1
|
Wessel RE, Dolatshahi S. Regulators of placental antibody transfer through a modeling lens. Nat Immunol 2024; 25:2024-2036. [PMID: 39379658 DOI: 10.1038/s41590-024-01971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Infants are vulnerable to infections owing to a limited ability to mount a humoral immune response and their tolerogenic immune phenotype, which has impeded the success of newborn vaccination. Transplacental transfer of IgG from mother to fetus provides crucial protection in the first weeks of life, and maternal immunization has recently been implemented as a public health strategy to protect newborns against serious infections. Despite their early success, current maternal vaccines do not provide comparable protection across pregnancies with varying gestational lengths and placental and maternal immune features, and they do not account for the dynamic interplay between the maternal immune response and placental transfer. Moreover, progress toward the rational design of maternal vaccines has been hindered by inadequacies of existing experimental models and safety challenges of investigating longitudinal dynamics of IgG transfer in pregnant humans. Alternatively, in silico mechanistic models are a logical framework to disentangle the processes regulating placental antibody transfer. This Review synthesizes current literature through a mechanistic modeling lens to identify placental and maternal regulators of antibody transfer, their clinical covariates, and knowledge gaps to guide future research. We also describe opportunities to use integrated modeling and experimental approaches toward the rational design of vaccines against existing and emerging neonatal pathogen threats.
Collapse
Affiliation(s)
- Remziye E Wessel
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Carter Immunology Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
de Ram C, van der Lugt B, Elzinga J, Geerlings S, Steegenga WT, Belzer C, Schols HA. Revealing Glycosylation Patterns in In Vitro-Produced Mucus Exposed to Pasteurized Mucus-Associated Intestinal Microbes by MALDI-TOF-MS and PGC-LC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15345-15356. [PMID: 38932522 PMCID: PMC11247495 DOI: 10.1021/acs.jafc.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
The human intestinal mucus layer protects against pathogenic microorganisms and harmful substances, whereas it also provides an important colonization niche for mutualistic microbes. The main functional components of mucus are heavily glycosylated proteins, called mucins. Mucins can be cleaved and utilized by intestinal microbes. The mechanisms between intestinal microbes and the regulation of mucin glycosylation are still poorly understood. In this study, in vitro mucus was produced by HT29-MTX-E12 cells under Semi-Wet interface with Mechanical Stimulation. Cells were exposed to pasteurized nonpathogenic bacteria Akkermansia muciniphila, Ruminococcus gnavus, and Bacteroides fragilis to evaluate influence on glycosylation patterns. Following an optimized protocol, O- and N-glycans were efficiently and reproducibly released, identified, and semiquantified using MALDI-TOF-MS and PGC-LC-MS/MS. Exposure of cells to bacteria demonstrated increased diversity of sialylated O-glycans and increased abundance of high mannose N-glycans in in vitro produced mucus. Furthermore, changes in glycan ratios were observed. It is speculated that bacterial components interact with the enzymatic processes in glycan production and that pasteurized bacteria influence glycosyltransferases or genes involved. These results highlight the influence of pasteurized bacteria on glycosylation patterns, stress the intrinsic relationship between glycosylation and microbiota, and show the potential of using in vitro produced mucus to study glycosylation behavior.
Collapse
Affiliation(s)
- Carol de Ram
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Benthe van der Lugt
- Human
Nutrition and Health, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Janneke Elzinga
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Sharon Geerlings
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Wilma T. Steegenga
- Human
Nutrition and Health, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Henk A. Schols
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
3
|
Adhikari EH, Lu P, Kang YJ, McDonald AR, Pruszynski JE, Bates TA, McBride SK, Trank-Greene M, Tafesse FG, Lu LL. Diverging Maternal and Cord Antibody Functions From SARS-CoV-2 Infection and Vaccination in Pregnancy. J Infect Dis 2024; 229:462-472. [PMID: 37815524 PMCID: PMC10873180 DOI: 10.1093/infdis/jiad421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
Maternal immunity impacts the infant, but how is unclear. To understand the implications of the immune exposures of vaccination and infection in pregnancy for neonatal immunity, we evaluated antibody functions in paired peripheral maternal and cord blood. We compared those who in pregnancy received mRNA coronavirus disease 2019 (COVID-19) vaccine, were infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the combination. We found that vaccination enriched a subset of neutralizing activities and Fc effector functions that was driven by IgG1 and was minimally impacted by antibody glycosylation in maternal blood. In paired cord blood, maternal vaccination also enhanced IgG1. However, Fc effector functions compared to neutralizing activities were preferentially transferred. Moreover, changes in IgG posttranslational glycosylation contributed more to cord than peripheral maternal blood antibody functional potency. These differences were enhanced with the combination of vaccination and infection as compared to either alone. Thus, Fc effector functions and antibody glycosylation highlight underexplored maternal opportunities to safeguard newborns.
Collapse
Affiliation(s)
- Emily H Adhikari
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Parkland Health, Dallas Texas, USA
| | - Pei Lu
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ye Jin Kang
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ann R McDonald
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica E Pruszynski
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Timothy A Bates
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Savannah K McBride
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Mila Trank-Greene
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Fikadu G Tafesse
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Lenette L Lu
- Parkland Health, Dallas Texas, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Radojičić O, Pažitná L, Dobrijević Z, Kundalia P, Kianičková K, Katrlík J, Marković VM, Miković Ž, Nedić O, Robajac D. Serum Glycome as a Diagnostic and Prognostic Factor in Gestational Diabetes Mellitus. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:148-158. [PMID: 38467551 DOI: 10.1134/s0006297924010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024]
Abstract
Gestational diabetes mellitus (GDM) is a risk factor for both mother and fetus/neonate during and after the pregnancy. Inconsistent protocols and cumbersome screening procedures warrant the search for new and easily accessible biomarkers. We investigated a potential of serum N-glycome to differentiate between healthy pregnant women (n = 49) and women with GDM (n = 53) using a lectin-based microarray and studied the correlation between the obtained data and parameters of glucose and lipid metabolism. Four out of 15 lectins used were able to detect the differences between the control and GDM groups in fucosylation, terminal galactose/N-acetylglucosamine (Gal/GlcNAc), presence of Galα1,4Galβ1,4Glc (Gb3 antigen), and terminal α2,3-sialylation with AUC values above 60%. An increase in the Gb3 antigen and α2,3-sialylation correlated positively with GDM, whereas the amount of fucosylated glycans correlated negatively with the content of terminal Gal/GlcNAc. The content of GlcNAc oligomers correlated with the highest number of blood analytes, indices, and demographic characteristics, but failed to discriminate between the groups. The presence of terminal Gal residues correlated positively with the glucose levels and negatively with the LDL levels in the non-GDM group only. The results suggest fucosylation, terminal galactosylation, and the presence of Gb3 antigen as prediction markers of GDM.
