1
|
Hsu LM, Shih YYI. Neuromodulation in Small Animal fMRI. J Magn Reson Imaging 2024. [PMID: 39279265 DOI: 10.1002/jmri.29575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
The integration of functional magnetic resonance imaging (fMRI) with advanced neuroscience technologies in experimental small animal models offers a unique path to interrogate the causal relationships between regional brain activity and brain-wide network measures-a goal challenging to accomplish in human subjects. This review traces the historical development of the neuromodulation techniques commonly used in rodents, such as electrical deep brain stimulation, optogenetics, and chemogenetics, and focuses on their application with fMRI. We discuss their advantageousness roles in uncovering the signaling architecture within the brain and the methodological considerations necessary when conducting these experiments. By presenting several rodent-based case studies, we aim to demonstrate the potential of the multimodal neuromodulation approach in shedding light on neurovascular coupling, the neural basis of brain network functions, and their connections to behaviors. Key findings highlight the cell-type and circuit-specific modulation of brain-wide activity patterns and their behavioral correlates. We also discuss several future directions and feature the use of mediation and moderation analytical models beyond the intuitive evoked response mapping, to better leverage the rich information available in fMRI data with neuromodulation. Using fMRI alongside neuromodulation techniques provide insights into the mesoscopic (relating to the intermediate scale between single neurons and large-scale brain networks) and macroscopic fMRI measures that correlate with specific neuronal events. This integration bridges the gap between different scales of neuroscience research, facilitating the exploration and testing of novel therapeutic strategies aimed at altering network-mediated behaviors. In conclusion, the combination of fMRI with neuromodulation techniques provides crucial insights into mesoscopic and macroscopic brain dynamics, advancing our understanding of brain function in health and disease. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Modak P, Fine J, Colon B, Need E, Cheng H, Hulvershorn L, Finn P, Brown JW. Temporal interference electrical neurostimulation at 20 Hz beat frequency leads to increased fMRI BOLD activation in orbitofrontal cortex in humans. Brain Stimul 2024; 17:867-875. [PMID: 39059712 DOI: 10.1016/j.brs.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Temporal interference electrical neurostimulation (TI) is a relatively new method of non-invasive neurostimulation that may be able to stimulate deep brain regions without stimulating the overlying superficial regions. Although some recent studies have demonstrated the success of TI in modulating task-induced BOLD activity in humans, there is limited information on intended and off-target effects of TI during resting-state. We simultaneously performed TI stimulation with the set-up optimized for maximum focality in the left caudate and collected resting-state fMRI data to investigate the effects of TI on human BOLD signals. We found increased BOLD activation in a part of the mid-orbitofrontal cortex (OFC) and parahippocampal gyrus. Results indicate that TI can induce increased BOLD activation in the region that receives the highest magnitude of TI amplitude modulation in humans, with good safety and tolerability profiles. We also show the limits of spatial precision and explore the nature and causes of additional off-target effects. TI may be a promising approach for addressing questions about the causal role of deep brain structures in human cognition and may also afford new clinical treatments.
Collapse
Affiliation(s)
- Priyamvada Modak
- Dept. of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Justin Fine
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Brayden Colon
- Dept. of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ella Need
- The Family Institute, Northwestern University, Chicago, Illinois, IL, USA
| | - Hu Cheng
- Dept. of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Leslie Hulvershorn
- Dept. of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter Finn
- Dept. of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Joshua W Brown
- Dept. of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
3
|
Lee SH, Shnitko TA, Hsu LM, Broadwater MA, Sardinas M, Wang TWW, Robinson DL, Vetreno RP, Crews FT, Shih YYI. Acute alcohol induces greater dose-dependent increase in the lateral cortical network functional connectivity in adult than adolescent rats. ADDICTION NEUROSCIENCE 2023; 7:100105. [PMID: 37576436 PMCID: PMC10421607 DOI: 10.1016/j.addicn.2023.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Alcohol misuse and, particularly adolescent drinking, is a major public health concern. While evidence suggests that adolescent alcohol use affects frontal brain regions that are important for cognitive control over behavior little is known about how acute alcohol exposure alters large-scale brain networks and how sex and age may moderate such effects. Here, we employ a recently developed functional magnetic resonance imaging (fMRI) protocol to acquire rat brain functional connectivity data and use an established analytical pipeline to examine the effect of sex, age, and alcohol dose on connectivity within and between three major rodent brain networks: defaul mode, salience, and lateral cortical network. We identify the intra- and inter-network connectivity differences and establish moderation models to reveal significant influences of age on acute alcohol-induced lateral cortical network connectivity. Through this work, we make brain-wide isotropic fMRI data with acute alcohol challenge publicly available, with the hope to facilitate future discovery of brain regions/circuits that are causally relevant to the impact of acute alcohol use.
Collapse
Affiliation(s)
- Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| | - Tatiana A. Shnitko
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Margaret A. Broadwater
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| | - Mabelle Sardinas
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Li SJ, Lo YC, Tseng HY, Lin SH, Kuo CH, Chen TC, Chang CW, Liang YW, Lin YC, Wang CY, Cho TY, Wang MH, Chen CT, Chen YY. Nucleus accumbens deep brain stimulation improves depressive-like behaviors through BDNF-mediated alterations in brain functional connectivity of dopaminergic pathway. Neurobiol Stress 2023; 26:100566. [PMID: 37664874 PMCID: PMC10474237 DOI: 10.1016/j.ynstr.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
Major depressive disorder (MDD), a common psychiatric condition, adversely affects patients' moods and quality of life. Despite the development of various treatments, many patients with MDD remain vulnerable and inadequately controlled. Since anhedonia is a feature of depression and there is evidence of leading to metabolic disorder, deep brain stimulation (DBS) to the nucleus accumbens (NAc) might be promising in modulating the dopaminergic pathway. To determine whether NAc-DBS alters glucose metabolism via mitochondrial alteration and neurogenesis and whether these changes increase neural plasticity that improves behavioral functions in a chronic social defeat stress (CSDS) mouse model. The Lab-designed MR-compatible neural probes were implanted in the bilateral NAc of C57BL/6 mice with and without CSDS, followed by DBS or sham stimulation. All animals underwent open-field and sucrose preference testing, and brain resting-state functional MRI analysis. Meanwhile, we checked the placement of neural probes in each mouse by T2 images. By confirming the placement location, mice with incorrect probe placement (the negative control group) showed no significant therapeutic effects in behavioral performance and functional connectivity (FC) after receiving electrical stimulation and were excluded from further analysis. Western blotting, seahorse metabolic analysis, and electron microscopy were further applied for the investigation of NAc-DBS. We found NAc-DBS restored emotional deficits in CSDS-subjected mice. Concurrent with behavioral amelioration, the CSDS DBS-on group exhibited enhanced FC in the dopaminergic pathway with increased expression of BDNF- and NeuN-positive cells increased dopamine D1 receptor, dopamine D2 receptors, and TH in the medial prefrontal cortex, NAc, ventral hippocampus, ventral tegmental area, and amygdala. Increased pAMPK/total AMPK and PGC-1α levels, functions of oxidative phosphorylation, and mitochondrial biogenesis were also observed after NAc-DBS treatment. Our findings demonstrate that NAc-DBS can promote BDNF expression, which alters FC and metabolic profile in the dopaminergic pathway, suggesting a potential strategy for ameliorating emotional processes in individuals with MDD.
