1
|
Ge Z, Xu M, Ge Y, Huang G, Chen D, Ye X, Xiao Y, Zhu H, Yin R, Shen H, Ma G, Qi L, Wei G, Li D, Wei S, Zhu M, Ma H, Shi Z, Wang X, Ge X, Qian X. Inhibiting G6PD by quercetin promotes degradation of EGFR T790M mutation. Cell Rep 2023; 42:113417. [PMID: 37950872 DOI: 10.1016/j.celrep.2023.113417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/13/2023] Open
Abstract
EGFRT790M mutation causes resistance to the first-generation tyrosine kinase inhibitors (TKIs) in patients with non-small cell lung cancer (NSCLC). However, the therapeutic options for sensitizing first TKIs and delaying the emergence of EGFRT790M mutant are limited. In this study, we show that quercetin directly binds with glucose-6-phosphate dehydrogenase (G6PD) and inhibits its enzymatic activity through competitively abrogating NADP+ binding in the catalytic domain. This inhibition subsequently reduces intracellular NADPH levels, resulting in insufficient substrate for methionine reductase A (MsrA) to reduce M790 oxidization of EGFRT790M and inducing the degradation of EGFRT790M. Quercetin synergistically enhances the therapeutic effect of gefitinib on EGFRT790M-harboring NSCLCs and delays the acquisition of the EGFRT790M mutation. Notably, high levels of G6PD expression are correlated with poor prognosis and the emerging time of EGFRT790M mutation in patients with NSCLC. These findings highlight the potential implication of quercetin in overcoming EGFRT790M-driven TKI resistance by directly targeting G6PD.
Collapse
Affiliation(s)
- Zehe Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Miao Xu
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yuqian Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Guang Huang
- Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongyin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiuquan Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hongyu Zhu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 21009, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 21009, China
| | - Hua Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Gaoxiang Ma
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Lianwen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Guining Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530022, China
| | - Dongmei Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530022, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Meng Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongxia Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiuxing Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 21009, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Smith JW, O'Meally RN, Burke SM, Ng DK, Chen JG, Kensler TW, Groopman JD, Cole RN. Global Discovery and Temporal Changes of Human Albumin Modifications by Pan-Protein Adductomics: Initial Application to Air Pollution Exposure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:595-607. [PMID: 36939690 DOI: 10.1021/jasms.2c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Assessing personal exposure to environmental toxicants is a critical challenge for predicting disease risk. Previously, using human serum albumin (HSA)-based biomonitoring, we reported dosimetric relationships between adducts at HSA Cys34 and ambient air pollutant levels (Smith et al., Chem. Res. Toxicol. 2021, 34, 1183). These results provided the foundation to explore modifications at other sites in HSA to reveal novel adducts of complex exposures. Thus, the Pan-Protein Adductomics (PPA) technology reported here is the next step toward an unbiased, comprehensive characterization of the HSA adductome. The PPA workflow requires <2 μL serum/plasma and uses nanoflow-liquid chromatography, gas-phase fractionation, and overlapping-window data-independent acquisition high-resolution tandem mass spectrometry. PPA analysis of albumin from nonsmoking women exposed to high levels of air pollution uncovered 68 unique location-specific modifications (LSMs) across 21 HSA residues. While nearly half were located at Cys34 (33 LSMs), 35 were detected on other residues, including Lys, His, Tyr, Ser, Met, and Arg. HSA adduct relative abundances spanned a ∼400 000-fold range and included putative products of exogenous (SO2, benzene, phycoerythrobilin) and endogenous (oxidation, lipid peroxidation, glycation, carbamylation) origin, as well as 24 modifications without annotations. PPA quantification revealed statistically significant changes in LSM levels across the 84 days of monitoring (∼3 HSA lifetimes) in the following putative adducts: Cys34 trioxidation, β-methylthiolation, benzaldehyde, and benzene diol epoxide; Met329 oxidation; Arg145 dioxidation; and unannotated Cys34 and His146 adducts. Notably, the PPA workflow can be extended to any protein. Pan-Protein Adductomics is a novel and powerful strategy for untargeted global exploration of protein modifications.
Collapse
Affiliation(s)
- Joshua W Smith
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Robert N O'Meally
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Sean M Burke
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Derek K Ng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Jian-Guo Chen
- Qidong Liver Cancer Institute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu 226200, P. R. China
| | - Thomas W Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - John D Groopman
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Misiukiewicz-Stępien P, Mierzejewski M, Zajusz-Zubek E, Goryca K, Adamska D, Szeląg M, Krenke R, Paplińska-Goryca M. RNA-Seq Analysis of UPM-Exposed Epithelium Co-Cultivated with Macrophages and Dendritic Cells in Obstructive Lung Diseases. Int J Mol Sci 2022; 23:ijms23169125. [PMID: 36012391 PMCID: PMC9408857 DOI: 10.3390/ijms23169125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Elevated concentrations of airborne pollutants are correlated with an enlarged rate of obstructive lung disease morbidity as well as acute disease exacerbations. This study aimed to analyze the epithelium mRNA profile in response to airborne particulate matter in the control, asthma, and COPD groups. Results. A triple co-culture of nasal epithelium, monocyte-derived macrophages, and monocyte-derived dendritic cells obtained from the controls, asthma, and COPD were exposed to urban particulate matter (UPM) for 24 h. RNA-Seq analysis found differences in seven (CYP1B1, CYP1B1-AS1, NCF1, ME1, LINC02029, BPIFA2, EEF1A2), five (CYP1B1, ARC, ENPEP, RASD1, CYP1B1-AS1), and six (CYP1B1, CYP1B1-AS1, IRF4, ATP1B2, TIPARP, CCL22) differentially expressed genes between UPM exposed and unexposed triple co-cultured epithelium in the control, asthma, and COPD groups, respectively. PCR analysis showed that mRNA expression of BPIFA2 and ENPEP was upregulated in both asthma and COPD, while the expression of CYP1B1-AS1 and TIPARP was increased in the epithelium from COPD patients only. Biological processes changed in UPM exposed triple co-cultured epithelium were associated with epidermis development and epidermal cell differentiation in asthma and with response to toxic substances in COPD. Conclusions. The biochemical processes associated with pathophysiology of asthma and COPD impairs the airway epithelial response to UPM.
