of the NF-κB transcription factor. We further revealed the important role of IKK2 in the activation of c-Jun N-terminal kinase (JNK), which mediates the IL-3-induced expression of c-fos and c-jun. These findings indicate that the IKK2-JNK axis modulates the IL-3-induced expression of IEGs in a canonical NF-κB-independent manner.
Collapse
|
11
|
Roy RK, Debashree I, Srivastava S, Rishi N, Srivastava A. CRISPR/ Cas9 Off-targets: Computational Analysis of Causes, Prediction,
Detection, and Overcoming Strategies. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210708150439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
CRISPR/Cas9 technology is a highly flexible RNA-guided endonuclease (RGEN)
based gene-editing tool that has transformed the field of genomics, gene therapy, and genome/
epigenome imaging. Its wide range of applications provides immense scope for understanding
as well as manipulating genetic/epigenetic elements. However, the RGEN is prone to
off-target mutagenesis that leads to deleterious effects. This review details the molecular and cellular
mechanisms underlying the off-target activity, various available detection tools and prediction
methodology ranging from sequencing to machine learning approaches, and the strategies to
overcome/minimise off-targets. A coherent and concise method increasing target precision would
prove indispensable to concrete manipulation and interpretation of genome editing results that
can revolutionise therapeutics, including clarity in genome regulatory mechanisms during development.
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313, India
| | - Ipsita Debashree
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313, India
| | - Sonal Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| |
Collapse
|
12
|
Sun W, Liu H, Yin W, Qiao J, Zhao X, Liu Y. Strategies for Enhancing the Homology-directed Repair Efficiency of CRISPR-Cas Systems. CRISPR J 2022; 5:7-18. [PMID: 35076280 DOI: 10.1089/crispr.2021.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The CRISPR-Cas nuclease has emerged as a powerful genome-editing tool in recent years. The CRISPR-Cas system induces double-strand breaks that can be repaired via the non-homologous end joining or homology-directed repair (HDR) pathway. Compared to non-homologous end joining, HDR can be used for the treatment of incurable monogenetic diseases. Therefore, remarkable efforts have been dedicated to enhancing the efficacy of HDR. In this review, we summarize the currently used strategies for enhancing the HDR efficiency of CRISPR-Cas systems based on three factors: (1) regulation of the key factors in the DNA repair pathways, (2) modulation of the components in the CRISPR machinery, and (3) alteration of the intracellular environment around double-strand breaks. Representative cases and potential solutions for further improving HDR efficiency are also discussed, facilitating the development of new CRISPR technologies to achieve highly precise genetic manipulation in the future.
Collapse
Affiliation(s)
- Wenli Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Hui Liu
- Department of Hematology, Renmin Hospital of Wuhan University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Wenhao Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Jie Qiao
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Henan, People's Republic of China; and Ltd., Hubei, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,BravoVax Co., Ltd., Hubei, People's Republic of China
| |
Collapse
|
13
|
Takeda T, Yokoyama Y, Takahashi H, Okuzaki D, Asai K, Itakura H, Miyoshi N, Kobayashi S, Uemura M, Fujita T, Ueno H, Mori M, Doki Y, Fujii H, Eguchi H, Yamamoto H. A stem cell marker KLF5 regulates CCAT1 via three-dimensional genome structure in colorectal cancer cells. Br J Cancer 2022; 126:109-119. [PMID: 34707247 PMCID: PMC8727571 DOI: 10.1038/s41416-021-01579-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND KLF5 plays a crucial role in stem cells of colorectum in cooperation with Lgr5 gene. In this study, we aimed to explicate a regulatory mechanism of the KLF5 gene product from a view of three-dimensional genome structure in colorectal cancer (CRC). METHODS In vitro engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP)-seq method was used to identify the regions that bind to the KLF5 promoter. RESULTS We revealed that the KLF5 promoter region interacted with the KLF5 enhancer region as well as the transcription start site (TSS) region of the Colon Cancer Associated Transcript 1 (CCAT1) gene. Notably, the heterodeletion mutants of KLF5 enhancer impaired the cancer stem-like properties of CRC cells. The KLF5 protein participated in the core-regulatory circuitry together with co-factors (BRD4, MED1, and RAD21), which constructs the three-dimensional genome structures consisting of KLF5 promoter, enhancer and CCAT1 TSS region. In vitro analysis indicated that KLF5 regulated CCAT1 expression and we found that CCAT1 expression was highly correlated with KLF5 expression in CRC clinical samples. CONCLUSIONS Our data propose the mechanistic insight that the KLF5 protein constructs the core-regulatory circuitry with co-factors in the three-dimensional genome structure and coordinately regulates KLF5 and CCAT1 expression in CRC.
