1
|
Xiao Y, Han C, Wang Y, Zhang X, Bao R, Li Y, Chen H, Hu B, Liu S. Interoceptive regulation of skeletal tissue homeostasis and repair. Bone Res 2023; 11:48. [PMID: 37669953 PMCID: PMC10480189 DOI: 10.1038/s41413-023-00285-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023] Open
Abstract
Recent studies have determined that the nervous system can sense and respond to signals from skeletal tissue, a process known as skeletal interoception, which is crucial for maintaining bone homeostasis. The hypothalamus, located in the central nervous system (CNS), plays a key role in processing interoceptive signals and regulating bone homeostasis through the autonomic nervous system, neuropeptide release, and neuroendocrine mechanisms. These mechanisms control the differentiation of mesenchymal stem cells into osteoblasts (OBs), the activation of osteoclasts (OCs), and the functional activities of bone cells. Sensory nerves extensively innervate skeletal tissues, facilitating the transmission of interoceptive signals to the CNS. This review provides a comprehensive overview of current research on the generation and coordination of skeletal interoceptive signals by the CNS to maintain bone homeostasis and their potential role in pathological conditions. The findings expand our understanding of intersystem communication in bone biology and may have implications for developing novel therapeutic strategies for bone diseases.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Changhao Han
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Rong Bao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China.
| |
Collapse
|
2
|
Haffner-Luntzer M, Weber B, Morioka K, Lackner I, Fischer V, Bahney C, Ignatius A, Kalbitz M, Marcucio R, Miclau T. Altered early immune response after fracture and traumatic brain injury. Front Immunol 2023; 14:1074207. [PMID: 36761764 PMCID: PMC9905106 DOI: 10.3389/fimmu.2023.1074207] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Clinical and preclinical data suggest accelerated bone fracture healing in subjects with an additional traumatic brain injury (TBI). Mechanistically, altered metabolism and neuro-endocrine regulations have been shown to influence bone formation after combined fracture and TBI, thereby increasing the bone content in the fracture callus. However, the early inflammatory response towards fracture and TBI has not been investigated in detail so far. This is of great importance, since the early inflammatory phase of fracture healing is known to be essential for the initiation of downstream regenerative processes for adequate fracture repair. Methods Therefore, we analyzed systemic and local inflammatory mediators and immune cells in mice which were exposed to fracture only or fracture + TBI 6h and 24h after injury. Results We found a dysregulated systemic immune response and significantly fewer neutrophils and mast cells locally in the fracture hematoma. Further, local CXCL10 expression was significantly decreased in the animals with combined trauma, which correlated significantly with the reduced mast cell numbers. Discussion Since mast cells and mast cell-derived CXCL10 have been shown to increase osteoclastogenesis, the reduced mast cell numbers might contribute to higher bone content in the fracture callus of fracture + TBI mice due to decreased callus remodeling.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany.,Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Birte Weber
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany.,Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Steadman Phillipon Research Institute, Vail, CO, United States
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Agoston DV, McCullough J, Aniceto R, Lin IH, Kamnaksh A, Eklund M, Graves WM, Dunbar C, Engall J, Schneider EB, Leonessa F, Duckworth JL. Blood-Based Biomarkers of Repetitive, Subconcussive Blast Overpressure Exposure in the Training Environment: A Pilot Study. Neurotrauma Rep 2022; 3:479-490. [PMID: 36337080 PMCID: PMC9634979 DOI: 10.1089/neur.2022.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Because of their unknown long-term effects, repeated mild traumatic brain injuries (TBIs), including the low, subconcussive ones, represent a specific challenge to healthcare systems. It has been hypothesized that they can have a cumulative effect, and they may cause molecular changes that can lead to chronic degenerative processes. Military personnel are especially vulnerable to consequences of subconcussive TBIs because their training involves repeated exposures to mild explosive blasts. In this pilot study, we collected blood samples at baseline, 6 h, 24 h, 72 h, 2 weeks, and 3 months after heavy weapons training from students and instructors who were exposed to repeated subconcussive blasts. Samples were analyzed using the reverse and forward phase protein microarray platforms. We detected elevated serum levels of glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1 (UCH-L1), nicotinic alpha 7 subunit (CHRNA7), occludin (OCLN), claudin-5 (CLDN5), matrix metalloprotease 9 (MMP9), and intereukin-6 (IL-6). Importantly, serum levels of most of the tested protein biomarkers were the highest at 3 months after exposures. We also detected elevated autoantibody titers of proteins related to vascular and neuroglia-specific proteins at 3 months after exposures as compared to baseline levels. These findings suggest that repeated exposures to subconcussive blasts can induce molecular changes indicating not only neuron and glia damage, but also vascular changes and inflammation that are detectable for at least 3 months after exposures whereas elevated titers of autoantibodies against vascular and neuroglia-specific proteins can indicate an autoimmune process.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA.,Address correspondence to: Denes V. Agoston, MD, PhD, Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Building B, Room 2036, Bethesda, MD 20814, USA.
| | - Jesse McCullough
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - I-Hsuan Lin
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Michael Eklund
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Wallace M. Graves
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Cyrus Dunbar
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - James Engall
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Eric B. Schneider
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fabio Leonessa
- Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Josh L. Duckworth
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Ferguson S, McCartan R, Browning M, Hahn-Townsend C, Gratkowski A, Morin A, Abdullah L, Ait-Ghezala G, Ojo J, Sullivan K, Mullan M, Crawford F, Mouzon B. Impact of gulf war toxic exposures after mild traumatic brain injury. Acta Neuropathol Commun 2022; 10:147. [PMID: 36258255 PMCID: PMC9580120 DOI: 10.1186/s40478-022-01449-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Chemical and pharmaceutical exposures have been associated with the development of Gulf War Illness (GWI), but how these factors interact with the pathophysiology of traumatic brain injury (TBI) remains an area of study that has received little attention thus far. We studied the effects of pyridostigmine bromide (an anti-nerve agent) and permethrin (a pesticide) exposure in a mouse model of repetitive mild TBI (r-mTBI), with 5 impacts over a 9-day period, followed by Gulf War (GW) toxicant exposure for 10 days beginning 30 days after the last head injury. We then assessed the chronic behavioral and pathological sequelae 5 months after GW agent exposure. We observed that r-mTBI and GWI cumulatively affect the spatial memory of mice in the Barnes maze and result in a shift of search strategies employed by r-mTBI/GW exposed mice. GW exposure also produced anxiety-like behavior in sham animals, but r-mTBI produced disinhibition in both the vehicle and GW treated mice. Pathologically, GW exposure worsened r-mTBI dependent axonal degeneration and neuroinflammation, increased oligodendrocyte cell counts, and increased r-mTBI dependent phosphorylated tau, which was found to colocalize with oligodendrocytes in the corpus callosum. These results suggest that GW exposures may worsen TBI-related deficits. Veterans with a history of both GW chemical exposures as well as TBI may be at higher risk for worse symptoms and outcomes. Subsequent exposure to various toxic substances can influence the chronic nature of mTBI and should be considered as an etiological factor influencing mTBI recovery.
