1
|
Kim KD, Lieberman PM. Viral remodeling of the 4D nucleome. Exp Mol Med 2024; 56:799-808. [PMID: 38658699 PMCID: PMC11058267 DOI: 10.1038/s12276-024-01207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamic spatial organization of genomes across time, referred to as the four-dimensional nucleome (4DN), is a key component of gene regulation and biological fate. Viral infections can lead to a reconfiguration of viral and host genomes, impacting gene expression, replication, latency, and oncogenic transformation. This review provides a summary of recent research employing three-dimensional genomic methods such as Hi-C, 4C, ChIA-PET, and HiChIP in virology. We review how viruses induce changes in gene loop formation between regulatory elements, modify chromatin accessibility, and trigger shifts between A and B compartments in the host genome. We highlight the central role of cellular chromatin organizing factors, such as CTCF and cohesin, that reshape the 3D structure of both viral and cellular genomes. We consider how viral episomes, viral proteins, and viral integration sites can alter the host epigenome and how host cell type and conditions determine viral epigenomes. This review consolidates current knowledge of the diverse host-viral interactions that impact the 4DN.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea.
| | | |
Collapse
|
2
|
Miyamura Y, Kamei S, Matsuo M, Yamazaki M, Usuki S, Yasunaga K, Uemura A, Satou Y, Ohguchi H, Minami T. FOXO1 stimulates tip cell-enriched gene expression in endothelial cells. iScience 2024; 27:109161. [PMID: 38444610 PMCID: PMC10914484 DOI: 10.1016/j.isci.2024.109161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Forkhead box O (FOXO) family proteins are expressed in various cells, and play crucial roles in cellular metabolism, apoptosis, and aging. FOXO1-null mice exhibit embryonic lethality due to impaired endothelial cell (EC) maturation and vascular remodeling. However, FOXO1-mediated genome-wide regulation in ECs remains unclear. Here, we demonstrate that VEGF dynamically regulates FOXO1 cytosol-nucleus translocation. FOXO1 re-localizes to the nucleus via PP2A phosphatase. RNA-seq combined with FOXO1 overexpression/knockdown in ECs demonstrated that FOXO1 governs the VEGF-responsive tip cell-enriched genes, and further inhibits DLL4-NOTCH signaling. Endogenous FOXO1 ChIP-seq revealed that FOXO1 binds to the EC-unique tip-enriched genes with co-enrichment of EC master regulators, and the condensed chromatin region as a pioneer factor. We identified new promoter/enhancer regions of the VEGF-responsive tip cell genes regulated by FOXO1: ESM1 and ANGPT2. This is the first study to identify cell type-specific FOXO1 functions, including VEGF-mediated tip cell definition in primary cultured ECs.
Collapse
Affiliation(s)
- Yuri Miyamura
- Divison of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shunsuke Kamei
- Divison of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto 860-0811, Japan
| | - Misaki Matsuo
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaya Yamazaki
- Division of Medical Biochemistry, Graduate School of Medical Science, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto 860-8556, Japan
| | - Keiichiro Yasunaga
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto 860-8556, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiroto Ohguchi
- Division of Disease Epigenetics, IRDA, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takashi Minami
- Divison of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
3
|
Thakur A, Park K, Cullum R, Fuglerud BM, Khoshnoodi M, Drissler S, Stephan TL, Lotto J, Kim D, Gonzalez FJ, Hoodless PA. HNF4A guides the MLL4 complex to establish and maintain H3K4me1 at gene regulatory elements. Commun Biol 2024; 7:144. [PMID: 38297077 PMCID: PMC10830483 DOI: 10.1038/s42003-024-05835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Hepatocyte nuclear factor 4A (HNF4A/NR2a1), a transcriptional regulator of hepatocyte identity, controls genes that are crucial for liver functions, primarily through binding to enhancers. In mammalian cells, active and primed enhancers are marked by monomethylation of histone 3 (H3) at lysine 4 (K4) (H3K4me1) in a cell type-specific manner. How this modification is established and maintained at enhancers in connection with transcription factors (TFs) remains unknown. Using analysis of genome-wide histone modifications, TF binding, chromatin accessibility and gene expression, we show that HNF4A is essential for an active chromatin state. Using HNF4A loss and gain of function experiments in vivo and in cell lines in vitro, we show that HNF4A affects H3K4me1, H3K27ac and chromatin accessibility, highlighting its contribution to the establishment and maintenance of a transcriptionally permissive epigenetic state. Mechanistically, HNF4A interacts with the mixed-lineage leukaemia 4 (MLL4) complex facilitating recruitment to HNF4A-bound regions. Our findings indicate that HNF4A enriches H3K4me1, H3K27ac and establishes chromatin opening at transcriptional regulatory regions.