Collapse
Affiliation(s)
- Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei, 11031, Taiwan, ROC
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 11031, Taiwan, ROC
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien, 97002, Taiwan, ROC
- Department of Neurology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan, ROC
| | - Chao-Hung Kuo
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Taipei, 11217, Taiwan, ROC
| | - Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 115024, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Yi-Chen Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Chih-Yu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Tsai-Yu Cho
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Mu-Hua Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
| | - Ching-Te Chen
- Abbott Medical Taiwan Co, 5/F No. 407, Ruei-Guang Rd., Taipei, 11492, Taiwan, ROC
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei, 112304, Taiwan, ROC
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei, 11031, Taiwan, ROC
| |
Collapse
|
5
|
Li G, Bo B, Wang P, Qian P, Li M, Li Y, Tong C, Zhang K, Zhang B, Jiang T, Liang Z, Duan X. Instantaneous antidepressant effect of lateral habenula deep brain stimulation in rats studied with functional MRI. eLife 2023; 12:e84693. [PMID: 37261976 PMCID: PMC10234627 DOI: 10.7554/elife.84693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
The available treatments for depression have substantial limitations, including low response rates and substantial lag time before a response is achieved. We applied deep brain stimulation (DBS) to the lateral habenula (LHb) of two rat models of depression (Wistar Kyoto rats and lipopolysaccharide-treated rats) and observed an immediate (within seconds to minutes) alleviation of depressive-like symptoms with a high-response rate. Simultaneous functional MRI (fMRI) conducted on the same sets of depressive rats used in behavioral tests revealed DBS-induced activation of multiple regions in afferent and efferent circuitry of the LHb. The activation levels of brain regions connected to the medial LHb (M-LHb) were correlated with the extent of behavioral improvements. Rats with more medial stimulation sites in the LHb exhibited greater antidepressant effects than those with more lateral stimulation sites. These results indicated that the antidromic activation of the limbic system and orthodromic activation of the monoaminergic systems connected to the M-LHb played a critical role in the rapid antidepressant effects of LHb-DBS. This study indicates that M-LHb-DBS might act as a valuable, rapid-acting antidepressant therapeutic strategy for treatment-resistant depression and demonstrates the potential of using fMRI activation of specific brain regions as biomarkers to predict and evaluate antidepressant efficacy.
Collapse
Affiliation(s)
- Gen Li
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
| | - Binshi Bo
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
| | - Puxin Wang
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Peixing Qian
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Mingzhe Li
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Yuyan Li
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
| | - Chuanjun Tong
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
- School of Biomedical Engineering, Southern Medical UniversityGuangzhouChina
| | - Kaiwei Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Zhifeng Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
| | - Xiaojie Duan
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- National Biomedical Imaging Center, Peking UniversityBeijingChina
| |
Collapse
|
6
|
Derksen M, Zuidinga B, van der Veer M, Rhemrev V, Jolink L, Reneman L, Nederveen A, Forstmann B, Feenstra M, Willuhn I, Denys D. A comparison of how deep brain stimulation in two targets with anti-compulsive efficacy modulates brain activity using fMRI in awake rats. Psychiatry Res Neuroimaging 2023; 330:111611. [PMID: 36796237 DOI: 10.1016/j.pscychresns.2023.111611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Deep brain stimulation (DBS) is an established neuromodulatory intervention against otherwise treatment-refractory obsessive-compulsive disorder (OCD). Several DBS targets, all of which are part of brain networks connecting basal ganglia and prefrontal cortex, alleviate OCD symptoms. Stimulation of these targets is thought to unfold its therapeutic effect by modulation of network activity through internal capsule (IC) connections. Research into DBS-induced network changes and the nature of IC-related effects of DBS in OCD is needed to further improve DBS. Here, we studied the effects of DBS at the ventral medial striatum (VMS) and IC on blood-oxygen level dependent (BOLD) responses in awake rats using functional magnetic resonance imaging (fMRI). BOLD-signal intensity was measured in five regions of interest (ROIs): medial and orbital prefrontal cortex, nucleus accumbens (NAc), IC area, and mediodorsal thalamus. In previous rodent studies, stimulation at both target locations resulted in a reduction of OCD-like behavior and activation of prefrontal cortical areas. Therefore, we hypothesized that stimulation at both targets would result in partially overlapping BOLD responses. Both differential and overlapping activity between VMS and IC stimulation was found. Stimulating the caudal part of the IC resulted in activation around the electrode, while stimulating the rostral part of the IC resulted in increased cross-correlations between the IC area, orbitofrontal cortex, and NAc. Stimulation of the dorsal part of the VMS resulted in increased activity in the IC area, suggesting this area is activated during both VMS and IC stimulation. This activation is also indicative of VMS-DBS impacting corticofugal fibers running through the medial caudate into the anterior IC, and both VMS and IC DBS might act on these fibers to induce OCD-reducing effects. These results show that rodent fMRI with simultaneous electrode stimulation is a promising approach to study the neural mechanisms of DBS. Comparing the effects of DBS in different target areas has the potential to improve our understanding of the neuromodulatory changes that take place across various networks and connections in the brain. Performing this research in animal disease models will lead to translational insights in the mechanisms underlying DBS, and can aid improvement and optimization of DBS in patient populations.
Collapse
Affiliation(s)
- Maik Derksen
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Birte Zuidinga
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Marijke van der Veer
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Valerie Rhemrev
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Linda Jolink
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Aart Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Birte Forstmann
- University of Amsterdam, Integrative Model-based Cognitive Neuroscience Research Unit, Amsterdam, The Netherlands
| | - Matthijs Feenstra
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ingo Willuhn
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Damiaan Denys
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Menon V, Cerri D, Lee B, Yuan R, Lee SH, Shih YYI. Optogenetic stimulation of anterior insular cortex neurons in male rats reveals causal mechanisms underlying suppression of the default mode network by the salience network. Nat Commun 2023; 14:866. [PMID: 36797303 PMCID: PMC9935890 DOI: 10.1038/s41467-023-36616-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The salience network (SN) and default mode network (DMN) play a crucial role in cognitive function. The SN, anchored in the anterior insular cortex (AI), has been hypothesized to modulate DMN activity during stimulus-driven cognition. However, the causal neural mechanisms underlying changes in DMN activity and its functional connectivity with the SN are poorly understood. Here we combine feedforward optogenetic stimulation with fMRI and computational modeling to dissect the causal role of AI neurons in dynamic functional interactions between SN and DMN nodes in the male rat brain. Optogenetic stimulation of Chronos-expressing AI neurons suppressed DMN activity, and decreased AI-DMN and intra-DMN functional connectivity. Our findings demonstrate that feedforward optogenetic stimulation of AI neurons induces dynamic suppression and decoupling of the DMN and elucidates previously unknown features of rodent brain network organization. Our study advances foundational knowledge of causal mechanisms underlying dynamic cross-network interactions and brain network switching.