Collapse
Affiliation(s)
- Ognjen Radojičić
- Department of High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia.
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Zorana Dobrijević
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| | - Paras Kundalia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Vesna Mandić Marković
- Department of High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia.
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Željko Miković
- Department of High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia.
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| | - Dragana Robajac
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
5
|
Gao C, Chen Q, Hao X, Wang Q. Immunomodulation of Antibody Glycosylation through the Placental Transfer. Int J Mol Sci 2023; 24:16772. [PMID: 38069094 PMCID: PMC10705935 DOI: 10.3390/ijms242316772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Establishing an immune balance between the mother and fetus during gestation is crucial, with the placenta acting as the epicenter of immune tolerance. The placental transfer of antibodies, mainly immunoglobulin G (IgG), is critical in protecting the developing fetus from infections. This review looks at how immunomodulation of antibody glycosylation occurs during placental transfer and how it affects fetal health. The passage of maternal IgG antibodies through the placental layers, including the syncytiotrophoblast, stroma, and fetal endothelium, is discussed. The effect of IgG subclass, glycosylation, concentration, maternal infections, and antigen specificity on antibody transfer efficiency is investigated. FcRn-mediated IgG transport, influenced by pH-dependent binding, is essential for placental transfer. Additionally, this review delves into the impact of glycosylation patterns on antibody functionality, considering both protective and pathological effects. Factors affecting the transfer of protective antibodies, such as maternal vaccination, are discussed along with reducing harmful antibodies. This in-depth examination of placental antibody transfer and glycosylation provides insights into improving neonatal immunity and mitigating the effects of maternal autoimmune and alloimmune conditions.
Collapse
Affiliation(s)
| | | | | | - Qiushi Wang
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
6
|
Mahant AM, Trejo FE, Aguilan JT, Sidoli S, Permar SR, Herold BC. Antibody attributes, Fc receptor expression, gestation and maternal SARS-CoV-2 infection modulate HSV IgG placental transfer. iScience 2023; 26:107648. [PMID: 37670782 PMCID: PMC10475509 DOI: 10.1016/j.isci.2023.107648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is associated with protection against neonatal herpes. We hypothesized that placental transfer of ADCC-mediating herpes simplex virus (HSV) immunoglobulin G (IgG) is influenced by antigenic target, function, glycans, gestational age, and maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Maternal and cord blood were collected from HSV-seropositive (HSV+) mothers pre-COVID and HSV+/SARS-CoV-2+ mothers during the pandemic. Transfer of HSV neutralizing IgG was significantly lower in preterm versus term dyads (transfer ratio [TR] 0.84 vs. 2.44) whereas the TR of ADCC-mediating IgG was <1.0 in both term and preterm pre-COVID dyads. Anti-glycoprotein D IgG, which had only neutralizing activity, and anti-glycoprotein B (gB) IgG, which displayed neutralizing and ADCC activity, exhibited different relative affinities for the neonatal Fc receptor (FcRn) and expressed different glycans. The transfer of ADCC-mediating IgG increased significantly in term SARS-CoV-2+ dyads. This was associated with greater placental colocalization of FcRn with FcγRIIIa. These findings have implications for strategies to prevent neonatal herpes.
Collapse
Affiliation(s)
- Aakash Mahant Mahant
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fatima Estrada Trejo
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jennifer T. Aguilan
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Simone Sidoli
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weil Cornell Medicine, New York, NY 10021, USA
| | - Betsy C. Herold
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Adhikari EH, Lu P, Kang YJ, McDonald AR, Pruszynski JE, Bates TA, McBride SK, Trank-Greene M, Tafesse FG, Lu LL. Diverging maternal and infant cord antibody functions from SARS-CoV-2 infection and vaccination in pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538955. [PMID: 37205338 PMCID: PMC10187183 DOI: 10.1101/2023.05.01.538955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Immunization in pregnancy is a critical tool that can be leveraged to protect the infant with an immature immune system but how vaccine-induced antibodies transfer to the placenta and protect the maternal-fetal dyad remains unclear. Here, we compare matched maternal-infant cord blood from individuals who in pregnancy received mRNA COVID-19 vaccine, were infected by SARS-CoV-2, or had the combination of these two immune exposures. We find that some but not all antibody neutralizing activities and Fc effector functions are enriched with vaccination compared to infection. Preferential transport to the fetus of Fc functions and not neutralization is observed. Immunization compared to infection enriches IgG1-mediated antibody functions with changes in antibody post-translational sialylation and fucosylation that impact fetal more than maternal antibody functional potency. Thus, vaccine enhanced antibody functional magnitude, potency and breadth in the fetus are driven more by antibody glycosylation and Fc effector functions compared to maternal responses, highlighting prenatal opportunities to safeguard newborns as SARS-CoV-2 becomes endemic.