Collapse
Affiliation(s)
- Avinash Thakur
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Kwangjin Park
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Bettina M Fuglerud
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | | | - Sibyl Drissler
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Tabea L Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Donghwan Kim
- Center of Cancer Research, National Cancer Institute, Bethesda, 2089, USA
| | - Frank J Gonzalez
- Center of Cancer Research, National Cancer Institute, Bethesda, 2089, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4, Canada.
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, V6T 1Z4, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| |
Collapse
|
4
|
Mandal M, Maienschein-Cline M, Hu Y, Mohsin A, Veselits ML, Wright NE, Okoreeh MK, Yoon YM, Veselits J, Georgopoulos K, Clark MR. BRWD1 orchestrates small pre-B cell chromatin topology by converting static to dynamic cohesin. Nat Immunol 2024; 25:129-141. [PMID: 37985858 PMCID: PMC11542586 DOI: 10.1038/s41590-023-01666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/29/2023] [Indexed: 11/22/2023]
Abstract
Lymphocyte development consists of sequential and mutually exclusive cell states of proliferative selection and antigen receptor gene recombination. Transitions between each state require large, coordinated changes in epigenetic landscapes and transcriptional programs. How this occurs remains unclear. Here we demonstrate that in small pre-B cells, the lineage and stage-specific epigenetic reader bromodomain and WD repeat-containing protein 1 (BRWD1) reorders three-dimensional chromatin topology to affect the transition between proliferative and gene recombination molecular programs. BRWD1 regulated the switch between poised and active enhancers interacting with promoters, and coordinated this switch with Igk locus contraction. BRWD1 did so by converting chromatin-bound static to dynamic cohesin competent to mediate long-range looping. ATP-depletion revealed cohesin conversion to be the main energetic mechanism dictating dynamic chromatin looping. Our findings provide a new mechanism of cohesin regulation and reveal how cohesin function can be dictated by lineage contextual mechanisms to facilitate specific cell fate transitions.
Collapse
Affiliation(s)
- Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| | | | - Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Azam Mohsin
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret L Veselits
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Nathaniel E Wright
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Michael K Okoreeh
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Young Me Yoon
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Jacob Veselits
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Abstract
Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Amandine Barral Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. 3400 Civic Blvd, Philadelphia, Pennsylvania19104, USA
| | - Jérôme Déjardin
- Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, Montpellier, France,Jérôme Déjardin Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier34000, France
| |
Collapse
|
6
|
Tav C, Fournier É, Fournier M, Khadangi F, Baguette A, Côté MC, Silveira MAD, Bérubé-Simard FA, Bourque G, Droit A, Bilodeau S. Glucocorticoid stimulation induces regionalized gene responses within topologically associating domains. Front Genet 2023; 14:1237092. [PMID: 37576549 PMCID: PMC10413275 DOI: 10.3389/fgene.2023.1237092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Transcription-factor binding to cis-regulatory regions regulates the gene expression program of a cell, but occupancy is often a poor predictor of the gene response. Here, we show that glucocorticoid stimulation led to the reorganization of transcriptional coregulators MED1 and BRD4 within topologically associating domains (TADs), resulting in active or repressive gene environments. Indeed, we observed a bias toward the activation or repression of a TAD when their activities were defined by the number of regions gaining and losing MED1 and BRD4 following dexamethasone (Dex) stimulation. Variations in Dex-responsive genes at the RNA levels were consistent with the redistribution of MED1 and BRD4 at the associated cis-regulatory regions. Interestingly, Dex-responsive genes without the differential recruitment of MED1 and BRD4 or binding by the glucocorticoid receptor were found within TADs, which gained or lost MED1 and BRD4, suggesting a role of the surrounding environment in gene regulation. However, the amplitude of the response of Dex-regulated genes was higher when the differential recruitment of the glucocorticoid receptor and transcriptional coregulators was observed, reaffirming the role of transcription factor-driven gene regulation and attributing a lesser role to the TAD environment. These results support a model where a signal-induced transcription factor induces a regionalized effect throughout the TAD, redefining the notion of direct and indirect effects of transcription factors on target genes.