Collapse
Grants
- R01 MH121069 NIMH NIH HHS
- P50 HD103573 NICHD NIH HHS
- T32 AA007573 NIAAA NIH HHS
- R01 NS091236 NINDS NIH HHS
- R01 MH126518 NIMH NIH HHS
- S10 MH124745 NIMH NIH HHS
- U01 AA020023 NIAAA NIH HHS
- R01 MH111429 NIMH NIH HHS
- S10 OD026796 NIH HHS
- R01 NS086085 NINDS NIH HHS
- R01 EB022907 NIBIB NIH HHS
- P60 AA011605 NIAAA NIH HHS
- RF1 NS086085 NINDS NIH HHS
- RF1 MH117053 NIMH NIH HHS
- This work was supported in part by the National Institute of Mental Health (R01MH121069 to V.M., and R01MH126518, RF1MH117053, R01MH111429, S10MH124745 to Y.-Y.I.S.), National Institute on Alcohol Abuse and Alcoholism (P60AA011605 and U01AA020023 to Y.-Y.I.S., T32AA007573 to D.C.), National Institute of Neurological Disorders and Stroke (R01NS086085 to V.M., R01NS091236 to Y.-Y.I.S.), National Institute of Child Health and Human Development (P50HD103573 to Y.-Y.I.S.), National Institute of Biomedical Imaging and Bioengineering (R01EB022907 to V.M.), and National Institute of Health Office of the Director (S10OD026796 to Y.-Y.I.S.).
Collapse
Affiliation(s)
- Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Domenic Cerri
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Byeongwook Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rui Yuan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Ioanas HI, Schlegel F, Skachokova Z, Schroeter A, Husak T, Rudin M. Hybrid fiber optic-fMRI for multimodal cell-specific recording and manipulation of neural activity in rodents. NEUROPHOTONICS 2022; 9:032206. [PMID: 35355657 PMCID: PMC8936941 DOI: 10.1117/1.nph.9.3.032206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/19/2022] [Indexed: 05/08/2023]
Abstract
Significance: Multiscale imaging holds particular relevance to neuroscience, where it helps integrate the cellular and molecular biological scale, which is most accessible to interventions, with holistic organ-level evaluations, most relevant with respect to function. Being inextricably interdisciplinary, multiscale imaging benefits substantially from incremental technology adoption, and a detailed overview of the state-of-the-art is vital to an informed application of imaging methods. Aim: In this article, we lay out the background and methodological aspects of multimodal approaches combining functional magnetic resonance imaging (fMRI) with simultaneous optical measurement or stimulation. Approach: We focus on optical techniques as these allow, in conjunction with genetically encoded proteins (e.g. calcium indicators or optical signal transducers), unprecedented read-out and control specificity for individual cell-types during fMRI experiments, while leveraging non-interfering modalities. Results: A variety of different solutions for optical/fMRI methods has been reported ranging from bulk fluorescence recordings via fiber photometry to high resolution microscopy. In particular, the plethora of optogenetic tools has enabled the transformation of stimulus-evoked fMRI into a cell biological interrogation method. We discuss the capabilities and limitations of these genetically encoded molecular tools in the study of brain phenomena of great methodological and neuropsychiatric interest-such as neurovascular coupling (NVC) and neuronal network mapping. We provide a methodological description of this interdisciplinary field of study, and focus in particular on the limitations of the widely used blood oxygen level dependent (BOLD) signal and how multimodal readouts can shed light on the contributions arising from neurons, astrocytes, or the vasculature. Conclusion: We conclude that information from multiple signaling pathways must be incorporated in future forward models of the BOLD response to prevent erroneous conclusions when using fMRI as a surrogate measure for neural activity. Further, we highlight the potential of direct neuronal stimulation via genetically defined brain networks towards advancing neurophysiological understanding and better estimating effective connectivity.
Collapse
Affiliation(s)
- Horea-Ioan Ioanas
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, Massachusetts, United States
- Dartmouth College, Center for Open Neuroscience, Hanover, New Hampshire, United States
- Address all correspondence to Markus Rudin, ; Horea-Ioan Ioanas,
| | - Felix Schlegel
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
| | - Zhiva Skachokova
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
| | - Aileen Schroeter
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- University of Zurich, USZ Innovation Hub, Zurich, Switzerland
| | - Tetiana Husak
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, United States
| | - Markus Rudin
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- The LOOP Zurich, Zurich, Switzerland
- Address all correspondence to Markus Rudin, ; Horea-Ioan Ioanas,
| |
Collapse
|
9
|
Beloate LN, Zhang N. Connecting the dots between cell populations, whole-brain activity, and behavior. NEUROPHOTONICS 2022; 9:032208. [PMID: 35350137 PMCID: PMC8957372 DOI: 10.1117/1.nph.9.3.032208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Simultaneously manipulating and monitoring both microscopic and macroscopic brain activity in vivo and identifying the linkage to behavior are powerful tools in neuroscience research. These capabilities have been realized with the recent technical advances of optogenetics and its combination with fMRI, here termed "opto-fMRI." Opto-fMRI allows for targeted brain region-, cell-type-, or projection-specific manipulation and targeted Ca 2 + activity measurement to be linked with global brain signaling and behavior. We cover the history, technical advances, applications, and important considerations of opto-fMRI in anesthetized and awake rodents and the future directions of the combined techniques in neuroscience and neuroimaging.