Collapse
Affiliation(s)
- Paulina Misiukiewicz-Stępien
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Michał Mierzejewski
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Elwira Zajusz-Zubek
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Krzysztof Goryca
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Dorota Adamska
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Michał Szeląg
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-599-12-41; Fax: +48-22-599-15-61
| |
Collapse
|
4
|
Sudakov NP, Klimenkov IV, Bedoshvili YD, Arsent'ev KY, Gorshkov AG, Izosimova ON, Yakhnenko VM, Kupchinskii AB, Didorenko SI, Likhoshway YV. Early structural and functional changes in Baikal Sculpin gills exposed to suspended soot microparticles in experiment. CHEMOSPHERE 2022; 290:133241. [PMID: 34896428 DOI: 10.1016/j.chemosphere.2021.133241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The toxic influence of soot microparticles on terrestrial organisms has been well studied, although there is scarce data on how microparticles could affect hydrobionts. We performed a first-ever study of the short-term (5 days) impact of furnace soot (0.005 g/L) on the structural and functional features of gill cells in the Baikal Sculpin species Paracottus knerii, Dybowski, 1874. The soot samples used in the experiment were composed of small (10-100 nm) particles and larger (up to 20 μm) aggregates. The dominant fractions of the polycyclic aromatic hydrocarbons of these microparticles were phenanthrene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzofluoranthenes, benzopyrenes, indeno[1,2,3-c,d]pyrenes, and benzo[ghi]perylene. Trace element analysis of the soot detected the presence of C, S, Si, Al, Ca, K, Mg, P, and Fe. The gill condition was assessed with electron scanning, transmission, and laser confocal microscopy. Soot induces degenerative changes in the macrostructure and surface of secondary lamellae and increases mucus production in fish gills. A decrease in mitochondrial activity, an increase in reactive oxygen species production, and an increase in the frequency of programmed cell death in gill epithelium were observed under the influence of soot. In chloride cells, an induction of macroautophagy was detected. In general, the changes in fish gills after the short-term influence of soot microparticles indicate the stress of respiratory and osmotic regulation systems in fish. The data obtained are important for forming a coherent picture of the impact of soot on hydrobionts and for developing bioindication methods for evaluating the risks of their influence on aquatic ecosystems.
Collapse
Affiliation(s)
- Nikolay P Sudakov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia.
| | - Igor V Klimenkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Yekaterina D Bedoshvili
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Kirill Yu Arsent'ev
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Alexander G Gorshkov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Oksana N Izosimova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Vera M Yakhnenko
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Alexandr B Kupchinskii
- Baikal Museum, Siberian Branch, Russian Academy of Sciences, 1 Akademicheskaya St., Listvyanka, 664520, Russia
| | - Sergei I Didorenko
- Baikal Museum, Siberian Branch, Russian Academy of Sciences, 1 Akademicheskaya St., Listvyanka, 664520, Russia
| | - Yelena V Likhoshway
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| |
Collapse
|
5
|
Hsiao TC, Cheng PC, Chi KH, Wang HY, Pan SY, Kao C, Lee YL, Kuo HP, Chung KF, Chuang HC. Interactions of chemical components in ambient PM 2.5 with influenza viruses. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127243. [PMID: 34844361 DOI: 10.1016/j.jhazmat.2021.127243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 05/28/2023]
Abstract
The significance of this work is that ambient PM2.5 is a direct transmission mode for influenza virus infection to the human alveolar epithelium. The concentration of PM2.5 was 11.7 ± 5.5 μg/m3 in Taipei during 24 December 2019-13 January 2020. Approximately 79% of inhaled PM2.5 is able to reach the upper-to-lower airway, and 47% of PM2.5 is able to reach the alveolar epithelium for influenza virus infection. Influenza A and B viruses were detected in PM2.5 on 9 days, and the influenza A/H5 virus was detected on 15 days during the study period. FL and Pyr were negatively correlated with the influenza A virus. D(ah)P and Acp were positively correlated with the influenza B and A/H5 viruses, respectively. Cd, V, and Zn were positively correlated with the influenza A, B, and A/H5 viruses, respectively. Next, influenza A, B, and A/H5 viral plasmids interacted with carbon black, H2O2, DEPs, and UD. We observed that H2O2 significantly decreased levels of complementary DNA of the three influenza viruses. DEPs and UD significantly decreased influenza A and A/H5 viral levels. In conclusion, chemicals in PM2.5 may play vital roles in terms of viable influenza virus in the atmosphere.
Collapse
Affiliation(s)
- Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for International Tropical Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chao Tung University, Taipei, Taiwan.
| | - Hung-Yang Wang
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for International Tropical Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Shih-Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chao Tung University, Taipei, Taiwan.
| | - Ching Kao
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Han-Pin Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Chang JH, Lee YL, Laiman V, Han CL, Jheng YT, Lee KY, Yeh CT, Kuo HP, Chung KF, Heriyanto DS, Hsiao TC, Wu SM, Ho SC, Chuang KJ, Chuang HC. Air pollution-regulated E-cadherin mediates contact inhibition of proliferation via the hippo signaling pathways in emphysema. Chem Biol Interact 2022; 351:109763. [PMID: 34852269 DOI: 10.1016/j.cbi.2021.109763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 01/07/2023]
Abstract
Air pollution has been linked to emphysema in chronic obstruction pulmonary disease (COPD). However, the underlying mechanisms in the development of emphysema due to air pollution remain unclear. The objective of this study was to investigate the role of components of the Hippo signaling pathway for E-cadherin-mediated contact inhibition of proliferation in the lungs after air pollution exposure. E-Cadherin-mediated contact inhibition of proliferation via the Hippo signaling pathway was investigated in Sprague-Dawley (SD) rats whole-body exposed to air pollution, and in alveolar epithelial A549 cells exposed to diesel exhaust particles (DEPs), E-cadherin-knockdown, and high-mobility group box 1 (HMGB1) treatment. Underlying epithelial differentiation, apoptosis, and senescence were also examined, and the interaction network among these proteins was examined. COPD lung sections were used to confirm the observations in rats. Expressions of HMGB1 and E-cadherin were negatively regulated in the lungs and A549 cells by air pollution, and this was confirmed by knockdown of E-cadherin and by treating A549 cells with HMGB1. Depletion of phosphorylated (p)-Yap occurred after exposure to air pollution and E-cadherin-knockdown, which resulted in decreases of SPC and T1α. Exposure to air pollution and E-cadherin-knockdown respectively downregulated p-Sirt1 and increased p53 levels in the lungs and in A549 cells. Moreover, the protein interaction network suggested that E-cadherin is a key activator in regulating Sirt1 and p53, as well as alveolar epithelial cell differentiation by SPC and T1α. Consistently, downregulation of E-cadherin, p-Yap, SPC, and T1α was observed in COPD alveolar regions with particulate matter (PM) deposition. In conclusion, our results indicated that E-cadherin-mediated cell-cell contact directly regulates the Hippo signaling pathway to control differentiation, cell proliferation, and senescence due to air pollution. Exposure to air pollution may initiate emphysema in COPD patients.
