1
|
Xiang S, Li J, Wang F, Yang Y, Yang H, Cai R, Tan W. Ultrasensitive Electrochemiluminescence Biosensing Platform Based on Polymer Dots with Aggregation-Induced Emission for Dual-Biotoxin Assay. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37748-37756. [PMID: 38990678 DOI: 10.1021/acsami.4c08302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Multitarget assay has always been a hot topic in electrochemiluminescence (ECL) methods. Herein, a "on-off-on" ECL aptasensor was developed for the ultrasensitive and sequential detection of possible biological warfare agents, deoxynivalenol (DON) and abrin (ABR). As a luminophore, polymer dots (Pdots) with aggregation-induced emission exhibit high ECL efficiency in the aptasensor, i.e., the signal "on" state. The DON assays mainly depend on ECL quenching due to the efficient quenching effect between ferrocene-H2-ferrocene (Fc-H2-Fc) and Pdots, i.e., the signal "off" state. When the aptasensor is incubated with the oligonucleotide sequence S2 to replace Fc-H2-Fc, obvious ECL recovery occurs, i.e., the signal "on" state, which can be used to sequentially detect ABR. The limit of detection (LOD) for DON is 0.73 fg·mL-1 in the range of 5.0 to 50 ng·mL-1; and the LOD for ABR is ∼0.38 pg·mL-1 in the range of 1.25 pg·mL-1 to 1.25 μg·mL-1. The as-designed ECL aptasensor exhibits good stability and reproducibility, high specificity, and favorable practicality. Therefore, this work provides a new approach for assays of DON and ABR in food safety and can be used as a model to design an ultrasensitive ECL biosensor for multitarget detection.
Collapse
Affiliation(s)
- Shi Xiang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yan Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Xiao L, Luo L, Liu J, Liu L, Han H, Xiao R, Guo L, Xie J, Tang L. A Glycoprotein-Based Surface-Enhanced Raman Spectroscopy-Lateral Flow Assay Method for Abrin and Ricin Detection. Toxins (Basel) 2024; 16:312. [PMID: 39057952 PMCID: PMC11280971 DOI: 10.3390/toxins16070312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Abrin and ricin, both type II ribosome-inactivating proteins, are toxins of significant concern and are under international restriction by the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. The development of a rapid and sensitive detection method for these toxins is of the utmost importance for the first emergency response. Emerging rapid detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and lateral flow assay (LFA), have garnered attention due to their high sensitivity, good selectivity, ease of operation, low cost, and disposability. In this work, we generated stable and high-affinity nanotags, via an efficient freezing method, to serve as the capture module for SERS-LFA. We then constructed a sandwich-style lateral flow test strip using a pair of glycoproteins, asialofetuin and concanavalin A, as the core affinity recognition molecules, capable of trace measurement for both abrin and ricin. The limit of detection for abrin and ricin was 0.1 and 0.3 ng/mL, respectively. This method was applied to analyze eight spiked white powder samples, one juice sample, and three actual botanic samples, aligning well with cytotoxicity assay outcomes. It demonstrated good inter-batch and intra-batch reproducibility among the test strips, and the detection could be completed within 15 min, indicating the suitability of this SERS-LFA method for the on-site rapid detection of abrin and ricin toxins.
Collapse
Affiliation(s)
- Lan Xiao
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; (L.X.)
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Li Luo
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
- Guangdong Lifotronic Biomedical Technology Co., Ltd., Dongguan 523808, China
| | - Jia Liu
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
- College of Pharmacy, Hebei Science and Technology University, Shijiazhuang 050018, China
| | - Luyao Liu
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; (L.X.)
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Han Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Rui Xiao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Guo
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Li Tang
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; (L.X.)
| |
Collapse
|
3
|
Diep Trinh TN, Trinh KTL, Lee NY. Microfluidic advances in food safety control. Food Res Int 2024; 176:113799. [PMID: 38163712 DOI: 10.1016/j.foodres.2023.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Food contamination is a global concern, particularly in developing countries. Two main types of food contaminants-chemical and biological-are common problems that threaten human health. Therefore, rapid and accurate detection methods are required to address the threat of food contamination. Conventional methods employed to detect these two types of food contaminants have several limitations, including high costs and long analysis time. Alternatively, microfluidic technology, which allows for simple, rapid, and on-site testing, can enable us to control food safety in a timely, cost-effective, simple, and accurate manner. This review summarizes advances in microfluidic approaches to detect contaminants in food. Different detection methods have been applied to microfluidic platforms to identify two main types of contaminants: chemical and biological. For chemical contaminant control, the application of microfluidic approaches for detecting heavy metals, pesticides, antibiotic residues, and other contaminants in food samples is reviewed. Different methods including enzymatic, chemical-based, immunoassay-based, molecular-based, and electrochemical methods for chemical contaminant detection are discussed based on their working principle, the integration in microfluidic platforms, advantages, and limitations. Microfluidic approaches for foodborne pathogen detection, from sample preparation to final detection, are reviewed to identify foodborne pathogens. Common methods for foodborne pathogens screening, namely immunoassay, nucleic acid amplification methods, and other methods are listed and discussed; highlighted examples of recent studies are also reviewed. Challenges and future trends that could be employed in microfluidic design and fabrication process to address the existing limitations for food safety control are also covered. Microfluidic technology is a promising tool for food safety control with high efficiency and applicability. Miniaturization, portability, low cost, and samples and reagents saving make microfluidic devices an ideal choice for on-site detection, especially in low-resource areas. Despite many advantages of microfluidic technology, the wide manufacturing of microfluidic devices still demands intensive studies to be conducted for user-friendly and accurate food safety control. Introduction of recent advances of microfluidic devices will build a comprehensive understanding of the technology and offer comparative analysis for future studies and on-site application.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Viet Nam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
4
|
Liu Z, Tong Z, Wu Y, Liu B, Feng S, Mu X, Wang J, Du B, Xu J, Liu S. A New Method for Abrin Detection Based on the Interaction between Target Molecules and Fluorescently Labeled Aptamers on Magnetic Microspheres. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6977. [PMID: 36234322 PMCID: PMC9573059 DOI: 10.3390/ma15196977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
A quantitative structure-activity relationship (QSAR) model for the structure and affinity of abrin aptamers was established. A higher affinity abrin aptamer based on the established QSAR model was screened by site-directed mutagenesis. The fluorescence quenching effect between magnetic microspheres and fluorescent molecules was studied for the first time. A new method for abrin detection based on the interaction between target molecules and fluorescently labeled aptamers on magnetic microspheres was developed, with the detection limit of 5 ng mL-1. This method can overcome the influence of complex environmental interferents in abrin detection and can meet the analysis requirements for simulated samples such as water, soil, and food.