Collapse
Affiliation(s)
- Lauren N. Beloate
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
| | - Nanyin Zhang
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
- Pennsylvania State University, Huck Institutes of the Life Sciences, Pennsylvania, United States
| |
Collapse
|
10
|
Aronson JP, Katnani HA, Huguenard A, Mulvaney G, Bader ER, Yang JC, Eskandar EN. Phasic stimulation in the nucleus accumbens enhances learning after traumatic brain injury. Cereb Cortex Commun 2022; 3:tgac016. [PMID: 35529519 PMCID: PMC9070350 DOI: 10.1093/texcom/tgac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Despite improvements in survival, treatments that improve functional outcome remain lacking. There is, therefore, a pressing need to develop novel treatments to improve functional recovery. Here, we investigated task-matched deep-brain stimulation of the nucleus accumbens (NAc) to augment reinforcement learning in a rodent model of TBI. We demonstrate that task-matched deep brain stimulation (DBS) of the NAc can enhance learning following TBI. We further demonstrate that animals receiving DBS exhibited greater behavioral improvement and enhanced neural proliferation. Treated animals recovered to an uninjured behavioral baseline and showed retention of improved performance even after stimulation was stopped. These results provide encouraging early evidence for the potential of NAc DBS to improve functional outcomes following TBI and that its effects may be broad, with alterations in neurogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Joshua P Aronson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Husam A Katnani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Huguenard
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Graham Mulvaney
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Bader
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
11
|
Xu N, LaGrow TJ, Anumba N, Lee A, Zhang X, Yousefi B, Bassil Y, Clavijo GP, Khalilzad Sharghi V, Maltbie E, Meyer-Baese L, Nezafati M, Pan WJ, Keilholz S. Functional Connectivity of the Brain Across Rodents and Humans. Front Neurosci 2022; 16:816331. [PMID: 35350561 PMCID: PMC8957796 DOI: 10.3389/fnins.2022.816331] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal, is increasingly utilized for the investigation of the brain's physiological and pathological functional activity. Rodents, as a typical animal model in neuroscience, play an important role in the studies that examine the neuronal processes that underpin the spontaneous fluctuations in the BOLD signal and the functional connectivity that results. Translating this knowledge from rodents to humans requires a basic knowledge of the similarities and differences across species in terms of both the BOLD signal fluctuations and the resulting functional connectivity. This review begins by examining similarities and differences in anatomical features, acquisition parameters, and preprocessing techniques, as factors that contribute to functional connectivity. Homologous functional networks are compared across species, and aspects of the BOLD fluctuations such as the topography of the global signal and the relationship between structural and functional connectivity are examined. Time-varying features of functional connectivity, obtained by sliding windowed approaches, quasi-periodic patterns, and coactivation patterns, are compared across species. Applications demonstrating the use of rs-fMRI as a translational tool for cross-species analysis are discussed, with an emphasis on neurological and psychiatric disorders. Finally, open questions are presented to encapsulate the future direction of the field.
Collapse
Affiliation(s)
- Nan Xu
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Theodore J. LaGrow
- Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, United States
| | - Nmachi Anumba
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Azalea Lee
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
- Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaodi Zhang
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Behnaz Yousefi
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Yasmine Bassil
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
| | - Gloria P. Clavijo
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | | | - Eric Maltbie
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Lisa Meyer-Baese
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Maysam Nezafati
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Wen-Ju Pan
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Shella Keilholz
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Walton LR, Verber M, Lee SH, Chao THH, Wightman RM, Shih YYI. Simultaneous fMRI and fast-scan cyclic voltammetry bridges evoked oxygen and neurotransmitter dynamics across spatiotemporal scales. Neuroimage 2021; 244:118634. [PMID: 34624504 PMCID: PMC8667333 DOI: 10.1016/j.neuroimage.2021.118634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
The vascular contributions of neurotransmitters to the hemodynamic response are gaining more attention in neuroimaging studies, as many neurotransmitters are vasomodulatory. To date, well-established electrochemical techniques that detect neurotransmission in high magnetic field environments are limited. Here, we propose an experimental setting enabling simultaneous fast-scan cyclic voltammetry (FSCV) and blood oxygenation level-dependent functional magnetic imaging (BOLD fMRI) to measure both local tissue oxygen and dopamine responses, and global BOLD changes, respectively. By using MR-compatible materials and the proposed data acquisition schemes, FSCV detected physiological analyte concentrations with high temporal resolution and spatial specificity inside of a 9.4 T MRI bore. We found that tissue oxygen and BOLD correlate strongly, and brain regions that encode dopamine amplitude differences can be identified via modeling simultaneously acquired dopamine FSCV and BOLD fMRI time-courses. This technique provides complementary neurochemical and hemodynamic information and expands the scope of studying the influence of local neurotransmitter release over the entire brain.
Collapse
Affiliation(s)
- Lindsay R Walton
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Matthew Verber
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - R Mark Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| |
Collapse
|
13
|
Lee SH, Broadwater MA, Ban W, Wang TWW, Kim HJ, Dumas JS, Vetreno RP, Herman MA, Morrow AL, Besheer J, Kash TL, Boettiger CA, Robinson DL, Crews FT, Shih YYI. An isotropic EPI database and analytical pipelines for rat brain resting-state fMRI. Neuroimage 2021; 243:118541. [PMID: 34478824 PMCID: PMC8561231 DOI: 10.1016/j.neuroimage.2021.118541] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/08/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) has drastically expanded the scope of brain research by advancing our knowledge about the topologies, dynamics, and interspecies translatability of functional brain networks. Several databases have been developed and shared in accordance with recent key initiatives in the rodent fMRI community to enhance the transparency, reproducibility, and interpretability of data acquired at various sites. Despite these pioneering efforts, one notable challenge preventing efficient standardization in the field is the customary choice of anisotropic echo planar imaging (EPI) schemes with limited spatial coverage. Imaging with anisotropic resolution and/or reduced brain coverage has significant shortcomings including reduced registration accuracy and increased deviation in brain feature detection. Here we proposed a high-spatial-resolution (0.4 mm), isotropic, whole-brain EPI protocol for the rat brain using a horizontal slicing scheme that can maintain a functionally relevant repetition time (TR), avoid high gradient duty cycles, and offer unequivocal whole-brain coverage. Using this protocol, we acquired resting-state EPI fMRI data from 87 healthy rats under the widely used dexmedetomidine sedation supplemented with low-dose isoflurane on a 9.4 T MRI system. We developed an EPI template that closely approximates the Paxinos and Watson's rat brain coordinate system and demonstrated its ability to improve the accuracy of group-level approaches and streamline fMRI data pre-processing. Using this database, we employed a multi-scale dictionary-learning approach to identify reliable spatiotemporal features representing rat brain intrinsic activity. Subsequently, we performed k-means clustering on those features to obtain spatially discrete, functional regions of interest (ROIs). Using Euclidean-based hierarchical clustering and modularity-based partitioning, we identified the topological organizations of the rat brain. Additionally, the identified group-level FC network appeared robust across strains and sexes. The "triple-network" commonly adapted in human fMRI were resembled in the rat brain. Through this work, we disseminate raw and pre-processed isotropic EPI data, a rat brain EPI template, as well as identified functional ROIs and networks in standardized rat brain coordinates. We also make our analytical pipelines and scripts publicly available, with the hope of facilitating rat brain resting-state fMRI study standardization.
