1
|
Werner A, Kanhere A, Wahlestedt C, Mattick JS. Natural antisense transcripts as versatile regulators of gene expression. Nat Rev Genet 2024; 25:730-744. [PMID: 38632496 DOI: 10.1038/s41576-024-00723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - John S Mattick
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Coban I, Lamping JP, Hirsch AG, Wasilewski S, Shomroni O, Giesbrecht O, Salinas G, Krebber H. dsRNA formation leads to preferential nuclear export and gene expression. Nature 2024; 631:432-438. [PMID: 38898279 PMCID: PMC11236707 DOI: 10.1038/s41586-024-07576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
When mRNAs have been transcribed and processed in the nucleus, they are exported to the cytoplasm for translation. This export is mediated by the export receptor heterodimer Mex67-Mtr2 in the yeast Saccharomyces cerevisiae (TAP-p15 in humans)1,2. Interestingly, many long non-coding RNAs (lncRNAs) also leave the nucleus but it is currently unclear why they move to the cytoplasm3. Here we show that antisense RNAs (asRNAs) accelerate mRNA export by annealing with their sense counterparts through the helicase Dbp2. These double-stranded RNAs (dsRNAs) dominate export compared with single-stranded RNAs (ssRNAs) because they have a higher capacity and affinity for the export receptor Mex67. In this way, asRNAs boost gene expression, which is beneficial for cells. This is particularly important when the expression program changes. Consequently, the degradation of dsRNA, or the prevention of its formation, is toxic for cells. This mechanism illuminates the general cellular occurrence of asRNAs and explains their nuclear export.
Collapse
Affiliation(s)
- Ivo Coban
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Jan-Philipp Lamping
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Anna Greta Hirsch
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Sarah Wasilewski
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Orr Shomroni
- NGS-Integrative Genomics Core Unit, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Giesbrecht
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Li Z, Wang W, Li W, Duan H, Xu C, Tian X, Ning F, Zhang D. Co-methylation analyses identify CpGs associated with lipid traits in Chinese discordant monozygotic twins. Hum Mol Genet 2024; 33:583-593. [PMID: 38142287 DOI: 10.1093/hmg/ddad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023] Open
Abstract
To control genetic background and early life milieu in genome-wide DNA methylation analysis for blood lipids, we recruited Chinese discordant monozygotic twins to explore the relationships between DNA methylations and total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). 132 monozygotic (MZ) twins were included with discordant lipid levels and completed data. A linear mixed model was conducted in Epigenome-wide association study (EWAS). Generalized estimating equation model was for gene expression analysis. We conducted Weighted correlation network analysis (WGCNA) to build co-methylated interconnected network. Additional Qingdao citizens were recruited for validation. Inference about Causation through Examination of Familial Confounding (ICE FALCON) was used to infer the possible direction of these relationships. A total of 476 top CpGs reached suggestively significant level (P < 10-4), of which, 192 CpGs were significantly associated with TG (FDR < 0.05). They were used to build interconnected network and highlight crucial genes from WGCNA. Finally, four CpGs in GATA4 were validated as risk factors for TC; six CpGs at ITFG2-AS1 were negatively associated with TG; two CpGs in PLXND1 played protective roles in HDL-C. ICE FALCON indicated abnormal TC was regarded as the consequence of DNA methylation in CpGs at GATA4, rather than vice versa. Four CpGs in ITFG2-AS1 were both causes and consequences of modified TG levels. Our results indicated that DNA methylation levels of 12 CpGs in GATA4, ITFG2-AS1, and PLXND1 were relevant to TC, TG, and HDL-C, respectively, which might provide new epigenetic insights into potential clinical treatment of dyslipidemia.
Collapse
Affiliation(s)
- Zhaoying Li
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, No. 308 Ning Xia Street, Qingdao 266071, Shandong Province, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, No. 308 Ning Xia Street, Qingdao 266071, Shandong Province, People's Republic of China
| | - Weilong Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B, st. tv. Odense C DK-5000, Denmark
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Qingdao 266000, Shandong Province, People's Republic of China
- Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Qingdao 266000, Shandong Province, People's Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Qingdao 266000, Shandong Province, People's Republic of China
- Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Qingdao 266000, Shandong Province, People's Republic of China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Qingdao 266000, Shandong Province, People's Republic of China
- Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Qingdao 266000, Shandong Province, People's Republic of China
| | - Feng Ning
- Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Qingdao 266000, Shandong Province, People's Republic of China
- Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Qingdao 266000, Shandong Province, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, No. 308 Ning Xia Street, Qingdao 266071, Shandong Province, People's Republic of China
| |
Collapse
|
4
|
Sharma H, Valentine MNZ, Toki N, Sueki HN, Gustincich S, Takahashi H, Carninci P. Decryption of sequence, structure, and functional features of SINE repeat elements in SINEUP non-coding RNA-mediated post-transcriptional gene regulation. Nat Commun 2024; 15:1400. [PMID: 38383605 PMCID: PMC10881587 DOI: 10.1038/s41467-024-45517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
RNA structure folding largely influences RNA regulation by providing flexibility and functional diversity. In silico and in vitro analyses are limited in their ability to capture the intricate relationships between dynamic RNA structure and RNA functional diversity present in the cell. Here, we investigate sequence, structure and functional features of mouse and human SINE-transcribed retrotransposons embedded in SINEUPs long non-coding RNAs, which positively regulate target gene expression post-transcriptionally. In-cell secondary structure probing reveals that functional SINEs-derived RNAs contain conserved short structure motifs essential for SINEUP-induced translation enhancement. We show that SINE RNA structure dynamically changes between the nucleus and cytoplasm and is associated with compartment-specific binding to RBP and related functions. Moreover, RNA-RNA interaction analysis shows that the SINE-derived RNAs interact directly with ribosomal RNAs, suggesting a mechanism of translation regulation. We further predict the architecture of 18 SINE RNAs in three dimensions guided by experimental secondary structure data. Overall, we demonstrate that the conservation of short key features involved in interactions with RBPs and ribosomal RNA drives the convergent function of evolutionarily distant SINE-transcribed RNAs.
Collapse
Affiliation(s)
- Harshita Sharma
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Matthew N Z Valentine
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Naoko Toki
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiromi Nishiyori Sueki
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | | | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
- Human Technopole, Milan, 20157, Italy.
| |
Collapse
|
5
|
Godet AC, Roussel E, Laugero N, Morfoisse F, Lacazette E, Garmy-Susini B, Prats AC. Translational control by long non-coding RNAs. Biochimie 2024; 217:42-53. [PMID: 37640229 DOI: 10.1016/j.biochi.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Long non-coding (lnc) RNAs, once considered as junk and useless, are now broadly recognized to have major functions in the cell. LncRNAs are defined as non-coding RNAs of more than 200 nucleotides, regulate all steps of gene expression. Their origin is diverse, they can arise from intronic, intergenic or overlapping region, in sense or antisense direction. LncRNAs are mainly described for their action on transcription, while their action at the translational level is more rarely cited. However, the bibliography in the field is more and more abundant. The present synopsis of lncRNAs involved in the control of translation reveals a wide field of regulation of gene expression, with at least nine distinct molecular mechanisms. Furthermore, it appears that all these lncRNAs are involved in various pathologies including cancer, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne-Claire Godet
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France; Threonin Design, 220 Chemin de Montabon, Le Touvet, France
| | - Emilie Roussel
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | - Nathalie Laugero
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | - Florent Morfoisse
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | - Eric Lacazette
- UMR 1297-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France
| | | | | |
Collapse
|
6
|
Srinivas T, Mathias C, Oliveira-Mateos C, Guil S. Roles of lncRNAs in brain development and pathogenesis: Emerging therapeutic opportunities. Mol Ther 2023; 31:1550-1561. [PMID: 36793211 PMCID: PMC10277896 DOI: 10.1016/j.ymthe.2023.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The human genome is pervasively transcribed, producing a majority of short and long noncoding RNAs (lncRNAs) that can influence cellular programs through a variety of transcriptional and post-transcriptional regulatory mechanisms. The brain houses the richest repertoire of long noncoding transcripts, which function at every stage during central nervous system development and homeostasis. An example of functionally relevant lncRNAs is species involved in spatiotemporal organization of gene expression in different brain regions, which play roles at the nuclear level and in transport, translation, and decay of other transcripts in specific neuronal sites. Research in the field has enabled identification of the contributions of specific lncRNAs to certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders, resulting in notions of potential therapeutic strategies that target these RNAs to recover the normal phenotype. Here, we summarize the latest mechanistic findings associated with lncRNAs in the brain, focusing on their dysregulation in neurodevelopmental or neurodegenerative disorders, their use as biomarkers for central nervous system (CNS) diseases in vitro and in vivo, and their potential utility for therapeutic strategies.