Collapse
|
5
|
Exploring carbohydrate binding module fusions and Fab fragments in a cellulose-based lateral flow immunoassay for detection of cystatin C. Sci Rep 2022; 12:5478. [PMID: 35361862 PMCID: PMC8970072 DOI: 10.1038/s41598-022-09454-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
This paper presents a lateral flow assay (LFA) for the quantitative, fluorescence-based detection of the kidney biomarker cystatin C that features conjugates of capture antibodies and fusions of carbohydrate binding modules (CBM) with ZZ domains anchored on cellulose deposited over nitrocellulose (NC). The ZZ-CBM3 fusion provides a biomolecular interface between the cellulose layer and the Fc portion of the capture antibodies. By resorting to detection Fab fragments that lack the Fc portion we overcome the observed interference of full-length detection antibodies with the ZZ-CBM3 fusion at the test lines. Using the new LFA architecture, a linear concentration–response relationship was observed in the 0–10 ng/mL cystatin C concentration range, which is compatible with the clinically normal (5–120 ng/mL) and abnormal (> 250 ng/mL) levels of cystatin C, as long as proper dilutions are made. An inter assay CoV of 0.72% was obtained. Finally, mock urine samples characteristic of normal (100 ng/mL) and kidney tubular disease (4000 ng/mL) patients were successfully analyzed. Overall, we demonstrate an innovative LFA architecture that combines NC strips with layered cellulose, ZZ-CBM3 fusions and fluorescently labeled Fab fragments.
Collapse
|
6
|
Luo L, Yang J, Li Z, Xu H, Guo L, Wang L, Wang Y, Luo L, Wang J, Zhang P, Yang R, Kang W, Xie J. Label-free differentiation and quantification of ricin, abrin from their agglutinin biotoxins by surface plasmon resonance. Talanta 2022; 238:122860. [PMID: 34857316 DOI: 10.1016/j.talanta.2021.122860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/31/2021] [Accepted: 09/05/2021] [Indexed: 01/17/2023]
Abstract
Here we describe an affinity molecule-directed surface plasmon resonance (SPR) immunosensor for a label-free, differentiation and quantification of ricin and abrin from their structural highly like agglutinin biotoxins. By an introduction of protein G as the affinity capturing molecule, we fulfilled a complete strategy contains (i) screening monoclonal antibodies to be paired in a sandwiched format, (ii) differentiate quantification from the agglutinin, (iii) ascertain of active from inactive biotoxin, and (iv) structural identification of captured biotoxins on a single chip. By the aid of an enrichment step from immunomagnetic beads, we could accurately measure ricin or abrin with a concentration lowered to 0.6 ng/mL (10 pM) in different complex matrices such as stevia, protein powder, and human plasma, with linear ranges of two or three orders of magnitude, and satisfied recovery. We then differentially quantified the mixed crude extracts from castor beans and jequirity peas, and real samples from the fourth OPCW biotoxin exercise to prove the practical availability. We further provided a SPR-mass spectrometric evidence directly obtained from Protein G affinity chip via a noncovalent molecule surface for the first time for definitely structural identification for crude extracts.