Collapse
Affiliation(s)
- Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Vincent Laiman
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Teng Jheng
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Han-Pin Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Ritz B, Yan Q, He D, Wu J, Walker DI, Uppal K, Jones DP, Heck JE. Child serum metabolome and traffic-related air pollution exposure in pregnancy. ENVIRONMENTAL RESEARCH 2022; 203:111907. [PMID: 34419469 PMCID: PMC8926017 DOI: 10.1016/j.envres.2021.111907] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Maternal exposure to traffic-related air pollution during pregnancy has been shown to increase the risk of adverse birth outcomes and childhood disorders. High-resolution metabolomics (HRM) has previously been employed to identify metabolic responses to traffic-related air pollution in adults, including pregnant women. Thus far, no studies have examined metabolic effects of air pollution exposure in utero on neonates. METHODS We retrieved stored neonatal blood spots for 241 children born in California between 1998 and 2007. These children were randomly selected from all California birth rolls to serve as birth-year matched controls for children with retinoblastoma identified from the California cancer registry for a case control study of childhood cancer. We estimated prenatal traffic-related air pollution exposure (particulate matter less than 2.5 μm (PM2.5)) during the third-trimester using the California Line Source Dispersion Model, version 4 (CALINE4) based on residential addresses recorded at birth. We employed untargeted HRM to obtain metabolic profiles, and metabolites associated with air pollution exposure were identified using partial least squares (PLS) regression and linear regressions. Biological effects were characterized using pathway enrichment analyses adjusting for potential confounders including maternal age, race/ethnicity, and education. RESULTS In total we extracted 4038 and 4957 metabolite features from neonatal blood spots in hydrophilic interaction (HILIC) chromatography (positive ion mode) and C18 reverse phase columns (negative ion mode), respectively. After controlling for confounding factors, partial least square regression (Variable Importance in Projection (VIP) ≥ 2) selected 402 HILIC positive and 182 C18 negative features as statistically significantly associated with increasing third trimester PM2.5 exposure. Using pathway enrichment analysis, we identified metabolites in oxidative stress and inflammation pathways as being altered, primarily involving lipid metabolism. CONCLUSION The metabolite features and pathways associated with air pollution exposure in neonates suggest that maternal exposure during late pregnancy contributes to oxidative stress and inflammation in newborn children.
Collapse
Affiliation(s)
- Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA; Department of Neurology, UCLA School of Medicine, CA, USA.
| | - Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Di He
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Jun Wu
- Program in Public Health, UCI Susan and Henry Samueli College of Health Sciences, Irvine, CA, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Department of Medicine, Emory University, Atlanta, GA, USA
| | - Julia E Heck
- College of Health and Public Service, University of North Texas, Denton, TX, USA
| |
Collapse
|
8
|
Oxidative distress in aging and age-related diseases: Spatiotemporal dysregulation of protein oxidation and degradation. Biochimie 2021; 195:114-134. [PMID: 34890732 DOI: 10.1016/j.biochi.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/31/2022]
Abstract
The concept of oxidative distress had arisen from the assessment of cellular response to high concentrations of reactive species that result from an imbalance between oxidants and antioxidants and cause biomolecular damage. The intracellular distribution and flux of reactive species dramatically change in time and space contributing to the remodeling of the redox landscape and sensitivity of protein residues to oxidants. Here, we hypothesize that compromised spatiotemporal control of generation, conversions, and removal of reactive species underlies protein damage and dysfunction of protein degradation machineries. This leads to the accumulation of oxidatively damaged proteins resulted in an age-dependent decline in the organismal adaptability to oxidative stress. We highlight recent data obtained with the use of various cell cultures, animal models, and patients on irreversible and non-repairable oxidation of key redox-sensitive residues. Multiple reaction products include peptidyl hydroperoxides, alcohols, carbonyls, and carbamoyl moieties as well as Tyr-Tyr, Trp-Tyr, Trp-Trp, Tyr-Cys, His-Lys, His-Arg, and Tyr-Lys cross-links. These lead to protein fragmentation, misfolding, covalent cross-linking, oligomerization, aggregation, and ultimately, causing impaired protein function and turnover. 20S proteasome and autophagy-lysosome pathways are two major types of machinery for the degradation and elimination of oxidatively damaged proteins. Spatiotemporal dysregulation of these pathways under oxidative distress conditions is implicated in aging and age-related disorders such as neurodegenerative and cardiovascular diseases and diabetes. Future investigations in this field allow the discovery of new drugs to target components of dysregulated cell signaling and protein degradation machinery to combat aging and age-related chronic diseases.
Collapse
|
9
|
Nassan FL, Kelly RS, Koutrakis P, Vokonas PS, Lasky-Su JA, Schwartz JD. Metabolomic signatures of the short-term exposure to air pollution and temperature. ENVIRONMENTAL RESEARCH 2021; 201:111553. [PMID: 34171372 PMCID: PMC8478827 DOI: 10.1016/j.envres.2021.111553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Short-term exposures to air pollution and temperature have been reported to be associated with inflammation and oxidative stress. However, mechanistic understanding of the affected metabolic pathways is still lacking and literature on the short-term exposure of air-pollution on the metabolome is limited. OBJECTIVES We aimed to determine changes in the plasma metabolome and associated metabolic pathways related to short-term exposure to outdoor air pollution and temperature. METHODS We performed mass-spectrometry based untargeted metabolomic profiling of plasma samples from a large and well-characterized cohort of men (Normative Aging Study) to identify metabolic pathways associated with short-term exposure to PM2.5, NO2, O3, and temperature (one, seven-, and thirty-day average of address-specific predicted estimates). We used multivariable linear mixed-effect regression and independent component analysis (ICA) while simultaneously adjusting for all exposures and correcting for multiple testing. RESULTS Overall, 456 white men provided 648 blood samples, in which 1158 metabolites were quantified, between 2000 and 2016. Average age and body mass index were 75.0 years and 27.7 kg/m2, respectively. Only 3% were current smokers. In the adjusted models, NO2, and temperature showed statistically significant associations with several metabolites (19 metabolites for NO2 and 5 metabolites for temperature). We identified six metabolic pathways (sphingolipid, butanoate, pyrimidine, glycolysis/gluconeogenesis, propanoate, and pyruvate metabolisms) perturbed with short-term exposure to air pollution and temperature. These pathways were involved in inflammation and oxidative stress, immunity, and nucleic acid damage and repair. CONCLUSIONS This is the first study to report an untargeted metabolomic signature of temperature exposure, the largest to report an untargeted metabolomic signature of air pollution, and the first to use ICA. We identified several significant plasma metabolites and metabolic pathways associated with short-term exposure to air pollution and temperature; using an untargeted approach. Those pathways were involved in inflammation and oxidative stress, immunity, and nucleic acid damage and repair. These results need to be confirmed by future research.