Collapse
Affiliation(s)
- Scott Ferguson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Robyn McCartan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | | | | | | | - Alexander Morin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA
| | | | - Joseph Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Kimberly Sullivan
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St. T4W, Boston, MA, 02118, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Benoit Mouzon
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, Tampa, FL, USA.
| |
Collapse
|
5
|
Localized, time-dependent responses of rat cranial bone to repeated mild traumatic brain injuries. Sci Rep 2022; 12:14175. [PMID: 36050485 PMCID: PMC9437056 DOI: 10.1038/s41598-022-18643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
While it is well-established that bone responds dynamically to mechanical loading, the effects of mild traumatic brain injury (mTBI) on cranial bone composition are unclear. We hypothesized that repeated mTBI (rmTBI) would change the microstructure of cranial bones, without gross skull fractures. To address this, young adult female Piebald Viral Glaxo rats received sham, 1×, 2× or 3× closed-head mTBIs delivered at 24 h intervals, using a weight-drop device custom-built for reproducible impact. Skull bones were collected at 2 or 10 weeks after the final injury/sham procedure, imaged by micro computed tomography and analyzed at predetermined regions of interest. In the interparietal bone, proximal to the injury site, modest increases in bone thickness were observed at 2 weeks, particularly following 2× and 3× mTBI. By 10 weeks, 2× mTBI induced a robust increase in the volume and thickness of the interparietal bone, alongside a corresponding decrease in the volume of marrow cavities in the diploë region. In contrast, neither parietal nor frontal skull samples were affected by rmTBI. Our findings demonstrate time- and location-dependent effects of rmTBI on cranial bone structure, highlighting a need to consider microstructural alterations to cranial bone when assessing the consequences of rmTBI.
Collapse
|
6
|
Kesavan C, Rundle C, Mohan S. Repeated mild traumatic brain injury impairs fracture healing in male mice. BMC Res Notes 2022; 15:25. [PMID: 35093144 PMCID: PMC8801079 DOI: 10.1186/s13104-022-05906-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Objectives The goal of this study was to evaluate the long-term impact of repeated (r) mild traumatic brain injury (mTBI) on the healing of fractures in a mouse model. Ten week-old male mice were subjected to r-mTBI once per day for 4 days followed by closed femoral fracture using a three-point bending technique, 1 week post impact and fracture healing phenotype evaluated at 20 weeks of age. Results Micro-CT analysis of the fracture callus region at nine weeks post fracture revealed reduced bone volume (30%, p < 0.05) in the r-mTBI fracture group compared to the control-fracture group. The connectivity density of the fracture callus bone was reduced by 40% (p < 0.01) in the r-mTBI fracture group. Finite element analysis of the fracture callus region showed reduced failure load (p = 0.08) in the r-mTBI group compared to control group. There was no residual cartilage in the fracture callus region of either the r-mTBI or control fracture group. The reduced fracture callus bone volume and mechanical strength of fracture callus in r-mTBI mice 9 weeks post fracture are consistent with negative effects of r-mTBI on fracture healing over a long-term resulting in decreased mechanical strength of the fracture callus.
Collapse
Affiliation(s)
- Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.,Departments of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA
| | - Charles Rundle
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.,Departments of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA. .,Departments of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA. .,Orthopedic Surgery, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
7
|
Correlation Between Traumatic Brain Injuries and Callus Formation in Long bone Fractures. Indian J Orthop 2022; 56:837-846. [PMID: 35547339 PMCID: PMC9043063 DOI: 10.1007/s43465-021-00594-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Orthopaedic aphorism teaches that fractures of long bones when associated with head injuries frequently heal with excessive callus and at a faster rate than normal. However, the evidence on this subject is flimsy and the aphorism remains unsubstantiated. Numerous studies have been conducted evaluating the possible humoral and other factors involved leading to excess callus formation in patients with a head injury. This study was designed to evaluate the effects of a traumatic head injury on bone healing in adults with a diaphyseal fracture of the lower limb. METHODS Fiveteen patients with a closed fracture of tibia or femur and associated head injury (cases) and 15 patients with a closed fracture of tibia or femur without an associated head injury (controls) were included in the study. All patients were evaluated in terms of various serum parameters, including IL-6, growth hormone, PTH, LDH, prolactin levels, and ALP. Head injuries were graded as mild, moderate, or severe. Ventilatory support if required was noted. Serum prolactin was repeated at 5 weeks. Patients were followed up with serial radiographs, and the volume of callus formed was calculated and compared. RESULTS The mean value of growth hormone, interleukin-6 levels, and prolactin levels at 5 weeks were found to be higher in patients with head injuries, and the difference was highly significant (p = 0.001). The severity of head injury also correlated proportionately with the spike in IL-6 levels. There was more pronounced callus formation in patients with head injury group when compared to the controls. This difference was significant at all intervals. DISCUSSION There was higher volume of callus noted at the end of 6 months in patients with severe head injury (GCS < 7) when compared to patients with moderate head injury (GCS > 7). The patients with severe head injury were naturally under ventilator support for a prolonged period compared to those with moderate head injury. It was thus indiscernible if the excess callus observed is due to the humoral cascade or as an effect of prolonged ventilation. Patients with head injuries show elevated parathyroid hormone levels, growth hormone levels at the time of injury, and elevated prolactin levels 5 weeks after the trauma-all of which might contribute to enhanced osteogenesis. Interleukin-6 levels are also elevated and the levels correlate to severity of head injury. CONCLUSION Head injury triggers a humoral cascade invloving interleukin-6, parathyroid hormoe, growth hormone, and prolactin that contributes to enhanced fracture healing.
Collapse
|
8
|
Agoston DV. COVID-19 and Traumatic Brain Injury (TBI); What We Can Learn From the Viral Pandemic to Better Understand the Biology of TBI, Improve Diagnostics and Develop Evidence-Based Treatments. Front Neurol 2021; 12:752937. [PMID: 34987462 PMCID: PMC8720751 DOI: 10.3389/fneur.2021.752937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
9
|
McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, Leonard AV, Brady RD, Corrigan F. Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. J Neurotrauma 2021; 37:770-781. [PMID: 32041478 DOI: 10.1089/neu.2019.6885] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, and there are currently no pharmacological treatments known to improve patient outcomes. Unquestionably, contributing toward a lack of effective treatments is the highly complex and heterogenous nature of TBI. In this review, we highlight the recent surge of research that has demonstrated various central interactions with the periphery as a potential major contributor toward this heterogeneity and, in particular, the breadth of research from Australia. We describe the growing evidence of how extracranial factors, such as polytrauma and infection, can significantly alter TBI neuropathology. In addition, we highlight how dysregulation of the autonomic nervous system and the systemic inflammatory response induced by TBI can have profound pathophysiological effects on peripheral organs, such as the heart, lung, gastrointestinal tract, liver, kidney, spleen, and bone. Collectively, this review firmly establishes TBI as a systemic condition. Further, the central and peripheral interactions that can occur after TBI must be further explored and accounted for in the ongoing search for effective treatments.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Jessica M Sharkey
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mujun Sun
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lola M Kaukas
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandy R Shultz
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Renee J Turner
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rhys D Brady
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Han Z, Shi F, Chen Y, Dong X, Zhang B, Li M. Relationship between miRNA-433 and SPP1 in the presence of fracture and traumatic brain injury. Exp Ther Med 2021; 22:928. [PMID: 34306197 PMCID: PMC8281207 DOI: 10.3892/etm.2021.10360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Limb fracture combined with traumatic brain injury (TBI) is one of the most common multiple injuries and patients often suffer from severe craniocerebral injury combined with long bone fracture of the limbs. The present study examined the expression of osteopontin (SPP1) in the tibial fracture callus and heterotopic ossification tissues in craniocerebral injury and investigated its relationship with miR-433. A total of 26 patients with tibial fracture combined with brain injury were included in the TBI group, and 26 patients with simple tibial fracture were included in the control group. The patients received immobilization treatment and callus was collected during the operation. At the time of steel plate removal tissue ossification samples from patients with heterotopic ossification were collected. Peripheral blood was collected from all patients on the morning of the operation day. Expression of miR-433 and SPP1 mRNA was determined by reverse transcription-quantitative PCR and SPP1 protein expression was measured by western blotting. Dual luciferase reporter assay was used to identify the direct interaction between miR-433 and SPP1 mRNA. The human osteoblast line hFOB1.19 was transfected with agomiR-433 to overexpress miR-433 and expression of SPP1 was also examined. TBI enhanced the incidence of callus formation and heterotopic ossification in patients with fracture but did not alter fracture healing time. SPP1 mRNA and protein expression was elevated in patients who had tibial fracture in combination with craniocerebral injury in comparison with controls By contrast, expression of miR-433 was decreased in patients who had tibial fracture in combination with craniocerebral injury in comparison with controls. miR-433 regulated the expression of SPP1 mRNA and protein by directly binding to the 3'-untranslated region of SPP1 mRNA. The present study suggests that SPP1 mRNA and protein levels are increased in the callus, heterotopic ossification tissues and plasma from patients with tibial fracture combined with brain injury in comparison with controls. This elevation may be due to the reduced expression of miR-433.