Collapse
Affiliation(s)
- Li Luo
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jiewei Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Zhi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Lili Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuxia Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pingping Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Weijun Kang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| |
Collapse
|
7
|
Affiliation(s)
- Song-Gao Zhang
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Yi Huang
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Central Laboratory, Fujian Provincial Hospital, Fujian, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
8
|
Zhang D, Qi Y, Cui Y, Song W, Wang X, Liu M, Cai X, Luo X, Liu X, Sun S. Rapid Detection of Cysticercus cellulosae by an Up-Converting Phosphor Technology-Based Lateral-Flow Assay. Front Cell Infect Microbiol 2021; 11:762472. [PMID: 34858877 PMCID: PMC8631268 DOI: 10.3389/fcimb.2021.762472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Cysticercosis is a neglected tropical disease caused by the larvae of Taenia solium in pigs and humans. The current diagnosis of porcine cysticercosis is difficult, and traditional pathological tests cannot meet the needs of detection. This study established a UPT-LF assay for the detection of Cysticercus cellulosae. UCP particles were bound to two antigens, TSOL18 and GP50; samples were captured, and the signal from the UCP particles was converted into a detectable signal for analysis using a biosensor. Compared to ELISA, UPT-LF has higher sensitivity and specificity, with a sensitivity of 93.59% and 97.44%, respectively, in the case of TSOL18 and GP50 antigens and a specificity of 100% for both. Given its rapidness, small volume, high sensitivity and specificity, and good stability and reproducibility, this method could be used in the diagnosis of cysticercosis.
Collapse
Affiliation(s)
- Dejia Zhang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Yu Qi
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Yaxuan Cui
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Weiyi Song
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Xinrui Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuepeng Cai
- Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etioloical Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricuitural Sciences, Lanzhou, China
| | - Xuenong Luo
- Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etioloical Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricuitural Sciences, Lanzhou, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shumin Sun
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Zhang M, Shi L, Liu X, Qian M, Qi H. “Signal‐on” Electrogenerated Chemiluminescence Biosensing Method for the Determination of Matrix Metalloproteinase 2. ELECTROANAL 2021. [DOI: 10.1002/elan.202100284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mengyu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P.R. China
| | - Liang Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P.R. China
- School of Electronic Information Engineering Xi'an Technological University Xi'an 710021 P.R. China
| | - Xiaoru Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P.R. China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P.R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P.R. China
| |
Collapse
|
10
|
Pillai CA, Manickam G, Thirunavukkarasu N, Pillai SP, Morse SA, Avila JR, Hodge DR, Anderson K, Sharma S. Evaluation of an Electrochemiluminescence Assay for the Rapid Detection of Abrin Toxin. Health Secur 2021; 19:431-441. [PMID: 34227874 DOI: 10.1089/hs.2020.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this article, we detail a comprehensive laboratory evaluation of an immunoassay for the rapid detection of abrin using the Meso Scale Diagnostics Sector PR2 Model 1800. For the assay evaluation, we used inclusivity and exclusivity panels comprised of extracts of 11 Abrus precatorius cultivars and 35 near-neighbor plants, 65 lectins, 26 white powders, 11 closely related toxins and proteins, and a pool of 30 BioWatch filter extracts. The results show that the Meso Scale Diagnostics abrin detection assay exhibits good sensitivity and specificity with a limit of detection of 4 ng/mL. However, the dynamic range of the assay for the quantitation of abrin was limited. We observed a hook effect at higher abrin concentrations, which can lead to potential false negative results. A modification of the assay protocol that incorporates extra wash steps can decrease the hook effect and the potential for false negative results.
Collapse
Affiliation(s)
- Christine A Pillai
- Christine A. Pillai and Gowri Manickam, PhD, are ORISE Fellow Research Scientists; Nagarajan Thirunavukkarasu, PhD, is a Microbiologist; and Shashi Sharma, PhD, is Principal Investigator; all at the Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, US Food and Drug Administration, College Park, MD. Segaran P. Pillai, PhD, FAAM, SM(NRCM), SM(ASCP), is Director, Office of Laboratory Science and Safety, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD. Stephen A. Morse, PhD, MSPH, is Senior Advisor, CDC Division of Select Agents and Toxins, IHRC, Inc., Atlanta, GA. Julie R. Avila, MS, is Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA. David R. Hodge, PhD, and Kevin Anderson, PhD, are Program Managers; both in the Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| | - Gowri Manickam
- Christine A. Pillai and Gowri Manickam, PhD, are ORISE Fellow Research Scientists; Nagarajan Thirunavukkarasu, PhD, is a Microbiologist; and Shashi Sharma, PhD, is Principal Investigator; all at the Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, US Food and Drug Administration, College Park, MD. Segaran P. Pillai, PhD, FAAM, SM(NRCM), SM(ASCP), is Director, Office of Laboratory Science and Safety, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD. Stephen A. Morse, PhD, MSPH, is Senior Advisor, CDC Division of Select Agents and Toxins, IHRC, Inc., Atlanta, GA. Julie R. Avila, MS, is Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA. David R. Hodge, PhD, and Kevin Anderson, PhD, are Program Managers; both in the Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| | - Nagarajan Thirunavukkarasu
- Christine A. Pillai and Gowri Manickam, PhD, are ORISE Fellow Research Scientists; Nagarajan Thirunavukkarasu, PhD, is a Microbiologist; and Shashi Sharma, PhD, is Principal Investigator; all at the Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, US Food and Drug Administration, College Park, MD. Segaran P. Pillai, PhD, FAAM, SM(NRCM), SM(ASCP), is Director, Office of Laboratory Science and Safety, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD. Stephen A. Morse, PhD, MSPH, is Senior Advisor, CDC Division of Select Agents and Toxins, IHRC, Inc., Atlanta, GA. Julie R. Avila, MS, is Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA. David R. Hodge, PhD, and Kevin Anderson, PhD, are Program Managers; both in the Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| | - Segaran P Pillai