Collapse
Affiliation(s)
- Christophe Tav
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
| | - Éric Fournier
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
| | - Michèle Fournier
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Fatemeh Khadangi
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Audrey Baguette
- Department of Human Genetics, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Maxime C. Côté
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Maruhen A. D. Silveira
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Félix-Antoine Bérubé-Simard
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Guillaume Bourque
- Department of Human Genetics, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Canadian Center for Computational Genomics, McGill University, Montréal, QC, Canada
| | - Arnaud Droit
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec—Université Laval, Axe Endocrinologie et Néphrologie, Québec, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Steve Bilodeau
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
7
|
HSP70 mediates a crosstalk between the estrogen and the heat shock response pathways. J Biol Chem 2023; 299:102872. [PMID: 36610605 PMCID: PMC9926311 DOI: 10.1016/j.jbc.2023.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Cells respond to multiple signals from the environment simultaneously, which often creates crosstalk between pathways affecting the capacity to adapt to the changing environment. Chaperones are an important component in the cellular integration of multiple responses to environmental signals, often implicated in negative feedback and inactivation mechanisms. These mechanisms include the stabilization of steroid hormone nuclear receptors in the cytoplasm in the absence of their ligand. Here, we show using immunofluorescence, chromatin immunoprecipitation, and nascent transcripts production that the heat shock protein 70 (HSP70) chaperone plays a central role in a new crosstalk mechanism between the steroid and heat shock response pathways. HSP70-dependent feedback mechanisms are required to inactivate the heat shock factor 1 (HSF1) after activation. Interestingly, a steroid stimulation leads to faster accumulation of HSF1 in inactive foci following heat shock. Our results further show that in the presence of estrogen, HSP70 accumulates at HSF1-regulated noncoding regions, leading to deactivation of HSF1 and the abrogation of the heat shock transcriptional response. Using an HSP70 inhibitor, we demonstrate that the crosstalk between both pathways is dependent on the chaperone activity. These results suggest that HSP70 availability is a key determinant in the transcriptional integration of multiple external signals. Overall, these results offer a better understanding of the crosstalk between the heat shock and steroid responses, which are salient in neurodegenerative disorders and cancers.
Collapse
|
8
|
Wang J, Bando M, Shirahige K, Nakato R. Large-scale multi-omics analysis suggests specific roles for intragenic cohesin in transcriptional regulation. Nat Commun 2022; 13:3218. [PMID: 35680859 PMCID: PMC9184728 DOI: 10.1038/s41467-022-30792-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/14/2022] [Indexed: 12/19/2022] Open
Abstract
Cohesin, an essential protein complex for chromosome segregation, regulates transcription through a variety of mechanisms. It is not a trivial task to assign diverse cohesin functions. Moreover, the context-specific roles of cohesin-mediated interactions, especially on intragenic regions, have not been thoroughly investigated. Here we perform a comprehensive characterization of cohesin binding sites in several human cell types. We integrate epigenomic, transcriptomic and chromatin interaction data to explore the context-specific functions of intragenic cohesin related to gene activation. We identify a specific subset of cohesin binding sites, decreased intragenic cohesin sites (DICs), which are negatively correlated with transcriptional regulation. A subgroup of DICs is enriched with enhancer markers and RNA polymerase II, while the others are more correlated to chromatin architecture. DICs are observed in various cell types, including cells from patients with cohesinopathy. We also implement machine learning to our data and identified genomic features for isolating DICs from all cohesin sites. These results suggest a previously unidentified function of cohesin on intragenic regions for transcriptional regulation.
Collapse
Affiliation(s)
- Jiankang Wang
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashige Bando
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Li Z, McGinn O, Wu Y, Bahreini A, Priedigkeit NM, Ding K, Onkar S, Lampenfeld C, Sartorius CA, Miller L, Rosenzweig M, Cohen O, Wagle N, Richer JK, Muller WJ, Buluwela L, Ali S, Bruno TC, Vignali DAA, Fang Y, Zhu L, Tseng GC, Gertz J, Atkinson JM, Lee AV, Oesterreich S. ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation. Nat Commun 2022; 13:2011. [PMID: 35440136 PMCID: PMC9019037 DOI: 10.1038/s41467-022-29498-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2022] [Indexed: 12/26/2022] Open
Abstract
Estrogen receptor alpha (ER/ESR1) is frequently mutated in endocrine resistant ER-positive (ER+) breast cancer and linked to ligand-independent growth and metastasis. Despite the distinct clinical features of ESR1 mutations, their role in intrinsic subtype switching remains largely unknown. Here we find that ESR1 mutant cells and clinical samples show a significant enrichment of basal subtype markers, and six basal cytokeratins (BCKs) are the most enriched genes. Induction of BCKs is independent of ER binding and instead associated with chromatin reprogramming centered around a progesterone receptor-orchestrated insulated neighborhood. BCK-high ER+ primary breast tumors exhibit a number of enriched immune pathways, shared with ESR1 mutant tumors. S100A8 and S100A9 are among the most induced immune mediators and involve in tumor-stroma paracrine crosstalk inferred by single-cell RNA-seq from metastatic tumors. Collectively, these observations demonstrate that ESR1 mutant tumors gain basal features associated with increased immune activation, encouraging additional studies of immune therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Olivia McGinn
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Yang Wu
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Amir Bahreini
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nolan M Priedigkeit
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kai Ding
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Sayali Onkar
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Caleb Lampenfeld
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lori Miller
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | | | - Ofir Cohen
- Department of Medical Oncology and Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nikhil Wagle
- Department of Medical Oncology and Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William J Muller
- Goodman Cancer Centre and Departments of Biochemistry and Medicine, McGill University, Montreal, QC, Canada
| | - Laki Buluwela
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yusi Fang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Li Zhu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer M Atkinson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Magee-Womens Research Institute, Pittsburgh, PA, USA.