Collapse
Affiliation(s)
- Zhen Han
- First Aid Center, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Feng Shi
- First Aid Center, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Ya Chen
- Department of Pharmacy, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Xiaoqing Dong
- First Aid Center, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Bo Zhang
- First Aid Center, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Meng Li
- First Aid Center, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, P.R. China
| |
Collapse
|
11
|
Paul GR, Wehrle E, Tourolle DC, Kuhn GA, Müller R. Real-time finite element analysis allows homogenization of tissue scale strains and reduces variance in a mouse defect healing model. Sci Rep 2021; 11:13511. [PMID: 34188165 PMCID: PMC8241979 DOI: 10.1038/s41598-021-92961-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanical loading allows both investigation into the mechano-regulation of fracture healing as well as interventions to improve fracture-healing outcomes such as delayed healing or non-unions. However, loading is seldom individualised or even targeted to an effective mechanical stimulus level within the bone tissue. In this study, we use micro-finite element analysis to demonstrate the result of using a constant loading assumption for all mouse femurs in a given group. We then contrast this with the application of an adaptive loading approach, denoted real time Finite Element adaptation, in which micro-computed tomography images provide the basis for micro-FE based simulations and the resulting strains are manipulated and targeted to a reference distribution. Using this approach, we demonstrate that individualised femoral loading leads to a better-specified strain distribution and lower variance in tissue mechanical stimulus across all mice, both longitudinally and cross-sectionally, while making sure that no overloading is occurring leading to refracture of the femur bones.
Collapse
Affiliation(s)
- Graeme R Paul
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Duncan C Tourolle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
12
|
Lackner I, Weber B, Haffner-Luntzer M, Hristova S, Gebhard F, Lam C, Morioka K, Marcucio RS, Miclau T, Kalbitz M. Systemic and local cardiac inflammation after experimental long bone fracture, traumatic brain injury and combined trauma in mice. J Orthop Translat 2021; 28:39-46. [PMID: 33717980 PMCID: PMC7906881 DOI: 10.1016/j.jot.2020.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 11/28/2022] Open
Abstract
Background Trauma is the leading cause of death and disability worldwide, especially in the young population. Cardiac injuries are an independent predictor for a poor overall outcome after trauma. The aim of the present study was to analyze systemic inflammation as well as local cardiac inflammation after experimental limb-, neuro- and combined trauma in mice. Methods Male C57BL/6 mice received either a closed tibia fracture (Fx), isolated traumatic brain injury (TBI) or a combination of both (Fx + TBI). Control animals underwent sham procedure. After 6 and 24 h, systemic levels of inflammatory mediators were analyzed, respectively. Locally, cardiac inflammation and cardiac structural alterations were investigated in left ventricular tissue of mice 6 and 24 h after trauma. Results Mice showed enhanced systemic inflammation after combined trauma, which was manifested by increased levels of KC, MCP-1 and G-CSF. Locally, mice exhibited increased expression of inflammatory cytokines (IL-1β, TNF) in heart tissue, which was probably mediated via toll-like receptor (TLR) signaling. Furthermore, mice demonstrated a redistribution of connexin 43 in cardiac tissue, which appeared predominantly after combined trauma. Besides inflammation and structural cardiac alterations, expression of glucose transporter 4 (GLUT4) mRNA was increased in the heart early after TBI and after combination of TBI and limb fracture, indicating a modification of energy metabolism. Early after combination of TBI and tibia fracture, nitrosative stress was increased, manifested by elevation of nitrotyrosine in cardiac tissue. Finally, mice showed a trend of increased systemic levels of cardiac troponin I and heart-fatty acid binding protein (HFABP) after combined trauma, which was associated with a significant decrease of troponin I and HFABP mRNA expression in cardiac tissue after TBI and combination of TBI and limb fracture. Conclusion Mice exhibited early cardiac alterations as well as alterations in cardiac glucose transporter expression, indicating a modification of energy metabolism, which might be linked to increased systemic- and local cardiac inflammation after limb-, neuro- and combined trauma. These cardiac alterations might predispose individuals for secondary cardiac damage after trauma that might compromise cardiac function after TBI and long bone fracture. Translational potential statement Injuries to the head and extremities frequently occur after severe trauma. In our study, we analyzed the effects of closed tibia fracture, isolated TBI, and the combination of both injuries with regard to the development of post-traumatic secondary cardiac injuries.
Collapse
Affiliation(s)
- Ina Lackner
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Birte Weber
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany.,Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany.,Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Simona Hristova
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Charles Lam
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Kazuhito Morioka
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Ralph S Marcucio
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany.,Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Hu L, Liu J, Xue H, Panayi AC, Xie X, Lin Z, Wang T, Xiong Y, Hu Y, Yan C, Chen L, Abududilibaier A, Zhou W, Mi B, Liu G. miRNA-92a-3p regulates osteoblast differentiation in patients with concomitant limb fractures and TBI via IBSP/PI3K-AKT inhibition. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1345-1359. [PMID: 33717654 PMCID: PMC7920808 DOI: 10.1016/j.omtn.2021.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/08/2021] [Indexed: 01/20/2023]
Abstract
Patients who sustain concomitant fractures and traumatic brain injury (TBI) are known to have significantly quicker fracture-healing rates than patients with isolated fractures. The mechanisms underlying this phenomenon have yet to be identified. In the present study, we found that the upregulation of microRNA-92a-3p (miRNA-92a-3p) induced by TBI correlated with a decrease in integrin binding sialoprotein (IBSP) expression in callus formation. In vitro, overexpressing miRNA-92a-3p inhibited IBSP expression and accelerated osteoblast differentiation, whereas silencing of miRNA-92a-3p inhibited osteoblast activity. A decrease in IBSP facilitated osteoblast differentiation via the Phosphatidylinositol 3-kinase/threonine kinase 1 (PI3K/AKT) signaling pathway. Through luciferase assays, we found evidence that IBSP is a miRNA-92a-3p target gene that negatively regulates osteoblast differentiation. Moreover, the present study confirmed that pre-injection of agomiR-92a-3p leads to increased bone formation. Collectively, these results indicate that miRNA-92a-3p overexpression may be a key factor underlying the improved fracture healing observed in TBI patients. Upregulation of miRNA-92a-3p may therefore be a promising therapeutic strategy for promoting fracture healing and preventing nonunion.