- Christine A. Pillai and Gowri Manickam, PhD, are ORISE Fellow Research Scientists; Nagarajan Thirunavukkarasu, PhD, is a Microbiologist; and Shashi Sharma, PhD, is Principal Investigator; all at the Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, US Food and Drug Administration, College Park, MD. Segaran P. Pillai, PhD, FAAM, SM(NRCM), SM(ASCP), is Director, Office of Laboratory Science and Safety, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD. Stephen A. Morse, PhD, MSPH, is Senior Advisor, CDC Division of Select Agents and Toxins, IHRC, Inc., Atlanta, GA. Julie R. Avila, MS, is Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA. David R. Hodge, PhD, and Kevin Anderson, PhD, are Program Managers; both in the Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| | - Stephen A Morse
- Christine A. Pillai and Gowri Manickam, PhD, are ORISE Fellow Research Scientists; Nagarajan Thirunavukkarasu, PhD, is a Microbiologist; and Shashi Sharma, PhD, is Principal Investigator; all at the Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, US Food and Drug Administration, College Park, MD. Segaran P. Pillai, PhD, FAAM, SM(NRCM), SM(ASCP), is Director, Office of Laboratory Science and Safety, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD. Stephen A. Morse, PhD, MSPH, is Senior Advisor, CDC Division of Select Agents and Toxins, IHRC, Inc., Atlanta, GA. Julie R. Avila, MS, is Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA. David R. Hodge, PhD, and Kevin Anderson, PhD, are Program Managers; both in the Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| | - Julie R Avila
- Christine A. Pillai and Gowri Manickam, PhD, are ORISE Fellow Research Scientists; Nagarajan Thirunavukkarasu, PhD, is a Microbiologist; and Shashi Sharma, PhD, is Principal Investigator; all at the Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, US Food and Drug Administration, College Park, MD. Segaran P. Pillai, PhD, FAAM, SM(NRCM), SM(ASCP), is Director, Office of Laboratory Science and Safety, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD. Stephen A. Morse, PhD, MSPH, is Senior Advisor, CDC Division of Select Agents and Toxins, IHRC, Inc., Atlanta, GA. Julie R. Avila, MS, is Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA. David R. Hodge, PhD, and Kevin Anderson, PhD, are Program Managers; both in the Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| | - David R Hodge
- Christine A. Pillai and Gowri Manickam, PhD, are ORISE Fellow Research Scientists; Nagarajan Thirunavukkarasu, PhD, is a Microbiologist; and Shashi Sharma, PhD, is Principal Investigator; all at the Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, US Food and Drug Administration, College Park, MD. Segaran P. Pillai, PhD, FAAM, SM(NRCM), SM(ASCP), is Director, Office of Laboratory Science and Safety, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD. Stephen A. Morse, PhD, MSPH, is Senior Advisor, CDC Division of Select Agents and Toxins, IHRC, Inc., Atlanta, GA. Julie R. Avila, MS, is Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA. David R. Hodge, PhD, and Kevin Anderson, PhD, are Program Managers; both in the Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| | - Kevin Anderson
- Christine A. Pillai and Gowri Manickam, PhD, are ORISE Fellow Research Scientists; Nagarajan Thirunavukkarasu, PhD, is a Microbiologist; and Shashi Sharma, PhD, is Principal Investigator; all at the Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, US Food and Drug Administration, College Park, MD. Segaran P. Pillai, PhD, FAAM, SM(NRCM), SM(ASCP), is Director, Office of Laboratory Science and Safety, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD. Stephen A. Morse, PhD, MSPH, is Senior Advisor, CDC Division of Select Agents and Toxins, IHRC, Inc., Atlanta, GA. Julie R. Avila, MS, is Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA. David R. Hodge, PhD, and Kevin Anderson, PhD, are Program Managers; both in the Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| | - Shashi Sharma
- Christine A. Pillai and Gowri Manickam, PhD, are ORISE Fellow Research Scientists; Nagarajan Thirunavukkarasu, PhD, is a Microbiologist; and Shashi Sharma, PhD, is Principal Investigator; all at the Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, US Food and Drug Administration, College Park, MD. Segaran P. Pillai, PhD, FAAM, SM(NRCM), SM(ASCP), is Director, Office of Laboratory Science and Safety, Office of the Commissioner, US Food and Drug Administration, Silver Spring, MD. Stephen A. Morse, PhD, MSPH, is Senior Advisor, CDC Division of Select Agents and Toxins, IHRC, Inc., Atlanta, GA. Julie R. Avila, MS, is Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA. David R. Hodge, PhD, and Kevin Anderson, PhD, are Program Managers; both in the Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| |
Collapse
|
11
|
Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021; 146:13-32. [PMID: 33205784 DOI: 10.1039/d0an01883j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food safety and quality regulations inevitably call for sensitive and accurate analytical methods to detect harmful contaminants in food and to ensure safe food for the consumer. Both novel and well-established biorecognition elements, together with different transduction schemes, enable the simple and rapid analysis of various food contaminants. Upconversion nanoparticles (UCNPs) are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission. This unique photophysical feature, along with narrow emission bandwidths and large anti-Stokes shift, render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix. In this review, we show how this exciting technique has evolved into biosensing platforms for food quality and safety monitoring and highlight recent applications in the field.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Biochemistry/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | | | | | | |
Collapse
|
12
|
Worbs S, Kampa B, Skiba M, Hansbauer EM, Stern D, Volland H, Becher F, Simon S, Dorner MB, Dorner BG. Differentiation, Quantification and Identification of Abrin and Abrus precatorius Agglutinin. Toxins (Basel) 2021; 13:toxins13040284. [PMID: 33919561 PMCID: PMC8073929 DOI: 10.3390/toxins13040284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Abrin, the toxic lectin from the rosary pea plant Abrus precatorius, has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as Abrus precatorius agglutinin or the homologous toxin ricin from Ricinus communis are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related Abrus precatorius agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or A. precatorius agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for A. precatorius agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving A. precatorius.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Bettina Kampa
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Martin Skiba
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Eva-Maria Hansbauer
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Daniel Stern
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Hervé Volland
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - François Becher
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.V.); (F.B.); (S.S.)