Collapse
Affiliation(s)
- Tara Srinivas
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Catalonia, Spain
| | - Carolina Mathias
- Department of Genetics, Federal University of Parana, Post-graduation Program in Genetics, Curitiba, PR, Brazil; Laboratory of Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil
| | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Catalonia, Spain; Germans Trias i Pujol Health Science Research Institute, Badalona, 08916 Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Chen F, Li X, Feng X, Gao T, Zhang W, Cheng Z, Zhao X, Chen R, Lu X. Long Noncoding RNA Lx8-SINE B2 Interacts with Eno1 to Regulate Self-Renewal and Metabolism of Embryonic Stem Cells. Stem Cells 2022; 40:1094-1106. [PMID: 36087098 DOI: 10.1093/stmcls/sxac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023]
Abstract
Long noncoding RNAs (lncRNAs) emerge as important orchestrators of biological processes in embryonic stem cells (ESCs). LncRNA Lx8-SINE B2 was recently identified as an ESC-specific lncRNA that marks pluripotency. Here, we studied the function of lncRNA Lx8-SINE B2 in ESCs. Depletion of Lx8-SINE B2 disrupted ESC proliferation, repressed the expression of pluripotency genes, activated differentiation genes, and inhibited reprogramming to induced pluripotent stem cells. The reduction of the colony formation ability of ESCs upon Lx8-SINE B2 knockdown was accompanied by the elongation of the G1 phase and the shortening of the S phase. Transcriptome analysis revealed that Lx8-SINE B2 deficiency affected multiple metabolic pathways, particularly glycolysis. Mechanistically, Lx8-SINE B2 functions as a cytoplasmic lncRNA and interacts with the glycolytic enzyme Eno1 as shown by RNA pull-down and RNA localization analysis. Lx8-SINE B2 and Eno1 interact with and regulate each other's expression, hence promoting the expression of metabolic genes and influencing glycolysis. In conclusion, we have identified lncRNA Lx8-SINE B2 as a novel regulator of ESC proliferation, cell cycle, and metabolism through working with Eno1.
Collapse
Affiliation(s)
- Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Xiaomin Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Xiao Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Tingting Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Zhi Cheng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Xuan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Ruiqing Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
9
|
Saldanha PA, Bolanle IO, Palmer TM, Nikitenko LL, Rivero F. Complex Transcriptional Profiles of the PPP1R12A Gene in Cells of the Circulatory System as Revealed by In Silico Analysis and Reverse Transcription PCR. Cells 2022; 11:cells11152315. [PMID: 35954160 PMCID: PMC9367544 DOI: 10.3390/cells11152315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The myosin light chain phosphatase target subunit 1 (MYPT1), encoded by the PPP1R12A gene, is a key component of the myosin light chain phosphatase (MLCP) protein complex. MYPT1 isoforms have been described as products of the cassette-type alternative splicing of exons E13, E14, E22, and E24. Through in silico analysis of the publicly available EST and mRNA databases, we established that PPP1R12A contains 32 exons (6 more than the 26 previously reported), of which 29 are used in 11 protein-coding transcripts. An in silico analysis of publicly available RNAseq data combined with validation by reverse transcription (RT)-PCR allowed us to determine the relative abundance of each transcript in three cell types of the circulatory system where MYPT1 plays important roles: human umbilical vein endothelial cells (HUVEC), human saphenous vein smooth muscle cells (HSVSMC), and platelets. All three cell types express up to 10 transcripts at variable frequencies. HUVECs and HSVSMCs predominantly express the full-length variant (58.3% and 64.3%, respectively) followed by the variant skipping E13 (33.7% and 23.1%, respectively), whereas in platelets the predominant variants are those skipping E14 (51.4%) and E13 (19.9%), followed by the full-length variant (14.4%). Variants including E24 account for 5.4% of transcripts in platelets but are rare (<1%) in HUVECs and HSVSMCs. Complex transcriptional profiles were also found across organs using in silico analysis of RNAseq data from the GTEx project. Our findings provide a platform for future studies investigating the specific (patho)physiological roles of understudied MYPT1 isoforms.
Collapse
|
10
|
Bezzecchi E, Pagani G, Forte B, Percio S, Zaffaroni N, Dolfini D, Gandellini P. MIR205HG/LEADR Long Noncoding RNA Binds to Primed Proximal Regulatory Regions in Prostate Basal Cells Through a Triplex- and Alu-Mediated Mechanism. Front Cell Dev Biol 2022; 10:909097. [PMID: 35784469 PMCID: PMC9247157 DOI: 10.3389/fcell.2022.909097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 01/11/2023] Open
Abstract
Aside serving as host gene for miR-205, MIR205HG transcribes for a chromatin-associated long noncoding RNA (lncRNA) able to restrain the differentiation of prostate basal cells, thus being reannotated as LEADR (Long Epithelial Alu-interacting Differentiation-related RNA). We previously showed the presence of Alu sequences in the promoters of genes modulated upon MIR205HG/LEADR manipulation. Notably, an Alu element also spans the first and second exons of MIR205HG/LEADR, suggesting its possible involvement in target selection/binding. Here, we performed ChIRP-seq to map MIR205HG/LEADR chromatin occupancy at genome-wide level in prostate basal cells. Our results confirmed preferential binding to regions proximal to gene transcription start site (TSS). Moreover, enrichment of triplex-forming sequences was found upstream of MIR205HG/LEADR-bound genes, peaking at −1,500/−500 bp from TSS. Triplexes formed with one or two putative DNA binding sites within MIR205HG/LEADR sequence, located just upstream of the Alu element. Notably, triplex-forming regions of bound genes were themselves enriched in Alu elements. These data suggest, from one side, that triplex formation may be the prevalent mechanism by which MIR205HG/LEADR selects and physically interacts with target DNA, from the other that direct or protein-mediated Alu (RNA)/Alu (DNA) interaction may represent a further functional requirement. We also found that triplex-forming regions were enriched in specific histone modifications, including H3K4me1 in the absence of H3K27ac, H3K4me3 and H3K27me3, indicating that in prostate basal cells MIR205HG/LEADR may preferentially bind to primed proximal regulatory elements. This may underscore the need for basal cells to keep MIR205HG/LEADR target genes repressed but, at the same time, responsive to differentiation cues.
Collapse
Affiliation(s)
- Eugenia Bezzecchi
- Department of Biosciences, University of Milan, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Pagani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Barbara Forte
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Percio
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Milan, Italy
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Paolo Gandellini,
| |
Collapse
|
11
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
12
|
Zhu YS, Zhu J. Molecular and cellular functions of long non-coding RNAs in prostate and breast cancer. Adv Clin Chem 2022; 106:91-179. [PMID: 35152976 DOI: 10.1016/bs.acc.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) are defined as noncoding RNA transcripts with a length greater than 200 nucleotides. Research over the last decade has made great strides in our understanding of lncRNAs, especially in the biology of their role in cancer. In this article, we will briefly discuss the biogenesis and characteristics of lncRNAs, then review their molecular and cellular functions in cancer by using prostate and breast cancer as examples. LncRNAs are abundant, diverse, and evolutionarily, less conserved than protein-coding genes. They are often expressed in a tumor and cell-specific manner. As a key epigenetic factor, lncRNAs can use a wide variety of molecular mechanisms to regulate gene expression at each step of the genetic information flow pathway. LncRNAs display widespread effects on cell behavior, tumor growth, and metastasis. They act intracellularly and extracellularly in an autocrine, paracrine and endocrine fashion. Increased understanding of lncRNA's role in cancer has facilitated the development of novel biomarkers for cancer diagnosis, led to greater understanding of cancer prognosis, enabled better prediction of therapeutic responses, and promoted identification of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Yuan-Shan Zhu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States.
| | - Jifeng Zhu
- Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
13
|
Arnoldi M, Zarantonello G, Espinoza S, Gustincich S, Di Leva F, Biagioli M. Design and Delivery of SINEUP: A New Modular Tool to Increase Protein Translation. Methods Mol Biol 2022; 2434:63-87. [PMID: 35213010 PMCID: PMC9703201 DOI: 10.1007/978-1-0716-2010-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SINEUP is a new class of long non-coding RNAs (lncRNAs) which contain an inverted Short Interspersed Nuclear Element (SINE) B2 element (invSINEB2) necessary to specifically upregulate target gene translation. Originally identified in the mouse AS-Uchl1 (antisense Ubiquitin carboxyl-terminal esterase L1) locus, natural SINEUP molecules are oriented head to head to their sense protein coding, target gene (Uchl1, in this example). Peculiarly, SINEUP is able to augment, in a specific and controlled way, the expression of the target protein, with no alteration of target mRNA levels. SINEUP is characterized by a modular structure with the Binding Domain (BD) providing specificity to the target transcript and an effector domain (ED)-containing the invSINEB2 element-able to promote the loading to the heavy polysomes of the target mRNA. Since the understanding of its modular structure in the endogenous AS-Uchl1 ncRNA, synthetic SINEUP molecules have been developed by creating a specific BD for the gene of interest and placing it upstream the invSINEB2 ED. Synthetic SINEUP is thus a novel molecular tool that potentially may be used for any industrial or biomedical application to enhance protein production, also as possible therapeutic strategy in haploinsufficiency-driven disorders.Here, we describe a detailed protocol to (1) design a specific BD directed to a gene of interest and (2) assemble and clone it with the ED to obtain a functional SINEUP molecule. Then, we provide guidelines to efficiently deliver SINEUP into mammalian cells and evaluate its ability to effectively upregulate target protein translation.