Collapse
Affiliation(s)
- Emily H. Adhikari
- Division of Maternal-Fetal Medicine and Department of Obstetrics and Gynecology, UTSW Medical Center, Dallas, TX
- Parkland Health, Dallas TX
| | - Pei Lu
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Ye jin Kang
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Ann R. McDonald
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Jessica E. Pruszynski
- Division of Maternal-Fetal Medicine and Department of Obstetrics and Gynecology, UTSW Medical Center, Dallas, TX
| | - Timothy A. Bates
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Savannah K. McBride
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Mila Trank-Greene
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Fikadu G. Tafesse
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Lenette L. Lu
- Parkland Health, Dallas TX
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
- Department of Immunology, UTSW Medical Center, Dallas, TX
| |
Collapse
|
8
|
Rosenberg YJ, Ordonez T, Khanwalkar US, Barnette P, Pandey S, Backes IM, Otero CE, Goldberg BS, Crowley AR, Leib DA, Shapiro MB, Jiang X, Urban LA, Lees J, Hessell AJ, Permar S, Haigwood NL, Ackerman ME. Evidence for the Role of a Second Fc-Binding Receptor in Placental IgG Transfer in Nonhuman Primates. mBio 2023; 14:e0034123. [PMID: 36946726 PMCID: PMC10127586 DOI: 10.1128/mbio.00341-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
Transplacental transfer of maternal antibodies provides the fetus and newborn with passive protection against infectious diseases. While the role of the highly conserved neonatal Fc receptor (FcRn) in transfer of IgG in mammals is undisputed, recent reports have suggested that a second receptor may contribute to transport in humans. We report poor transfer efficiency of plant-expressed recombinant HIV-specific antibodies, including engineered variants with high FcRn affinity, following subcutaneous infusion into rhesus macaques close to parturition. Unexpectedly, unlike those derived from mammalian tissue culture, plant-derived antibodies were essentially unable to cross macaque placentas. This defect was associated with poor Fcγ receptor binding and altered Fc glycans and was not recapitulated in mice. These results suggest that maternal-fetal transfer of IgG across the three-layer primate placenta may require a second receptor and suggest a means of providing maternal antibody treatments during pregnancy while avoiding fetal harm. IMPORTANCE This study compared the ability of several human HIV envelope-directed monoclonal antibodies produced in plants with the same antibodies produced in mammalian cells for their ability to cross monkey and mouse placentas. We found that the two types of antibodies have comparable transfer efficiencies in mice, but they are differentially transferred across macaque placentas, consistent with a two-receptor IgG transport model in primates. Importantly, plant-produced monoclonal antibodies have excellent binding characteristics for human FcRn receptors, permitting desirable pharmacokinetics in humans. The lack of efficient transfer across the primate placenta suggests that therapeutic plant-based antibody treatments against autoimmune diseases and cancer could be provided to the mother while avoiding transfer and preventing harm to the fetus.
Collapse
Affiliation(s)
| | - Tracy Ordonez
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Iara M. Backes
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Claire E. Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | | | - Andrew R. Crowley
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - David A. Leib
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Mariya B. Shapiro
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | | | | | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Sallie Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
9
|
Habel JR, Chua BY, Kedzierski L, Selva KJ, Damelang T, Haycroft ER, Nguyen TH, Koay HF, Nicholson S, McQuilten HA, Jia X, Allen LF, Hensen L, Zhang W, van de Sandt CE, Neil JA, Pragastis K, Lau JS, Jumarang J, Allen EK, Amanant F, Krammer F, Wragg KM, Juno JA, Wheatley AK, Tan HX, Pell G, Walker S, Audsley J, Reynaldi A, Thevarajan I, Denholm JT, Subbarao K, Davenport MP, Hogarth PM, Godfrey DI, Cheng AC, Tong SY, Bond K, Williamson DA, McMahon JH, Thomas PG, Pannaraj PS, James F, Holmes NE, Smibert OC, Trubiano JA, Gordon CL, Chung AW, Whitehead CL, Kent SJ, Lappas M, Rowntree LC, Kedzierska K. Immune profiling of SARS-CoV-2 infection during pregnancy reveals NK cell and γδ T cell perturbations. JCI Insight 2023; 8:e167157. [PMID: 37036008 PMCID: PMC10132165 DOI: 10.1172/jci.insight.167157] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 04/11/2023] Open
Abstract
Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.
Collapse
Affiliation(s)
- Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y. Chua
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timon Damelang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ebene R. Haycroft
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thi H.O. Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley A. McQuilten
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lilith F. Allen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jessica A. Neil
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Pragastis
- Department of Infectious Diseases, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Jillian S.Y. Lau
- Department of Infectious Diseases, Alfred Health, Monash University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Eastern Health, Box Hill, Victoria, Australia
| | - Jaycee Jumarang
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - E. Kaitlynn Allen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Fatima Amanant
- Department of Microbiology, and
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Kathleen M. Wragg
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Gabrielle Pell
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Susan Walker
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Justin T. Denholm
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Miles P. Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - P. Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Allen C. Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, and Monash Infectious Diseases, Monash Health, Melbourne, Victoria, Australia
| | - Steven Y.C. Tong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Bond
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Pia S. Pannaraj
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Departments of Pediatrics, Molecular Microbiology and Immunology, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Fiona James
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Natasha E. Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Critical Care, University of Melbourne, Parkville, Victoria, Australia
- Data Analytics Research and Evaluation Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Olivia C. Smibert
- Departments of Pediatrics, Molecular Microbiology and Immunology, Keck School of Medicine, UCLA, Los Angeles, California, USA
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Infectious Diseases, and
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jason A. Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Infectious Diseases, and
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| | - Claire L. Gordon
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Clare L. Whitehead
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Pregnancy Research Centre, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Volkov M, Brinkhaus M, van Schie KA, Bondt A, Kissel T, van der Kooi EJ, Bentlage AEH, Koeleman CAM, de Taeye SW, Derksen NI, Dolhain RJEM, Braig-Scherer U, Huizinga TWJ, Wuhrer M, Toes REM, Vidarsson G, van der Woude D. IgG Fab Glycans Hinder FcRn-Mediated Placental Transport. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:158-167. [PMID: 36480251 DOI: 10.4049/jimmunol.2200438] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2023]
Abstract
Abs can be glycosylated in both their Fc and Fab regions with marked effects on Ab function and binding. High levels of IgG Fab glycosylation are associated with malignant and autoimmune conditions, exemplified by rheumatoid arthritis and highly Fab-glycosylated (∼90%) anti-citrullinated protein Abs (ACPAs). Important properties of IgG, such as long half-life and placental transport, are facilitated by the human neonatal Fc receptor (hFcRn). Although it is known that glycosylation of Abs can affect binding to Fc receptors, little is known on the impact of IgG Fab glycosylation on hFcRn binding and transplacental transport. Therefore, we analyzed the interaction between hFcRn and IgG with and without Fab glycans in vitro with various methods as well as in vivo by studying placental transfer of Fab-glycosylated Abs from mothers to newborns. No effect of Fab glycosylation on IgG binding to hFcRn was found by surface plasmon resonance and hFcRn affinity chromatography. In contrast, studies in a cell membrane context revealed that Fab glycans negatively impacted IgG-hFcRn interaction. In line with this, we found that Fab-glycosylated IgGs were transported ∼20% less efficiently across the placenta. This appeared to be a general phenomenon, observed for ACPAs, non-ACPAs, as well as total IgG in rheumatoid arthritis patients and healthy controls. Our results suggest that, in a cellular context, Fab glycans inhibit IgG-hFcRn interaction and thus negatively affect the transplacental transfer of IgG. As Fab-glycosylated Abs are frequently associated with autoimmune and malignant disorders and may be potentially harmful, this might encompass a regulatory mechanism, limiting the half-life and transport of such Abs.