Collapse
Affiliation(s)
- Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Corresponding authors at: Center for Animal MRI, 125 Mason Farm Road, CB# 7513, University of North Carolina, Chapel Hill, NC 27599, USA. (S.-H. Lee), (Y.-Y.I. Shih)
| | - Margaret A. Broadwater
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| | - Woomi Ban
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Hyeon-Joong Kim
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Jaiden Seongmi Dumas
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Department of Quantitative Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Melissa A. Herman
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A. Boettiger
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Corresponding authors at: Center for Animal MRI, 125 Mason Farm Road, CB# 7513, University of North Carolina, Chapel Hill, NC 27599, USA. (S.-H. Lee), (Y.-Y.I. Shih)
| |
Collapse
|
14
|
Ozbakir HF, Miller ADC, Fishman KB, Martins AF, Kippin TE, Mukherjee A. A Protein-Based Biosensor for Detecting Calcium by Magnetic Resonance Imaging. ACS Sens 2021; 6:3163-3169. [PMID: 34420291 DOI: 10.1021/acssensors.1c01085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium-responsive contrast agents for magnetic resonance imaging (MRI) offer a promising approach for noninvasive brain-wide monitoring of neural activity at any arbitrary depth. Current examples of MRI-based calcium probes involve synthetic molecules and nanoparticles, which cannot be used to examine calcium signaling in a genetically encoded form. Here, we describe a new MRI sensor for calcium, based entirely on a naturally occurring calcium-binding protein known as calprotectin. Calcium-binding causes calprotectin to sequester manganese ions, thereby limiting Mn2+ enhanced paramagnetic relaxation of nearby water molecules. We demonstrate that this mechanism allows calprotectin to alter T1 and T2 based MRI signals in response to biologically relevant calcium concentrations. The resulting response amplitude, i.e., change in relaxation time, is comparable to existing MRI-based calcium sensors as well as other reported protein-based MRI sensors. As a preliminary demonstration of its biological applicability, we used calprotectin to detect calcium in a lysed hippocampal cell preparation as well as in intact Chinese hamster ovary cells treated with a calcium ionophore. Calprotectin thus represents a promising path toward noninvasive imaging of calcium signaling by combining the molecular and cellular specificity of genetically encodable tools with the ability of MRI to image through scattering tissue of any size and depth.
Collapse
|
15
|
One-pot synthesis of carboxymethyl-dextran coated iron oxide nanoparticles (CION) for preclinical fMRI and MRA applications. Neuroimage 2021; 238:118213. [PMID: 34116153 PMCID: PMC8418149 DOI: 10.1016/j.neuroimage.2021.118213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Superparamagnetic iron-oxide nanoparticles are robust contrast agents for magnetic resonance imaging (MRI) used for sensitive structural and functional mapping of the cerebral blood volume (CBV) when administered intravenously. To date, many CBV-MRI studies are conducted with Feraheme, manufactured for the clinical treatment of iron-deficiency. Unfortunately, Feraheme is currently not available outside the United States due to commercial and regulatory constraints, making CBV-MRI methods either inaccessible or very costly to achieve. To address this barrier, we developed a simple, one-pot recipe to synthesize Carboxymethyl-dextran coated Iron Oxide Nanoparticles, namely, “CION”, suitable for preclinical CBV-MRI applications. Here we disseminate a step-by-step instruction of our one-pot synthesis protocol, which allows CION to be produced in laboratories with minimal cost. We also characterized different CION-conjugations by manipulating polymer to metal stoichiometric ratio in terms of their size, surface chemistry, and chemical composition, and shifts in MR relaxivity and pharmacokinetics. We performed several proof-of-concept experiments in vivo, demonstrating the utility of CION for functional and structural MRI applications, including hypercapnic CO2 challenge, visual stimulation, targeted optogenetic stimulation, and microangiography. We also present evidence that CION can serve as a cross-modality research platform by showing concurrent in vivo optical and MRI measurement of CBV using fluorescent-labeled CION. The simplicity and cost-effectiveness of our one-pot synthesis method should allow researchers to reproduce CION and tailor the relaxivity and pharmacokinetics according to their imaging needs. It is our hope that this work makes CBV-MRI more openly available and affordable for a variety of research applications.
Collapse
|
16
|
Derksen M, Rhemrev V, van der Veer M, Jolink L, Zuidinga B, Mulder T, Reneman L, Nederveen A, Feenstra M, Willuhn I, Denys D. Animal studies in clinical MRI scanners: A custom setup for combined fMRI and deep-brain stimulation in awake rats. J Neurosci Methods 2021; 360:109240. [PMID: 34097929 DOI: 10.1016/j.jneumeth.2021.109240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND In humans, functional magnetic resonance imaging (fMRI) cannot be used to its full potential to study the effects of deep-brain stimulation (DBS) on the brain due to safety reasons. Application of DBS in small animals is an alternative, but was hampered by technical limitations thus far. NEW METHOD We present a novel setup that extends the range of available applications by studying animals in a clinical scanner. We used a 3 T-MRI scanner with a custom-designed receiver coil and a restrainer to measure brain activity in awake rats. DBS electrodes made of silver were used to minimize electromagnetic artifacts. Before scanning, rats were habituated to the restrainer. RESULTS Using our novel setup, we observed minor DBS-electrode artifacts, which did not interfere with brain-activity measurements significantly. Movement artifacts were also minimal and were not further reduced by restrainer habituation. Bilateral DBS in the dorsal part of the ventral striatum (dVS) resulted in detectable increases in brain activity around the electrodes tips. COMPARISON WITH EXISTING METHODS This novel setup offers a low-cost alternative to dedicated small-animal scanners. Moreover, it can be implemented in widely available clinical 3 T scanners. Although spatial and temporal resolution was lower than what is achieved in anesthetized rats in high-field small-animal scanners, we obtained scans in awake animals, thus, testing the effects of bilateral DBS of the dVS in a more physiological state. CONCLUSIONS With this new technical setup, the neurobiological mechanism of action of DBS can be explored in awake, restrained rats in a clinical 3 T-MRI scanner.
Collapse
Affiliation(s)
- Maik Derksen
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Valerie Rhemrev
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Marijke van der Veer
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Linda Jolink
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Birte Zuidinga
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Tosca Mulder
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Aart Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Matthijs Feenstra
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Ingo Willuhn
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, the Netherlands.
| | - Damiaan Denys
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Hsu LM, Wang S, Ranadive P, Ban W, Chao THH, Song S, Cerri DH, Walton LR, Broadwater MA, Lee SH, Shen D, Shih YYI. Automatic Skull Stripping of Rat and Mouse Brain MRI Data Using U-Net. Front Neurosci 2020; 14:568614. [PMID: 33117118 PMCID: PMC7575753 DOI: 10.3389/fnins.2020.568614] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Accurate removal of magnetic resonance imaging (MRI) signal outside the brain, a.k.a., skull stripping, is a key step in the brain image pre-processing pipelines. In rodents, this is mostly achieved by manually editing a brain mask, which is time-consuming and operator dependent. Automating this step is particularly challenging in rodents as compared to humans, because of differences in brain/scalp tissue geometry, image resolution with respect to brain-scalp distance, and tissue contrast around the skull. In this study, we proposed a deep-learning-based framework, U-Net, to automatically identify the rodent brain boundaries in MR images. The U-Net method is robust against inter-subject variability and eliminates operator dependence. To benchmark the efficiency of this method, we trained and validated our model using both in-house collected and publicly available datasets. In comparison to current state-of-the-art methods, our approach achieved superior averaged Dice similarity coefficient to ground truth T2-weighted rapid acquisition with relaxation enhancement and T2∗-weighted echo planar imaging data in both rats and mice (all p < 0.05), demonstrating robust performance of our approach across various MRI protocols.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shuai Wang
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Paridhi Ranadive
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Woomi Ban
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tzu-Hao Harry Chao
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sheng Song
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Domenic Hayden Cerri
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lindsay R Walton
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Margaret A Broadwater
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sung-Ho Lee
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dinggang Shen
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF, Chakravarty MM, Dhenain M, Dijkhuizen RM, Gozzi A, Hess A, Keilholz SD, Lerch JP, Shih YYI, Grandjean J. Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization. Front Neuroinform 2020; 13:78. [PMID: 32038217 PMCID: PMC6987455 DOI: 10.3389/fninf.2019.00078] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.