Collapse
Affiliation(s)
- Feiby L Nassan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Rachel S Kelly
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Pantel S Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, School of Medicine and School of Public Health, Boston University, Boston MA, 02215, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA; Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Forensic proteomics. Forensic Sci Int Genet 2021; 54:102529. [PMID: 34139528 DOI: 10.1016/j.fsigen.2021.102529] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Protein is a major component of all biological evidence, often the matrix that embeds other biomolecules such as polynucleotides, lipids, carbohydrates, and small molecules. The proteins in a sample reflect the transcriptional and translational program of the originating cell types. Because of this, proteins can be used to identify body fluids and tissues, as well as convey genetic information in the form of single amino acid polymorphisms, the result of non-synonymous SNPs. This review explores the application and potential of forensic proteomics. The historical role that protein analysis played in the development of forensic science is examined. This review details how innovations in proteomic mass spectrometry have addressed many of the historical limitations of forensic protein science, and how the application of forensic proteomics differs from proteomics in the life sciences. Two more developed applications of forensic proteomics are examined in detail: body fluid and tissue identification, and proteomic genotyping. The review then highlights developing areas of proteomics that have the potential to impact forensic science in the near future: fingermark analysis, species identification, peptide toxicology, proteomic sex estimation, and estimation of post-mortem intervals. Finally, the review highlights some of the newer innovations in proteomics that may drive further development of the field. In addition to potential impact, this review also attempts to evaluate the stage of each application in the development, validation and implementation process. This review is targeted at investigators who are interested in learning about proteomics in a forensic context and expanding the amount of information they can extract from biological evidence.
Collapse
|
11
|
Chuang HC, Chen HC, Chai PJ, Liao HT, Wu CF, Chen CL, Jhan MK, Hsieh HI, Wu KY, Chen TF, Cheng TJ. Neuropathology changed by 3- and 6-months low-level PM 2.5 inhalation exposure in spontaneously hypertensive rats. Part Fibre Toxicol 2020; 17:59. [PMID: 33243264 PMCID: PMC7691081 DOI: 10.1186/s12989-020-00388-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epidemiological evidence has linked fine particulate matter (PM2.5) to neurodegenerative diseases; however, the toxicological evidence remains unclear. The objective of this study was to investigate the effects of PM2.5 on neuropathophysiology in a hypertensive animal model. We examined behavioral alterations (Morris water maze), lipid peroxidation (malondialdehyde (MDA)), tau and autophagy expressions, neuron death, and caspase-3 levels after 3 and 6 months of whole-body exposure to urban PM2.5 in spontaneously hypertensive (SH) rats. RESULTS SH rats were exposed to S-, K-, Si-, and Fe-dominated PM2.5 at 8.6 ± 2.5 and 10.8 ± 3.8 μg/m3 for 3 and 6 months, respectively. We observed no significant alterations in the escape latency, distance moved, mean area crossing, mean time spent, or mean swimming velocity after PM2.5 exposure. Notably, levels of MDA had significantly increased in the olfactory bulb, hippocampus, and cortex after 6 months of PM2.5 exposure (p < 0.05). We observed that 3 months of exposure to PM2.5 caused significantly higher expressions of t-tau and p-tau in the olfactory bulb (p < 0.05) but not in other brain regions. Beclin 1 was overexpressed in the hippocampus with 3 months of PM2.5 exposure, but significantly decreased in the cortex with 6 months exposure to PM2.5. Neuron numbers had decreased with caspase-3 activation in the cerebellum, hippocampus, and cortex after 6 months of PM2.5 exposure. CONCLUSIONS Chronic exposure to low-level PM2.5 could accelerate the development of neurodegenerative pathologies in subjects with hypertension.
Collapse
Affiliation(s)
- Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Chang Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Pei-Jui Chai
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei, 100 Taiwan
| | - Ho-Tang Liao
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei, 100 Taiwan
| | - Chang-Fu Wu
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei, 100 Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Kai Jhan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-I Hsieh
- Department of Occupational Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Kuen-Yuh Wu
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei, 100 Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 1, Changde Street, Taipei, 10048 Taiwan
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei, 100 Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Contreras LM, Gonzalez-Rivera JC, Baldridge KC, Wang DS, Chuvalo-Abraham J, Ruiz LH. Understanding the Functional Impact of VOC-Ozone Mixtures on the Chemistry of RNA in Epithelial Lung Cells. Res Rep Health Eff Inst 2020; 2020:Res Rep Health Eff Inst. 2020 Jul;(201):3-43.. [PMID: 32845096 PMCID: PMC7448316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
Introduction Ambient air pollution is associated with premature death caused by heart disease, stroke, chronic obstructive pulmonary disease (COPD), and lung cancer. Recent studies have suggested that ribonucleic acid (RNA) oxidation is a sensitive environment-related biomarker that is implicated in pathogenesis. Aims and Methods We used a novel approach that integrated RNA-Seq analysis with detection by immunoprecipitation techniques of the prominent RNA oxidative modification 8-oxo-7,8-dihydroguanine (8-oxoG). Our goal was to uncover specific messenger RNA (mRNA) oxidation induced by mixtures of volatile organic compounds (VOCs) and ozone in healthy human epithelial lung cells. To this end, we exposed the BEAS-2B human epithelial lung cell line to the gas- and particle-phase products formed from reactions of 790 ppb acrolein (ACR) and 670 ppb methacrolein (MACR) with 4 ppm ozone. Results Using this approach, we identified 222 potential direct targets of oxidation belonging to previously described pathways, as well as uncharacterized pathways, after air pollution exposures. We demonstrated the effect of our VOC-ozone mixtures on the morphology and actin cytoskeleton of lung cells, suggesting the influence of selective mRNA oxidation in members of pathways regulating physical components of the cells. In addition, we observed the influence of the VOC-ozone mixtures on metabolic cholesterol synthesis, likely implicated as a result of the incidence of mRNA oxidation and the deregulation of protein levels of squalene synthase (farnesyl-diphosphate farnesyltransferase 1 [FDFT1]), a key enzyme in endogenous cholesterol biosynthesis. Conclusions Overall, our findings indicate that air pollution influences the accumulation of 8-oxoG in transcripts of epithelial lung cells that largely belong to stress-induced signaling and metabolic and structural pathways. A strength of the study was that it combined traditional transcriptome analysis with transcriptome-wide 8-oxoG mapping to facilitate the discovery of underlying processes not characterized by earlier approaches. Investigation of the processes mediated by air pollution oxidation of RNA molecules in primary cells and animal models needs to be explored in future studies. Our research has thus opened new avenues to further inform the relationship between atmospheric agents on the one hand and cellular responses on the other that are implicated in diseases.