Collapse
Affiliation(s)
- Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jing Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston 02215, USA
| | - Xudong Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Tiantian Wang
- Department of Emergency, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Chengcheng Yan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Abudula Abududilibaier
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
14
|
Early Reciprocal Effects in a Murine Model of Traumatic Brain Injury and Femoral Fracture. Mediators Inflamm 2021; 2021:8835730. [PMID: 33531878 PMCID: PMC7834824 DOI: 10.1155/2021/8835730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major cause of death and disability in early adulthood. Concomitant extracranial injury such as long bone fracture was reported to exacerbate TBI pathology. However, early reciprocal effects and mechanisms have been barely investigated. To address this issue, C57BL/6N mice were subjected to either the controlled cortical impact (CCI) model of TBI, fracture of the left femur (FF), combined injury (CCI+FF), or sham procedure. Behavioral alterations were monitored until 5 days post injury (dpi), followed by (immuno-)histology, gene and protein expression analyses using quantitative PCR, western blot, and ELISA. We found that CCI+FF mice exhibited increased neurological impairments, reduced recovery, and altered anxiety-related behavior compared to single injury groups. At 5 dpi, cerebral lesion size was not affected by combined injury but exaggerated hippocampal substance loss and increased perilesional astrogliosis were observed in CCI+FF mice compared to isolated CCI. Bone gene expression of the osteogenic markers Runx2, osteocalcin, alkaline phosphatase, and bone sialoprotein was induced by fracture injury but attenuated by concomitant TBI. Plasma concentrations of the biomarkers osteopontin and progranulin were elevated in CCI+FF mice compared to other experimental groups. Taken together, using a murine model of TBI and femoral fracture, we report early reciprocal impairments of brain tissue maintenance, behavioral recovery, and bone repair gene expression. Increased circulating levels of the biomarkers osteopontin and progranulin indicate ongoing tissue inflammation and repair. Our results may have implications for future therapeutic approaches to interfere with the pathological crosstalk between TBI and concomitant bone fracture.
Collapse
|
15
|
Johnstone MR, Brady RD, Church JE, Orr D, McDonald SJ, Grills BL. The TrkB agonist, 7,8-dihydroxyflavone, impairs fracture healing in mice. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:263-271. [PMID: 34059571 PMCID: PMC8185262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To study the effects of the selective TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), on fracture healing in mice and on an osteoprogenitor cell line, Kusa4b10, in vitro. METHODS Mice received unilateral closed mid-shaft tibial fractures and treated for two weeks with vehicle or 5 mg/kg/day DHF and euthanised at 28 days post-fracture. Calluses were analysed by micro-computed tomography (μCT) and three-point bending biomechanical test. Kusa4b10 cells were cultured with 50nM of 7,8-DHF or vehicle for 3-, 7-, 14-days for RT-PCR, and 21 days for mineralization. RESULTS μCT found 7,8-DHF calluses had decreased tissue volume (p=0.042), mean polar moment of inertia (p = 0.004), and mean cross-sectional area (p=0.042) compared to controls. At 28 days biomechanical analyses showed 7,8-DHF treatment decreased peak force (p=0.011) and stiffness per unit area (p=0.012). 7,8-DHF treatment did not change Kusa4b10 gene expression of Runx2 and alkaline phosphatase at all time points, nor mineralization. CONCLUSIONS 7,8-DHF treatment had a negative impact on fracture healing at 28 days post-fracture via an unknown mechanism. 7,8-DHF may have had a central role in impairing fracture healing.
Collapse
Affiliation(s)
- Maddison R. Johnstone
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Rhys D. Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Jarrod E. Church
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - David Orr
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Brian L. Grills
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia,Corresponding author: Brian L. Grills, Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia, 3086 E-mail:
| |
Collapse
|
16
|
Wong KR, Mychasiuk R, O'Brien TJ, Shultz SR, McDonald SJ, Brady RD. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res 2020; 8:42. [PMID: 33298867 PMCID: PMC7725771 DOI: 10.1038/s41413-020-00119-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological heterotopic ossification (NHO) is a debilitating condition where bone forms in soft tissue, such as muscle surrounding the hip and knee, following an injury to the brain or spinal cord. This abnormal formation of bone can result in nerve impingement, pain, contractures and impaired movement. Patients are often diagnosed with NHO after the bone tissue has completely mineralised, leaving invasive surgical resection the only remaining treatment option. Surgical resection of NHO creates potential for added complications, particularly in patients with concomitant injury to the central nervous system (CNS). Although recent work has begun to shed light on the physiological mechanisms involved in NHO, there remains a significant knowledge gap related to the prognostic biomarkers and prophylactic treatments which are necessary to prevent NHO and optimise patient outcomes. This article reviews the current understanding pertaining to NHO epidemiology, pathobiology, biomarkers and treatment options. In particular, we focus on how concomitant CNS injury may drive ectopic bone formation and discuss considerations for treating polytrauma patients with NHO. We conclude that understanding of the pathogenesis of NHO is rapidly advancing, and as such, there is the strong potential for future research to unearth methods capable of identifying patients likely to develop NHO, and targeted treatments to prevent its manifestation.