Collapse
Affiliation(s)
- Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Domenic H. Cerri
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clement M. Garin
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Marc Dhenain
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Georgia Tech, Emory University, Atlanta, GA, United States
| | - Jason P. Lerch
- Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| | - Yen-Yu Ian Shih
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Radiology and Nuclear Medicine, Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
19
|
Cho S, Hachmann JT, Balzekas I, In MH, Andres-Beck LG, Lee KH, Min HK, Jo HJ. Resting-state functional connectivity modulates the BOLD activation induced by nucleus accumbens stimulation in the swine brain. Brain Behav 2019; 9:e01431. [PMID: 31697455 PMCID: PMC6908867 DOI: 10.1002/brb3.1431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION While the clinical efficacy of deep brain stimulation (DBS) the treatment of motor-related symptoms is well established, the mechanism of action of the resulting cognitive and behavioral effects has been elusive. METHODS By combining functional magnetic resonance imaging (fMRI) and DBS, we investigated the pattern of blood-oxygenation-level-dependent (BOLD) signal changes induced by stimulating the nucleus accumbens in a large animal model. RESULTS We found that diffused BOLD activation across multiple functional networks, including the prefrontal, limbic, and thalamic regions during the stimulation, resulted in a significant change in inter-regional functional connectivity. More importantly, the magnitude of the modulation was closely related to the strength of the inter-regional resting-state functional connectivity. CONCLUSIONS Nucleus accumbens stimulation affects the functional activity in networks that underlie cognition and behavior. Our study provides an insight into the nature of the functional connectivity, which mediates activation effect via brain networks.
Collapse
Affiliation(s)
- Shinho Cho
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Jan T Hachmann
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Irena Balzekas
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Myung-Ho In
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Lindsey G Andres-Beck
- Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Hang Joon Jo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
20
|
Thalamic low frequency activity facilitates resting-state cortical interhemispheric MRI functional connectivity. Neuroimage 2019; 201:115985. [DOI: 10.1016/j.neuroimage.2019.06.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
|
21
|
Chen YW, Das M, Oyarzabal EA, Cheng Q, Plummer NW, Smith KG, Jones GK, Malawsky D, Yakel JL, Shih YYI, Jensen P. Genetic identification of a population of noradrenergic neurons implicated in attenuation of stress-related responses. Mol Psychiatry 2019; 24:710-725. [PMID: 30214043 PMCID: PMC6416086 DOI: 10.1038/s41380-018-0245-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 11/09/2022]
Abstract
Noradrenergic signaling plays a well-established role in promoting the stress response. Here we identify a subpopulation of noradrenergic neurons, defined by developmental expression of Hoxb1, that has a unique role in modulating stress-related behavior. Using an intersectional chemogenetic strategy, in combination with behavioral and physiological analyses, we show that activation of Hoxb1-noradrenergic (Hoxb1-NE) neurons decreases anxiety-like behavior and promotes an active coping strategy in response to acute stressors. In addition, we use cerebral blood volume-weighted functional magnetic resonance imaging to show that chemoactivation of Hoxb1-NE neurons results in reduced activity in stress-related brain regions, including the bed nucleus of the stria terminalis, amygdala, and locus coeruleus. Thus, the actions of Hoxb1-NE neurons are distinct from the well-documented functions of the locus coeruleus in promoting the stress response, demonstrating that the noradrenergic system contains multiple functionally distinct subpopulations.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Manasmita Das
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Qing Cheng
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Nicholas W. Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Kathleen G. Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Grace K. Jones
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Daniel Malawsky
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jerrel L. Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
22
|
Monitoring deep brain stimulation by measuring regional brain oxygen responses in freely moving mice. J Neurosci Methods 2019; 317:20-28. [PMID: 30716350 DOI: 10.1016/j.jneumeth.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Translational studies investigating the effects of deep brain stimulation (DBS) on brain function up to now mainly relied on BOLD responses measured with fMRI. However, fMRI studies in rodents face technical and practical limitations (e.g., immobilization, sedation or anesthesia, spatial and temporal resolution of data). Direct measurement of oxygen concentration in the brain using electrochemical sensors is a promising alternative to the use of fMRI. Here, we tested for the first time if such measurements can be combined with DBS. NEW METHOD We combined bilateral DBS in the internal capsule (IC-DBS) with simultaneous amperometric measurements of oxygen in the medial prefrontal cortex (prelimbic area) and striatum of freely moving mice. Using a two-day within-animal experimental design, we tested the effects of DBS on baseline oxygen concentrations, and on novelty- and restraint-induced increases in oxygen concentration. RESULTS Basal oxygen levels were stable across the daily sampling periods. Exposure to novelty and immobilization reproducibly increased oxygen concentrations in both areas. IC-DBS did not significantly alter basal oxygen, but reduced the novelty-induced increase in the striatum. COMPARISON WITH EXISTING METHOD(S) Amperometric detection of brain oxygen concentration with high temporal and spatial resolution can be performed in a number of key brain areas to study the effects of DBS in animal models of disease. The method is easily implemented and does not require expensive equipment or complicated data analysis processes. CONCLUSIONS Direct and simultaneous measurement of brain oxygen concentration in multiple brain areas can be used to study the effects of bilateral DBS neuromodulation on brain activity in freely moving mice.