Collapse
Affiliation(s)
- L M Contreras
- McKetta Department of Chemical Engineering, University of Texas, Austin
| | | | - K C Baldridge
- McKetta Department of Chemical Engineering, University of Texas, Austin
| | - D S Wang
- McKetta Department of Chemical Engineering, University of Texas, Austin
| | | | - L H Ruiz
- McKetta Department of Chemical Engineering, University of Texas, Austin
| |
Collapse
|
13
|
Rabha S, Saikia BK. An environmental evaluation of carbonaceous aerosols in PM10 at micro- and nano-scale levels reveals the formation of carbon nanodots. CHEMOSPHERE 2020; 244:125519. [PMID: 31812765 DOI: 10.1016/j.chemosphere.2019.125519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Carbonaceous aerosols play significant roles in air quality and the climate; their oxidation at the nano-scale level may possibly increase the reactivity and toxicity of atmospheric particulates. In the present study, a laboratory experiment on the atmospheric carbonaceous aerosol was done by using H2O2 as an oxidizing agent. An extensive study made with advanced analytical tools revealed the formation of photoluminescent carbon nanoparticles (carbon nanodots) in the carbonaceous aerosol. The carbon nanoparticles are mostly at the sp2 hybridization state and contain various surface functional groups such as carboxyl and carbonyl groups. The properties of these carbon nanoparticles resemble the engineered carbon nanoparticles such as carbon dots (CDs). The carbon nanoparticles, mainly less than 10 nm, are composed of carbon nanocrystals containing a few other elements such as Ca and Fe. Fluorescence spectroscopy revealed the characteristic excitation-dependent emission spectra of blue fluorescent carbon nanoparticles. The results indicate the presence of characteristic carbon nanoparticles in the carbonaceous aerosol in PM10, opening a new road for predicting environmental processes occurring in the atmospheric environment.
Collapse
Affiliation(s)
- Shahadev Rabha
- Polymer Petroleum and Coal Chemistry Group, Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, Jorhat, 785006, India
| | - Binoy K Saikia
- Polymer Petroleum and Coal Chemistry Group, Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, Jorhat, 785006, India.
| |
Collapse
|
14
|
Nrf2 positively regulates autophagy antioxidant response in human bronchial epithelial cells exposed to diesel exhaust particles. Sci Rep 2020; 10:3704. [PMID: 32111854 PMCID: PMC7048799 DOI: 10.1038/s41598-020-59930-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Diesel exhaust particles (DEP) are known to generate reactive oxygen species in the respiratory system, triggering cells to activate antioxidant defence mechanisms, such as Keap1-Nrf2 signalling and autophagy. The aim of this study was to investigate the relationship between the Keap1-Nrf2 signalling and autophagy pathways after DEP exposure. BEAS-2B cells were transfected with silencing RNA (siRNA) specific to Nrf2 and exposed to DEP. The relative levels of mRNA for Nrf2, NQO1, HO-1, LC3B, p62 and Atg5 were determined using RT-PCR, while the levels of LCB3, Nrf2, and p62 protein were determined using Western blotting. The autophagy inhibitor bafilomycin caused a significant decrease in the production of Nrf2, HO-1 and NQO1 compared to DEPs treatment, whereas the Nrf2 activator sulforaphane increased the LC3B (p = 0.020) levels. BEAS-2B cells exposed to DEP at a concentration of 50 μg/mL for 2 h showed a significant increase in the expression of LC3B (p = 0.001), p62 (p = 0.008), Nrf2 (p = 0.003), HO-1 (p = 0.001) and NQO1 (p = 0.015) genes compared to control. In siRNA-transfected cells, the LC3B (p < 0.001), p62 (p = 0.001) and Atg5 (p = 0.024) mRNA levels and the p62 and LC3II protein levels were decreased, indicating that Nrf2 modulated the expression of autophagy markers (R < 1). These results imply that, in bronchial cells exposed to DEP, the Nrf2 system positively regulates autophagy to maintain cellular homeostasis.
Collapse
|
15
|
Abstract
OBJECTIVE Exposure to airborne particulate matter (PM) is estimated to cause millions of premature deaths annually. This work conveys known routes of exposure to PM and resultant health effects. METHODS A review of available literature. RESULTS Estimates for daily PM exposure are provided. Known mechanisms by which insoluble particles are transported and removed from the body are discussed. Biological effects of PM, including immune response, cytotoxicity, and mutagenicity, are reported. Epidemiological studies that outline the systemic health effects of PM are presented. CONCLUSION While the integrated, per capita, exposure of PM for a large fraction of the first-world may be less than 1 mg per day, links between several syndromes, including attention deficit hyperactivity disorder (ADHD), autism, loss of cognitive function, anxiety, asthma, chronic obstructive pulmonary disease (COPD), hypertension, stroke, and PM exposure have been suggested. This article reviews and summarizes such links reported in the literature.
Collapse
|
16
|
Yan Q, Liew Z, Uppal K, Cui X, Ling C, Heck JE, von Ehrenstein OS, Wu J, Walker DI, Jones DP, Ritz B. Maternal serum metabolome and traffic-related air pollution exposure in pregnancy. ENVIRONMENT INTERNATIONAL 2019; 130:104872. [PMID: 31228787 PMCID: PMC7017857 DOI: 10.1016/j.envint.2019.05.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Maternal exposure to traffic-related air pollution during pregnancy has been shown to increase the risk of adverse birth outcomes and neurodevelopmental disorders. By utilizing high-resolution metabolomics (HRM), we investigated perturbations of the maternal serum metabolome in response to traffic-related air pollution to identify biological mechanisms. METHODS We retrieved stored mid-pregnancy serum samples from 160 mothers who lived in the Central Valley of California known for high air particulate levels. We estimated prenatal traffic-related air pollution exposure (carbon monoxide, nitric oxides, and particulate matter <2.5 μm) during first-trimester using the California Line Source Dispersion Model, version 4 (CALINE4) based on residential addresses recorded at birth. We used liquid chromatography-high resolution mass spectrometry to obtain untargeted metabolic profiles and partial least squares discriminant analysis (PLS-DA) to select metabolic features associated with air pollution exposure. Pathway analyses were employed to identify biologic pathways related to air pollution exposure. As potential confounders we included maternal age, maternal race/ethnicity, and maternal education. RESULTS In total we extracted 4038 and 4957 metabolic features from maternal serum samples in hydrophilic interaction (HILIC) chromatography (positive ion mode) and C18 (negative ion mode) columns, respectively. After controlling for confounding factors, PLS-DA (Variable Importance in Projection (VIP) ≥2) yielded 181 and 251 metabolic features (HILIC and C18, respectively) that discriminated between the high (n = 98) and low exposed (n = 62). Pathway enrichment analysis for discriminatory features associated with air pollution indicated that in maternal serum oxidative stress and inflammation related pathways were altered, including linoleate, leukotriene, and prostaglandin pathways. CONCLUSION The metabolomic features and pathways we found to be associated with air pollution exposure suggest that maternal exposure during pregnancy induces oxidative stress and inflammation pathways previously implicated in pregnancy complications and adverse outcomes.