Collapse
Affiliation(s)
- Ker Rui Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
17
|
Wang X, Xu J, Kang Q. Neuromodulation of bone: Role of different peptides and their interactions (Review). Mol Med Rep 2020; 23:32. [PMID: 33179112 PMCID: PMC7684869 DOI: 10.3892/mmr.2020.11670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the skeletal system has been expanded upon the recognition of several neural pathways that serve important roles in bone metabolism and skeletal homeostasis, as bone tissue is richly innervated. Considerable evidence provided by in vitro, animal and human studies have further elucidated the importance of a host of hormones and local factors, including neurotransmitters, in modulating bone metabolism and osteo-chondrogenic differentiation, both peripherally and centrally. Various cells of the musculoskeletal system not only express receptors for these neurotransmitters, but also influence their endogenous levels in the skeleton. As with a number of physiological systems in nature, a neuronal pathway regulating bone turnover will be neutralized by another pathway exerting an opposite effect. These neuropeptides are also critically involved in articular cartilage homeostasis and pathogenesis of degenerative joint disorders, such as osteoarthritis. In the present Review, data on the role of several neuronal populations in nerve-dependent skeletal metabolism is examined, and the molecular events involved are explored, which may reveal broader relationships between two apparently unrelated organs.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
18
|
Brady RD, Zhao MZ, Wong KR, Casilla-Espinosa PM, Yamakawa GR, Wortman RC, Sun M, Grills BL, Mychasiuk R, O'Brien TJ, Agoston DV, Lee PVS, McDonald SJ, Robinson DL, Shultz SR. A novel rat model of heterotopic ossification after polytrauma with traumatic brain injury. Bone 2020; 133:115263. [PMID: 32032779 DOI: 10.1016/j.bone.2020.115263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/08/2023]
Abstract
Neurological heterotopic ossification (NHO) is characterized by abnormal bone growth in soft tissue and joints in response to injury to the central nervous system. The ectopic bone frequently causes pain, restricts mobility, and decreases the quality of life for those affected. NHO commonly develops in severe traumatic brain injury (TBI) patients, particularly in the presence of concomitant musculoskeletal injuries (i.e. polytrauma). There are currently no animal models that accurately mimic these combinations of injuries, which has limited our understanding of NHO pathobiology, as well as the development of biomarkers and treatments, in TBI patients. In order to address this shortcoming, here we present a novel rat model that combines TBI, femoral fracture, and muscle crush injury. Young adult male Sprague Dawley rats were randomly assigned into three different injury groups: triple sham-injury, peripheral injury only (i.e., sham-TBI + fracture + muscle injury) or triple injury (i.e., TBI + fracture + muscle injury). Evidence of ectopic bone in the injured hind-limb, as confirmed by micro-computed tomography (μCT), was found at 6-weeks post-injury in 70% of triple injury rats, 20% of peripheral injury rats, and 0% of the sham-injured controls. Furthermore, the triple injury rats had higher ectopic bone severity scores than the sham-injured group. This novel model will provide a platform for future studies to identify underlying mechanisms, biomarkers, and develop evidence based pharmacological treatments to combat this debilitating long-term complication of TBI and polytrauma.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Michael Z Zhao
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ker R Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pablo M Casilla-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ryan C Wortman
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Brian L Grills
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Peter V S Lee
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Brady RD, Wong KR, Robinson DL, Mychasiuk R, McDonald SJ, D'Cunha RA, Yamakawa GR, Sun M, Wark JD, Lee PVS, O'Brien TJ, Casillas-Espinosa PM, Shultz SR. Bone Health in Rats With Temporal Lobe Epilepsy in the Absence of Anti-Epileptic Drugs. Front Pharmacol 2019; 10:1278. [PMID: 31749702 PMCID: PMC6842946 DOI: 10.3389/fphar.2019.01278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Abstract
Rationale: Epilepsy patients often exhibit reduced bone mineral density and are at an increased risk of bone fracture. Whether these bone abnormalities are due to the use of anti-epileptic drugs (AED’s) or the disease itself is unknown. For example, although decreased bone health in epilepsy patients is generally attributed to the use of AED’s, seizures can also trigger a number of physiological processes that have the potential to affect bone. Therefore, to assess whether bone abnormalities occur in epilepsy in the absence of AED’s, the current study investigated mechanical characteristics and trabecular bone morphology in rats with chronic temporal lobe epilepsy. Methods: Ten-week old male Wistar rats underwent kainic acid-induced status epilepticus (SE; n = 7) or a sham procedure (n = 9). Rats were implanted with EEG recording electrodes at nine weeks post-SE, and video-EEG was continuously recorded for one week at 10- and 22-weeks post-SE to confirm that SE rats had spontaneous seizures. Open-field testing to assess locomotion was conducted at 23-weeks post-SE. At 24-weeks post-SE, rats were euthanized and tibia were extracted to determine trabecular morphology by micro-computed tomography (µCT), while femurs were used to investigate mechanical properties via 3-point bending. Results: All post-SE rats had spontaneous seizures at 10- and 22-weeks post-SE, while none of the sham rats had seizures. µCT trabecular analysis of tibia revealed no differences in total volume, bone volume, bone volume fraction, trabecular number, or trabecular separation between post-SE or sham rats, although post-SE rats did have increased trabecular thickness. There were also no group differences in total distance travelled in the open field suggesting that activity levels did not account for the increased trabecular thickness. In addition, no differences in mechanical properties of femurs were observed between the two groups. Conclusion: There was a lack of overt bone abnormalities in rats with chronic temporal lobe epilepsy in the absence of AED treatment. Although further studies are still needed, these findings may have important implications towards understanding the source (e.g., AED treatments) of bone abnormalities in epilepsy patients.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Ker Rui Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Ryan A D'Cunha
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - John D Wark
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Wright DK, Brady RD, Kamnaksh A, Trezise J, Sun M, McDonald SJ, Mychasiuk R, Kolbe SC, Law M, Johnston LA, O'Brien TJ, Agoston DV, Shultz SR. Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat. Sci Rep 2019; 9:14626. [PMID: 31602002 PMCID: PMC6787341 DOI: 10.1038/s41598-019-51267-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/28/2019] [Indexed: 01/05/2023] Open
Abstract
A single mild traumatic brain injury (mTBI) typically causes only transient symptoms, but repeated mTBI (RmTBI) is associated with cumulative and chronic neurological abnormalities. Clinical management of mTBI is challenging due to the heterogeneous, subjective and transient nature of symptoms, and thus would be aided by objective biomarkers. Promising biomarkers including advanced magnetic resonance imaging (MRI) and plasma levels of select proteins were examined here in a rat model of RmTBI. Rats received either two mild fluid percussion or sham injuries administered five days apart. Rats underwent MRI and behavioral testing 1, 3, 5, 7, and 30 days after the second injury and blood samples were collected on days 1, 7, and 30. Structural and diffusion-weighted MRI revealed that RmTBI rats had abnormalities in the cortex and corpus callosum. Proteomic analysis of plasma found that RmTBI rats had abnormalities in markers indicating axonal and vascular injury, metabolic and mitochondrial dysfunction, and glial reactivity. These changes occurred in the presence of ongoing cognitive and sensorimotor deficits in the RmTBI rats. Our findings demonstrate that RmTBI can result in chronic neurological abnormalities, provide insight into potential contributing pathophysiological mechanisms, and supports the use of MRI and plasma protein measures as RmTBI biomarkers.
Collapse
Affiliation(s)
- David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Jack Trezise
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Scott C Kolbe
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Leigh A Johnston
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3052, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia. .,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
21
|
Jacovides CL, Ahmed S, Suto Y, Paris AJ, Leone R, McCarry J, Christofidou-Solomidou M, Kaplan LJ, Smith DH, Holena DN, Schwab CW, Pascual JL. An inflammatory pulmonary insult post-traumatic brain injury worsens subsequent spatial learning and neurological outcomes. J Trauma Acute Care Surg 2019; 87:552-558. [PMID: 31205212 PMCID: PMC10497189 DOI: 10.1097/ta.0000000000002403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) patients are at high risk for early aspiration and pneumonia. How pneumonia impacts neurological recovery after TBI is not well characterized. We hypothesized that, independent of the cerebral injury, pneumonia after TBI delays and worsens neurological recovery and cognitive outcomes. METHODS Fifteen CD1 male mice were randomized to sham craniotomy or severe TBI (controlled cortical impact [CCI] - velocity 6 m/s, depth 1.0 mm) ± intratracheal lipopolysaccharide (LPS-2 mg/kg in 0.1 mL saline) as a pneumonia bioeffector. Neurological functional recovery by Garcia Neurologic Testing (GNT) and body weight loss were recorded daily for 14 days. On Days 6-14, animals underwent Morris Water Maze learning and memory testing with cued trials (platform visible), spatial learning trials (platform invisible, spatial cues present), and probe (memory) trials (platform removed, spatial clues present). Intergroup differences were assessed by the Kruskal-Wallis test with Bonferroni correction (p < 0.05). RESULTS Weight loss was greatest in the CCI + LPS group (maximum 24% on Day 3 vs. 8% [Sham], 7% [CCI], both on Day 1). GNT was lowest in CCI + LPS during the first week. Morris Water Maze testing demonstrated greater spatial learning impairment in the CCI + LPS group vs. Sham or CCI counterparts. Cued learning and long-term memory were worse in CCI + LPS and CCI as compared to Sham. CONCLUSION A pneumonia bioeffector insult after TBI worsens weight loss and mortality in a rodent model. Not only is spatial learning impaired, but animals are more debilitated and have worse neurologic performance. Understanding the adverse effects of pneumonia on TBI recovery is the first step d patients.