Collapse
Affiliation(s)
- Michele Arnoldi
- Neuroepigenetics Laboratory, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Zarantonello
- Neuroepigenetics Laboratory, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Francesca Di Leva
- Neuroepigenetics Laboratory, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
- Institute for Biomedicine, Eurac Research, Bolzano, Italy.
| | - Marta Biagioli
- Neuroepigenetics Laboratory, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
14
|
Zarantonello G, Arnoldi M, Filosi M, Tebaldi T, Spirito G, Barbieri A, Gustincich S, Sanges R, Domenici E, Di Leva F, Biagioli M. Natural SINEUP RNAs in Autism Spectrum Disorders: RAB11B-AS1 Dysregulation in a Neuronal CHD8 Suppression Model Leads to RAB11B Protein Increase. Front Genet 2021; 12:745229. [PMID: 34880900 PMCID: PMC8647803 DOI: 10.3389/fgene.2021.745229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
CHD8 represents one of the highest confidence genetic risk factors implied in Autism Spectrum Disorders, with most mutations leading to CHD8 haploinsufficiency and the insurgence of specific phenotypes, such as macrocephaly, facial dysmorphisms, intellectual disability, and gastrointestinal complaints. While extensive studies have been conducted on the possible consequences of CHD8 suppression and protein coding RNAs dysregulation during neuronal development, the effects of transcriptional changes of long non-coding RNAs (lncRNAs) remain unclear. In this study, we focused on a peculiar class of natural antisense lncRNAs, SINEUPs, that enhance translation of a target mRNA through the activity of two RNA domains, an embedded transposable element sequence and an antisense region. By looking at dysregulated transcripts following CHD8 knock down (KD), we first identified RAB11B-AS1 as a potential SINEUP RNA for its domain configuration. Then we demonstrated that such lncRNA is able to increase endogenous RAB11B protein amounts without affecting its transcriptional levels. RAB11B has a pivotal role in vesicular trafficking, and mutations on this gene correlate with intellectual disability and microcephaly. Thus, our study discloses an additional layer of molecular regulation which is altered by CHD8 suppression. This represents the first experimental confirmation that naturally occurring SINEUP could be involved in ASD pathogenesis and underscores the importance of dysregulation of functional lncRNAs in neurodevelopment.
Collapse
Affiliation(s)
- Giulia Zarantonello
- Laboratory of Neuroepigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michele Arnoldi
- Laboratory of Neuroepigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michele Filosi
- Laboratory of Neurogenomic Biomarkers, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Toma Tebaldi
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, United States.,Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giovanni Spirito
- Laboratory of Computational Genomics, Area of Neuroscience, International School of Advanced Studies (SISSA), Trieste, Italy.,Central RNA Laboratory, Italian Institute of Technology (IIT), Genova, Italy
| | - Anna Barbieri
- Laboratory of Neuroepigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Italian Institute of Technology (IIT), Genova, Italy
| | - Remo Sanges
- Laboratory of Computational Genomics, Area of Neuroscience, International School of Advanced Studies (SISSA), Trieste, Italy.,Central RNA Laboratory, Italian Institute of Technology (IIT), Genova, Italy
| | - Enrico Domenici
- Laboratory of Neurogenomic Biomarkers, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Francesca Di Leva
- Laboratory of Neuroepigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marta Biagioli
- Laboratory of Neuroepigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
15
|
SINEUPs: a novel toolbox for RNA therapeutics. Essays Biochem 2021; 65:775-789. [PMID: 34623427 PMCID: PMC8564737 DOI: 10.1042/ebc20200114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022]
Abstract
RNA molecules have emerged as a new class of promising therapeutics to expand the range of druggable targets in the genome. In addition to ‘canonical’ protein-coding mRNAs, the emerging richness of sense and antisense long non-coding RNAs (lncRNAs) provides a new reservoir of molecular tools for RNA-based drugs. LncRNAs are composed of modular structural domains with specific activities involving the recruitment of protein cofactors or directly interacting with nucleic acids. A single therapeutic RNA transcript can then be assembled combining domains with defined secondary structures and functions, and antisense sequences specific for the RNA/DNA target of interest. As the first representative molecules of this new pharmacology, we have identified SINEUPs, a new functional class of natural antisense lncRNAs that increase the translation of partially overlapping mRNAs. Their activity is based on the combination of two domains: an embedded mouse inverted SINEB2 element that enhances mRNA translation (effector domain) and an overlapping antisense region that provides specificity for the target sense transcript (binding domain). By genetic engineering, synthetic SINEUPs can potentially target any mRNA of interest increasing translation and therefore the endogenous level of the encoded protein. In this review, we describe the state-of-the-art knowledge of SINEUPs and discuss recent publications showing their potential application in diseases where a physiological increase of endogenous protein expression can be therapeutic.
Collapse
|
16
|
Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, Song NY, Yau LC, Lin SP. More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci 2021; 28:58. [PMID: 34364371 PMCID: PMC8349491 DOI: 10.1186/s12929-021-00754-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) initially attracted attention because they comprise a major portion of the genomic sequences in plants and animals. TEs may jump around the genome and disrupt both coding genes as well as regulatory sequences to cause disease. Host cells have therefore evolved various epigenetic and functional RNA-mediated mechanisms to mitigate the disruption of genomic integrity by TEs. TE associated sequences therefore acquire the tendencies of attracting various epigenetic modifiers to induce epigenetic alterations that may spread to the neighboring genes. In addition to posting threats for (epi)genome integrity, emerging evidence suggested the physiological importance of endogenous TEs either as cis-acting control elements for controlling gene regulation or as TE-containing functional transcripts that modulate the transcriptome of the host cells. Recent advances in long-reads sequence analysis technologies, bioinformatics and genetic editing tools have enabled the profiling, precise annotation and functional characterization of TEs despite their challenging repetitive nature. The importance of specific TEs in preimplantation embryonic development, germ cell differentiation and meiosis, cell fate determination and in driving species specific differences in mammals will be discussed.
Collapse
Affiliation(s)
- Pu-Sheng Hsu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Jen-Yun Chang
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ning-Yu Song
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Lih-Chiao Yau
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. .,Center of Systems Biology, National Taiwan University, Taipei, Taiwan. .,The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
17
|
Ferrari R, Grandi N, Tramontano E, Dieci G. Retrotransposons as Drivers of Mammalian Brain Evolution. Life (Basel) 2021; 11:life11050376. [PMID: 33922141 PMCID: PMC8143547 DOI: 10.3390/life11050376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Retrotransposons, a large and diverse class of transposable elements that are still active in humans, represent a remarkable force of genomic innovation underlying mammalian evolution. Among the features distinguishing mammals from all other vertebrates, the presence of a neocortex with a peculiar neuronal organization, composition and connectivity is perhaps the one that, by affecting the cognitive abilities of mammals, contributed mostly to their evolutionary success. Among mammals, hominids and especially humans display an extraordinarily expanded cortical volume, an enrichment of the repertoire of neural cell types and more elaborate patterns of neuronal connectivity. Retrotransposon-derived sequences have recently been implicated in multiple layers of gene regulation in the brain, from transcriptional and post-transcriptional control to both local and large-scale three-dimensional chromatin organization. Accordingly, an increasing variety of neurodevelopmental and neurodegenerative conditions are being recognized to be associated with retrotransposon dysregulation. We review here a large body of recent studies lending support to the idea that retrotransposon-dependent evolutionary novelties were crucial for the emergence of mammalian, primate and human peculiarities of brain morphology and function.
Collapse
Affiliation(s)
- Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (N.G.); (E.T.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (N.G.); (E.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042 Monserrato, Italy
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
- Correspondence:
| |
Collapse
|
18
|
Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeffrey H S Man
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Respirology, University Health Network, Latner Thoracic Research Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Philip A Marsden
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
20
|
Abstract
Long noncoding RNAs (lncRNAs) are involved in many regulatory mechanisms in practically every step of the RNA cycle, from transcription to RNA stability and translation. They are a highly heterogeneous class of molecules in terms of site of production, interaction networks, and functions. More and more databases are available on the web with the aim to make public information about lncRNA accessible to the scientific community. Here we review the most interesting resources with the purpose to organize a compendium of useful tools to interrogate before studying a lncRNA of interest.
Collapse
|
21
|
Zhu H, Bian X, Gong J, Yu P, Lu H. Long noncoding RNAs as novel biomarkers for Type 2 diabetes. Biomark Med 2020; 14:1501-1511. [PMID: 33155821 DOI: 10.2217/bmm-2020-0136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by disordered glucagon secretion, insulin resistance in target tissues, and decreased islet β-cell mass and function. The routine diagnosis was based on measurements of metabolic markers, while genetic risk factors have been considered to increase the probability of predicting the development of the disease. Recent evidence suggests that long noncoding RNAs (lncRNAs) regulate gene expression in various physiological and pathological processes. As increasing lncRNAs are identified in β cells, understanding the regulatory roles of lncRNAs in T2D becomes indispensable. In this review, we discuss the potential role of lncRNAs contributing to β-cell identity and T2D susceptibility, which provide a perspective insight into the development of novel diagnosis biomarkers for T2D.