Collapse
Affiliation(s)
- Mikhail Volkov
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maximilian Brinkhaus
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin A van Schie
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elvera J van der Kooi
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ninotska I Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Radboud J E M Dolhain
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, the Netherlands; and
| | - Ute Braig-Scherer
- International Health Centre-Polikliniek Prins Willem, The Hague, the Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Diane van der Woude
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Sand KMK, Gruber MM, Sandlie I, Mathiesen L, Andersen JT, Wadsack C. Contribution of the ex vivo placental perfusion model in understanding transplacental immunoglobulin G transfer. Placenta 2022; 127:77-87. [PMID: 35981406 DOI: 10.1016/j.placenta.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/07/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The acquisition of humoral immunity in utero is essential for the fetus. The crucial protein, which is responsible for this part of immunity, is immunoglobulin-G (IgG). Immune functions of IgGs are mediated via the interaction of the crystallizable fragment (Fc) region of IgG with specific Fc γ receptors (FcγRs). However, an atypical FcγR, the neonatal Fc receptor (FcRn), is a key regulator of IgG transfer across the human placenta. During the last four decades ex vivo placental perfusion studies have contributed significantly to the study of mechanisms of IgG transfer across the multicellular placental barrier. METHOD A PubMed search was conducted by using specific keywords: placenta, perfusion and IgG to review manuscripts using human placental perfusion to study the transplacental transfer of IgG. Relevant studies found in reference lists of these manuscripts were also added to the review, and references were included that supported or gave nuance to the discussion of the mechanisms of IgG kinetics in the placenta. RESULTS AND DISCUSSION We found twenty publications on the study of transplacental transfer of IgG using human ex vivo placental perfusion, by research groups with partly different settings. This review summarizes knowledge about placental IgG transfer, with a strong focus on the contributions from ex vivo placental perfusion studies.
Collapse
Affiliation(s)
- Kine Marita Knudsen Sand
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, 0424, Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Michael M Gruber
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036, Graz, Austria
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, 0424, Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, 0424, Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036, Graz, Austria; BioTechMed-Graz, Austria
| |
Collapse
|
12
|
Taylor SA, Sharma S, Remmel CAL, Holder B, Jones CE, Marchant A, Ackerman ME. HIV-associated alterations of the biophysical features of maternal antibodies correlate with their reduced transfer across the placenta. J Infect Dis 2022; 226:1441-1450. [PMID: 35668706 DOI: 10.1093/infdis/jiac222] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Human Immunodeficiency Virus (HIV) infection during pregnancy is associated with reduced transplacental transfer of maternal antibodies and increased risk of severe infections in children who are exposed and uninfected with HIV (CHEU). The basis of this reduced transfer of maternal immunity has not yet been defined but could involve modifications in the biophysical features of antibodies. OBJECTIVE To assess the impact of maternal HIV infection on the biophysical features of serum IgG and transplacental antibody transfer. METHODS Maternal serum IgG subclass levels, Fc glycosylation, Fc Receptor (FcR) binding, and transplacental transfer of pathogen-specific maternal IgG were measured in pregnant women living with HIV (WWH) and pregnant women testing negative for HIV (WNH) in Cape Town, South Africa. RESULTS Maternal antibody profiles were strikingly different between pregnant WWH and WNH. Antibody binding to FcγR2a and FcγR2b, IgG1 and IgG3 antibodies, and agalactosylated antibodies were all elevated in WLHIV, whereas digalactosylated and sialylated antibodies were reduced as compared to pregnant WNH. Antibody features that were elevated in WWH were also correlated with reduced transplacental transfer of vaccine antigen-specific antibodies. CONCLUSION HIV infection is associated with marked alterations of biophysical features of maternal IgG and reduced placental transfer-potentially impairing antimicrobial immunity.
Collapse
Affiliation(s)
- Sean A Taylor
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Shilpee Sharma
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Beth Holder
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK
| | - Christine E Jones
- Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
13
|
Yaman ME, Avci I, Atila NE, Atila A, Kayili HM, Salih B. Characterization of serum N-glycome alterations in seasonal allergic rhinitis using MALDI-TOF-MS: A pilot study. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2009502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mehmet Emrah Yaman
- Faculty of Pharmacy, Department of Analytical Chemistry, Ataturk University, Erzurum, Turkey
| | - Izzet Avci
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nihal Efe Atila
- Department of Otorhinolaryngology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Alptug Atila
- Faculty of Pharmacy, Department of Analytical Chemistry, Ataturk University, Erzurum, Turkey
| | - Haci Mehmet Kayili
- Department of Biomedical Engineering, Karabuk University, Karabuk, Turkey
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Estrogen-Driven Changes in Immunoglobulin G Fc Glycosylation. EXPERIENTIA. SUPPLEMENTUM 2021. [PMID: 34687016 DOI: 10.1007/978-3-030-76912-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glycosylation within the immunoglobulin G (IgG) Fc region modulates its ability to engage complement and Fc receptors, affording the opportunity to fine-tune effector functions. Mechanisms regulating IgG Fc glycans remain poorly understood. Changes accompanying menarche, menopause, and pregnancy have long implicated hormonal factors. Intervention studies now confirm that estrogens enhance IgG Fc galactosylation, in females and also in males, defining the first pathway modulating Fc glycans and thereby a new link between sex and immunity. This mechanism may participate in fetal-maternal immunity, antibody-mediated inflammation, and other aspects of age- and sex-specific immune function. Here we review the changes affecting the IgG Fc glycome from childhood through old age, the evidence establishing a role for estrogens, and research directions to uncover associated mechanisms that may inform therapeutic intervention.