Collapse
Affiliation(s)
- Takashi Takeda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hidekazu Takahashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaho Asai
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Itakura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroo Ueno
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Masaki Mori
- School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
14
|
Fujita T, Nagata S, Fujii H. Protein or ribonucleoprotein-mediated blocking of recombinase polymerase amplification enables the discrimination of nucleotide and epigenetic differences between cell populations. Commun Biol 2021; 4:988. [PMID: 34413466 PMCID: PMC8376914 DOI: 10.1038/s42003-021-02503-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Isothermal DNA amplification, such as recombinase polymerase amplification (RPA), is well suited for point-of-care testing (POCT) as it does not require lengthy thermal cycling. By exploiting DNA amplification at low temperatures that do not denature heat-sensitive molecules such as proteins, we have developed a blocking RPA method to detect gene mutations and examine the epigenetic status of DNA. We found that both nucleic acid blockers and nuclease-dead clustered regularly interspaced short palindromic repeats (CRISPR) ribonucleoproteins suppress RPA reactions by blocking elongation by DNA polymerases in a sequence-specific manner. By examining these suppression events, we are able to discriminate single-nucleotide mutations in cancer cells and evaluate genome-editing events. Methyl-CpG binding proteins similarly inhibit elongation by DNA polymerases on CpG-methylated template DNA in our RPA reactions, allowing for the detection of methylated CpG islands. Thus, the use of heat-sensitive molecules such as proteins and ribonucleoprotein complexes as blockers in low-temperature isothermal DNA amplification reactions markedly expands the utility and application of these methods. Fujita et al. investigate the use of oligoribonucleotides, proteins, and ribonucleoprotein complexes as sequence-specific blockers of DNA extension by DNA polymerases. They demonstrate the value of proteins and ribonucleoprotein complexes as blockers in low-temperature isothermal DNA amplification reactions for discrimination of nucleotide and epigenetic differences.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan.
| | - Shoko Nagata
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan.
| |
Collapse
|
15
|
Sledzinski P, Dabrowska M, Nowaczyk M, Olejniczak M. Paving the way towards precise and safe CRISPR genome editing. Biotechnol Adv 2021; 49:107737. [PMID: 33785374 DOI: 10.1016/j.biotechadv.2021.107737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
As the possibilities of CRISPR-Cas9 technology have been revealed, we have entered a new era of research aimed at increasing its specificity and safety. This stage of technology development is necessary not only for its wider application in the clinic but also in basic research to better control the process of genome editing. Research during the past eight years has identified some factors influencing editing outcomes and led to the development of highly specific endonucleases, modified guide RNAs and computational tools supporting experiments. More recently, large-scale experiments revealed a previously overlooked feature: Cas9 can generate reproducible mutation patterns. As a result, it has become apparent that Cas9-induced double-strand break (DSB) repair is nonrandom and can be predicted to some extent. Here, we review the present state of knowledge regarding the specificity and safety of CRISPR-Cas9 technology to define gRNA, protein and target-related problems and solutions. These issues include sequence-specific off-target effects, immune responses, genetic variation and chromatin accessibility. We present new insights into the role of DNA repair in genome editing and define factors influencing editing outcomes. In addition, we propose practical guidelines for increasing the specificity of editing and discuss novel perspectives in improvement of this technology.