Collapse
Affiliation(s)
- Christina L Jacovides
- From the Division of Traumatology, Surgical Critical Care and Emergency Surgery (C.L.J., S.A., R.L., J.M., L.J.K., D.N.H., C.W.S., J.L.P.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Emergency and Critical Care Medicine (Y.S.), Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan; Department of Medicine (A.J.P.), University of Pennsylvania, Philadelphia, PA; Department of Medicine, Pulmonary, Allergy and Critical Care Division (M.C-S.), University of Pennsylvania, Philadelphia, Pennsylvania; and Center for Brain Injury and Repair, Department of Neurosurgery (D.H.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Differential fracture response to traumatic brain injury suggests dominance of neuroinflammatory response in polytrauma. Sci Rep 2019; 9:12199. [PMID: 31434912 PMCID: PMC6704103 DOI: 10.1038/s41598-019-48126-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Polytraumatic injuries, specifically long bone fracture and traumatic brain injury (TBI), frequently occur together. Clinical observation has long held that TBI can accelerate fracture healing, yet the complexity and heterogeneity of these injuries has produced conflicting data with limited information on underlying mechanisms. We developed a murine polytrauma model with TBI and fracture to evaluate healing in a controlled system. Fractures were created both contralateral and ipsilateral to the TBI to test whether differential responses of humoral and/or neuronal systems drove altered healing patterns. Our results show increased bone formation after TBI when injuries occur contralateral to each other, rather than ipsilateral, suggesting a role of the nervous system based on the crossed neuroanatomy of motor and sensory systems. Analysis of the humoral system shows that blood cell counts and inflammatory markers are differentially modulated by polytrauma. A data-driven multivariate analysis integrating all outcome measures showed a distinct pathological state of polytrauma and co-variations between fracture, TBI and systemic markers. Taken together, our results suggest that a contralateral bone fracture and TBI alter the local neuroinflammatory state to accelerate early fracture healing. We believe applying a similar data-driven approach to clinical polytrauma may help to better understand the complicated pathophysiological mechanisms of healing.
Collapse
|
23
|
Anevska K, Mahizir D, Briffa JF, Jefferies AJ, Wark JD, Grills BL, Brady RD, McDonald SJ, Wlodek ME, Romano T. Treadmill Exercise before and during Pregnancy Improves Bone Deficits in Pregnant Growth Restricted Rats without the Exacerbated Effects of High Fat Diet. Nutrients 2019; 11:E1236. [PMID: 31151257 PMCID: PMC6627539 DOI: 10.3390/nu11061236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022] Open
Abstract
Growth restriction programs adult bone deficits and increases the risk of obesity, which may be exacerbated during pregnancy. We aimed to determine if high-fat feeding could exacerbate the bone deficits in pregnant growth restricted dams, and whether treadmill exercise would attenuate these deficits. Uteroplacental insufficiency was induced on embryonic day 18 (E18) in Wistar Kyoto (WKY) rats using bilateral uterine vessel ligation (restricted) or sham (control) surgery. The F1 females consumed a standard or high-fat (HFD) diet from 5 weeks, commenced treadmill exercise at 16 weeks, and they were mated at 20 weeks. Femora and plasma from the pregnant dams were collected at post-mortem (E20) for peripheral quantitative computed tomography (pQCT), mechanical testing, histomorphometry, and plasma analysis. Sedentary restricted females had bone deficits compared to the controls, irrespective of diet, where such deficits were prevented with exercise. Osteocalcin increased in the sedentary restricted females compared to the control females. In the sedentary HFD females, osteocalcin was reduced and CTX-1 was increased, with increased peak force and bending stress compared to the chow females. Exercise that was initiated before and continued during pregnancy prevented bone deficits in the dams born growth restricted, whereas a HFD consumption had minimal bone effects. These findings further highlight the beneficial effects of exercise for individuals at risk of bone deficits.
Collapse
Affiliation(s)
- Kristina Anevska
- Department of Physiology, Anatomy and Microbiology, LaTrobe University, Bundoora, VIC 3083, Australia.
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Dayana Mahizir
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Jessica F Briffa
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Andrew J Jefferies
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - John D Wark
- Department of Medicine, The University of Melbourne, Parkville, VIC 3010, Australia.
- Bone and Mineral Medicine, Royal Melbourne Hospital, Parkville, VIC 3050, Australia.
| | - Brian L Grills
- Department of Physiology, Anatomy and Microbiology, LaTrobe University, Bundoora, VIC 3083, Australia.
| | - Rhys D Brady
- Department of Physiology, Anatomy and Microbiology, LaTrobe University, Bundoora, VIC 3083, Australia.
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, LaTrobe University, Bundoora, VIC 3083, Australia.
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, LaTrobe University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
24
|
A concomitant bone fracture delays cognitive recovery from traumatic brain injury. J Trauma Acute Care Surg 2019; 85:275-284. [PMID: 29787539 DOI: 10.1097/ta.0000000000001957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Brain injury progression after severe traumatic brain injury (TBI) is associated with worsening cerebral inflammation but it is unknown how a concomitant bone fracture (BF) affects this progression. Enoxaparin (ENX) decreases penumbral leukocyte mobilization after TBI and improves neurologic recovery. We hypothesized that a concomitant BF worsens learning/memory recovery weeks after TBI and that ENX improves this recovery. METHODS CD1 male mice underwent controlled cortical impact or sham craniotomy with or without tibial fracture, receiving either daily ENX (0.8 mg/kg) or saline for 14 days after injury. Randomization defined four groups (Sham, TBI only, TBI + Fx, TBI + Fx + ENX, n = 5/each). Body weight loss and neurologic recovery (Garcia Neurologic Test, max score = 18) were assessed each day. Mouse learning (swimming time [s] and total distance [m] to reach the submerged platform Days 14 to 17 after TBI) and memory (swimming time [s] in platform quadrant after platform removed [probe]) was assessed by the Morris water maze. Ly-6G (cerebral neutrophil sequestration) and glial fibrillary acidic protein were evaluated by immunohistochemistry in brain tissue post mortem. Analysis of variance with Tukey's post hoc test determined significance (p < 0.05). RESULTS A concurrent BF worsened Garcia Neurologic Test scores post-TBI Days 2 to 4 (p < 0.01) as compared with TBI only, and ENX reversed this worsening on Day 4 (p < 0.01). Learning was significantly slower (greater swimming time and distance) in TBI + Fx versus TBI only on Day 17 (p < 0.01). This was despite similar swimming velocities in both groups, indicating intact extremity motor function. Memory was similar in isolated TBI and Sham which was significantly better than in TBI + Fx animals (p < 0.05). Glial fibrillary acidic protein-positive cells in penumbral cortex were most prevalent in TBI + Fx animals, significantly greater than in Sham (p < 0.05). CONCLUSION A long BF accompanying TBI worsens early neurologic recovery and subsequent learning/memory. Enoxaparin may partially counter this and improve neurologic recovery.