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (S.W.); (B.K.); (M.S.); (E.-M.H.); (D.S.); (M.B.D.)
- Correspondence: ; Tel.: +49-30-18754-2500
| |
Collapse
|
13
|
Multiplex Immunoassay Techniques for On-Site Detection of Security Sensitive Toxins. Toxins (Basel) 2020; 12:toxins12110727. [PMID: 33233770 PMCID: PMC7699850 DOI: 10.3390/toxins12110727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Biological toxins are a heterogeneous group of high molecular as well as low molecular weight toxins produced by living organisms. Due to their physical and logistical properties, biological toxins are very attractive to terrorists for use in acts of bioterrorism. Therefore, among the group of biological toxins, several are categorized as security relevant, e.g., botulinum neurotoxins, staphylococcal enterotoxins, abrin, ricin or saxitoxin. Additionally, several security sensitive toxins also play a major role in natural food poisoning outbreaks. For a prompt response to a potential bioterrorist attack using biological toxins, first responders need reliable, easy-to-use and highly sensitive methodologies for on-site detection of the causative agent. Therefore, the aim of this review is to present on-site immunoassay platforms for multiplex detection of biological toxins. Furthermore, we introduce several commercially available detection technologies specialized for mobile or on-site identification of security sensitive toxins.
Collapse
|
14
|
Thiruvengadam M, Venkidasamy B, Subramanian U. Up-converting phosphor technology-based lateral flow assay for quantitative detection of β-hydroxybutyrate in biological samples. Anal Biochem 2019; 591:113546. [PMID: 31863728 DOI: 10.1016/j.ab.2019.113546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 11/29/2022]
Abstract
In the present study, a novel up-converting phosphor technology-based lateral flow (UPT-LF) assay was developed as a point of care testing method for the rapid and quantitative detection of β-Hydroxybutyrate (BHB) in milk and serum samples. BHB is one of the most important serum molecular markers not only in ketosis but also for other metabolic disorders in bovines. The developed UPT-LF assay has high sensitivity compared with existing kits in the market for BHB quantification. The detection limit of UPT-BHB- LF assay, with a coefficient of variation (CV) < 10% was 0.01 mM, which is lower than the clinical diagnosis cutoff value of serum BHB (1 mM); while 0.1 mM is the standard level of BHB in milk samples. The relatively good stability and reproducibility of UPT-LF assay with CV<10% results for both serum and milk samples at various storage temperatures demonstrates the superiority of this method and therefore it could be used as a point of care method for the quantitative detection of BHB in the biological samples for veterinary applications. The claimed performance of this assay along with a shorter detection time makes it a viable point-of-care method for the quantitative detection of BHB in the biological samples of veterinary applications.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Baskar Venkidasamy
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, 600051, Tamil Nadu, India.
| |
Collapse
|
15
|
Yang YQ, Yang YC, Liu MH, Chan YH. FRET-Created Traffic Light Immunoassay Based on Polymer Dots for PSA Detection. Anal Chem 2019; 92:1493-1501. [PMID: 31815438 DOI: 10.1021/acs.analchem.9b04747] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There have been enormous efforts for developing the next generations of fluorometric lateral flow immunochromatographic strip (ICTS) owing to the great advances in fluorescent materials in these years. Here we developed one type of fluorometric ICTS based on ultrabright semiconducting polymer dots (Pdots) in which the traffic light-like signals were created by energy transfer depending on the target concentration. This platform was successfully applied for qualitatively rapid screening and quantitatively precise analysis of prostate-specific antigen (PSA) in 10 min from merely one drop of the whole blood sample. This FRET-created traffic light ICTS possesses excellent specificity and an outstanding detection sensitivity of 0.32 ng/mL for PSA. Moreover, we conducted proof-of-concept experiments to demonstrate its potential for multiplexed detection of cancer biomarkers at the same time in an individual test strip by taking advantage of the traffic light signals. To the best of our knowledge, it is the first model of a traffic light-like immunoassay test strip based on Pdots with multiplexing ability. These results would pave an avenue for designing the next generation of point-of-care diagnostics.