Collapse
|
23
|
Desjardins M, Kılıç K, Thunemann M, Mateo C, Holland D, Ferri CGL, Cremonesi JA, Li B, Cheng Q, Weldy KL, Saisan PA, Kleinfeld D, Komiyama T, Liu TT, Bussell R, Wong EC, Scadeng M, Dunn AK, Boas DA, Sakadžić S, Mandeville JB, Buxton RB, Dale AM, Devor A. Awake Mouse Imaging: From Two-Photon Microscopy to Blood Oxygen Level-Dependent Functional Magnetic Resonance Imaging. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:533-542. [PMID: 30691968 DOI: 10.1016/j.bpsc.2018.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/26/2018] [Accepted: 11/27/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) in awake behaving mice is well positioned to bridge the detailed cellular-level view of brain activity, which has become available owing to recent advances in microscopic optical imaging and genetics, to the macroscopic scale of human noninvasive observables. However, though microscopic (e.g., two-photon imaging) studies in behaving mice have become a reality in many laboratories, awake mouse fMRI remains a challenge. Owing to variability in behavior among animals, performing all types of measurements within the same subject is highly desirable and can lead to higher scientific rigor. METHODS We demonstrated blood oxygenation level-dependent fMRI in awake mice implanted with long-term cranial windows that allowed optical access for microscopic imaging modalities and optogenetic stimulation. We started with two-photon imaging of single-vessel diameter changes (n = 1). Next, we implemented intrinsic optical imaging of blood oxygenation and flow combined with laser speckle imaging of blood flow obtaining a mesoscopic picture of the hemodynamic response (n = 16). Then we obtained corresponding blood oxygenation level-dependent fMRI data (n = 5). All measurements could be performed in the same mice in response to identical sensory and optogenetic stimuli. RESULTS The cranial window did not deteriorate the quality of fMRI and allowed alternation between imaging modalities in each subject. CONCLUSIONS This report provides a proof of feasibility for multiscale imaging approaches in awake mice. In the future, this protocol could be extended to include complex cognitive behaviors translatable to humans, such as sensory discrimination or attention.
Collapse
Affiliation(s)
- Michèle Desjardins
- Department of Radiology, University of California, San Diego, La Jolla, California.
| | - Kıvılcım Kılıç
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Martin Thunemann
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Celine Mateo
- Department of Physics, University of California, San Diego, La Jolla, California
| | - Dominic Holland
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Christopher G L Ferri
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Jonathan A Cremonesi
- Biology Undergraduate Program, University of California, San Diego, La Jolla, California
| | - Baoqiang Li
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Qun Cheng
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Kimberly L Weldy
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Payam A Saisan
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, California; Section of Neurobiology, University of California, San Diego, La Jolla, California; Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California
| | - Takaki Komiyama
- Department of Neurosciences, University of California, San Diego, La Jolla, California; Section of Neurobiology, University of California, San Diego, La Jolla, California
| | - Thomas T Liu
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Robert Bussell
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Eric C Wong
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Miriam Scadeng
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Joseph B Mandeville
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Richard B Buxton
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, California; Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Anna Devor
- Department of Radiology, University of California, San Diego, La Jolla, California; Department of Neurosciences, University of California, San Diego, La Jolla, California; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown
| |
Collapse
|
24
|
Dopfel D, Zhang N. Mapping stress networks using functional magnetic resonance imaging in awake animals. Neurobiol Stress 2018; 9:251-263. [PMID: 30450389 PMCID: PMC6234259 DOI: 10.1016/j.ynstr.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/27/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
The neurobiology of stress is studied through behavioral neuroscience, endocrinology, neuronal morphology and neurophysiology. There is a shift in focus toward progressive changes throughout stress paradigms and individual susceptibility to stress that requires methods that allow for longitudinal study design and study of individual differences in stress response. Functional magnetic resonance imaging (fMRI), with the advantages of noninvasiveness and a large field of view, can be used for functionally mapping brain-wide regions and circuits critical to the stress response, making it suitable for longitudinal studies and understanding individual variability of short-term and long-term consequences of stress exposure. In addition, fMRI can be applied to both animals and humans, which is highly valuable in translating findings across species and examining whether the physiology and neural circuits involved in the stress response are conserved in mammals. However, compared to human fMRI studies, there are a number of factors that are essential for the success of fMRI studies in animals. This review discussed the use of fMRI in animal studies of stress. It reviewed advantages, challenges and technical considerations of the animal fMRI methodology as well as recent literature of stress studies using fMRI in animals. It also highlighted the development of combining fMRI with other methods and the future potential of fMRI in animal studies of stress. We conclude that animal fMRI studies, with their flexibility, low cost and short time frame compared to human studies, are crucial to advancing our understanding of the neurobiology of stress.
Collapse
Affiliation(s)
- David Dopfel
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
25
|
Casquero-Veiga M, García-García D, Pascau J, Desco M, Soto-Montenegro ML. Stimulating the nucleus accumbens in obesity: A positron emission tomography study after deep brain stimulation in a rodent model. PLoS One 2018; 13:e0204740. [PMID: 30261068 PMCID: PMC6160153 DOI: 10.1371/journal.pone.0204740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The nucleus accumbens (NAcc) has been suggested as a possible target for deep brain stimulation (DBS) in the treatment of obesity. Our hypothesis was that NAcc-DBS would modulate brain regions related to reward and food intake regulation, consequently reducing the food intake and, finally, the weight gain. Therefore, we examined changes in brain glucose metabolism, weight gain and food intake after NAcc-DBS in a rat model of obesity. PROCEDURES Electrodes were bilaterally implanted in 2 groups of obese Zucker rats targeting the NAcc. One group received stimulation one hour daily during 15 days, while the other remained as control. Weight and daily consumption of food and water were everyday registered the days of stimulation, and twice per week during the following month. Positron emission tomography (PET) studies with 2-deoxy-2-[18F]fluoro-D-glucose (FDG) were performed 1 day after the end of DBS. PET data was assessed by statistical parametric mapping (SPM12) software and region of interest (ROI) analyses. RESULTS NAcc-DBS lead to increased metabolism in the cingulate-retrosplenial-parietal association cortices, and decreased metabolism in the NAcc, thalamic and pretectal nuclei. Furthermore, ROIs analyses confirmed these results by showing a significant striatal and thalamic hypometabolism, and a cortical hypermetabolic region. However, NAcc-DBS did not induce a decrease in either weight gain or food intake. CONCLUSIONS NAcc-DBS led to changes in the metabolism of regions associated with cognitive and reward systems, whose impairment has been described in obesity.
Collapse
Affiliation(s)
| | | | - Javier Pascau
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
26
|
Bruinsma TJ, Sarma VV, Oh Y, Jang DP, Chang SY, Worrell GA, Lowe VJ, Jo HJ, Min HK. The Relationship Between Dopamine Neurotransmitter Dynamics and the Blood-Oxygen-Level-Dependent (BOLD) Signal: A Review of Pharmacological Functional Magnetic Resonance Imaging. Front Neurosci 2018; 12:238. [PMID: 29692706 PMCID: PMC5902685 DOI: 10.3389/fnins.2018.00238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is widely used in investigations of normal cognition and brain disease and in various clinical applications. Pharmacological fMRI (pharma-fMRI) is a relatively new application, which is being used to elucidate the effects and mechanisms of pharmacological modulation of brain activity. Characterizing the effects of neuropharmacological agents on regional brain activity using fMRI is challenging because drugs modulate neuronal function in a wide variety of ways, including through receptor agonist, antagonist, and neurotransmitter reuptake blocker events. Here we review current knowledge on neurotransmitter-mediated blood-oxygen-level dependent (BOLD) fMRI mechanisms as well as recently updated methodologies aimed at more fully describing the effects of neuropharmacologic agents on the BOLD signal. We limit our discussion to dopaminergic signaling as a useful lens through which to analyze and interpret neurochemical-mediated changes in the hemodynamic BOLD response. We also discuss the need for future studies that use multi-modal approaches to expand the understanding and application of pharma-fMRI.