Collapse
Affiliation(s)
- Han Zhu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| |
Collapse
|
22
|
Noncoding RNAs Set the Stage for RNA Polymerase II Transcription. Trends Genet 2020; 37:279-291. [PMID: 33046273 DOI: 10.1016/j.tig.2020.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Effective synthesis of mammalian messenger (m)RNAs depends on many factors that together direct RNA polymerase II (pol II) through the different stages of the transcription cycle and ensure efficient cotranscriptional processing of mRNAs. In addition to the many proteins involved in transcription initiation, elongation, and termination, several noncoding (nc)RNAs also function as global transcriptional regulators. Understanding the mode of action of these non-protein regulators has been an intense area of research in recent years. Here, we describe how these ncRNAs influence key regulatory steps of the transcription process, to affect large numbers of genes. Through direct association with pol II or by modulating the activity of transcription or RNA processing factors, these regulatory RNAs perform critical roles in gene expression.
Collapse
|
23
|
Toki N, Takahashi H, Zucchelli S, Gustincich S, Carninci P. Synthetic in vitro transcribed lncRNAs (SINEUPs) with chemical modifications enhance target mRNA translation. FEBS Lett 2020; 594:4357-4369. [PMID: 33012004 DOI: 10.1002/1873-3468.13928] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/14/2023]
Abstract
Chemically modified mRNAs are extensively studied with a view toward their clinical application. In particular, long noncoding RNAs (lncRNAs) containing SINE elements, which enhance the translation of their target mRNAs (i.e., SINEUPs), have potential as RNA therapies for various diseases, such as haploinsufficiencies. To establish a SINEUP-based system for efficient protein expression, we directly transfected chemically modified in vitro transcribed (mIVT) SINEUP RNAs to examine their effects on target mRNA translation. mIVT SINEUP RNAs enhanced translation of EGFP mRNA and endogenous target Sox9 mRNA in both cultured cells and a cell-free translation system. Our findings reveal the functional role of RNA modifications in SINEUPs and suggest several broad clinical applications of such an RNA regulatory system.
Collapse
Affiliation(s)
- Naoko Toki
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Functional Genomics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Functional Genomics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Silvia Zucchelli
- Department of Health Sciences, Center for Autoimmune and Allergic Diseases (CAAD) and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Functional Genomics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
24
|
Ohyama T, Takahashi H, Sharma H, Yamazaki T, Gustincich S, Ishii Y, Carninci P. An NMR-based approach reveals the core structure of the functional domain of SINEUP lncRNAs. Nucleic Acids Res 2020; 48:9346-9360. [PMID: 32697302 PMCID: PMC7498343 DOI: 10.1093/nar/gkaa598] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are attracting widespread attention for their emerging regulatory, transcriptional, epigenetic, structural and various other functions. Comprehensive transcriptome analysis has revealed that retrotransposon elements (REs) are transcribed and enriched in lncRNA sequences. However, the functions of lncRNAs and the molecular roles of the embedded REs are largely unknown. The secondary and tertiary structures of lncRNAs and their embedded REs are likely to have essential functional roles, but experimental determination and reliable computational prediction of large RNA structures have been extremely challenging. We report here the nuclear magnetic resonance (NMR)-based secondary structure determination of the 167-nt inverted short interspersed nuclear element (SINE) B2, which is embedded in antisense Uchl1 lncRNA and upregulates the translation of sense Uchl1 mRNAs. By using NMR 'fingerprints' as a sensitive probe in the domain survey, we successfully divided the full-length inverted SINE B2 into minimal units made of two discrete structured domains and one dynamic domain without altering their original structures after careful boundary adjustments. This approach allowed us to identify a structured domain in nucleotides 31-119 of the inverted SINE B2. This approach will be applicable to determining the structures of other regulatory lncRNAs.
Collapse
Affiliation(s)
- Takako Ohyama
- NMR Division, RIKEN SPring-8 Center (RSC), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Harshita Sharma
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Toshio Yamazaki
- NMR Division, RIKEN SPring-8 Center (RSC), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Stefano Gustincich
- Central RNA Laboratory, Instituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Yoshitaka Ishii
- NMR Division, RIKEN SPring-8 Center (RSC), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
25
|
Natural antisense transcripts in the biological hallmarks of cancer: powerful regulators hidden in the dark. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:187. [PMID: 32928281 PMCID: PMC7490906 DOI: 10.1186/s13046-020-01700-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Natural antisense transcripts (NATs), which are transcribed from opposite strands of DNA with partial or complete overlap, affect multiple stages of gene expression, from epigenetic to post-translational modifications. NATs are dysregulated in various types of cancer, and an increasing number of studies focusing on NATs as pivotal regulators of the hallmarks of cancer and as promising candidates for cancer therapy are just beginning to unravel the mystery. Here, we summarize the existing knowledge on NATs to highlight their underlying mechanisms of functions in cancer biology, discuss their potential roles in therapeutic application, and explore future research directions.
Collapse
|
26
|
Fort V, Khelifi G, Hussein SMI. Long non-coding RNAs and transposable elements: A functional relationship. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118837. [PMID: 32882261 DOI: 10.1016/j.bbamcr.2020.118837] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/29/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become increasingly important in the past decade. They are known to regulate gene expression and to interact with chromatin, proteins and other coding and non-coding RNAs. The study of lncRNAs has been challenging due to their low expression and the lack of tools developed to adapt to their particular features. Studies on lncRNAs performed to date have largely focused on cellular functions, whereas details on the mechanism of action has only been thoroughly investigated for a small number of lncRNAs. Nevertheless, some studies have highlighted the potential of these transcripts to contain functional domains, following the same accepted trend as proteins. Interestingly, many of these identified "domains" are attributed to functional units derived from transposable elements. Here, we review several types of functions of lncRNAs and relate these functions to lncRNA-embedded transposable elements.
Collapse
Affiliation(s)
- Victoire Fort
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada
| | - Gabriel Khelifi
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada
| | - Samer M I Hussein
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada.
| |
Collapse
|
27
|
Wu MZ, Fu T, Chen JX, Lin YY, Yang JE, Zhuang SM. LncRNA GOLGA2P10 is induced by PERK/ATF4/CHOP signaling and protects tumor cells from ER stress-induced apoptosis by regulating Bcl-2 family members. Cell Death Dis 2020; 11:276. [PMID: 32332695 PMCID: PMC7181651 DOI: 10.1038/s41419-020-2469-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/10/2020] [Accepted: 03/04/2020] [Indexed: 01/16/2023]
Abstract
Elevated endoplasmic reticulum (ER) stress is frequently observed in cancers, whereas sustained ER stress may trigger apoptosis. How cancer cells escape from ER stress-induced apoptosis remain unclear. Here, we found that a pseudogene-derived lncRNA, Golgin A2 pseudogene 10 (GOLGA2P10), was frequently upregulated in HCC tissues and significantly elevated in hepatoma cells treated with ER stress inducers, such as tunicamycin and thapsigargin. Higher GOLGA2P10 level was correlated with shorter recurrence-free survival of HCC patients. Upon ER stress, CHOP directly bound to the promoter of GOLGA2P10 and induced its transcription via the PERK/ATF4/CHOP pathway. Interestingly, the ER stress inducer-stimulated apoptosis was promoted by silencing GOLGA2P10 but was antagonized by overexpressing GOLGA2P10. Both gain- and loss-of-function analyses disclosed that GOLGA2P10 increased BCL-xL protein level, promoted BAD phosphorylation, and conferred tumor cells with resistance to ER stress-induced apoptosis. Moreover, BCL-xL overexpression or BAD knockdown abrogated the apoptosis-promoting effect of GOLGA2P10 silencing. Consistently, the Ser75Ala mutation in BAD, which caused phosphorylation-resistance, further enhanced the promoting effect of BAD in tunicamycin-induced apoptosis. These results suggest that ER stress induces GOLGA2P10 transcription through the PERK/ATF4/CHOP pathway, and upregulation of GOLGA2P10 protects tumor cells from the cytotoxic effect of persistent ER stress in tumor microenvironment by regulating Bcl-2 family members, which highlight GOLGA2P10 as a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Meng-Zhi Wu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Tao Fu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Jin-Xi Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Ying-Ying Lin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China
| | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China.
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275, P. R. China.
| |
Collapse
|
28
|
Ahmad A, Lin H, Shatabda S. Locate-R: Subcellular localization of long non-coding RNAs using nucleotide compositions. Genomics 2020; 112:2583-2589. [PMID: 32068122 DOI: 10.1016/j.ygeno.2020.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/11/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Knowledge of the sub-cellular localization of the most diverse class of transcribed RNA, long non-coding RNAs (lncRNAs) will lead us to identify different types of cancers and other diseases as lncRNAs play key role in related cellular functions. In recent days with the exponential growth of known records, it becomes essential to establish new machine learning based techniques to identify the new one due to faster and cheaper solutions provided compared to laboratory methods. In this paper, we propose Locate-R, a novel method for predicting the sub-cellular location of lncRNAs. We have used only n-gapped l-mer composition and l-mer composition as features and select best 655 features to build the model. This model is based locally deep support vector machines which significantly enhance the prediction accuracy with respect to exiting state-of-the-art methods. Our predictor is readily available for use as a stand-alone web application from: http://locate-r.azurewebsites.net/.