Collapse
Affiliation(s)
- Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Xin Cui
- Perinatal Epidemiology and Health Outcomes Research Unit, Division of Neonatology, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA, USA; California Perinatal Quality Care Collaborative, Palo Alto, CA, USA
| | - Chenxiao Ling
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Julia E Heck
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | | | - Jun Wu
- Program in Public Health, UCI Susan and Henry Samueli College of Health Sciences, Irvine, CA, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Department of Medicine, Emory University, Atlanta, GA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA; Department of Neurology, UCLA School of Medicine, CA, USA.
| |
Collapse
|
17
|
Microglial activation and inflammation caused by traffic-related particulate matter. Chem Biol Interact 2019; 311:108762. [PMID: 31348917 DOI: 10.1016/j.cbi.2019.108762] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/24/2019] [Accepted: 07/23/2019] [Indexed: 11/24/2022]
Abstract
Neurotoxicity caused by particulate matter (PM) has been highlighted as being a potential risk factor for neurodegenerative diseases. However, the effects of brain inflammation in response to traffic-related PM remain unclear. The objective of this study was to investigate the effects of traffic-related PM on microglial responses. We determined the cytotoxicity, oxidative stress, lipid peroxidation, inflammation, activation, autophagy, and apoptosis due to exposure to carbon black (CB) and diesel exhaust particles (DEPs) in Bv2 microglial cells. Additionally, cells were pretreated with corticosteroid to determine alterations in microglial activation and inflammation. For in vivo confirmation, Sprague Dawley (SD) rats were whole-body exposed to traffic-related PM1 (PM with an aerodynamic diameter of <1 μm) for 3 and 6 months. We observed that a decrease in cell viability and increases in dichlorodihydrofluorescein (DCFH), lactate dehydrogenase (LDH), and thiobarbituric acid-reactive substances (TBARSs) occurred due to CB and DEP. Production of interleukin (IL)-6 and soluble tumor necrosis factor (TNF)-α was significantly stimulated by CB and DEP, whereas production of cellular TNF-α was significantly stimulated by CB. Iba1 and prostaglandin E2 (PGE2) significantly increased due to CB and DEP. Consistently, we observed significant increases in Iba1 in the hippocampus of rats after 3 and 6 months of exposure to traffic-related PM1. We found that the light chain 3II (LC3II)/LC3I ratio and caspase-3 activity increased due to CB and DEP exposure. Subsequently, LDH, TBARS, LC3II/I, and caspase-3 activities did not clearly respond to corticosteroid pretreatment followed by DEP exposure in BV2 cells. Results of the present study suggested that traffic-related PM induced cytotoxicity, lipid peroxidation, microglial activation, and inflammation as well as autophagy and caspase-3 regulation in microglia. We demonstrated that microglial activation and inflammation may play important roles in the response of the brain to traffic-related PM.
Collapse
|
18
|
Shang Y, Liu M, Wang T, Wang L, He H, Zhong Y, Qian G, An J, Zhu T, Qiu X, Shang J, Chen Y. Modifications of autophagy influenced the Alzheimer-like changes in SH-SY5Y cells promoted by ultrafine black carbon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:763-771. [PMID: 30623832 DOI: 10.1016/j.envpol.2018.12.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Ambient ultrafine black carbon (uBC) can potentially cross blood-brain barrier, however, very little is currently known about the effects they may have on central nervous system. This study aimed to explore the roles of autophagy in Alzheimer-like pathogenic changes promoted by uBC in SH-SY5Y cells. We firstly found uBC could cause cytotoxicity and oxidative stress in SH-SY5Y cells. Additionally we found uBC initiated progressive development of Alzheimer's disease (AD) associated features, mainly including neuro-inflammation and phosphorylation of tau protein (p-Tau) accumulation. Meanwhile, autophagy process was activated by uBC probably through phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. RNA interference and autophagosome-lysosome fusion inhibitor were applied to block autophagy process at different stages. Autophagy dysfunction at the initial membrane expansion stage could aggravate p-Tau accumulation and other Alzheimer-like changes in SH-SY5Y cells promoted by uBC. However, autophagy inhibition at the final stage could alleviate p-Tau accumulation caused by uBC. This suggested that inhibition of the infusion of autophagosome and lysosome could possibly activate ubiquitination degradation pathway to regulate p-Tau equilibrium in SH-SY5Y cells. Our findings further raise the concerns about the effects of uBC on the risk of AD and indicate potential roles of autophagy in early Alzheimer-like pathogenic changes caused by ambient uBC.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Tiantian Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Lu Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Huixin He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jing Shang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
19
|
Bai KJ, Chuang KJ, Chen JK, Tsai CY, Yang YL, Chang CC, Chen TT, Lee CN, Feng PH, Chen KY, Lee KY, Su CL, Ho SC, Wu SM, Chuang HC. Alterations by Air Pollution in Inflammation and Metals in Pleural Effusion of Pneumonia Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050705. [PMID: 30818785 PMCID: PMC6427250 DOI: 10.3390/ijerph16050705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
Air pollution is known to increase the risk of pneumonia. However, the effects of air pollution on the pleural effusion of patients with pneumonia are unclear. The objective of this study was to investigate alterations in inflammatory–immune biomarkers by air pollution in patients with pneumonia by analyzing their pleural effusion. Patients who had undergone thoracentesis to drain their pleural effusion in a hospital were recruited for this study. Patients with pneumonia and those with congestive heart failure respectively served as the case and control groups. We observed that an increase of 1 ppb in one-year NO2 was associated with a decrease of 0.105 ng/mL in cluster of differentiation 62 (CD62) (95% confidence interval (CI) = −0.085, −0.004, p < 0.05) in the pleural effusion. Furthermore, we observed that an increase in one−year 1 ppb of NO2 was associated with a decrease of 0.026 ng/mL in molybdenum (Mo) (95% CI = −0.138, −0.020, p < 0.05). An increase in one-year 1 ppb of SO2 was associated with a decrease of 0.531 ng/mL in zinc (95% CI = −0.164, −0.006, p < 0.05). Also, an increase in one-year 1 ppb of O3 was associated with a decrease of 0.025 ng/mL in Mo (95% CI = −0.372, −0.053, p < 0.05). In conclusion, air pollution exposure, especially gaseous pollution, may be associated with the regulation of immune responses and changes in metal levels in the pleural effusion of pneumonia patients.