Collapse
Affiliation(s)
- Pawel Sledzinski
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Magdalena Dabrowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Mateusz Nowaczyk
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland.
| |
Collapse
|
16
|
Fujita H, Fujita T, Fujii H. Locus-Specific Genomic DNA Purification Using the CRISPR System: Methods and Applications. CRISPR J 2021; 4:290-300. [PMID: 33876963 DOI: 10.1089/crispr.2020.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A multitude of molecular interactions with chromatin governs various chromosomal functions in cells. Insights into the molecular compositions at specific genomic regions are pivotal to deepen our understanding of regulatory mechanisms and the pathogenesis of disorders caused by the abnormal regulation of genes. The locus-specific purification of genomic DNA using the clustered regularly interspaced short palindromic repeats (CRISPR) system enables the isolation of target genomic regions for identification of bound interacting molecules. This CRISPR-based DNA purification method has many applications. In this study, we present an overview of the CRISPR-based DNA purification methodologies as well as recent applications.
Collapse
Affiliation(s)
- Hirotaka Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| |
Collapse
|
17
|
Velegzhaninov IO, Belykh ES, Rasova EE, Pylina YI, Shadrin DM, Klokov DY. Radioresistance, DNA Damage and DNA Repair in Cells With Moderate Overexpression of RPA1. Front Genet 2020; 11:855. [PMID: 32849834 PMCID: PMC7411226 DOI: 10.3389/fgene.2020.00855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/13/2020] [Indexed: 12/02/2022] Open
Abstract
Molecular responses to genotoxic stress, such as ionizing radiation, are intricately complex and involve hundreds of genes. Whether targeted overexpression of an endogenous gene can enhance resistance to ionizing radiation remains to be explored. In the present study we take an advantage of the CRISPR/dCas9 technology to moderately overexpress the RPA1 gene that encodes a key functional subunit of the replication protein A (RPA). RPA is a highly conserved heterotrimeric single-stranded DNA-binding protein complex involved in DNA replication, recombination, and repair. Dysfunction of RPA1 is detrimental for cells and organisms and can lead to diminished resistance to many stress factors. We demonstrate that HEK293T cells overexpressing RPA1 exhibit enhanced resistance to cell killing by gamma-radiation. Using the alkali comet assay, we show a remarkable acceleration of DNA breaks rejoining after gamma-irradiation in RPA1 overexpressing cells. However, the spontaneous rate of DNA damage was also higher in the presence of RPA1 overexpression, suggesting alterations in the processing of replication errors due to elevated activity of the RPA protein. Additionally, the analysis of the distributions of cells with different levels of DNA damage showed a link between the RPA1 overexpression and the kinetics of DNA repair within differentially damaged cell subpopulations. Our results provide knew knowledge on DNA damage stress responses and indicate that the concept of enhancing radioresistance by targeted alteration of the expression of a single gene is feasible, however undesired consequences should be considered and evaluated.
Collapse
Affiliation(s)
- Ilya O Velegzhaninov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Elena S Belykh
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Elena E Rasova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Yana I Pylina
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Dmitry M Shadrin
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Dmitry Yu Klokov
- Institut de Radioprotection et de Sureté Nucléaire, PSE-SANTE, SESANE, LRTOX, Fontenay-aux-Roses, France.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Wu J, Tang B, Tang Y. Allele-specific genome targeting in the development of precision medicine. Theranostics 2020; 10:3118-3137. [PMID: 32194858 PMCID: PMC7053192 DOI: 10.7150/thno.43298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
The CRISPR-based genome editing holds immense potential to fix disease-causing mutations, however, must also handle substantial natural genetic variations between individuals. Previous studies have shown that mismatches between the single guide RNA (sgRNA) and genomic DNA may negatively impact sgRNA efficiencies and lead to imprecise specificity prediction. Hence, the genetic variations bring about a great challenge for designing platinum sgRNAs in large human populations. However, they also provide a promising entry for designing allele-specific sgRNAs for the treatment of each individual. The CRISPR system is rather specific, with the potential ability to discriminate between similar alleles, even based on a single nucleotide difference. Genetic variants contribute to the discrimination capabilities, once they generate a novel protospacer adjacent motif (PAM) site or locate in the seed region near an available PAM. Therefore, it can be leveraged to establish allele-specific targeting in numerous dominant human disorders, by selectively ablating the deleterious alleles. So far, allele-specific CRISPR has been increasingly implemented not only in treating dominantly inherited diseases, but also in research areas such as genome imprinting, haploinsufficiency, spatiotemporal loci imaging and immunocompatible manipulations. In this review, we will describe the working principles of allele-specific genome manipulations by virtue of expanding engineering tools of CRISPR. And then we will review new advances in the versatile applications of allele-specific CRISPR targeting in treating human genetic diseases, as well as in a series of other interesting research areas. Lastly, we will discuss their potential therapeutic utilities and considerations in the era of precision medicine.