Collapse
Affiliation(s)
- Ahsan Ahmad
- Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka 1212, Bangladesh
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, China
| | - Swakkhar Shatabda
- Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka 1212, Bangladesh.
| |
Collapse
|
29
|
Zhang T, Hu H, Yan G, Wu T, Liu S, Chen W, Ning Y, Lu Z. Long Non-Coding RNA and Breast Cancer. Technol Cancer Res Treat 2020; 18:1533033819843889. [PMID: 30983509 PMCID: PMC6466467 DOI: 10.1177/1533033819843889] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer, one of the most common diseases among women, is regarded as a
heterogeneous and complicated disease that remains a major public health concern.
Recently, owing to the development of next-generation sequencing technologies, long
non-coding RNAs have received extensive attention. Numerous studies reveal that long
non-coding RNAs are playing important roles in tumor development. Although the biological
function and molecular mechanisms of long non-coding RNAs remain enigmatic, recent
researchers have demonstrated that an array of long non-coding RNAs express abnormally in
cancers, including breast cancer. Herein, we summarized the latest literature about long
non-coding RNAs in breast cancer, with a particular focus on the multiple molecular roles
of regulatory long non-coding RNAs that regulate cell proliferation, invasion, metastasis,
and apoptosis.
Collapse
Affiliation(s)
- Tianzhu Zhang
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hui Hu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Yan
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Tangwei Wu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiyi Liu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqun Chen
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Ning
- 2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongxin Lu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Spirito G, Mangoni D, Sanges R, Gustincich S. Impact of polymorphic transposable elements on transcription in lymphoblastoid cell lines from public data. BMC Bioinformatics 2019; 20:495. [PMID: 31757210 PMCID: PMC6873650 DOI: 10.1186/s12859-019-3113-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are DNA sequences able to mobilize themselves and to increase their copy-number in the host genome. In the past, they have been considered mainly selfish DNA without evident functions. Nevertheless, currently they are believed to have been extensively involved in the evolution of primate genomes, especially from a regulatory perspective. Due to their recent activity they are also one of the primary sources of structural variants (SVs) in the human genome. By taking advantage of sequencing technologies and bioinformatics tools, recent surveys uncovered specific TE structural variants (TEVs) that gave rise to polymorphisms in human populations. When combined with RNA-seq data this information provides the opportunity to study the potential impact of TEs on gene expression in human. RESULTS In this work, we assessed the effects of the presence of specific TEs in cis on the expression of flanking genes by producing associations between polymorphic TEs and flanking gene expression levels in human lymphoblastoid cell lines. By using public data from the 1000 Genome Project and the Geuvadis consortium, we exploited an expression quantitative trait loci (eQTL) approach integrated with additional bioinformatics data mining analyses. We uncovered human loci enriched for common, less common and rare TEVs and identified 323 significant TEV-cis-eQTL associations. SINE-R/VNTR/Alus (SVAs) resulted the TE class with the strongest effects on gene expression. We also unveiled differential functional enrichments on genes associated to TEVs, genes associated to TEV-cis-eQTLs and genes associated to the genomic regions mostly enriched in TEV-cis-eQTLs highlighting, at multiple levels, the impact of TEVs on the host genome. Finally, we also identified polymorphic TEs putatively embedded in transcriptional units, proposing a novel mechanism in which TEVs may mediate individual-specific traits. CONCLUSION We contributed to unveiling the effect of polymorphic TEs on transcription in lymphoblastoid cell lines.
Collapse
Affiliation(s)
- Giovanni Spirito
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Stefano Gustincich
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.
| |
Collapse
|
31
|
Fasolo F, Patrucco L, Volpe M, Bon C, Peano C, Mignone F, Carninci P, Persichetti F, Santoro C, Zucchelli S, Sblattero D, Sanges R, Cotella D, Gustincich S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs. FASEB J 2019; 33:13572-13589. [PMID: 31570000 PMCID: PMC6894054 DOI: 10.1096/fj.201901618rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transposable elements (TEs) compose about half of the mammalian genome and, as embedded sequences, up to 40% of long noncoding RNA (lncRNA) transcripts. Embedded TEs may represent functional domains within lncRNAs, providing a structured RNA platform for protein interaction. Here we show the interactome profile of the mouse inverted short interspersed nuclear element (SINE) of subfamily B2 (invSINEB2) alone and embedded in antisense (AS) ubiquitin C-terminal hydrolase L1 (Uchl1), an lncRNA that is AS to Uchl1 gene. AS Uchl1 is the representative member of a functional class of AS lncRNAs, named SINEUPs, in which the invSINEB2 acts as effector domain (ED)-enhancing translation of sense protein-coding mRNAs. By using RNA-interacting domainome technology, we identify the IL enhancer-binding factor 3 (ILF3) as a protein partner of AS Uchl1 RNA. We determine that this interaction is mediated by the RNA-binding motif 2 of ILF3 and the invSINEB2. Furthermore, we show that ILF3 is able to bind a free right Arthrobacter luteus (Alu) monomer sequence, the embedded TE acting as ED in human SINEUPs. Bioinformatic analysis of Encyclopedia of DNA Elements-enhanced cross-linking immunoprecipitation data reveals that ILF3 binds transcribed human SINE sequences at transcriptome-wide levels. We then demonstrate that the embedded TEs modulate AS Uchl1 RNA nuclear localization to an extent moderately influenced by ILF3. This work unveils the existence of a specific interaction between embedded TEs and an RNA-binding protein, strengthening the model of TEs as functional modules in lncRNAs.-Fasolo, F., Patrucco, L., Volpe, M., Bon, C., Peano, C., Mignone, F., Carninci, P., Persichetti, F., Santoro, C., Zucchelli, S., Sblattero, D., Sanges, R., Cotella, D., Gustincich, S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs.
Collapse
Affiliation(s)
- Francesca Fasolo
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Laura Patrucco
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Massimiliano Volpe
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carlotta Bon
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Flavio Mignone
- Department of Sciences and Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Piero Carninci
- Division of Genomic Technologies, Riken Center for Life Science Technologies, Yokohama, Japan
| | | | - Claudio Santoro
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Zucchelli
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stefano Gustincich
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| |
Collapse
|
32
|
Su ZD, Huang Y, Zhang ZY, Zhao YW, Wang D, Chen W, Chou KC, Lin H. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics 2019; 34:4196-4204. [PMID: 29931187 DOI: 10.1093/bioinformatics/bty508] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Motivation Long non-coding RNAs (lncRNAs) are a class of RNA molecules with more than 200 nucleotides. They have important functions in cell development and metabolism, such as genetic markers, genome rearrangements, chromatin modifications, cell cycle regulation, transcription and translation. Their functions are generally closely related to their localization in the cell. Therefore, knowledge about their subcellular locations can provide very useful clues or preliminary insight into their biological functions. Although biochemical experiments could determine the localization of lncRNAs in a cell, they are both time-consuming and expensive. Therefore, it is highly desirable to develop bioinformatics tools for fast and effective identification of their subcellular locations. Results We developed a sequence-based bioinformatics tool called 'iLoc-lncRNA' to predict the subcellular locations of LncRNAs by incorporating the 8-tuple nucleotide features into the general PseKNC (Pseudo K-tuple Nucleotide Composition) via the binomial distribution approach. Rigorous jackknife tests have shown that the overall accuracy achieved by the new predictor on a stringent benchmark dataset is 86.72%, which is over 20% higher than that by the existing state-of-the-art predictor evaluated on the same tests. Availability and implementation A user-friendly webserver has been established at http://lin-group.cn/server/iLoc-LncRNA, by which users can easily obtain their desired results. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhen-Dong Su
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhao-Yue Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ya-Wei Zhao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Wang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wei Chen
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China.,Gordon Life Science Institute, Boston, MA, USA
| | - Kuo-Chen Chou
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Gordon Life Science Institute, Boston, MA, USA
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Gordon Life Science Institute, Boston, MA, USA
| |
Collapse
|
33
|
Deforges J, Reis RS, Jacquet P, Sheppard S, Gadekar VP, Hart-Smith G, Tanzer A, Hofacker IL, Iseli C, Xenarios I, Poirier Y. Control of Cognate Sense mRNA Translation by cis-Natural Antisense RNAs. PLANT PHYSIOLOGY 2019; 180:305-322. [PMID: 30760640 PMCID: PMC6501089 DOI: 10.1104/pp.19.00043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/03/2019] [Indexed: 05/06/2023]
Abstract
Cis-Natural Antisense Transcripts (cis-NATs), which overlap protein coding genes and are transcribed from the opposite DNA strand, constitute an important group of noncoding RNAs. Whereas several examples of cis-NATs regulating the expression of their cognate sense gene are known, most cis-NATs function by altering the steady-state level or structure of mRNA via changes in transcription, mRNA stability, or splicing, and very few cases involve the regulation of sense mRNA translation. This study was designed to systematically search for cis-NATs influencing cognate sense mRNA translation in Arabidopsis (Arabidopsis thaliana). Establishment of a pipeline relying on sequencing of total polyA+ and polysomal RNA from Arabidopsis grown under various conditions (i.e. nutrient deprivation and phytohormone treatments) allowed the identification of 14 cis-NATs whose expression correlated either positively or negatively with cognate sense mRNA translation. With use of a combination of cis-NAT stable over-expression in transgenic plants and transient expression in protoplasts, the impact of cis-NAT expression on mRNA translation was confirmed for 4 out of 5 tested cis-NAT:sense mRNA pairs. These results expand the number of cis-NATs known to regulate cognate sense mRNA translation and provide a foundation for future studies of their mode of action. Moreover, this study highlights the role of this class of noncoding RNAs in translation regulation.