Collapse
|
15
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
16
|
Flexible and hierarchical metal-organic framework composite as solid-phase media for facile affinity-tip fabrication to selectively enrich glycopeptides and phosphopeptides. Talanta 2021; 233:122576. [PMID: 34215068 DOI: 10.1016/j.talanta.2021.122576] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023]
Abstract
Micro-tip-based solid-phase microextraction is considered as one of the green and powerful analytical sample preparation techniques, but its efficiency is severely hampered by some basic issues such as tedious fabrication, instability of sorbent bed, and blocking of the tip, especially for biological samples due to low permeability. These issues are tackled by introducing a flexible and hierarchical substrate in the microtip, having good mechanical strength and specific functionality to capture the desired biomolecules. Considering the well-ordered and flexible structure of melamine foam, it was used as a substrate and for hydrophilic interaction chromatography (HILIC). Metal-organic framework, due to its excellent characteristics, was grafted on its surface anchored by self-assembling polydopamine. The resulting material was characterized and packed in the tip by just pressing the material in the conical structure of the tip. This affinity tip established good and tunable permeability and was used to selectively enrich glycopeptides as well as phosphopeptides. The affinity tip demonstrated excellent performance to enrich glycopeptides and phosphopeptides with a low limit of detection up to 0.5 fmol μL-1 from tryptic digests of horseradish peroxidase and β-Casein, respectively, and was stable up to 5 rounds of enrichment. Moreover, this affinity-tip also exhibited high selectivity up to up to 1:1000 (HRP digest to BSA digest) for glycopeptides and 1:200 (β-Casein digest to BSA digest) for phosphopeptides and demonstrated several other fascinating characteristics such as; excellent size exclusion effect for the omission of large-sized proteins, modest backpressure, reproducibility, reusability, smooth enrichment, and successfully applied to a human saliva sample.
Collapse
|
17
|
Damelang T, Aitken EH, Hasang W, Lopez E, Killian M, Unger HW, Salanti A, Shub A, McCarthy E, Kedzierska K, Lappas M, Kent SJ, Rogerson SJ, Chung AW. Antibody mediated activation of natural killer cells in malaria exposed pregnant women. Sci Rep 2021; 11:4130. [PMID: 33602987 PMCID: PMC7893158 DOI: 10.1038/s41598-021-83093-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Immune effector responses against Plasmodium falciparum include antibody-mediated activation of innate immune cells, which can induce Fc effector functions, including antibody-dependent cellular cytotoxicity, and the secretion of cytokines and chemokines. These effector functions are regulated by the composition of immunoglobulin G (IgG) Fc N-linked glycans. However, a role for antibody-mediated natural killer (NK) cells activation or Fc N-linked glycans in pregnant women with malaria has not yet been established. Herein, we studied the capacity of IgG antibodies from pregnant women, with placental malaria or non-placental malaria, to induce NK cell activation in response to placental malaria-associated antigens DBL2 and DBL3. Antibody-mediated NK cell activation was observed in pregnant women with malaria, but no differences were associated with susceptibility to placental malaria. Elevated anti-inflammatory glycosylation patterns of IgG antibodies were observed in pregnant women with or without malaria infection, which were not seen in healthy non-pregnant controls. This suggests that pregnancy-associated anti-inflammatory Fc N-linked glycans may dampen the antibody-mediated activation of NK cells in pregnant women with malaria infection. Overall, although anti-inflammatory glycans and antibody-dependent NK cell activation were detected in pregnant women with malaria, a definitive role for these antibody features in protecting against placental malaria remains to be proven.
Collapse
Affiliation(s)
- Timon Damelang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth H Aitken
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Wina Hasang
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Martin Killian
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Internal Medicine, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Groupe sur l'Immunité des Muqueuses et Agents Pathogènes, Université Jean Monnet Saint-Etienne, Saint-Etienne, France
| | - Holger W Unger
- Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Obstetrics and Gynaecology, Royal Darwin Hospital, Darwin, NT, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ali Salanti
- Department for Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alexis Shub
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth McCarthy
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Infectious Diseases Department, Alfred Health, Melbourne Sexual Health Centre, Monash University, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Klobučar M, Pavlić SD, Car I, Severinski NS, Milaković TT, Badovinac AR, Pavelić SK. Mass spectrometry-based glycomic profiling of the total IgG and total proteome N-glycomes isolated from follicular fluid. Biomol Concepts 2020; 11:153-171. [PMID: 33099516 DOI: 10.1515/bmc-2020-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022] Open
Abstract
Couples with infertility issues have been assisted by in vitro fertilization reproduction technologies with high success rates of 50-80%. However, complications associated with ovarian stimulation remain, such as ovarian hyperstimulation. Oocyte quality is a significant factor impacting the outcome of in vitro fertilization procedures, but other processes are also critical for fertilization success. Increasing evidence points to aberrant inflammation as one of these critical processes reflected in molecular changes, including glycosylation of proteins. Here we report results from a MALDI-TOF-MS-based glycomic profiling of the total IgG and total proteome N-glycomes isolated from the follicular fluid obtained from patients undergoing fertilization through either (1) assisted reproduction by modified natural cycle or (2) controlled ovarian stimulation (GnRH antagonist, GnRH Ant) protocols. Significant inflammatory-related differences between analyzed N-glycomes were observed from samples and correlated with the ovarian stimulation protocol used in patients.