Collapse
Affiliation(s)
- Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Yu Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
19
|
Fujita T, Motooka D, Fujii H. Target enrichment from a DNA mixture by oligoribonucleotide interference-PCR (ORNi-PCR). Biol Methods Protoc 2019; 4:bpz009. [PMID: 32395627 PMCID: PMC7200947 DOI: 10.1093/biomethods/bpz009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
Oligoribonucleotide (ORN) interference-PCR (ORNi-PCR) is a method that suppresses PCR amplification of target DNA in an ORN-specific manner. In this study, we examined whether ORNi-PCR can be used to enrich desirable DNA sequences from a DNA mixture by suppressing undesirable DNA amplification. ORNi-PCR enriched edited DNA sequences from a mixture of genomic DNA subjected to genome editing. ORNi-PCR enabled more efficient analysis of the types of insertion/deletion mutations introduced by genome editing. In addition, ORNi-PCR reduced the detection of 16S ribosomal RNA (16S rRNA) genes in 16S rRNA gene-based microbiome profiling, which might permit a more detailed assessment of populations of other 16S rRNA genes. Enrichment of desirable DNA sequences by ORNi-PCR may be useful in molecular biology, medical diagnosis, and other fields.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| |
Collapse
|
20
|
Fujita T, Fujii H. Purification of specific DNA species using the CRISPR system. Biol Methods Protoc 2019; 4:bpz008. [PMID: 32395626 PMCID: PMC7200925 DOI: 10.1093/biomethods/bpz008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022] Open
Abstract
In 2013, we developed a new method of engineered DNA-binding molecule-mediated chromatin immunoprecipitation that incorporates the clustered regularly interspaced short palindromic repeats (CRISPR) system to purify specific DNA species. This CRISPR-mediated purification can be performed in-cell or in vitro; CRISPR complexes can be expressed to tag target DNA sequences in the cells to be analyzed, or a CRISPR ribonucleoprotein complex consisting of recombinant nuclease-dead Cas9 (dCas9) and synthetic guide RNA can be used to tag target DNA sequences in vitro. Both methods enable purification of specific DNA sequences in chromatin structures for subsequent identification of molecules (proteins, RNAs, and other genomic regions) associated with the target sequences. The in vitro method also enables enrichment of purified DNA sequences from a pool of heterogeneous sequences for next-generation sequencing or other applications. In this review, we outline the principle of CRISPR-mediated purification of specific DNA species and discuss recent advances in the technology.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori, Japan
| |
Collapse
|
21
|
Verkuijl SAN, Rots MG. The influence of eukaryotic chromatin state on CRISPR–Cas9 editing efficiencies. Curr Opin Biotechnol 2019; 55:68-73. [DOI: 10.1016/j.copbio.2018.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 12/14/2022]
|
22
|
Kallimasioti-Pazi EM, Thelakkad Chathoth K, Taylor GC, Meynert A, Ballinger T, Kelder MJE, Lalevée S, Sanli I, Feil R, Wood AJ. Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLoS Biol 2018; 16:e2005595. [PMID: 30540740 PMCID: PMC6306241 DOI: 10.1371/journal.pbio.2005595] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 12/26/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022] Open
Abstract
Genome editing occurs in the context of chromatin, which is heterogeneous in structure and function across the genome. Chromatin heterogeneity is thought to affect genome editing efficiency, but this has been challenging to quantify due to the presence of confounding variables. Here, we develop a method that exploits the allele-specific chromatin status of imprinted genes in order to address this problem in cycling mouse embryonic stem cells (mESCs). Because maternal and paternal alleles of imprinted genes have identical DNA sequence and are situated in the same nucleus, allele-specific differences in the frequency and spectrum of mutations induced by CRISPR-Cas9 can be unequivocally attributed to epigenetic mechanisms. We found that heterochromatin can impede mutagenesis, but to a degree that depends on other key experimental parameters. Mutagenesis was impeded by up to 7-fold when Cas9 exposure was brief and when intracellular Cas9 expression was low. In contrast, the outcome of mutagenic DNA repair was unaffected by chromatin state, with similar efficiencies of homology-directed repair (HDR) and deletion spectra on maternal and paternal chromosomes. Combined, our data show that heterochromatin imposes a permeable barrier that influences the kinetics, but not the endpoint, of CRISPR-Cas9 genome editing and suggest that therapeutic applications involving low-level Cas9 exposure will be particularly affected by chromatin status.