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
White SM, Snyder MP, Yi C. Master lineage transcription factors anchor trans mega transcriptional complexes at highly accessible enhancer sites to promote long-range chromatin clustering and transcription of distal target genes. Nucleic Acids Res 2021; 49:12196-12210. [PMID: 34850122 PMCID: PMC8643643 DOI: 10.1093/nar/gkab1105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
The term 'super enhancers' (SE) has been widely used to describe stretches of closely localized enhancers that are occupied collectively by large numbers of transcription factors (TFs) and co-factors, and control the transcription of highly-expressed genes. Through integrated analysis of >600 DNase-seq, ChIP-seq, GRO-seq, STARR-seq, RNA-seq, Hi-C and ChIA-PET data in five human cancer cell lines, we identified a new class of autonomous SEs (aSEs) that are excluded from classic SE calls by the widely used Rank Ordering of Super-Enhancers (ROSE) method. TF footprint analysis revealed that compared to classic SEs and regular enhancers, aSEs are tightly bound by a dense array of master lineage TFs, which serve as anchors to recruit additional TFs and co-factors in trans. In addition, aSEs are preferentially enriched for Cohesins, which likely involve in stabilizing long-distance interactions between aSEs and their distal target genes. Finally, we showed that aSEs can be reliably predicted using a single DNase-seq data or combined with Mediator and/or P300 ChIP-seq. Overall, our study demonstrates that aSEs represent a unique class of functionally important enhancer elements that distally regulate the transcription of highly expressed genes.
Collapse
Affiliation(s)
- Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
11
|
Jung S, Appleton E, Ali M, Church GM, Del Sol A. A computer-guided design tool to increase the efficiency of cellular conversions. Nat Commun 2021; 12:1659. [PMID: 33712564 PMCID: PMC7954801 DOI: 10.1038/s41467-021-21801-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Human cell conversion technology has become an important tool for devising new cell transplantation therapies, generating disease models and testing gene therapies. However, while transcription factor over-expression-based methods have shown great promise in generating cell types in vitro, they often endure low conversion efficiency. In this context, great effort has been devoted to increasing the efficiency of current protocols and the development of computational approaches can be of great help in this endeavor. Here we introduce a computer-guided design tool that combines a computational framework for prioritizing more efficient combinations of instructive factors (IFs) of cellular conversions, called IRENE, with a transposon-based genomic integration system for efficient delivery. Particularly, IRENE relies on a stochastic gene regulatory network model that systematically prioritizes more efficient IFs by maximizing the agreement of the transcriptional and epigenetic landscapes between the converted and target cells. Our predictions substantially increased the efficiency of two established iPSC-differentiation protocols (natural killer cells and melanocytes) and established the first protocol for iPSC-derived mammary epithelial cells with high efficiency.
Collapse
Affiliation(s)
- Sascha Jung
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
| | - Evan Appleton
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Muhammad Ali
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Maastricht University School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- GC Therapeutics, Inc, Cambridge, MA, USA
| | - Antonio Del Sol
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain.
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
12
|
Vélot L, Lessard F, Bérubé-Simard FA, Tav C, Neveu B, Teyssier V, Boudaoud I, Dionne U, Lavoie N, Bilodeau S, Pouliot F, Bisson N. Proximity-dependent Mapping of the Androgen Receptor Identifies Kruppel-like Factor 4 as a Functional Partner. Mol Cell Proteomics 2021; 20:100064. [PMID: 33640491 PMCID: PMC8050775 DOI: 10.1016/j.mcpro.2021.100064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men and the third cause of cancer mortality. PCa initiation and growth are driven by the androgen receptor (AR). The AR is activated by androgens such as testosterone and controls prostatic cell proliferation and survival. Here, we report an AR signaling network generated using BioID proximity labeling proteomics in androgen-dependent LAPC4 cells. We identified 31 AR-associated proteins in nonstimulated cells. Strikingly, the AR signaling network increased to 182 and 200 proteins, upon 24 h or 72 h of androgenic stimulation, respectively, for a total of 267 nonredundant AR-associated candidates. Among the latter group, we identified 213 proteins that were not previously reported in databases. Many of these new AR-associated proteins are involved in DNA metabolism, RNA processing, and RNA polymerase II transcription. Moreover, we identified 44 transcription factors, including the Kru¨ppel-like factor 4 (KLF4), which were found interacting in androgen-stimulated cells. Interestingly, KLF4 repressed the well-characterized AR-dependent transcription of the KLK3 (PSA) gene; AR and KLF4 also colocalized genome-wide. Taken together, our data report an expanded high-confidence proximity network for AR, which will be instrumental to further dissect the molecular mechanisms underlying androgen signaling in PCa cells. BioID proteomics identifies 267 androgen receptor (AR)-associated candidates Krüppel-like factor 4 (KLF4) is a new AR interaction partner AR and KLF4 colocalize genome-wide on >4000 genes, including KLK3 (PSA) KLF4 acts as a repressor for the AR target gene KLK3 (PSA)
Collapse
Affiliation(s)
- Lauriane Vélot
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Frédéric Lessard
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Félix-Antoine Bérubé-Simard
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada
| | - Christophe Tav
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; Centre de recherche en données massives de l'Université Laval, Québec, Québec, Canada
| | - Bertrand Neveu
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada
| | - Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Imène Boudaoud
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada
| | - Ugo Dionne
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Noémie Lavoie
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Steve Bilodeau
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; Centre de recherche en données massives de l'Université Laval, Québec, Québec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Frédéric Pouliot
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; Department of Surgery, Faculté de Médecine, Université Laval, Québec, Quebec, Canada.