Collapse
Affiliation(s)
- Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Rodrigo S Reis
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Philippe Jacquet
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Shaoline Sheppard
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Veerendra P Gadekar
- Institute of Theoretical Chemistry, University of Vienna, Wahringer Str 17, A-1090 Vienna, Austria
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | - Andrea Tanzer
- Institute of Theoretical Chemistry, University of Vienna, Wahringer Str 17, A-1090 Vienna, Austria
| | - Ivo L Hofacker
- Institute of Theoretical Chemistry, University of Vienna, Wahringer Str 17, A-1090 Vienna, Austria
| | - Christian Iseli
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Melia T, Waxman DJ. Sex-Biased lncRNAs Inversely Correlate With Sex-Opposite Gene Coexpression Networks in Diversity Outbred Mouse Liver. Endocrinology 2019; 160:989-1007. [PMID: 30840070 PMCID: PMC6449536 DOI: 10.1210/en.2018-00949] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
Sex differences in liver gene expression are determined by pituitary growth hormone secretion patterns, which regulate sex-dependent liver transcription factors and establish sex-specific chromatin states. Hypophysectomy (hypox) identifies two major classes of liver sex-biased genes, defined by their sex-dependent positive or negative responses to pituitary hormone ablation. However, the mechanisms that underlie each hypox-response class are unknown. We sought to discover candidate, regulatory, long noncoding RNAs (lncRNAs) controlling responsiveness to hypox. We characterized gene structures and expression patterns for 15,558 mouse liver-expressed lncRNAs, including many sex-specific lncRNAs regulated during postnatal development or subject to circadian regulation. Using the high natural allelic variance of Diversity Outbred (DO) mice, we discovered tightly coexpressed clusters of sex-specific protein-coding genes (gene modules) in male and female DO liver. Remarkably, many gene modules were strongly enriched for sex-specific genes within a single hypox-response class, indicating that the genetic heterogeneity of DO mice encompasses responsiveness to hypox. Moreover, several distant gene modules were enriched for gene subsets of the same hypox-response class, highlighting the complex regulation of hypox-responsiveness. Finally, we identified eight sex-specific lncRNAs with strong negative regulatory potential, as indicated by their strong negative correlation of expression across DO mouse livers with that of protein-coding gene modules enriched for genes of the opposite sex bias and inverse hypox-response class. These findings reveal an important role for genetic factors in regulating responsiveness to hypox, and present testable hypotheses for the roles of sex-biased liver lncRNAs in controlling the sex-bias of liver gene expression.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215. E-mail:
| |
Collapse
|
35
|
Neve B, Jonckheere N, Vincent A, Van Seuningen I. Epigenetic Regulation by lncRNAs: An Overview Focused on UCA1 in Colorectal Cancer. Cancers (Basel) 2018; 10:cancers10110440. [PMID: 30441811 PMCID: PMC6266399 DOI: 10.3390/cancers10110440] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancers have become the second leading cause of cancer-related deaths. In particular, acquired chemoresistance and metastatic lesions occurring in colorectal cancer are a major challenge for chemotherapy treatment. Accumulating evidence shows that long non-coding (lncRNAs) are involved in the initiation, progression, and metastasis of cancer. We here discuss the epigenetic mechanisms through which lncRNAs regulate gene expression in cancer cells. In the second part of this review, we focus on the role of lncRNA Urothelial Cancer Associated 1 (UCA1) to integrate research in different types of cancer in order to decipher its putative function and mechanism of regulation in colorectal cancer cells. UCA1 is highly expressed in cancer cells and mediates transcriptional regulation on an epigenetic level through the interaction with chromatin modifiers, by direct regulation via chromatin looping and/or by sponging the action of a diversity of miRNAs. Furthermore, we discuss the role of UCA1 in the regulation of cell cycle progression and its relation to chemoresistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Bernadette Neve
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Nicolas Jonckheere
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Audrey Vincent
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Isabelle Van Seuningen
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| |
Collapse
|
36
|
Le Béguec C, Wucher V, Lagoutte L, Cadieu E, Botherel N, Hédan B, De Brito C, Guillory AS, André C, Derrien T, Hitte C. Characterisation and functional predictions of canine long non-coding RNAs. Sci Rep 2018; 8:13444. [PMID: 30194329 PMCID: PMC6128939 DOI: 10.1038/s41598-018-31770-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a family of heterogeneous RNAs that play major roles in multiple biological processes. We recently identified an extended repertoire of more than 10,000 lncRNAs of the domestic dog however, predicting their biological functionality remains challenging. In this study, we have characterised the expression profiles of 10,444 canine lncRNAs in 26 distinct tissue types, representing various anatomical systems. We showed that lncRNA expressions are mainly clustered by tissue type and we highlighted that 44% of canine lncRNAs are expressed in a tissue-specific manner. We further demonstrated that tissue-specificity correlates with specific families of canine transposable elements. In addition, we identified more than 900 conserved dog-human lncRNAs for which we show their overall reproducible expression patterns between dog and human through comparative transcriptomics. Finally, co-expression analyses of lncRNA and neighbouring protein-coding genes identified more than 3,400 canine lncRNAs, suggesting that functional roles of these lncRNAs act as regulatory elements. Altogether, this genomic and transcriptomic integrative study of lncRNAs constitutes a major resource to investigate genotype to phenotype relationships and biomedical research in the dog species.
Collapse
Affiliation(s)
- Céline Le Béguec
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Valentin Wucher
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lætitia Lagoutte
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France.,UMR PEGASE, Agrocampus Ouest, INRA, 35042, Rennes, France
| | - Edouard Cadieu
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Nadine Botherel
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Benoît Hédan
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Clotilde De Brito
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Anne-Sophie Guillory
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Catherine André
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France.
| | - Christophe Hitte
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France.
| |
Collapse
|
37
|
Qiu L, Chang G, Li Z, Bi Y, Liu X, Chen G. Comprehensive Transcriptome Analysis Reveals Competing Endogenous RNA Networks During Avian Leukosis Virus, Subgroup J-Induced Tumorigenesis in Chickens. Front Physiol 2018; 9:996. [PMID: 30093865 PMCID: PMC6070742 DOI: 10.3389/fphys.2018.00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that induces myeloid tumors and hemangiomas in chickens and causes severe economic losses with commercial layer chickens and meat-type chickens. High-throughput sequencing followed by quantitative real-time polymerase chain reaction and bioinformatics analyses were performed to advance the understanding of regulatory networks associated with differentially expressed non-coding RNAs and mRNAs that facilitate ALV-J infection. We examined the expression of mRNAs, long non-coding RNAs (lncRNAs), and miRNAs in the spleens of 20-week-old chickens infected with ALV-J and uninfected chickens. We found that 1723 mRNAs, 7,883 lncRNAs and 13 miRNAs in the spleen were differentially expressed between the uninfected and infected groups (P < 0.05). Transcriptome analysis showed that, compared to mRNA, chicken lncRNAs shared relatively fewer exon numbers and shorter transcripts. Through competing endogenous RNA and co-expression network analyses, we identified several tumor-associated or immune-related genes and lncRNAs. Along transcripts whose expression levels significantly decreased in both ALV-J infected spleen and tumor tissues, BCL11B showed the greatest change. These results suggest that BCL11B may be mechanistically involved in tumorigenesis in chicken and neoplastic diseases, may be related to immune response, and potentially be novel biomarker for ALV-J infection. Our results provide new insight into the pathology of ALV-J infection and high-quality transcriptome resource for in-depth study of epigenetic influences on disease resistance and immune system.
Collapse
Affiliation(s)
- Lingling Qiu
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Zhiteng Li
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yulin Bi
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xiangping Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| |
Collapse
|
38
|
Liu P, Jin L, Zhao L, Long K, Song Y, Tang Q, Ma J, Wang X, Tang G, Jiang Y, Zhu L, Li X, Li M. Identification of a novel antisense long non-coding RNA PLA2G16-AS that regulates the expression of PLA2G16 in pigs. Gene 2018; 671:78-84. [PMID: 29860067 DOI: 10.1016/j.gene.2018.05.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Natural antisense transcripts (NATs) are widely present in mammalian genomes and act as pivotal regulator molecules to control gene expression. However, studies on the NATs of pigs are relatively rare. Here, we identified a novel antisense transcript, designated PLA2G16-AS, transcribed from the phospholipase A2 group XVI locus (PLA2G16) in the porcine genome, which is a well-known regulatory molecule of fat deposition. PLA2G16-AS and PLA2G16 were dominantly expressed in porcine adipose tissue, and were differentially expressed between Tibetan pigs and Rongchang pigs. In addition, PLA2G16-AS has a weak sequence conservation among different vertebrates. PLA2G16-AS was also shown to form an RNA-RNA duplex with PLA2G16, and to regulate PLA2G16 expression at the mRNA level. Moreover, the overexpression of PLA2G16-AS increased the stability of PLA2G16 mRNA in porcine cells. We envision that our findings of a NAT for a regulatory gene associated with lipolysis might further our understanding of the molecular regulation of fat deposition.