Collapse
Affiliation(s)
- Eirini M. Kallimasioti-Pazi
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Keerthi Thelakkad Chathoth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian C. Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Meynert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Tracy Ballinger
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Martijn J. E. Kelder
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sébastien Lalevée
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and University of Montpellier, Montpellier, France
| | - Ildem Sanli
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and University of Montpellier, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and University of Montpellier, Montpellier, France
| | - Andrew J. Wood
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Fujita T, Yuno M, Kitaura F, Fujii H. Detection of genome-edited cells by oligoribonucleotide interference-PCR. DNA Res 2018; 25:395-407. [PMID: 29718217 PMCID: PMC6105111 DOI: 10.1093/dnares/dsy012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/05/2018] [Indexed: 01/20/2023] Open
Abstract
Genome editing by engineered sequence-specific nucleases, such as the clustered regularly interspaced short palindromic repeats (CRISPR) system is widely used for analysis of gene functions. Several techniques have been developed for detection of genome-edited cells, but simple, cost-effective, and positive detection methods remain limited. Recently, we developed oligoribonucleotide (ORN) interference-PCR (ORNi-PCR), in which hybridization of an ORN with a complementary DNA sequence inhibits amplification across the sequence. Here, we investigated whether ORNi-PCR can be used to detect genome-edited cells. First, we showed that ORNs that hybridize to a CRISPR target site in the THYN1 locus inhibited amplification across the target site, but no longer inhibited amplification after the target site was edited, resulting in mismatches. Importantly, ORNi-PCR could distinguish even single-nucleotide differences. These features of ORNi-PCR enabled detection of genome-edited cells by positive PCR amplification. In addition, ORNi-PCR was successful in discriminating genome-edited cells from wild-type cells, and multiplex ORNi-PCR simultaneously detected indel mutations at multiple loci. However, endpoint ORNi-PCR may not be able to distinguish between mono- and bi-allelic mutations, which may limit its utility. Taken together, these results demonstrate the potential utility of ORNi-PCR for the screening of genome-edited cells.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Fusako Kitaura
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
24
|
Fujita T, Yuno M, Fujii H. An enChIP system for the analysis of bacterial genome functions. BMC Res Notes 2018; 11:387. [PMID: 29898790 PMCID: PMC6001023 DOI: 10.1186/s13104-018-3486-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Objective The engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technology enables purification of specific genomic regions interacting with their associated molecules. In enChIP, the locus to be purified is first tagged with engineered DNA-binding molecules. An example of such engineered DNA-binding molecules to tag the locus of interest is the clustered regularly interspaced short palindromic repeats (CRISPR) system, consisting of a catalytically-inactive form of Cas9 (dCas9) and guide RNA (gRNA). Subsequently, the tagged locus is subjected to affinity purification for identification of interacting molecules. In our previous studies, we developed enChIP systems for analysis of mammalian genome functions. Here, we developed an enChIP system to analyze bacterial genome functions. Results We generated a plasmid inducibly expressing Streptococcus pyogenes dCas9 fused to a 3xFLAG-tag (3xFLAG-dCas9) in bacteria. Inducible expression of 3xFLAG-dCas9 in Escherichia coli was confirmed by immunoblot analysis. We were able to purify specific genomic regions of E. coli preserving their molecular interactions. The system is potentially useful for analysis of interactions between specific genomic regions and their associated molecules in bacterial cells to understand genome functions such as transcription, DNA repair, and DNA recombination.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.,Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan. .,Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
25
|
Fujita T, Kitaura F, Oji A, Tanigawa N, Yuno M, Ikawa M, Taniuchi I, Fujii H. Transgenic mouse lines expressing the 3xFLAG-dCas9 protein for enChIP analysis. Genes Cells 2018; 23:318-325. [PMID: 29480524 DOI: 10.1111/gtc.12573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/28/2018] [Indexed: 01/05/2024]