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculté de Médecine, Université Laval, Québec, Quebec, Canada.
| |
Collapse
|
13
|
Silveira MA, Tav C, Bérube-Simard FA, Cuppens T, Leclercq M, Fournier É, Côté MC, Droit A, Bilodeau S. Modulating HSF1 levels impacts expression of the estrogen receptor α and antiestrogen response. Life Sci Alliance 2021; 4:4/5/e202000811. [PMID: 33593922 PMCID: PMC7893817 DOI: 10.26508/lsa.202000811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
This work shows that activation of the main cellular stress response pathway is responsible for antiestrogen resistance in breast cancer, a process that is reversible. Master transcription factors control the transcriptional program and are essential to maintain cellular functions. Among them, steroid nuclear receptors, such as the estrogen receptor α (ERα), are central to the etiology of hormone-dependent cancers which are accordingly treated with corresponding endocrine therapies. However, resistance invariably arises. Here, we show that high levels of the stress response master regulator, the heat shock factor 1 (HSF1), are associated with antiestrogen resistance in breast cancer cells. Indeed, overexpression of HSF1 leads to ERα degradation, decreased expression of ERα-activated genes, and antiestrogen resistance. Furthermore, we demonstrate that reducing HSF1 levels reinstates expression of the ERα and restores response to antiestrogens. Last, our results establish a proof of concept that inhibition of HSF1, in combination with antiestrogens, is a valid strategy to tackle resistant breast cancers. Taken together, we are proposing a mechanism where high HSF1 levels interfere with the ERα-dependent transcriptional program leading to endocrine resistance in breast cancer.
Collapse
Affiliation(s)
- Maruhen Ad Silveira
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| | - Christophe Tav
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Axe Endocrinologie et Néphrologie, Québec, Canada.,Centre de Recherche en Données Massives de l'Université Laval, Québec, Canada
| | - Félix-Antoine Bérube-Simard
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| | - Tania Cuppens
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Axe Endocrinologie et Néphrologie, Québec, Canada.,Centre de Recherche en Données Massives de l'Université Laval, Québec, Canada
| | - Mickaël Leclercq
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Axe Endocrinologie et Néphrologie, Québec, Canada.,Centre de Recherche en Données Massives de l'Université Laval, Québec, Canada
| | - Éric Fournier
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Axe Endocrinologie et Néphrologie, Québec, Canada
| | - Maxime C Côté
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| | - Arnaud Droit
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Axe Endocrinologie et Néphrologie, Québec, Canada.,Centre de Recherche en Données Massives de l'Université Laval, Québec, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, Canada
| | - Steve Bilodeau
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, Canada .,Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada.,Centre de Recherche en Données Massives de l'Université Laval, Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
14
|
Al Dow M, Silveira MAD, Poliquin A, Tribouillard L, Fournier É, Trébaol E, Secco B, Villot R, Tremblay F, Bilodeau S, Laplante M. Control of adipogenic commitment by a STAT3-VSTM2A axis. Am J Physiol Endocrinol Metab 2021; 320:E259-E269. [PMID: 33196296 PMCID: PMC8260376 DOI: 10.1152/ajpendo.00314.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
White adipose tissue (WAT) is a dynamic organ that plays crucial roles in controlling metabolic homeostasis. During development and periods of energy excess, adipose progenitors are recruited and differentiate into adipocytes to promote lipid storage capability. The identity of adipose progenitors and the signals that promote their recruitment are still incompletely characterized. We have recently identified V-set and transmembrane domain-containing protein 2A (VSTM2A) as a novel protein enriched in preadipocytes that amplifies adipogenic commitment. Despite the emerging role of VSTM2A in promoting adipogenesis, the molecular mechanisms regulating Vstm2a expression in preadipocytes are still unknown. To define the molecular mechanisms controlling Vstm2a expression, we have treated preadipocytes with an array of compounds capable of modulating established regulators of adipogenesis. Here, we report that Vstm2a expression is positively regulated by PI3K/mTOR and cAMP-dependent signaling pathways and repressed by the MAPK pathway and the glucocorticoid receptor. By integrating the impact of all the molecules tested, we identified signal transducer and activator of transcription 3 (STAT3) as a novel downstream transcription factor affecting Vstm2a expression. We show that activation of STAT3 increased Vstm2a expression, whereas its inhibition repressed this process. In mice, we found that STAT3 phosphorylation is elevated in the early phases of WAT development, an effect that strongly associates with Vstm2a expression. Our findings identify STAT3 as a key transcription factor regulating Vstm2a expression in preadipocytes.NEW & NOTEWORTHY cAMP-dependent and PI3K-mTOR signaling pathways promote the expression of Vstm2a. STAT3 is a key transcription factor that controls Vstm2a expression in preadipocytes. STAT3 is activated in the early phases of WAT development, an effect that strongly associates with Vstm2a expression.