Collapse
Affiliation(s)
- Pengliang Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Long Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lirui Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Keren Long
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yang Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qianzi Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jideng Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xun Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mingzhou Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
39
|
Zhang R, Wei Y, Zhu L, Huang L, Wei Y, Chen G, Dang Y, Feng Z. LncRNA UCHL1-AS1 prevents cell mobility of hepatocellular carcinoma: a study based on in vitro and bioinformatics. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2270-2280. [PMID: 31938339 PMCID: PMC6958276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 06/10/2023]
Abstract
We set out to investigate biological functions and potential molecular mechanisms of long non-coding RNA (lncRNA) in hepatocellular carcinoma (HCC). HCC cell line Bel-7404 was cultured and transfected with antisense to the ubiquitin carboxyl-terminal hydrolase L1 (UCHL1-AS1). Viability and mobility were detected by MTT and wound healing assays. Additionally, enrichment analysis and functional networks of UCHL1-AS1 related genes in HCC were performed. Results showed that high level UCHL1-AS1 could effectively inhibit HCC cell migration. However, there was no significant correlation between overexpressed UCHL1-AS1 and HCC proliferation. Meanwhile, BMP4, CALM3, and HRAS were selected from 204 genes that related to UCHL1-AS1. All of these hub genes play critical roles in HCC occurrence and development. Thus, underlying molecular mechanisms among hub genes and UCHL1-AS1 in HCC might be valuable for prognosis and treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yichen Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li'ou Zhu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lanshan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yan Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yiwu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhenbo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
40
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
41
|
Structural determinants of the SINE B2 element embedded in the long non-coding RNA activator of translation AS Uchl1. Sci Rep 2018; 8:3189. [PMID: 29453387 PMCID: PMC5816658 DOI: 10.1038/s41598-017-14908-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022] Open
Abstract
Pervasive transcription of mammalian genomes leads to a previously underestimated level of complexity in gene regulatory networks. Recently, we have identified a new functional class of natural and synthetic antisense long non-coding RNAs (lncRNA) that increases translation of partially overlapping sense mRNAs. These molecules were named SINEUPs, as they require an embedded inverted SINE B2 element for their UP-regulation of translation. Mouse AS Uchl1 is the representative member of natural SINEUPs. It was originally discovered for its role in increasing translation of Uchl1 mRNA, a gene associated with neurodegenerative diseases. Here we present the secondary structure of the SINE B2 Transposable Element (TE) embedded in AS Uchl1. We find that specific structural regions, containing a short hairpin, are required for the ability of AS Uchl1 RNA to increase translation of its target mRNA. We also provide a high-resolution structure of the relevant hairpin, based on NMR observables. Our results highlight the importance of structural determinants in embedded TEs for their activity as functional domains in lncRNAs.
Collapse
|
42
|
Takahashi H, Kozhuharova A, Sharma H, Hirose M, Ohyama T, Fasolo F, Yamazaki T, Cotella D, Santoro C, Zucchelli S, Gustincich S, Carninci P. Identification of functional features of synthetic SINEUPs, antisense lncRNAs that specifically enhance protein translation. PLoS One 2018; 13:e0183229. [PMID: 29414979 PMCID: PMC5802440 DOI: 10.1371/journal.pone.0183229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022] Open
Abstract
SINEUPs are antisense long noncoding RNAs, in which an embedded SINE B2 element UP-regulates translation of partially overlapping target sense mRNAs. SINEUPs contain two functional domains. First, the binding domain (BD) is located in the region antisense to the target, providing specific targeting to the overlapping mRNA. Second, the inverted SINE B2 represents the effector domain (ED) and enhances translation. To adapt SINEUP technology to a broader number of targets, we took advantage of a high-throughput, semi-automated imaging system to optimize synthetic SINEUP BD and ED design in HEK293T cell lines. Using SINEUP-GFP as a model SINEUP, we extensively screened variants of the BD to map features needed for optimal design. We found that most active SINEUPs overlap an AUG-Kozak sequence. Moreover, we report our screening of the inverted SINE B2 sequence to identify active sub-domains and map the length of the minimal active ED. Our synthetic SINEUP-GFP screening of both BDs and EDs constitutes a broad test with flexible applications to any target gene of interest.
Collapse
Affiliation(s)
- Hazuki Takahashi
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Ana Kozhuharova
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Harshita Sharma
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Masakazu Hirose
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Takako Ohyama
- RIKEN Center for Life Science Technologies, Division of Structural and Synthetic Biology, Yokohama, Kanagawa, Japan
| | - Francesca Fasolo
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Toshio Yamazaki
- RIKEN Center for Life Science Technologies, Division of Structural and Synthetic Biology, Yokohama, Kanagawa, Japan
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Claudio Santoro
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Zucchelli
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stefano Gustincich
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
- TransSINE Technologies, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
43
|
Antonov I, Marakhonov A, Zamkova M, Medvedeva Y. ASSA: Fast identification of statistically significant interactions between long RNAs. J Bioinform Comput Biol 2018; 16:1840001. [PMID: 29375012 DOI: 10.1142/s0219720018400012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The discovery of thousands of long noncoding RNAs (lncRNAs) in mammals raises a question about their functionality. It has been shown that some of them are involved in post-transcriptional regulation of other RNAs and form inter-molecular duplexes with their targets. Sequence alignment tools have been used for transcriptome-wide prediction of RNA-RNA interactions. However, such approaches have poor prediction accuracy since they ignore RNA's secondary structure. Application of the thermodynamics-based algorithms to long transcripts is not computationally feasible on a large scale. Here, we describe a new computational pipeline ASSA that combines sequence alignment and thermodynamics-based tools for efficient prediction of RNA-RNA interactions between long transcripts. To measure the hybridization strength, the sum energy of all the putative duplexes is computed. The main novelty implemented in ASSA is the ability to quickly estimate the statistical significance of the observed interaction energies. Most of the functional hybridizations between long RNAs were classified as statistically significant. ASSA outperformed 11 other tools in terms of the Area Under the Curve on two out of four test sets. Additionally, our results emphasized a unique property of the [Formula: see text] repeats with respect to the RNA-RNA interactions in the human transcriptome. ASSA is available at https://sourceforge.net/projects/assa/.
Collapse
Affiliation(s)
- Ivan Antonov
- * Institute of Bioengineering, Federal Research Center Fundamentals of Biotechnology RAS, Moscow 117312, Russia.,† Department of Molecular and Biological Physics & Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Andrey Marakhonov
- ‡ Laboratory of Functional Analysis of the Genome, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia.,§ Federal State Scientific Budgetary Institution, Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Maria Zamkova
- ¶ Russian N.N. Blokhin Cancer Research Center, Moscow 115478, Russia
| | - Yulia Medvedeva
- * Institute of Bioengineering, Federal Research Center Fundamentals of Biotechnology RAS, Moscow 117312, Russia.,† Department of Molecular and Biological Physics & Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia.,∥ Vavilov Institute of General Genetics, RAS, Moscow 119333, Russia
| |
Collapse
|
44
|
Zhang Y, Zheng L, Xu BM, Tang WH, Ye ZD, Huang C, Ma X, Zhao JJ, Guo FX, Kang CM, Lu JB, Xiu JC, Li P, Xu YJ, Xiao L, Wu Q, Hu YW, Wang Q. LncRNA-RP11-714G18.1 suppresses vascular cell migration via directly targeting LRP2BP. Immunol Cell Biol 2017; 96:175-189. [PMID: 29363163 DOI: 10.1111/imcb.1028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Yuan Zhang
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
- Clinical laboratory department; Guangzhou Women and Children's Medical Center; Guangzhou Medical University; Guangzhou Guangdong 510623 China
| | - Lei Zheng
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Bang-Ming Xu
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Wai-Ho Tang
- Clinical laboratory department; Guangzhou Women and Children's Medical Center; Guangzhou Medical University; Guangzhou Guangdong 510623 China
| | - Zhi-Dong Ye
- Department of Cardiovascular Surgery; China- Japan Friendship Hospital; Beijing 100029 China
| | - Chuan Huang
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Xin Ma
- Department of Anesthesiology; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Jing-Jing Zhao
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Feng-Xia Guo
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Chun-Min Kang
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Jing-Bo Lu
- Department of Vascular Surgery; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Jian-Cheng Xiu
- Department of Cardiology; Nanfang Hospital; Southern medical University; Guangzhou 510515 China
| | - Pan Li
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Yuan-Jun Xu
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Lei Xiao
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Qian Wu
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Yan-Wei Hu
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Qian Wang
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| |
Collapse
|
45
|
Knap P, Tebaldi T, Di Leva F, Biagioli M, Dalla Serra M, Viero G. The Unexpected Tuners: Are LncRNAs Regulating Host Translation during Infections? Toxins (Basel) 2017; 9:E357. [PMID: 29469820 PMCID: PMC5705972 DOI: 10.3390/toxins9110357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
Pathogenic bacteria produce powerful virulent factors, such as pore-forming toxins, that promote their survival and cause serious damage to the host. Host cells reply to membrane stresses and ionic imbalance by modifying gene expression at the epigenetic, transcriptional and translational level, to recover from the toxin attack. The fact that the majority of the human transcriptome encodes for non-coding RNAs (ncRNAs) raises the question: do host cells deploy non-coding transcripts to rapidly control the most energy-consuming process in cells-i.e., host translation-to counteract the infection? Here, we discuss the intriguing possibility that membrane-damaging toxins induce, in the host, the expression of toxin-specific long non-coding RNAs (lncRNAs), which act as sponges for other molecules, encoding small peptides or binding target mRNAs to depress their translation efficiency. Unravelling the function of host-produced lncRNAs upon bacterial infection or membrane damage requires an improved understanding of host lncRNA expression patterns, their association with polysomes and their function during this stress. This field of investigation holds a unique opportunity to reveal unpredicted scenarios and novel approaches to counteract antibiotic-resistant infections.