Collapse
Affiliation(s)
- Kuan-Jen Bai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 110, Taiwan.
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
- Graduate Institute of Life Sciences and School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan.
| | - Cheng-Yu Tsai
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - You-Lan Yang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Chun-Nin Lee
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Chein-Ling Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| |
Collapse
|
20
|
Selley L, Phillips DH, Mudway I. The potential of omics approaches to elucidate mechanisms of biodiesel-induced pulmonary toxicity. Part Fibre Toxicol 2019; 16:4. [PMID: 30621739 PMCID: PMC6504167 DOI: 10.1186/s12989-018-0284-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Combustion of biodiesels in place of fossil diesel (FD) has been proposed as a method of reducing transport-related toxic emissions in Europe. While biodiesel exhaust (BDE) contains fewer hydrocarbons, total particulates and carbon monoxide than FD exhaust (FDE), its high nitrogen oxide and ultrafine particle content may still promote pulmonary pathophysiologies. MAIN BODY Using a complement of in vitro and in vivo studies, this review documents progress in our understanding of pulmonary responses to BDE exposure. Focusing initially on hypothesis-driven, targeted analyses, the merits and limitations of comparing BDE-induced responses to those caused by FDE exposure are discussed within the contexts of policy making and exploration of toxicity mechanisms. The introduction and progression of omics-led workflows are also discussed, summarising the novel insights into mechanisms of BDE-induced toxicity that they have uncovered. Finally, options for the expansion of BDE-related omics screens are explored, focusing on the mechanistic relevance of metabolomic profiling and offering rationale for expansion beyond classical models of pulmonary exposure. CONCLUSION Together, these discussions suggest that molecular profiling methods have identified mechanistically informative, novel and fuel-specific signatures of pulmonary responses to biodiesel exhaust exposure that would have been difficult to detect using traditional, hypothesis driven approaches alone.
Collapse
Affiliation(s)
- Liza Selley
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN UK
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment & Health, School of Population Health and Environmental Sciences, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
- NIHR HPRU in Health Impact of Environmental Hazards, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
| | - Ian Mudway
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment & Health, School of Population Health and Environmental Sciences, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
- NIHR HPRU in Health Impact of Environmental Hazards, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
| |
Collapse
|
21
|
Phagocytosis and Autophagy in THP-1 Cells Exposed to Urban Dust: Possible Role of LC3-Associated Phagocytosis and Canonical Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1133:55-63. [DOI: 10.1007/5584_2018_323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Bai KJ, Chuang KJ, Wu SM, Chang LT, Chang TY, Ho KF, Chuang HC. Effects of diesel exhaust particles on the expression of tau and autophagy proteins in human neuroblastoma cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:54-59. [PMID: 29966942 DOI: 10.1016/j.etap.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Particulate air pollution is recognized as a potential risk factor for neurological disorders; however, the underlying mechanisms of neurodegenerative diseases that occur due to particulate air pollution remain unclear. The objective of the present study was to evaluate the neurotoxic effects caused by diesel exhaust particles (DEPs). We determined the ability of DEPs and carbon black (CB) to induce neurotoxicity, oxidative stress and inflammation, and to disrupt the expression of tau and autophagy proteins in human neuroblastoma IMR-32 cells. Spherical CB (dominated by C, N, and S) and DEPs (dominated by C, N, and O) in aggregates were observed using a field emission-scanning electron microscope (FE-SEM) equipped with energy-dispersive x-ray (EDX) microanalysis. Cell viability was significantly decreased by CB and DEPs in IMR-32 cells, but neither particle altered malondialdehyde (MDA) production. We observed that exposure to DEPs significantly increased 8-isoprostane and tumor necrosis factor (TNF)-α levels. Significantly increased expression of tau was induced in IMR-32 cells by DEPs but not by CB. Expression of beclin 1 was increased by DEPs, whereas the light chain 3II (LC3II)/LC3I ratio was increased by CB. Results of the present study suggested that DEPs induced neuroinflammation, oxidative stress, and neurodegenerative-related tau overexpression and regulation by autophagy in IMR-32 cells. We demonstrated that DEPs are able to induce neurotoxicity, which could be associated with the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kuan-Jen Bai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Kin-Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
23
|
Subcellular Imaging of Liquid Silicone Coated-Intestinal Epithelial Cells. Sci Rep 2018; 8:10763. [PMID: 30018393 PMCID: PMC6050225 DOI: 10.1038/s41598-018-28912-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/03/2018] [Indexed: 12/27/2022] Open
Abstract
Surface contamination and the formation of water bridge at the nanoscopic contact between an atomic force microscope tip and cell surface limits the maximum achievable spatial resolution on cells under ambient conditions. Structural information from fixed intestinal epithelial cell membrane is enhanced by fabricating a silicone liquid membrane that prevents ambient contaminants and accumulation of water at the interface between the cell membrane and the tip of an atomic force microscope. The clean and stable experimental platform permits the visualisation of the structure and orientation of microvilli present at the apical cell membrane under standard laboratory conditions together with registering subcellular details within a microvillus. The method developed here can be implemented for preserving and imaging contaminant-free morphology of fixed cells which is central for both fundamental studies in cell biology and in the emerging field of digital pathology.