Collapse
Affiliation(s)
- Manal Al Dow
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Maruhen Amir Datsch Silveira
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Audrée Poliquin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Laura Tribouillard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Éric Fournier
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
- Centre de recherche en données massives de l'Université Laval, Québec, Canada
| | - Eva Trébaol
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Blandine Secco
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Romain Villot
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Félix Tremblay
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
| | - Steve Bilodeau
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec - Université Laval, Québec, Canada
- Centre de recherche en données massives de l'Université Laval, Québec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
15
|
Chen Y, Xu L, Lin RYT, Müschen M, Koeffler HP. Core transcriptional regulatory circuitries in cancer. Oncogene 2020; 39:6633-6646. [PMID: 32943730 PMCID: PMC7581508 DOI: 10.1038/s41388-020-01459-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type-specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics.
Collapse
Affiliation(s)
- Ye Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, 91016, USA.
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ruby Yu-Tong Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Markus Müschen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, 91016, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- National University Cancer Institute, National University Hospital, Singapore, 119074, Singapore
| |
Collapse
|
16
|
Multiomics data integration unveils core transcriptional regulatory networks governing cell-type identity. NPJ Syst Biol Appl 2020; 6:26. [PMID: 32839455 PMCID: PMC7445234 DOI: 10.1038/s41540-020-00148-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
A plethora of computational approaches have been proposed for reconstructing gene regulatory networks (GRNs) from gene expression data. However, gene regulatory processes are often too complex to predict from the transcriptome alone. Here, we present a computational method, Moni, that systematically integrates epigenetics, transcriptomics, and protein–protein interactions to reconstruct GRNs among core transcription factors and their co-factors governing cell identity. We applied Moni to 57 datasets of human cell types and lines and demonstrate that it can accurately infer GRNs, thereby outperforming state-of-the-art methods.
Collapse
|
17
|
Moudgil A, Wilkinson MN, Chen X, He J, Cammack AJ, Vasek MJ, Lagunas T, Qi Z, Lalli MA, Guo C, Morris SA, Dougherty JD, Mitra RD. Self-Reporting Transposons Enable Simultaneous Readout of Gene Expression and Transcription Factor Binding in Single Cells. Cell 2020; 182:992-1008.e21. [PMID: 32710817 PMCID: PMC7510185 DOI: 10.1016/j.cell.2020.06.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Cellular heterogeneity confounds in situ assays of transcription factor (TF) binding. Single-cell RNA sequencing (scRNA-seq) deconvolves cell types from gene expression, but no technology links cell identity to TF binding sites (TFBS) in those cell types. We present self-reporting transposons (SRTs) and use them in single-cell calling cards (scCC), a novel assay for simultaneously measuring gene expression and mapping TFBS in single cells. The genomic locations of SRTs are recovered from mRNA, and SRTs deposited by exogenous, TF-transposase fusions can be used to map TFBS. We then present scCC, which map SRTs from scRNA-seq libraries, simultaneously identifying cell types and TFBS in those same cells. We benchmark multiple TFs with this technique. Next, we use scCC to discover BRD4-mediated cell-state transitions in K562 cells. Finally, we map BRD4 binding sites in the mouse cortex at single-cell resolution, establishing a new method for studying TF biology in situ.
Collapse
Affiliation(s)
- Arnav Moudgil
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael N Wilkinson
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Xuhua Chen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - June He
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Alexander J Cammack
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael J Vasek
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tomás Lagunas
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Zongtai Qi
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Matthew A Lalli
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Chuner Guo
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
19
|
Missaoui N, Chouaibi S, Limam S, Mhamdi N, Zahmoul T, Hamchi H, Mokni M, Hmissa S. Signification of forkhead box A1 (FOXA1) expression in thyroid cancers. J Egypt Natl Canc Inst 2019; 31:11. [PMID: 32372175 DOI: 10.1186/s43046-019-0011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Forkhead box A1 (FOXA1) plays an important role in several tumors. This study investigated the potential role of FOXA1 expression in thyroid tumors. We conducted a retrospective study of 110 thyroid lesions and tumors diagnosed during 1995-2018. The expression of FOXA1 was analyzed by immunohistochemistry on archival material. RESULTS No FOXA1 immunostaining was observed in all cases of Graves' disease, Hashimoto's disease, multi-nodular goiter, and adenoma. FOXA1 expression was absent as well in all papillary and follicular carcinomas, Hurthle cell carcinoma, and undifferentiated sarcoma. Only three anaplastic carcinomas exhibited focally FOXA1 staining. However, FOXA1 was expressed in all medullary carcinomas. No significant correlation was found with all clinicopathological features (p > 0.05 for all). The pattern of FOXA1 staining was similar to that of calcitonin and chromogranin A (p = 0.04 and p = 0.003, respectively). CONCLUSIONS FOXA1 is expressed mostly in all medullary thyroid carcinomas. Hence, FOXA1 could serve as an additional marker for refining the diagnosis of medullary thyroid carcinoma.