Collapse
Affiliation(s)
- Yong-Quan Yang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Chi Yang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
16
|
You PY, Li FC, Liu MH, Chan YH. Colorimetric and Fluorescent Dual-Mode Immunoassay Based on Plasmon-Enhanced Fluorescence of Polymer Dots for Detection of PSA in Whole Blood. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9841-9849. [PMID: 30784256 DOI: 10.1021/acsami.9b00204] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although enormous efforts have been devoted to the development of new types of fluorometric immunochromatographic test strip (ICTS) with improved sensitivity over the past years, it still remains a big challenge to design ICTS with colorimetric and fluorescent bimodal signal readout for rapid yet accurate detection of cancer markers in a clinic. Scientists have tried to prepare bimodal reporters by combining fluorescent dyes with metal nanomaterials, but their fluorescence was easily quenched by metal nanomaterials through surface energy transfer, making dual colorimetric and fluorometric ICTS very difficult to be achieved. As compared to conventional fluorescent probes, semiconducting polymer dots (Pdots) exhibit extraordinary fluorescence brightness and facile surface functionalization, which are very suitable to be engineered as bimodal signal reporting reagents. Here, we integrated highly fluorescent Pdots with strongly plasmonic Au nanorods to form Pdot-Au hybrid nanocomposites with dual colorimetric and fluorescent readout abilities. We further utilized these nanohybrids in ICTS for qualitatively fast screening (colorimetry) as well as quantitatively accurate determination (fluorometry) of prostate-specific antigen (PSA) within 10 min. By taking advantage of the plasmon-enhanced fluorescence of Pdots on Au nanorods, this immunoassay possesses much better detection sensitivity of 1.07 pg/mL for PSA, which is at least 2 orders of magnitude lower than that of conventional fluorometric ICTS. Moreover, the direct detection of PSA from human whole blood collected without sample pretreatment makes this Pdot-based ICTS platform promising for on-site point-of-care diagnostics.
Collapse
Affiliation(s)
- Pei-Yun You
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30050 , Taiwan
| | - Fang-Chu Li
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30050 , Taiwan
| | - Ming-Ho Liu
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30050 , Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30050 , Taiwan
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 30050 , Taiwan
| |
Collapse
|
17
|
Huang Y, Zhang S, Zheng Q, Li Y, Yu L, Wu Q, Zheng J, Wu Y, Qiu F, Gao Q, Zhang J. Development of up-converting phosphor technology-based lateral flow assay for quantitative detection of serum PIVKA-II: Inception of a near-patient PIVKA-II detection tool. Clin Chim Acta 2019; 488:202-208. [DOI: 10.1016/j.cca.2018.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 01/24/2023]
|
18
|
Application of UPT-POCT in Anti-bioterrorism and Biosecurity. PRINCIPLES AND APPLICATIONS OF UP-CONVERTING PHOSPHOR TECHNOLOGY 2019. [PMCID: PMC7121573 DOI: 10.1007/978-981-32-9279-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the exception of toxins, bioterrorism agents are mainly microorganisms, many of which cause serious infectious diseases. Up-converting phosphor technology-based point-of-care testing (UPT-POCT) can detect bioterrorism agents from various samples with high sensitivity and specificity, in particular it shows robust performance for complicated samples, such as food, powder, viscera and grains. The tolerance of UPT-POCT to sample is based on the physical and luminescence stability of UCNPs, the stable covalent interaction between UCNPs and antibody, as well as the strong buffering capacity of the detection system. Reliable results can be obtained in a short time period using a portable biosensor by nonprofessionals owing to the simple nature of UPT-POCT operation and sample pre-treatment.
Collapse
|
19
|
Deng J, Yang M, Wu J, Zhang W, Jiang X. A Self-Contained Chemiluminescent Lateral Flow Assay for Point-of-Care Testing. Anal Chem 2018; 90:9132-9137. [PMID: 30004664 DOI: 10.1021/acs.analchem.8b01543] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunoassays whose readouts rely on chemiluminescence are increasingly useful for a broad range of analytical applications, but they are rarely made into point-of-care (POC) format because of the complex reagents required (some reagents have to be stored in low temperatures, and some reagents have to be freshly made right before the assay). This study reports a self-contained chemiluminescent lateral flow assay (CLFA), which prestores all necessary reagents. This CLFA contains three parts: the normal lateral flow assay (LFA) strip, the chemiluminescence substrate pad, and the polycarbonate (PC) holder. On the LFA strip, we simultaneously labeled horseradish peroxidase (HRP) and antibody on the gold nanoparticles (AuNPs) for the conjugate pad. For the substrate pad, we used sodium perborate as the oxidant and lyophilized the chemiluminescence substrate on the glass fiber, which allows long-term storage. After the transfer of substrate from the substrate pad to the nitrocellulose (NC) membrane, we captured the chemiluminescence signal for the quantification of the targets. The HRP on the AuNPs can amplify the chemiluminescence signal efficiently. We used this CLFA system to detect both macromolecules and small molecules successfully. This self-contained and easily processable device is exceedingly appropriate for rapid detection and is a convenient platform for POC testing.