Collapse
Affiliation(s)
- Marko Klobučar
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Sanja Dević Pavlić
- University of Rijeka, Department of Medical Biology and Genetics, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Iris Car
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Neda Smiljan Severinski
- Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Cambierieva 17/5, 51000 Rijeka, Croatia
| | - Tamara Tramišak Milaković
- Department of Obstetrics and Gynaecology, Clinical Hospital Centre Rijeka, Cambierieva 17/5, 51000 Rijeka, Croatia
| | - Anđelka Radojčić Badovinac
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
- University of Rijeka, Department of Medical Biology and Genetics, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | | |
Collapse
|
19
|
Mimoun A, Delignat S, Peyron I, Daventure V, Lecerf M, Dimitrov JD, Kaveri SV, Bayry J, Lacroix-Desmazes S. Relevance of the Materno-Fetal Interface for the Induction of Antigen-Specific Immune Tolerance. Front Immunol 2020; 11:810. [PMID: 32477339 PMCID: PMC7240014 DOI: 10.3389/fimmu.2020.00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022] Open
Abstract
In humans, maternal IgGs are transferred to the fetus from the second trimester of pregnancy onwards. The transplacental delivery of maternal IgG is mediated by its binding to the neonatal Fc receptor (FcRn) after endocytosis by the syncytiotrophoblast. IgGs present in the maternal milk are also transferred to the newborn through the digestive epithelium upon binding to the FcRn. Importantly, the binding of IgGs to the FcRn is also responsible for the recycling of circulating IgGs that confers them with a long half-life. Maternally delivered IgG provides passive immunity to the newborn, for instance by conferring protective anti-flu or anti-pertussis toxin IgGs. It may, however, lead to the development of autoimmune manifestations when pathological autoantibodies from the mother cross the placenta and reach the circulation of the fetus. In recent years, strategies that exploit the transplacental delivery of antigen/IgG complexes or of Fc-fused proteins have been validated in mouse models of human diseases to impose antigen-specific tolerance, particularly in the case of Fc-fused factor VIII (FVIII) domains in hemophilia A mice or pre-pro-insulin (PPI) in the case of preclinical models of type 1 diabetes (T1D). The present review summarizes the mechanisms underlying the FcRn-mediated transcytosis of IgGs, the physiopathological relevance of this phenomenon, and the repercussion for drug delivery and shaping of the immune system during its ontogeny.
Collapse
Affiliation(s)
- Angelina Mimoun
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Sandrine Delignat
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Ivan Peyron
- HITh, INSERM, UMR_S1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Victoria Daventure
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Maxime Lecerf
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Srinivas V Kaveri
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Jagadeesh Bayry
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | |
Collapse
|
20
|
Immunobiological aspects of vaccines in pregnancy: Maternal perspective. MATERNAL IMMUNIZATION 2020. [PMCID: PMC7149477 DOI: 10.1016/b978-0-12-814582-1.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunization during pregnancy is an efficient strategy to protect both the mother and the newborn infant against infectious pathogens. Pregnant women have an increased susceptibility to severe infections caused by some pathogens, but the mechanisms involved remain poorly understood. Pregnancy is associated with dynamic changes in maternal immune system that are critical for tolerance of the fetus. These changes could also play an important role in shaping maternal immune components that are transferred to the newborn infant following natural infection or vaccination to prevent infectious diseases in early life. As the momentum for maternal immunization is growing, there is a need to increase our understanding of the immunobiology of maternal immunization in order to better prevent infectious diseases in the pregnant women and the young infant.
Collapse
|
21
|
Hafkenscheid L, de Moel E, Smolik I, Tanner S, Meng X, Jansen BC, Bondt A, Wuhrer M, Huizinga TWJ, Toes REM, El-Gabalawy H, Scherer HU. N-Linked Glycans in the Variable Domain of IgG Anti-Citrullinated Protein Antibodies Predict the Development of Rheumatoid Arthritis. Arthritis Rheumatol 2019; 71:1626-1633. [PMID: 31067000 PMCID: PMC6790576 DOI: 10.1002/art.40920] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/30/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Anti-citrullinated protein antibodies (ACPAs) are disease-specific biomarkers in rheumatoid arthritis (RA). More than 90% of IgG ACPAs harbor N-linked glycans in the antibody variable (V) domain. The corresponding N-glycosylation sites in ACPA V-region sequences result from somatic hypermutation, a T cell-dependent process. As ample evidence indicates that T cells drive the maturation of the ACPA response prior to arthritis onset, we undertook this study to investigate whether the presence of glycans in IgG ACPA V domains predicts the transition from predisease autoimmunity to overt RA. METHODS We analyzed 2 independent sets of serum samples obtained from 126 ACPA-positive first-degree relatives (FDRs) of RA patients. Both sets originated from an Indigenous North American population and comprised cross-sectional and longitudinal samples of individuals who did or did not develop inflammatory arthritis. Serum IgG ACPAs were affinity-purified and subjected to ultra high-performance liquid chromatography-based glycan analysis. RESULTS In both data sets, FDR-derived IgG ACPA displayed markedly lower levels of V domain glycans (<50%) compared to IgG ACPA from RA patients. Notably, FDRs who later developed RA showed extensive V-domain glycosylation before the onset of arthritis. Moreover, IgG ACPA V-domain glycosylation was strongly associated with future development of RA (hazard ratio 6.07 [95% confidence interval 1.46-25.2]; P = 0.013). CONCLUSION Extensive glycosylation of the IgG ACPA V domain is present in a subset of predisposed FDRs of Indigenous North American RA patients. The presence of this feature substantially increases the risk of RA development. Based on these findings, we propose that glycosylation of the IgG ACPA V domain represents a predictive marker for RA development in ACPA-positive individuals and may serve to better target prevention measures.