Abstract
We developed the engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technology to isolate specific genomic regions while retaining their molecular interactions. In enChIP, the locus of interest is tagged with an engineered DNA-binding molecule, such as a modified form of the clustered regularly interspaced short palindromic repeats (CRISPR) system containing a guide RNA (gRNA) and a catalytically inactive form of Cas9 (dCas9). The locus is then affinity-purified to enable identification of associated molecules. In this study, we generated transgenic mice expressing 3xFLAG-tagged Streptococcus pyogenes dCas9 (3xFLAG-dCas9) and retrovirally transduced gRNA into primary CD4+ T cells from these mice for enChIP. Using this approach, we achieved high yields of enChIP at the targeted genomic region. Our novel transgenic mouse lines provide a valuable tool for enChIP analysis in primary mouse cells.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fusako Kitaura
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Asami Oji
- Department of Experimental Genome Research, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Naoki Tanigawa
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama City, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
26
|
Fujita T, Yuno M, Fujii H. enChIP systems using different CRISPR orthologues and epitope tags. BMC Res Notes 2018; 11:154. [PMID: 29482606 PMCID: PMC5828479 DOI: 10.1186/s13104-018-3262-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/17/2018] [Indexed: 12/15/2022] Open
Abstract
Objective Previously, we developed the engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technology, which isolates specific genomic regions while preserving their molecular interactions. In enChIP, the locus of interest is tagged with engineered DNA-binding molecules such as the clustered regularly interspaced short palindromic repeats (CRISPR) system, consisting of a catalytically inactive form of Cas9 (dCas9) and guide RNA, followed by affinity purification of the tagged locus to allow identification of associated molecules. In our previous studies, we used a 3xFLAG-tagged CRISPR system from Streptococcus pyogenes (S. pyogenes). In this study, to increase the flexibility of enChIP, we used the CRISPR system from Staphylococcus aureus (S. aureus) along with different epitope tags. Results We generated a plasmid expressing S. aureus dCas9 (Sa-dCas9) fused to a nuclear localization signal (NLS) and a 3xFLAG-tag (Sa-dCas9-3xFLAG). The yields of enChIP using Sa-dCas9-3xFLAG were comparable to those using S. pyogenes dCas9 fused with an NLS and a 3xFLAG-tag (3xFLAG-Sp-dCas9). We also generated another enChIP system using Sp-dCas9 fused with an NLS and a 2xAM-tag (Sp-dCas9-2xAM). We obtained high enChIP yields using this system as well. Our findings indicate that these tools will increase the flexibility of enChIP analysis.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.,Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan. .,Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
27
|
Koo T, Yoon AR, Cho HY, Bae S, Yun CO, Kim JS. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Res 2017; 45:7897-7908. [PMID: 28575452 PMCID: PMC5570104 DOI: 10.1093/nar/gkx490] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Approximately 15% of non-small cell lung cancer cases are associated with a mutation in the epidermal growth factor receptor (EGFR) gene, which plays a critical role in tumor progression. With the goal of treating mutated EGFR-mediated lung cancer, we demonstrate the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system to discriminate between the oncogenic mutant and wild-type EGFR alleles and eliminate the carcinogenic mutant EGFR allele with high accuracy. We targeted an EGFR oncogene harboring a single-nucleotide missense mutation (CTG > CGG) that generates a protospacer-adjacent motif sequence recognized by the CRISPR/Cas9 derived from Streptococcus pyogenes. Co-delivery of Cas9 and an EGFR mutation-specific single-guide RNA via adenovirus resulted in precise disruption at the oncogenic mutation site with high specificity. Furthermore, this CRISPR/Cas9-mediated mutant allele disruption led to significantly enhanced cancer cell killing and reduced tumor size in a xenograft mouse model of human lung cancer. Taken together, these results indicate that targeting an oncogenic mutation using CRISPR/Cas9 offers a powerful surgical strategy to disrupt oncogenic mutations to treat cancers; similar strategies could be used to treat other mutation-associated diseases.