Collapse
|
25
|
The selective TrkA agonist, gambogic amide, promotes osteoblastic differentiation and improves fracture healing in mice. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2019; 19:94-103. [PMID: 30839307 PMCID: PMC6454248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To study effects of the selective TrkA agonist, gambogic amide (GA), on fracture healing in mice and on an osteoprogenitor cell line in vitro. METHODS Mice were given bilateral fibular fractures and treated for two weeks with vehicle or 1 mg/kg/day GA and euthanized at 14-, 21-, and 42-days post-fracture. Calluses were analysed by micro-computed tomography (µCT), three-point bending and histology. For RT-PCR analyses, Kusa O cells were treated with 0.5nM of GA or vehicle for 3, 7, and 14 days, while for mineralization assessment, cells were treated for 21 days. RESULTS µCT analysis found that 21-day GA-treated calluses had both decreased tissue volume (p<0.05) and bone surface (p<0.05) and increased fractional bone volume (p<0.05) compared to controls. Biomechanical analyses of 42-day calluses revealed that GA treatment increased stiffness per unit area by 53% (p<0.01) and load per unit area by 52% (p<0.01). GA treatment increased Kusa O gene expression of alkaline phosphatase and osteocalcin (p<0.05) by 14 days as well as mineralization at 21 days (p<0.05). CONCLUSIONS GA treatment appeared to have a beneficial effect on fracture healing at 21- and 42-days post-fracture. The exact mechanism is not yet understood but may involve increased osteoblastic differentiation and matrix mineralization.
Collapse
|
26
|
Suto Y, Nagata K, Ahmed SM, Jacovides CL, Browne KD, Cognetti J, Johnson VE, Leone R, Kaplan LJ, Smith DH, Pascual JL. Cerebral Edema and Neurological Recovery after Traumatic Brain Injury Are Worsened if Accompanied by a Concomitant Long Bone Fracture. J Neurotrauma 2018; 36:609-618. [PMID: 30084745 DOI: 10.1089/neu.2018.5812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Progression of severe traumatic brain injury (TBI) is associated with worsening cerebral inflammation, but it is unknown how a concomitant bone fracture (FX) affects this progression. Enoxaparin (ENX), a low molecular weight heparin often used for venous thromboembolic prophylaxis, decreases penumbral leukocyte (LEU) mobilization in isolated TBI and improves neurological recovery. We investigated if TBI accompanied by an FX worsens LEU-mediated cerebral inflammation and if ENX alters this process. CD1 male mice underwent controlled cortical impact (CCI) or sham craniotomy with or without an open tibial FX, and received either ENX (1 mg/kg, three times/day) or saline for 2 days following injury. Randomization defined four groups (Sham, CCI, CCI+FX, CCI+FX+ENX, n = 10/group). Two days after CCI, neurological recovery was assessed with the Garcia Neurological Test (GNT); intravital microscopy (LEU rolling and adhesion, microvascular leakage) and blood hemoglobin levels were also evaluated. Penumbral cerebral neutrophil sequestration (Ly-6G immunohistochemistry [IHC]) were evaluated post-mortem. In vivo LEU rolling was greater in CCI+FX (45.2 ± 4.8 LEUs/100 μm/min) than in CCI alone (26.5 ± 3.1, p = 0.007), and was suppressed by ENX (23.2 ± 5.5, p = 0.003 vs. CCI + FX). Neurovascular permeability was higher in CCI+FX (71.1 ± 2.9%) than CCI alone (42.5 ± 2.3, p < 0.001). GNT scores were lower in CCI+FX (15.2 ± 0.2) than in CCI alone (16.3 ± 0.3, p < 0.001). Hemoglobin was lowest in the CCI+FX+ENX group, lower than in Sham or CCI. IHC demonstrated greatest polymorphonuclear neutrophil (PMN) invasion in CCI+FX in uninjured cerebral territories. A concomitant long bone FX worsens TBI-induced cerebral LEU mobilization, microvascular leakage, and cerebral edema, and impairs neurological recovery at 48 h. ENX suppresses this progression but may increase bleeding.
Collapse
Affiliation(s)
- Yujin Suto
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania.,2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Katsuhiro Nagata
- 3 Department of Emergency and Critical Care Medicine, Tokyo Medical University Hachioji Medical Center , Tokyo, Japan
| | - Syed M Ahmed
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania.,2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Christina L Jacovides
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania.,2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Kevin D Browne
- 2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - John Cognetti
- 2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Victoria E Johnson
- 2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Ryan Leone
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Lewis J Kaplan
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Douglas H Smith
- 2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Jose L Pascual
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania.,2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Zhang R, Liang Y, Wei S. M2 macrophages are closely associated with accelerated clavicle fracture healing in patients with traumatic brain injury: a retrospective cohort study. J Orthop Surg Res 2018; 13:213. [PMID: 30157885 PMCID: PMC6114273 DOI: 10.1186/s13018-018-0926-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023] Open
Abstract
Background Mounting evidence indicate patients with traumatic brain injury (TBI) have an accelerated fracture healing. The healing process of bone fractures is greatly dependent on infiltrated macrophages. The macrophages are categorized into M1 or M2 phenotypes with different functions. This study is aimed to address the potential role of subtypes of macrophages in the process of fracture healing in patients with TBI. Methods Twenty-five cases of clavicle fracture alone (CF group) and 22 cases of clavicle fracture concomitant with TBI (CFT group) were retrospectively analyzed in this study. Callus tissues were harvested during operations. The expressions of COX-2, CD206, and CD68 were measured with immunohistochemistry. Results The percentages of M2 macrophages in total macrophages increased after bone fracture in both groups, while the percentages of M1-type macrophages are decreased. Interestingly, the increased percentages of M2 macrophages are significantly higher in CFT group than in CF group. Compared to CF group, the fracture callus volume was much larger (21.9 vs 8.5 cm3) and the fracture healing time was much shorter (82.2 vs 127.0 days) in CFT group. The percentage of M2 macrophages was negatively correlated with fracture healing time in patients (r = − 0.575, p < 0.01). Conclusions The findings suggest that the percentages of M2 macrophages in callus tissues increased dramatically during the repairing stage in both CF and CFT group. Percentages of M2 macrophages are associated with accelerated fracture healing in patients with TBI. M2 macrophage polarization during the stage of bone regeneration may play a vital role in promoting bone fracture healing.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Orthopedics, Liuzhou General Hospital, 8 Wenchang Rd, Liuzhou, 545006, Guangxi, China. .,Guangxi University of Technology, Liuzhou, 545006, Guangxi, China.