Collapse
Affiliation(s)
- Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , China.,Sino-Danish College , Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , Beijing 100049 , China.,Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Mingzhu Yang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , China
| | - Jing Wu
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , China
| | - Wei Zhang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , China.,Sino-Danish College , Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , China.,Sino-Danish College , Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
20
|
Fang CC, Chou CC, Yang YQ, Wei-Kai T, Wang YT, Chan YH. Multiplexed Detection of Tumor Markers with Multicolor Polymer Dot-Based Immunochromatography Test Strip. Anal Chem 2018; 90:2134-2140. [DOI: 10.1021/acs.analchem.7b04411] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chia-Chia Fang
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 80424, Taiwan
| | - Chia-Cheng Chou
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 80424, Taiwan
| | - Yong-Quan Yang
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 80424, Taiwan
| | - Tsai Wei-Kai
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 80424, Taiwan
| | - Yeng-Tseng Wang
- Department
of Biochemistry, Kaohsiung Medical University, 100 Tzyou first Road, Kaohsiung 80708, Taiwan
| | - Yang-Hsiang Chan
- Department
of Chemistry, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 80424, Taiwan
| |
Collapse
|
21
|
He X, Patfield S, Cheng LW, Stanker LH, Rasooly R, McKeon TA, Zhang Y, Brandon DL. Detection of Abrin Holotoxin Using Novel Monoclonal Antibodies. Toxins (Basel) 2017; 9:E386. [PMID: 29182545 PMCID: PMC5744106 DOI: 10.3390/toxins9120386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Accepted: 11/23/2017] [Indexed: 01/17/2023] Open
Abstract
Abrin, a member of the ribosome-inactivating protein family, is produced by the Abrus precatorius plant. Having the potential to pose a severe threat to both human and animal health, abrin is classified as a Select Agent by the U.S. Department of Health and Human Services. However, an immunoassay that is specific for intact abrin holotoxin has not yet been reported. In this study, seven new monoclonal antibodies (mAbs), designated as Abrin-1 through Abrin-7 have been developed. Isotyping analyses indicate these mAbs have IgG1, IgG2a, or IgG2b heavy-chains and kappa light-chains. Western blot analyses identified two abrin A-chain specific mAbs, Abrin-1 and Abrin-2, and four B-chain specific mAbs (Abrin-3, -5, -6, and -7). A sandwich enzyme-linked immunosorbent assay (ELISA), capable of detecting a mixture of abrin isoforms and agglutinins was developed using B-chain specific Abrin-3 for capture and A-chain specific Abrin-2 as detector. The ELISA is highly sensitive and detects 1 ng/mL of the abrin holotoxin in phosphate-buffered saline, nonfat milk, and whole milk, significantly below concentrations that would pose a health concern for consumers. This ELISA also detects native abrin in plant extracts with a very low background signal. The new abrin mAbs and ELISA should be useful for detecting this potent toxin in the milk supply chain and other complex matrices.
Collapse
Affiliation(s)
- Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Stephanie Patfield
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Luisa W Cheng
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Larry H Stanker
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Reuven Rasooly
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Thomas A McKeon
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Yuzhu Zhang
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| | - David L Brandon
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
22
|
Hansbauer EM, Worbs S, Volland H, Simon S, Junot C, Fenaille F, Dorner BG, Becher F. Rapid Detection of Abrin Toxin and Its Isoforms in Complex Matrices by Immuno-Extraction and Quantitative High Resolution Targeted Mass Spectrometry. Anal Chem 2017; 89:11719-11727. [PMID: 28984440 DOI: 10.1021/acs.analchem.7b03189] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abrin expressed by the tropical plant Abrus precatorius is highly dangerous with an estimated human lethal dose of 0.1-1 μg/kg body weight. Due to the potential misuse as a biothreat agent, abrin is in the focus of surveillance. Fast and reliable methods are therefore of great importance for early identification. Here, we have developed an innovative and rapid multiepitope immuno-mass spectrometry workflow which is capable of unambiguously differentiating abrin and its isoforms in complex matrices. Toxin-containing samples were incubated with magnetic beads coated with multiple abrin-specific antibodies, thereby concentrating and extracting all the isoforms. Using an ultrasonic bath for digestion enhancement, on-bead trypsin digestion was optimized to obtain efficient and reproducible peptide recovery in only 30 min. Improvements made to the workflow reduced total analysis time to less than 3 h. A large panel of common and isoform-specific peptides was monitored by multiplex LC-MS/MS through the parallel reaction monitoring mode on a quadrupole-Orbitrap high resolution mass spectrometer. Additionally, absolute quantification was accomplished by isotope dilution with labeled AQUA peptides. The newly established method was demonstrated as being sensitive and reproducible with quantification limits in the low ng/mL range in various food and clinical matrices for the isoforms of abrin and also the closely related, less toxic Abrus precatorius agglutinin. This method allows for the first time the rapid detection, differentiation, and simultaneous quantification of abrin and its isoforms by mass spectrometry.