Collapse
Affiliation(s)
- Primoz Knap
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| | - Toma Tebaldi
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Francesca Di Leva
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Povo Trento 38123, Italy.
| | - Marta Biagioli
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Povo Trento 38123, Italy.
| | - Mauro Dalla Serra
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| |
Collapse
|
46
|
Qiu L, Li Z, Chang G, Bi Y, Liu X, Xu L, Zhang Y, Zhao W, Xu Q, Chen G. Discovery of novel long non-coding RNAs induced by subgroup J avian leukosis virus infection in chicken. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:292-302. [PMID: 28673822 DOI: 10.1016/j.dci.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that has led to severe economic losses in the poultry industry in China in recent decades. Here, using high throughput transcriptome sequencing of HD11 and CEF cells infected with ALV-J, a set of 4804 novel long non-coding transcripts and numerous differentially expressed long non-coding RNAs (lncRNAs) were identified. We also found that they share relatively shorter transcripts and fewer exon numbers compared to mRNA. Correlation analysis suggested that many lncRNAs may activate gene expression in an enhancer-like manner other than through transcriptional regulation. Expression level analyses in vivo showed that three lncRNAs (NONGGAT001975.2, NONGGAT005832.2 and NONGGAT009792.2) may be associated with immune response regulation and could function as novel biomarkers for ALV-J infection. Our findings provides new insight into the pathological process of ALV-J infection and should serve as a high-quality resource for further research on epigenetic influences on disease-resistance breeding as well as immune system and genomic studies.
Collapse
Affiliation(s)
- Lingling Qiu
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Zhiteng Li
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yulin Bi
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Xiangping Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225003, PR China.
| | - Lu Xu
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Wenming Zhao
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
47
|
Mas-Ponte D, Carlevaro-Fita J, Palumbo E, Hermoso Pulido T, Guigo R, Johnson R. LncATLAS database for subcellular localization of long noncoding RNAs. RNA (NEW YORK, N.Y.) 2017; 23:1080-1087. [PMID: 28386015 PMCID: PMC5473142 DOI: 10.1261/rna.060814.117] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/31/2017] [Indexed: 05/04/2023]
Abstract
The subcellular localization of long noncoding RNAs (lncRNAs) holds valuable clues to their molecular function. However, measuring localization of newly discovered lncRNAs involves time-consuming and costly experimental methods. We have created "lncATLAS," a comprehensive resource of lncRNA localization in human cells based on RNA-sequencing data sets. Altogether, 6768 GENCODE-annotated lncRNAs are represented across various compartments of 15 cell lines. We introduce relative concentration index (RCI) as a useful measure of localization derived from ensemble RNA-seq measurements. LncATLAS is accessible through an intuitive and informative webserver, from which lncRNAs of interest are accessed using identifiers or names. Localization is presented across cell types and organelles, and may be compared to the distribution of all other genes. Publication-quality figures and raw data tables are automatically generated with each query, and the entire data set is also available to download. LncATLAS makes lncRNA subcellular localization data available to the widest possible number of researchers. It is available at lncatlas.crg.eu.
Collapse
Affiliation(s)
- David Mas-Ponte
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Joana Carlevaro-Fita
- Department of Clinical Research, University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Emilio Palumbo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Toni Hermoso Pulido
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Catalonia, Spain
| | - Rory Johnson
- Department of Clinical Research, University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
48
|
Zovoilis A, Cifuentes-Rojas C, Chu HP, Hernandez AJ, Lee JT. Destabilization of B2 RNA by EZH2 Activates the Stress Response. Cell 2017; 167:1788-1802.e13. [PMID: 27984727 DOI: 10.1016/j.cell.2016.11.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Abstract
More than 98% of the mammalian genome is noncoding, and interspersed transposable elements account for ∼50% of noncoding space. Here, we demonstrate that a specific interaction between the polycomb protein EZH2 and RNA made from B2 SINE retrotransposons controls stress-responsive genes in mouse cells. In the heat-shock model, B2 RNA binds stress genes and suppresses their transcription. Upon stress, EZH2 is recruited and triggers cleavage of B2 RNA. B2 degradation in turn upregulates stress genes. Evidence indicates that B2 RNA operates as a "speed bump" against advancement of RNA polymerase II, and temperature stress releases the brakes on transcriptional elongation. These data attribute a new function to EZH2 that is independent of its histone methyltransferase activity and reconcile how EZH2 can be associated with both gene repression and activation. Our study reveals that EZH2 and B2 together control activation of a large network of genes involved in thermal stress.
Collapse
Affiliation(s)
- Athanasios Zovoilis
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Cifuentes-Rojas
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Hsueh-Ping Chu
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Alfredo J Hernandez
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
49
|
Qian L, Xu F, Wang X, Jiang M, Wang J, Song W, Wu D, Shen Z, Feng D, Ling B, Cheng Y, Xiao W, Shan G, Zhou Y. LncRNA expression profile of ΔNp63α in cervical squamous cancers and its suppressive effects on LIF expression. Cytokine 2017; 96:114-122. [PMID: 28391028 DOI: 10.1016/j.cyto.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/18/2017] [Accepted: 04/01/2017] [Indexed: 01/11/2023]
Abstract
We aim to determine the lncRNA targets of ΔNp63α in cervical cancer and molecular programs in cancerous differentiation. Different profiles of the lncRNAs were assayed and validated in overexpressing p63 SiHa cells (SiHa/ΔNp63α) and the control cell lines (SiHa/pCon). ENST00000422259, ENST00000447565 (Lnc-LIF-AS) and ENST00000469965, together with their related antisense mRNA DPYD (dihydropyrimidine dehydrogenase, a pyrimidine catabolic pathway gene), LIF (leukemia inhibitor factor) and FLNC (filamin C) were all notably differentially expressed in both ΔNp63α overexpression cells and knockdown cells. Here, we illustrated that ΔNp63α can inhibit the levels of LIF mRNA by direct transcription regulation and decrease LIF mRNA stability by suppressing the expression of Lnc-LIF-AS. An inverse interaction of LIF and ΔNp63α expression was as well validated in clinical samples of cervical cancer, and high level of LIF in cervical cancers was related with poor patient survival. The decrease of ΔNp63α also attenuated the differentiation of cervical cancerous cells. Suggesting that ΔNp63α may be form a complex network in regulation cervical cancerous differentiation.
Collapse
Affiliation(s)
- Lili Qian
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Fei Xu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Xiaolin Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Ming Jiang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Weiguo Song
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Dabao Wu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Zhen Shen
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Dingqing Feng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bin Ling
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yong Cheng
- Departments of Oncological Radiotherapy, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Weihua Xiao
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, China.
| | - Ge Shan
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, China.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China.
| |
Collapse
|
50
|
Cheng Z, Bai Y, Wang P, Wu Z, Zhou L, Zhong M, Jin Q, Zhao J, Mao H, Mao H. Identification of long noncoding RNAs for the detection of early stage lung squamous cell carcinoma by microarray analysis. Oncotarget 2017; 8:13329-13337. [PMID: 28076325 PMCID: PMC5355100 DOI: 10.18632/oncotarget.14522] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022] Open
Abstract
The aberrant expressions of long noncoding RNAs have been reported in numerous cancers, which have facilitated the cancer diagnosis. However, the expression profile of lncRNAs in early stage lung squamous cell carcinoma has not been well discussed. The present study aimed to examine the expression profile of lncRNAs in early stage lung squamous cell carcinoma and identify lncRNA biomarkers for diagnosis. Through high-throughput lncRNA microarray, we screened thousands of aberrantly expressed lncRNAs and mRNAs in early stage lung squamous cell carcinoma tissues compared to their corresponding adjacent nontumorous tissues. Bioinformatics analyses were used to investigate the functions of aberrantly expressed mRNAs and their associated lncRNAs. After that, in order to identify lncRNA biomarkers for early detection, candidate lncRNA biomarkers were selected based on our established filtering pipeline and validated by real-time quantitative polymerase chain reaction on a total of 63 pairs of tumor samples. Five lncRNAs were finally identified which were able to distinguish early stage tumor and normal samples with high sensitivity (92%) and specificity (83%). These results imply that lncRNAs may be powerful biomarker for early diagnosis.
Collapse
Affiliation(s)
- Zule Cheng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanan Bai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ping Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lin Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ming Zhong
- Departments of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qinghui Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
| | - Hailei Mao
- Departments of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China
| |
Collapse
|