Collapse
Affiliation(s)
- Nabiha Missaoui
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia. .,Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia. .,Faculty of Sciences and Techniques of Sidi Bouzid, Kairouan University, Kairouan, Tunisia. .,Pathology Department, Sahloul University Hospital, Sousse, Tunisia.
| | - Sameh Chouaibi
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia
| | - Sarra Limam
- Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Nozha Mhamdi
- Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Thouraya Zahmoul
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia.,Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Hajer Hamchi
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia.,Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Moncef Mokni
- Pathology Department, Farhat Hached University Hospital, Sousse, Tunisia
| | - Sihem Hmissa
- Research Unit UR14ES17, Medicine Faculty, University of Sousse, Sousse, Tunisia.,Pathology Department, Sahloul University Hospital, Sousse, Tunisia
| |
Collapse
|
20
|
Huang J, Shen G, Ren H, Zhang Z, Yu X, Zhao W, Shang Q, Cui J, Yu P, Peng J, Liang D, Yang Z, Jiang X. Role of forkhead box gene family in bone metabolism. J Cell Physiol 2019; 235:1986-1994. [DOI: 10.1002/jcp.29178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jinjing Huang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Gengyang Shen
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Hui Ren
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Qi Shang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Jianchao Cui
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Peiyuan Yu
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Jiancheng Peng
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - De Liang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhidong Yang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaobing Jiang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
21
|
Huang M, Chen Y, Yang M, Guo A, Xu Y, Xu L, Koeffler HP. dbCoRC: a database of core transcriptional regulatory circuitries modeled by H3K27ac ChIP-seq signals. Nucleic Acids Res 2019; 46:D71-D77. [PMID: 28977473 PMCID: PMC5753200 DOI: 10.1093/nar/gkx796] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/30/2017] [Indexed: 01/23/2023] Open
Abstract
Core transcription regulatory circuitry (CRC) is comprised of a small group of self-regulated transcription factors (TFs) and their interconnected regulatory loops. Studies from embryonic stem cells and other cellular models have revealed the elementary roles of CRCs in transcriptional control of cell identity and cellular fate. Systematic identification and subsequent archiving of CRCs across diverse cell types and tissues are needed to explore both cell/tissue type-specific and disease-associated transcriptional networks. Here, we present a comprehensive and interactive database (dbCoRC, http://dbcorc.cam-su.org) of CRC models which are computationally inferred from mapping of super-enhancer and prediction of TF binding sites. The current version of dbCoRC contains CRC models for 188 human and 50 murine cell lines/tissue samples. In companion with CRC models, this database also provides: (i) super enhancer, typical enhancer, and H3K27ac landscape for individual samples, (ii) putative binding sites of each core TF across the super-enhancer regions within CRC and (iii) expression of each core TF in normal or cancer cells/tissues. The dbCoRC will serve as a valuable resource for the scientific community to explore transcriptional control and regulatory circuitries in biological processes related to, but not limited to lineage specification, tissue homeostasis and tumorigenesis.
Collapse
Affiliation(s)
- Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,Cancer Science Institute of Singapore, National University of Singapore 117599, Singapore.,Cambridge-Suda Genomic Research Center, Soochow University, Suzhou 215123, China
| | - Ye Chen
- Cancer Science Institute of Singapore, National University of Singapore 117599, Singapore
| | - Manqiu Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Anyuan Guo
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Xu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou 215123, China
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore 117599, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore 117599, Singapore.,Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, Los Angeles, CA 90048, USA.,National University Cancer Institute, National University Hospital, 119074, Singapore
| |
Collapse
|
22
|
Erdős E, Bálint BL. COUP-TFII is a modulator of cell-type-specific genetic programs based on genomic localization maps. J Biotechnol 2019; 301:11-17. [DOI: 10.1016/j.jbiotec.2019.05.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 01/04/2023]
|
23
|
Keresztessy Z, Erdos E, Ozgyin L, Kádas J, Horváth J, Zahuczky G, Balint BL. Development of an antibody control system using phage display. J Biotechnol 2019; 300:63-69. [PMID: 31129070 DOI: 10.1016/j.jbiotec.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
While chromatin immunoprecipitation has become a widely-used method in the field of transcription regulation studies, serious limitations connected to the complexity and relatively little standardization of the method serve as obstacles for its use in clinical research. In this paper we introduce a method for developing bacteriophage-based controls for the better standardization of the chromatin immunoprecipitation reactions. Random phage display libraries were selected with ChIP-grade antibodies for several rounds and individual monoclonal phages were isolated. These monoclonal phages can be propagated, characterized, capillary sequenced and if needed later cloned from in-silico data. Using such control tools allows for a better characterization of the immunoprecipitation stage needed for further clinical research in the field of chromatin-immunoprecipitation-based studies.