| | - Yi Liang
- Department of Orthopedics, Liuzhou General Hospital, 8 Wenchang Rd, Liuzhou, 545006, Guangxi, China
| | - Shuxiang Wei
- Department of Orthopedics, Liuzhou General Hospital, 8 Wenchang Rd, Liuzhou, 545006, Guangxi, China
| |
Collapse
|
28
|
McColl TJ, Brady RD, Shultz SR, Lovick L, Webster KM, Sun M, McDonald SJ, O'Brien TJ, Semple BD. Mild Traumatic Brain Injury in Adolescent Mice Alters Skull Bone Properties to Influence a Subsequent Brain Impact at Adulthood: A Pilot Study. Front Neurol 2018; 9:372. [PMID: 29887828 PMCID: PMC5980957 DOI: 10.3389/fneur.2018.00372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/24/2022] Open
Abstract
Mild traumatic brain injuries (mTBI) are common during adolescence, and limited clinical evidence suggests that a younger age at first exposure to a mTBI may lead to worse long-term outcomes. In this study, we hypothesized that a mTBI during adolescence would predispose toward poorer neurobehavioral and neuropathological outcomes after a subsequent injury at adulthood. Mice received a mild weight drop injury (mTBI) at adolescence (postnatal day 35; P35) and/or at adulthood (P70). Mice were randomized to 6 groups: 'sham' (sham-surgery at P35 only); 'P35' (mTBI at P35 only); 'P35 + sham' (mTBI at P35 + sham at P70); 'sham + P70' (sham at P35 + mTBI at P70); 'sham + sham' (sham at both P35 and P70); or 'P35 + P70' (mTBI at both P35 and P70). Acute apnea and an extended righting reflex time confirmed a mTBI injury at P35 and/or P70. Cognitive, psychosocial, and sensorimotor function was assessed over 1-week post-injury. Injured groups performed similarly to sham controls across all tasks. Immunofluorescence staining at 1 week detected an increase in glial activation markers in Sham + P70 brains only. Strikingly, 63% of Sham + P70 mice exhibited a skull fracture at impact, compared to 13% of P35 + P70 mice. Micro computed tomography of parietal skull bones found that a mTBI at P35 resulted in increased bone volume and strength, which may account for the difference in fracture incidence. In summary, a single mTBI to the adolescent mouse brain did not exacerbate the cerebral effects of a subsequent mTBI in adulthood. However, the head impact at P35 induced significant changes in skull bone structure and integrity. These novel findings support future investigation into the consequences of mTBI on skull bone.
Collapse
Affiliation(s)
- Thomas J McColl
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Rhys D Brady
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Lauren Lovick
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Kyria M Webster
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Mujun Sun
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Sun M, McDonald SJ, Brady RD, O'Brien TJ, Shultz SR. The influence of immunological stressors on traumatic brain injury. Brain Behav Immun 2018; 69:618-628. [PMID: 29355823 DOI: 10.1016/j.bbi.2018.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, and typically involves a robust immune response. Although a great deal of preclinical research has been conducted to identify an effective treatment, all phase III clinical trials have been unsuccessful to date. These translational shortcomings are in part due to a failure to recognize and account for the heterogeneity of TBI, including how extracranial factors can influence the aftermath of TBI. For example, most preclinical studies have utilized isolated TBI models in young adult males, while clinical trials typically involve highly heterogeneous patient populations (e.g., different mechanisms of injury, a range of ages, presence of polytrauma or infection). This paper will review the current, albeit limited literature related to how TBI is affected by common concomitant immunological stressors. In particular, discussion will focus on whether extracranial trauma (i.e., polytrauma), infection, and age/immunosenescence can influence TBI pathophysiology, and thereby may result in a different brain injury than what would have occurred in an isolated TBI. It is concluded that these immunological stressors are all likely to be TBI modifiers that should be further studied and could impact translational treatment strategies.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
30
|
Huang H, Cheng WX, Hu YP, Chen JH, Zheng ZT, Zhang P. Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases the risk of heterotopic ossification. J Orthop Translat 2017; 12:16-25. [PMID: 29662775 PMCID: PMC5866497 DOI: 10.1016/j.jot.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
Heterotopic ossification (HO) is a pathological phenomenon in which ectopic lamellar bone forms in soft tissues. HO involves many predisposing factors, including congenital and postnatal factors. Postnatal HO is usually induced by fracture, burn, neurological damage (brain injury and spinal cord injury) and joint replacement. Recent studies have found that patients who suffered from bone fracture combined with severe traumatic brain injury (S-TBI) are at a significantly increased risk for HO occurrence. Thus, considerable research focused on the influence of S-TBI on fracture healing and bone formation, as well as on the changes in various osteogenic factors with S-TBI occurrence. Brain damage promotes bone formation, but the exact mechanisms underlying bone formation and HO after S-TBI remain to be clarified. Hence, this article summarises the findings of previous studies on the relationship between S-TBI and HO and discusses the probable causes and mechanisms of HO caused by S-TBI. The translational potential of this article: A better understanding of the probable causes of traumatic brain injury-induced HO can provide new perspectives and ideas in preventing HO and may support to design more targeted therapies to reduce HO or enhance the bone formation.
Collapse
Affiliation(s)
- Huan Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Xiang Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ping Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hai Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng-Tan Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
31
|
Sun M, Brady RD, Wright DK, Kim HA, Zhang SR, Sobey CG, Johnstone MR, O'Brien TJ, Semple BD, McDonald SJ, Shultz SR. Treatment with an interleukin-1 receptor antagonist mitigates neuroinflammation and brain damage after polytrauma. Brain Behav Immun 2017; 66:359-371. [PMID: 28782716 DOI: 10.1016/j.bbi.2017.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/22/2017] [Accepted: 08/02/2017] [Indexed: 01/18/2023] Open
Abstract
Traumatic brain injury (TBI) and long bone fracture are common in polytrauma. This injury combination in mice results in elevated levels of the pro-inflammatory cytokine interleukin-1β (IL-1β) and exacerbated neuropathology when compared to isolated-TBI. Here we examined the effect of treatment with an IL-1 receptor antagonist (IL-1ra) in mice given a TBI and a concomitant tibial fracture (i.e., polytrauma). Adult male C57BL/6 mice were given sham-injuries or polytrauma and treated with saline-vehicle or IL-1ra (100mg/kg). Treatments were subcutaneously injected at 1, 6, and 24h, and then once daily for one week post-injury. 7-8 mice/group were euthanized at 48h post-injury. 12-16 mice/group underwent behavioral testing at 12weeks post-injury and MRI at 14weeks post-injury before being euthanized at 16weeks post-injury. At 48h post-injury, markers for activated microglia and astrocytes, as well as neutrophils and edema, were decreased in polytrauma mice treated with IL-1ra compared to polytrauma mice treated with vehicle. At 14weeks post-injury, MRI analysis demonstrated that IL-1ra treatment after polytrauma reduced volumetric loss in the injured cortex and mitigated track-weighted MRI markers for axonal injury. As IL-1ra (Anakinra) is approved for human use, it may represent a promising therapy in polytrauma cases involving TBI and fracture.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - David K Wright
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3052, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Shenpeng R Zhang
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia; Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Maddison R Johnstone
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Bridgette D Semple
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC 3083, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|