Collapse
Affiliation(s)
| | - Emma de Moel
- Leiden University Medical Center, Leiden, The Netherlands
| | - Irene Smolik
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Xiaobo Meng
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Albert Bondt
- Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Leiden, The Netherlands
| | | | - Rene E M Toes
- Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hans U Scherer
- Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Jennewein MF, Goldfarb I, Dolatshahi S, Cosgrove C, Noelette FJ, Krykbaeva M, Das J, Sarkar A, Gorman MJ, Fischinger S, Boudreau CM, Brown J, Cooperrider JH, Aneja J, Suscovich TJ, Graham BS, Lauer GM, Goetghebuer T, Marchant A, Lauffenburger D, Kim AY, Riley LE, Alter G. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell 2019; 178:202-215.e14. [PMID: 31204102 PMCID: PMC6741440 DOI: 10.1016/j.cell.2019.05.044] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/07/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023]
Abstract
Despite the worldwide success of vaccination, newborns remain vulnerable to infections. While neonatal vaccination has been hampered by maternal antibody-mediated dampening of immune responses, enhanced regulatory and tolerogenic mechanisms, and immune system immaturity, maternal pre-natal immunization aims to boost neonatal immunity via antibody transfer to the fetus. However, emerging data suggest that antibodies are not transferred equally across the placenta. To understand this, we used systems serology to define Fc features associated with antibody transfer. The Fc-profile of neonatal and maternal antibodies differed, skewed toward natural killer (NK) cell-activating antibodies. This selective transfer was linked to digalactosylated Fc-glycans that selectively bind FcRn and FCGR3A, resulting in transfer of antibodies able to efficiently leverage innate immune cells present at birth. Given emerging data that vaccination may direct antibody glycosylation, our study provides insights for the development of next-generation maternal vaccines designed to elicit antibodies that will most effectively aid neonates.
Collapse
Affiliation(s)
| | - Ilona Goldfarb
- Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sepideh Dolatshahi
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cormac Cosgrove
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Marina Krykbaeva
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aniruddh Sarkar
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew J Gorman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Joelle Brown
- Gastroenterology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Jasneet Aneja
- Gastroenterology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, Bethesda, MD 20892, USA
| | - Georg M Lauer
- Gastroenterology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tessa Goetghebuer
- Department of Pediatrics, Hôpital Saint-Pierre, Brussels 1000, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi 6041, Belgium
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT Center for Gynepathology Research, Cambridge, MA 02139, USA
| | - Arthur Y Kim
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Laura E Riley
- Department of Obstetrics and Gynecology, New York Presbyterian/Weill Cornell Medical Center, New York, NY 10065, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Liu B, Lu Y, Wang B, Yan Y, Liang H, Yang H. Facile Preparation of Hydrophilic Dual Functional Magnetic Metal-Organic Frameworks as a Platform for Proteomics Research. ChemistrySelect 2019. [DOI: 10.1002/slct.201803527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bin Liu
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211 P. R. China
| | - Yujie Lu
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211 P. R. China
| | - Baichun Wang
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211 P. R. China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211 P. R. China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering; Ningbo University, Ningbo; Zhejiang 315211 P. R. China
| | - Huayan Yang
- Key Laboratory of Green Chemical Media and Reactions; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Ministry of Education; Henan Normal University; Xinxiang P. R. China
| |
Collapse
|
24
|
Twisselmann N, Bartsch YC, Pagel J, Wieg C, Hartz A, Ehlers M, Härtel C. IgG Fc Glycosylation Patterns of Preterm Infants Differ With Gestational Age. Front Immunol 2019; 9:3166. [PMID: 30713537 PMCID: PMC6346593 DOI: 10.3389/fimmu.2018.03166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/21/2018] [Indexed: 02/02/2023] Open
Abstract
Preterm infants acquire reduced amounts of Immunoglobulin G (IgG) via trans-placental transfer as compared to term infants which might explain their high susceptibility for infections. The reduced amount of IgG antibodies also results in a lower amount of anti-inflammatory Fc N-galactosylated and -sialylated IgG antibodies. This reduction or, even more, a qualitative shift in the type of IgG Fc glycosylation might contribute to the increased risk for sustained inflammatory diseases in preterm infants. It was the aim of our explorative study to investigate the IgG Fc glycosylation patterns in preterm infants of different gestational ages compared to term infants and mothers of preterm infants. In plasma samples of preterm infants (n = 38), we investigated IgG concentrations by use of ELISA. Furthermore, we analyzed IgG Fc glycosylation patterns in plasma of preterm infants (n = 86, 23-34 weeks of gestation), term infants (n = 15) and mothers from preterm infants (n = 41) using high performance liquid chromatography. Extremely low gestational age infants (born < 28 weeks of gestation during second trimester) had reduced IgG concentrations and decreased proportions of galactosylated (84.5 vs. 88.4%), sialylated (14.5 vs. 17.9%) and bisecting N-acetylglucosamine-containing (8.4 vs. 10.8%) IgG Fc N-linked glycans as compared to preterm infants born ≥28 weeks of gestation (during third trimester) and term infants. Increased non-galactosylated (agalactosylated, 16.9 vs. 10.6%) IgG Fc N-linked glycans were associated with the development of chronic inflammatory bronchopulmonary dysplasia (BPD). However, mothers of preterm infants born during second or third trimester of pregnancy did not show significant differences in IgG Fc glycosylation patterns. Thus, the IgG Fc glycosylation patterns of preterm infants depend on their gestational age. Although lack of bisecting N-acetylglucosamine has been associated with less inflammatory effector functions, the decreased IgG Fc galactosylation and sialylation with lower gestational age suggest a rather pro-inflammatory pattern. The difference in IgG Fc glycosylation patterns between preterm infants and mothers of preterm infants suggests a selective enrichment of IgG glyco forms in preterm infants, which might contribute to or result of the development of sustained inflammatory diseases like BPD.