Collapse
Affiliation(s)
- Taeyoung Koo
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul 08826, Korea
- Department of Basic Science, University of Science & Technology, Daejeon 34113, Korea
- These authors contributed equally to the paper as first authors
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
- These authors contributed equally to the paper as first authors
| | - Hee-Yeon Cho
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul 08826, Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
- To whom correspondence should be addressed. Tel: +82 2 880 9327; . Correspondence may also be addressed to Chae-Ok Yun. Tel: +82 2 2220 0491;
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul 08826, Korea
- Department of Basic Science, University of Science & Technology, Daejeon 34113, Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- To whom correspondence should be addressed. Tel: +82 2 880 9327; . Correspondence may also be addressed to Chae-Ok Yun. Tel: +82 2 2220 0491;
| |
Collapse
|
28
|
Fujita T, Yuno M, Suzuki Y, Sugano S, Fujii H. Identification of physical interactions between genomic regions by enChIP-Seq. Genes Cells 2017; 22:506-520. [PMID: 28474362 DOI: 10.1111/gtc.12492] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 01/23/2023]
Abstract
Physical interactions between genomic regions play critical roles in the regulation of genome functions, including gene expression. Here, we show the feasibility of using engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) in combination with next-generation sequencing (NGS) (enChIP-Seq) to detect such interactions. In enChIP-Seq, the target genomic region is captured by an engineered DNA-binding complex, such as a clustered regularly interspaced short palindromic repeats (CRISPR) system consisting of a catalytically inactive form of Cas9 and a single guide RNA. Subsequently, the genomic regions that physically interact with the target genomic region in the captured complex are sequenced by NGS. Using enChIP-Seq, we found that the 5'HS5 locus, which is involved in the regulation of globin genes expression at the β-globin locus, interacts with multiple genomic regions upon erythroid differentiation in the human erythroleukemia cell line K562. Genes near the genomic regions inducibly associated with the 5'HS5 locus were transcriptionally up-regulated in the differentiated state, suggesting the existence of a coordinated transcription mechanism mediated by physical interactions between these loci. Thus, enChIP-Seq might be a potentially useful tool for detecting physical interactions between genomic regions in a nonbiased manner, which would facilitate elucidation of the molecular mechanisms underlying regulation of genome functions.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
29
|
Valdmanis PN, Kay MA. Future of rAAV Gene Therapy: Platform for RNAi, Gene Editing, and Beyond. Hum Gene Ther 2017; 28:361-372. [PMID: 28073291 PMCID: PMC5399734 DOI: 10.1089/hum.2016.171] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022] Open
Abstract
The use of recombinant adeno-associated viruses (rAAVs) ushered in a new millennium of gene transfer for therapeutic treatment of a number of conditions, including congenital blindness, hemophilia, and spinal muscular atrophy. rAAV vectors have remarkable staying power from a therapeutic standpoint, withstanding several ebbs and flows. As new technologies such as clustered regularly interspaced short palindromic repeat genome editing emerge, it is now the delivery tool-the AAV vector-that is the stalwart. The long-standing safety of this vector in a multitude of clinical settings makes rAAV a selling point in the advancement of approaches for gene replacement, gene knockdown, gene editing, and genome modification/engineering. The research community is building on these advances to develop more tailored delivery approaches and to tweak the genome in new and unique ways. Intertwining these approaches with newly engineered rAAV vectors is greatly expanding the available tools to manipulate gene expression with a therapeutic intent.
Collapse
Affiliation(s)
- Paul N. Valdmanis
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California
| |
Collapse
|