Collapse
|
24
|
Pomatto LCD, Cline M, Woodward N, Pakbin P, Sioutas C, Morgan TE, Finch CE, Forman HJ, Davies KJA. Aging attenuates redox adaptive homeostasis and proteostasis in female mice exposed to traffic-derived nanoparticles ('vehicular smog'). Free Radic Biol Med 2018; 121:86-97. [PMID: 29709705 PMCID: PMC5987225 DOI: 10.1016/j.freeradbiomed.2018.04.574] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 01/02/2023]
Abstract
Environmental toxicants are catalysts for protein damage, aggregation, and the aging process. Fortunately, evolution selected adaptive homeostasis as a system to mitigate such damage by expanding the normal capacity to cope with toxic stresses. Little is known about the subcellular degradative responses to proteins oxidatively damaged by air pollution. To better understand the impact of environmental toxicants upon the adaptive homeostatic response, female C57BL/6 mice were exposed for 10 weeks to filtered air or reaerosolized vehicular-derived nano-scale particulate matter (nPM), at which point tissues from young (6 month) and middle-aged (21 month) mice were studied. We found significant increases of proteolytic capacity in lung, liver, and heart. Up to two-fold increases were seen in the 20S Proteasome, the Immunoproteasome, the mitochondrial Lon protease, and NF-E2-related factor 2 (Nrf2), a major transcriptional factor for these and other stress-responsive genes. The responses were equivalent in all organs, despite the indirect input of inhaled particles to heart and liver which are downstream of lung. To our knowledge, this is the first exploration of proteostatic responses to oxidative damage by air pollution. Although, middle-aged mice had higher basal levels, their Nrf2-responsive-genes exhibited no response to nanoparticulate exposure. We also found a parallel age-associated rise in the Nrf2 transcriptional inhibitors, Bach1 and c-Myc which appear to attenuate adaptive responses in older mammals, possibly explaining the 'age-ceiling effect.' This report extends prior findings in male mice by demonstrating the involvement of proteolytic responses to traffic-related air pollution in lung, liver, and heart of female mice, with an age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Mayme Cline
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Nicholas Woodward
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Payam Pakbin
- Department of Civil and Environmental Engineering of the Viterbi School of Engineering, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering of the Viterbi School of Engineering, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA; Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA; Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences, the University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, the University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
25
|
Pennington SM, Klutho PR, Xie L, Broadhurst K, Koval OM, McCormick ML, Spitz DR, Grumbach IM. Defective protein repair under methionine sulfoxide A deletion drives autophagy and ARE-dependent gene transcription. Redox Biol 2018; 16:401-413. [PMID: 29649787 PMCID: PMC5953240 DOI: 10.1016/j.redox.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Reduction of oxidized methionines is emerging as a major protein repair pathway. The lack of methionine sulfoxide reductase A (MsrA) exacerbates cardiovascular disease phenotypes driven by increased oxidative stress. However, the role of MsrA on maintaining cellular homeostasis in the absence of excessive oxidative stress is less well understood. METHODS AND RESULTS Constitutive genetic deletion of MsrA increased formation of p62-containing protein aggregates, activated autophagy, and decreased a marker of apoptosis in vascular smooth muscle cells (VSMC). The association of Keap1 with p62 was augmented in MsrA-/- VSMC. Keap1 targets the transcription factor Nrf2, which regulates antioxidant genes, for proteasomal degradation. However, in MsrA-/- VSMC, the association of Nrf2 with Keap1 was diminished. Whereas Nrf2 mRNA levels were not decreased in MsrA-/- VSMC, we detected decreased ubiquitination of Nrf2 and a corresponding increase in total Nrf2 protein in the absence of biochemical markers of oxidative stress. Moreover, nuclear-localized Nrf2 was increased under MsrA deficiency, resulting in upregulation of Nrf2-dependent transcriptional activity. Consequently, transcription, protein levels and enzymatic activity of glutamate-cysteine ligase and glutathione reductase were greatly augmented in MsrA-/- VSMC. SUMMARY Our findings demonstrate that reversal of methionine oxidation is required for maintenance of cellular homeostasis in the absence of increased oxidative stress. These data provide the first link between autophagy and activation of Nrf2 in the setting of MsrA deletion.
Collapse
Affiliation(s)
- Steven M Pennington
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Paula R Klutho
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Litao Xie
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kim Broadhurst
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Olha M Koval
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Isabella M Grumbach
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; Veterans Affairs Healthcare System, Iowa City, IA 52246, USA.
| |
Collapse
|
26
|
Yadav S, Singh N, Shah PP, Rowbotham DA, Malik D, Srivastav A, Shankar J, Lam WL, Lockwood WW, Beverly LJ. MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in Cellular Protection and Tumorigenesis. Neoplasia 2017; 19:321-332. [PMID: 28315615 PMCID: PMC5361868 DOI: 10.1016/j.neo.2017.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
Ubiquilin (UBQLN) proteins are adaptors thought to link ubiquitinated proteins to the proteasome. However, our lab has recently reported a previously unappreciated role for loss of UBQLN in lung cancer progression. In fact, UBQLN genes are lost in over 50% of lung cancer samples examined. However, a reason for the loss of UBQLN has not been proposed, nor has a selective pressure that could lead to deletion of UBQLN been reported. Diesel Exhaust Particles (DEP) are a major concern in the large cities of developing nations and DEP exposed populations are at an increased risk of developing a number of illnesses, including lung cancer. A connection between DEP and UBQLN has never been examined. In the present study, we determined the effect of DEP on lung cell lines and were interested to determine if UBQLN proteins could potentially play a protective role following treatment with DEP. Interestingly, we found that DEP treated cells have increased expression of UBQLN proteins. In fact, over-expression of UBQLN was capable of protecting cells from DEP toxicity. To investigate the mechanism by which DEP leads to increased UBQLN protein levels, we identified and interrogated microRNAs that were predicted to regulate UBQLN mRNA. We found that DEP decreases the oncogenic microRNA, MIR155. Further, we showed that MIR155 regulates the mRNA of UBQLN1 and UBQLN2 in cells, such that increased MIR155 expression increased cell invasion, migration, wound formation and clonogenicity in UBQLN-loss dependent manner. This is the first report of an environmental carcinogen regulating expression of UBQLN proteins. We show that exposure of cells to DEP causes an increase in UBQLN levels and that MIR155 regulates mRNA of UBQLN. Thus, we propose that DEP-induced repression of MIR155 leads to increased UBQLN levels, which in turn may be a selective pressure on lung cells to lose UBQLN1.
Collapse
Affiliation(s)
- Sanjay Yadav
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001, India.
| | - Nishant Singh
- CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001, India.
| | - Parag P Shah
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202.
| | - David A Rowbotham
- Integrative Oncology, British Columbia Cancer Agency, Vancouver, B.C., Canada V5Z 1L3.
| | - Danial Malik
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202.
| | - Ankita Srivastav
- CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001, India.
| | - Jai Shankar
- CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001, India.
| | - Wan L Lam
- Integrative Oncology, British Columbia Cancer Agency, Vancouver, B.C., Canada V5Z 1L3; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, B.C., Canada V6T 2B5.
| | - William W Lockwood
- Integrative Oncology, British Columbia Cancer Agency, Vancouver, B.C., Canada V5Z 1L3; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, B.C., Canada V6T 2B5.
| | - Levi J Beverly
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; Department of Medicine, Division of Hematology and Oncology, University of Louisville School of Medicine, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202.
| |
Collapse
|