Collapse
Affiliation(s)
- Nele Twisselmann
- Department of Pediatrics, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Julia Pagel
- Department of Pediatrics, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Christian Wieg
- Department of Neonatology, Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Annika Hartz
- Department of Pediatrics, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), University of Lübeck, Lübeck, Germany
| | - Christoph Härtel
- Department of Pediatrics, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
25
|
Gudelj I, Lauc G, Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol 2018; 333:65-79. [DOI: 10.1016/j.cellimm.2018.07.009] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023]
|
26
|
Ma Q, Adua E, Boyce MC, Li X, Ji G, Wang W. IMass Time: The Future, in Future! ACTA ACUST UNITED AC 2018; 22:679-695. [DOI: 10.1089/omi.2018.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qingwei Ma
- Bioyong (Beijing) Technology Co., Ltd., Beijing, China
| | - Eric Adua
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Mary C. Boyce
- School of Science, Edith Cowan University, Joondalup, Australia
| | - Xingang Li
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Guang Ji
- China-Canada Centre of Research for Digestive Diseases, University of Ottawa, Ottawa, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- School of Public Health, Taishan Medical University, Taian, China
| |
Collapse
|
27
|
Wahl A, Kasela S, Carnero-Montoro E, van Iterson M, Štambuk J, Sharma S, van den Akker E, Klaric L, Benedetti E, Razdorov G, Trbojević-Akmačić I, Vučković F, Ugrina I, Beekman M, Deelen J, van Heemst D, Heijmans BT, B.I.O.S. Consortium, Wuhrer M, Plomp R, Keser T, Šimurina M, Pavić T, Gudelj I, Krištić J, Grallert H, Kunze S, Peters A, Bell JT, Spector TD, Milani L, Slagboom PE, Lauc G, Gieger C. IgG glycosylation and DNA methylation are interconnected with smoking. Biochim Biophys Acta Gen Subj 2018; 1862:637-648. [DOI: 10.1016/j.bbagen.2017.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/01/2017] [Accepted: 10/16/2017] [Indexed: 01/18/2023]
|
28
|
Wilcox CR, Holder B, Jones CE. Factors Affecting the FcRn-Mediated Transplacental Transfer of Antibodies and Implications for Vaccination in Pregnancy. Front Immunol 2017; 8:1294. [PMID: 29163461 PMCID: PMC5671757 DOI: 10.3389/fimmu.2017.01294] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022] Open
Abstract
At birth, neonates are particularly vulnerable to infection and transplacental transfer of immunoglobulin G (IgG) from mother to fetus provides crucial protection in the first weeks of life. Transcytosis of IgG occurs via binding with the neonatal Fc receptor (FcRn) in the placental synctiotrophoblast. As maternal vaccination becomes an increasingly important strategy for the protection of young infants, improving our understanding of transplacental transfer and the factors that may affect this will become increasingly important, especially in low-income countries where the burden of morbidity and mortality is highest. This review highlights factors of relevance to maternal vaccination that may modulate placental transfer—IgG subclass, glycosylation of antibody, total maternal IgG concentration, maternal disease, infant gestational age, and birthweight—and outlines the conflicting evidence and questions that remain regarding the complexities of these relationships. Furthermore, the intricacies of the Ab–FcRn interaction remain poorly understood and models that may help address future research questions are described.
Collapse
Affiliation(s)
- Christopher R Wilcox
- National Institute of Health Research Wellcome Trust Clinical Research Facility, Southampton, United Kingdom
| | - Beth Holder
- Paediatrics Section, Division of Infectious Diseases, Centre for International Child Health, Imperial College London, London, United Kingdom
| | - Christine E Jones
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|
29
|
Jennewein MF, Abu-Raya B, Jiang Y, Alter G, Marchant A. Transfer of maternal immunity and programming of the newborn immune system. Semin Immunopathol 2017; 39:605-613. [PMID: 28971246 DOI: 10.1007/s00281-017-0653-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
As placental mammals, the pregnant women and the fetus have intense and prolonged interactions during gestation. There is increasing evidence that multiple molecular as well as cellular components originating in pregnant women are transferred to the fetus. The transfer of maternal antibodies has long been recognized as a central component of newborn immunity against pathogens. More recent studies indicate that inflammatory mediators, micronutrients, microbial products and maternal cells are transferred in utero and influence the fetal immune system. Together, these multiple signals are likely to form a complex network of interactions that program the neonatal immune system and tune its homeostatic regulation. Maternal disorders, in particular infectious diseases, modify these signals and may thereby alter immunity in early life. Understanding maternal programming of the newborn immune system could provide a basis for interventions promoting child health.
Collapse
Affiliation(s)
| | - Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital, Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| | - Yiwei Jiang
- Institute for Medical Immunology, Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Gosselies, Charleroi, Belgium
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Gosselies, Charleroi, Belgium.
| |
Collapse
|
30
|
Designed synthesis of a "One for Two" hydrophilic magnetic amino-functionalized metal-organic framework for highly efficient enrichment of glycopeptides and phosphopeptides. Sci Rep 2017; 7:1162. [PMID: 28442774 PMCID: PMC5430903 DOI: 10.1038/s41598-017-01341-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
Highly efficient enrichment of glycopeptides or phosphopeptides from complex biological samples is indispensable for high-throughput mass spectrometry analysis. In this study, for the first time, a "one for two" hydrophilic magnetic amino-functionalized metal-organic framework (MOF) was designed and synthesized for selective enrichment of both glycopeptides and phosphopeptides. A well-known solvo-thermal reaction was adopted to prepare a magnetic core Fe3O4, followed by self- polymerization of dopamine, creating a polydopamine (PDA) onto Fe3O4. Thanks to the hydroxyl and amino group of PDA, Zr3+ was easily adhered to the surface, inducing the following one-pot MOF reaction with amino ligand. After characterization of the as-prepared MOFs (denoted as Fe3O4@PDA@UiO-66-NH2), its ultrahigh surface area, excellent hydrophilicity and strong magnetic responsiveness were highly confirmed. Based on hydrophilic interaction, it was applied to glycopeptide enrichment, while based on strong binding between Zr and phosphopeptides, it was applied to phosphopeptide enrichment, both exhibiting excellent performance in standard proteins and human serum with high sensitivity and selectivity. These results showed the as-prepared MOFs had great potential in proteomics research.
Collapse
|