Collapse
Affiliation(s)
- Tyler J Bruinsma
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Vidur V Sarma
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Yoonbae Oh
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.,Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Su-Youne Chang
- Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Departments of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Greg A Worrell
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Val J Lowe
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hang Joon Jo
- Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hoon-Ki Min
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Departments of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
27
|
Bétry C, Thobois S, Laville M, Disse E. Deep brain stimulation as a therapeutic option for obesity: A critical review. Obes Res Clin Pract 2018; 12:260-269. [PMID: 29475604 DOI: 10.1016/j.orcp.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
Despite a better understanding of obesity pathophysiology, treating this disease remains a challenge. New therapeutic options are needed. Targeting the brain is a promising way, considering both the brain abnormalities in obesity and the effects of bariatric surgery on the gut-brain axis. Deep brain stimulation could be an alternative treatment for obesity since this safe and reversible neurosurgical procedure modulates neural circuits for therapeutic purposes. We aimed to provide a critical review of published clinical and preclinical studies in this field. Owing to the physiology of eating and brain alterations in people with obesity, two brain areas, namely the hypothalamus and the nucleus accumbens are putative targets. Preclinical studies with animal models of obesity showed that deep brain stimulation of hypothalamus or nucleus accumbens induces weight loss. The mechanisms of action remain to be fully elucidated. Preclinical data suggest that stimulation of nucleus accumbens reduces food intake, while stimulation of hypothalamus could increase resting energy expenditure. Clinical experience with deep brain stimulation for obesity remains limited to six patients with mixed results, but some clinical trials are ongoing. Thus, drawing clear conclusions about the effectiveness of this treatment is not yet possible, even if the results of preclinical studies are encouraging. Future clinical studies should examine its efficacy and safety, while preclinical studies could help understand its mechanisms of action. We hope that our review will provide ways to design further studies.
Collapse
Affiliation(s)
- Cécile Bétry
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France; The Medical School, University of Nottingham, Nottingham, UK.
| | - Stéphane Thobois
- Hospices Civils de Lyon, Hopital Neurologique Pierre Wertheimer, Service de neurologie C, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon Sud Charles Merieux, Lyon, France; CNRS, Institut des Sciences Cognitives Marc Jeannerot, UMR 5229, Bron, France
| | - Martine Laville
- Service d'Endocrinologie-Diabétologie-Maladies de la nutrition, Centre Intégré de l'Obésité, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France; Unité INSERM 1060, Laboratoire CARMEN, CENS-Centre Européen pour la Nutrition et la Santé, Centre de Recherche en Nutrition Humaine Rhône-Alpes., Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Emmanuel Disse
- Service d'Endocrinologie-Diabétologie-Maladies de la nutrition, Centre Intégré de l'Obésité, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France; Unité INSERM 1060, Laboratoire CARMEN, CENS-Centre Européen pour la Nutrition et la Santé, Centre de Recherche en Nutrition Humaine Rhône-Alpes., Université Claude Bernard Lyon 1, Pierre Bénite, France
| |
Collapse
|
28
|
Functional networks and network perturbations in rodents. Neuroimage 2017; 163:419-436. [DOI: 10.1016/j.neuroimage.2017.09.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
|
29
|
Cardozo Pinto DF, Lammel S. Viral vector strategies for investigating midbrain dopamine circuits underlying motivated behaviors. Pharmacol Biochem Behav 2017; 174:23-32. [PMID: 28257849 DOI: 10.1016/j.pbb.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Midbrain dopamine (DA) neurons have received significant attention in brain research because of their central role in reward processing and their dysfunction in neuropsychiatric disorders such as Parkinson's disease, drug addiction, depression and schizophrenia. Until recently, it has been thought that DA neurons form a homogeneous population whose primary function is the computation of reward prediction errors. However, through the implementation of viral vector strategies, an unexpected complexity and diversity has been revealed at the anatomical, molecular and functional level. In this review, we discuss recent viral vector approaches that have been leveraged to dissect how different circuits involving distinct DA neuron subpopulations may contribute to the role of DA in reward- and aversion-related behaviors. We focus on studies that have used cell type- and projection-specific optogenetic manipulations, discuss the strengths and limitations of each approach, and critically examine emergent organizational principles that have led to a reclassification of midbrain DA neurons.
Collapse
Affiliation(s)
- Daniel F Cardozo Pinto
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA.
| |
Collapse
|
30
|
Van Den Berge N, Albaugh DL, Salzwedel A, Vanhove C, Van Holen R, Gao W, Stuber GD, Shih YYI. Functional circuit mapping of striatal output nuclei using simultaneous deep brain stimulation and fMRI. Neuroimage 2017; 146:1050-1061. [PMID: 27825979 PMCID: PMC5322177 DOI: 10.1016/j.neuroimage.2016.10.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/08/2016] [Accepted: 10/31/2016] [Indexed: 01/11/2023] Open
Abstract
The substantia nigra pars reticulata (SNr) and external globus pallidus (GPe) constitute the two major output targets of the rodent striatum. Both the SNr and GPe converge upon thalamic relay nuclei (directly or indirectly, respectively), and are traditionally modeled as functionally antagonistic relay inputs. However, recent anatomical and functional studies have identified unanticipated circuit connectivity in both the SNr and GPe, demonstrating their potential as far more than relay nuclei. In the present study, we employed simultaneous deep brain stimulation and functional magnetic resonance imaging (DBS-fMRI) with cerebral blood volume (CBV) measurements to functionally and unbiasedly map the circuit- and network level connectivity of the SNr and GPe. Sprague-Dawley rats were implanted with a custom-made MR-compatible stimulating electrode in the right SNr (n=6) or GPe (n=7). SNr- and GPe-DBS, conducted across a wide range of stimulation frequencies, revealed a number of surprising evoked responses, including unexpected CBV decreases within the striatum during DBS at either target, as well as GPe-DBS-evoked positive modulation of frontal cortex. Functional connectivity MRI revealed global modulation of neural networks during DBS at either target, sensitive to stimulation frequency and readily reversed following cessation of stimulation. This work thus contributes to a growing literature demonstrating extensive and unanticipated functional connectivity among basal ganglia nuclei.
Collapse
Affiliation(s)
- Nathalie Van Den Berge
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Daniel L Albaugh
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew Salzwedel
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Vanhove
- Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Roel Van Holen
- Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Wei Gao
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Garret D Stuber
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|