Collapse
Affiliation(s)
- Eva-Maria Hansbauer
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute , Berlin, Germany
| | - Hervé Volland
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Stéphanie Simon
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etudes et de Recherches en Immunoanalyse, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Christophe Junot
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - François Fenaille
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute , Berlin, Germany
| | - François Becher
- Service de Pharmacologie et Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay , F-91191 Gif-sur-Yvette cedex, France
| |
Collapse
|
23
|
A Monoclonal-Monoclonal Antibody Based Capture ELISA for Abrin. Toxins (Basel) 2017; 9:toxins9100328. [PMID: 29057799 PMCID: PMC5666375 DOI: 10.3390/toxins9100328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023] Open
Abstract
Abrin, one of the most highly potent toxins in the world, is derived from the plant, Abrus precatorius. Because of its high toxicity, it poses potential bioterror risks. Therefore, a need exists for new reagents and technologies that would be able to rapidly detect abrin contamination as well as lead to new therapeutics. We report here a group of abrin-specific monoclonal antibodies (mAbs) that recognize abrin A-chain, intact A–B chain toxin, and agglutinin by Western blot. Additionally, these mAbs were evaluated for their ability to serve as capture antibodies for a sandwich (capture) ELISA. All possible capture–detector pairs were evaluated and the best antibody pair identified and optimized for a capture ELISA. The capture ELISA based on this capture–detector mAb pair had a limit of detection (L.O.D) of ≈1 ng/mL measured using three independent experiments. The assay did not reveal any false positives with extracts containing other potential ribosome-inactivating proteins (RIPs). Thus, this new capture ELISA uses mAbs for both capture and detection; has no cross-reactivity against other plant RIPs; and has a sensitivity comparable to other reported capture ELISAs using polyclonal antibodies as either capture or detector.
Collapse
|
24
|
Yang X, Liu L, Hao Q, Zou D, Zhang X, Zhang L, Li H, Qiao Y, Zhao H, Zhou L. Development and Evaluation of Up-Converting Phosphor Technology-Based Lateral Flow Assay for Quantitative Detection of NT-proBNP in Blood. PLoS One 2017; 12:e0171376. [PMID: 28151978 PMCID: PMC5289575 DOI: 10.1371/journal.pone.0171376] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
A newly assay, up-converting phosphor technology-based lateral flow (UPT-LF) assay, was developed for rapid and quantitative detection of N-terminal fragment of B-type natriuretic peptide precursor (NT-proBNP), one of the most important serum molecular maker of heat failure, in plasma samples as a point of care testing (POCT) method for diagnosis of acute heart failure. Human plasma from 197 patients with acute heart failure and 200 healthy controls was assessed using the UPT-LF assay, in a comparison with a Roche Elecsys assay. The limit of detection of the UPT-LF assay, with a coefficient of variation (CV) of less than 15%, was 116 ng/L, which is lower than the clinical diagnosis cutoff (150 ng/mL). The linear range was 50-35,000 ng/L. The CVs were less than 10% for both UPT-LF and Roche Elecsys assays for plasma samples under different storages, demonstrating the good stability and reproducibility. There are certain linear correlations between the results of UPT-LF and Roche Elecsys assay for EDTA-K2 and heparin-anticoagulated plasma, as well as for serum samples. For UPT-LF assay, there is a significant correlation between the values derived from analysis of EDTA-K2 and heparin-anticoagulated plasma samples (R = 0.995). No statistically significant difference was found between serum and plasma samples for UPT-LF assay. Our results demonstrate that NT-proBNP levels in healthy adults are elevated with age and had a relationship with sex, and with the age increase the NT-proBNP levels of females are significantly higher than those of males (p<0.01). The UPT-LF assay has a high reproducibility, stability, sensitivity, specificity, and is consistent with Roche Elecsys assay, and therefore it could be used as a POCT method for the quantitative detection of NT-proBNP in blood for clinical diagnosis and research of acute heart failure.
Collapse
Affiliation(s)
- Xiaoli Yang
- Clinical laboratory, General Hospital of Chinese People’s Armed Police Forces, Hai Dian District, Beijing, China
| | - Liping Liu
- Clinical laboratory, General Hospital of Chinese People’s Armed Police Forces, Hai Dian District, Beijing, China
| | - Qingfang Hao
- Clinical laboratory, General Hospital of Chinese People’s Armed Police Forces, Hai Dian District, Beijing, China
| | - Deyong Zou
- Clinical laboratory, General Hospital of Chinese People’s Armed Police Forces, Hai Dian District, Beijing, China
| | - Xiaoli Zhang
- Clinical laboratory, General Hospital of Chinese People’s Armed Police Forces, Hai Dian District, Beijing, China
| | - Liping Zhang
- Clinical laboratory, General Hospital of Chinese People’s Armed Police Forces, Hai Dian District, Beijing, China
| | - Hongmei Li
- Clinical laboratory, General Hospital of Chinese People’s Armed Police Forces, Hai Dian District, Beijing, China
| | - Yong Qiao
- Beijing Hotgen Biotech Co. Ltd., Da Xing Industrial Development Zone, Beijing, China
| | - Huansheng Zhao
- Beijing Hotgen Biotech Co. Ltd., Da Xing Industrial Development Zone, Beijing, China
| | - Lei Zhou
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No. BZ0329), Beijing, P.R. China
| |
Collapse
|
25
|
Gong X, Cai J, Zhang B, Zhao Q, Piao J, Peng W, Gao W, Zhou D, Zhao M, Chang J. A review of fluorescent signal-based lateral flow immunochromatographic strips. J Mater Chem B 2017; 5:5079-5091. [DOI: 10.1039/c7tb01049d] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent signal-based lateral flow immunochromatographic strips (FLFICS) have received great expectations since they combine the quantitative sensitivity of fluorescence analysis and the simplicity, rapidness, and portability of a common lateral flow immunochromatographic strip (LFICS).
Collapse
|