Collapse
Affiliation(s)
- Zsolt Keresztessy
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - Edina Erdos
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - Lilla Ozgyin
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - János Kádas
- UD-GenoMed Medical Genomic Technologies Ltd., 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - József Horváth
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - Gábor Zahuczky
- UD-GenoMed Medical Genomic Technologies Ltd., 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - Balint L Balint
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary.
| |
Collapse
|
24
|
Xie L, Song X, Lin H, Chen Z, Li Q, Guo T, Xu T, Su T, Xu M, Chang X, Wang LK, Liang B, Huang D. Aberrant activation of CYR61 enhancers in colorectal cancer development. J Exp Clin Cancer Res 2019; 38:213. [PMID: 31118064 PMCID: PMC6532222 DOI: 10.1186/s13046-019-1217-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND High expression of secreted matricellular protein cysteine-rich 61 (CYR61) correlates with poor prognosis in colorectal cancer (CRC). Aberrant enhancer activation has been shown to correlate with expression of key genes involved in cancer progression. However, such mechanisms in CYR61 transcription regulation remain unexplored. METHODS Expression of CYR61 was determined by immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR) and western blotting (WB) in CRC patients paraffin specimens and colon cell lines. ChIP-seq data of enhancer-characteristic histone modifications, in CRC tissues from the Gene Expression Omnibus (GEO) database, were reanalyzed to search for putative enhancers of CYR61. Dual-luciferase reporter assay was used to detected enhancer activity. Physical interactions between putative enhancers and CYR61 promoter were detected by chromosome conformation capture (3C) assay. Histone modification and transcription factors (TFs) enrichment were detected by ChIP-qPCR. Additionally, biological function of enhancers was investigated by transwell migration assays. RESULTS CRC tissues and cell lines expressed higher level of CYR61 than normal colon mucosa. Three putative enhancers located downstream of CYR61 were found in CRC tissues by ChIP-seq data reanalysis. Consistent with the ChIP-seq analysis results in the GEO database, the normal colon mucosal epithelial cell line NCM460 possessed no active CYR61 enhancers, whereas colon cancer cells exhibited different patterns of active CYR61 enhancers. HCT116 cells had an active Enhancer3, whereas RKO cells had both Enhancer1 and Enhancer3 active. Pioneer factor FOXA1 promoted CYR61 expression by recruiting CBP histone acetyltransferase binding and increasing promoter-enhancer looping frequencies and enhancer activity. CBP knockdown attenuated H3K27ac enrichment, promoter-enhancer looping frequencies, and enhancer activity. Small molecule compound 12-O-tetradecanoyl phorbol-13-acetate (TPA) treatment, which stimulated CYR61 expression, and verteporfin (VP) treatment, which inhibited CYR61 expression, confirmed that the enhancers regulated CYR61 expression. Knockdown and ectopic expression of CYR61 rescued cell migration changes induced by over-expressing and knockdown of FOXA1, respectively. CONCLUSIONS CYR61 enhancer activation, mediated by FOXA1 and CBP, occurs during CRC progression to up-regulate CYR61 expression and promote cell migration in CRC, suggesting inhibition of recruitment of FOXA1 and/or CBP to CYR61 enhancers may have therapeutic implications.
Collapse
Affiliation(s)
- Lingzhu Xie
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041 China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041 China
| | - Hao Lin
- Department of Gastroenterology, Shantou Central Hospital, Shantou, 515041 China
| | - Zikai Chen
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041 China
| | - Qidong Li
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041 China
| | - Tangfei Guo
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041 China
| | - Tian Xu
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041 China
| | - Ting Su
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041 China
| | - Man Xu
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041 China
| | - Xiaolan Chang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041 China
| | - Long-Kun Wang
- Department of Clinical Laboratory, Jiujiang First People’s Hospital, Jiujiang, 332000 China
| | - Bin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041 China
- Department of Cell Biology and Genetics, Shantou University Medical College, Complex Building, Room 602, No. 22 Xinling Road, Shantou, Guangdong China
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041 China
- Department of Cell Biology and Genetics, Shantou University Medical College, Complex Building, Room 602, No. 22 Xinling Road, Shantou, Guangdong China
| |
Collapse
|
25
|
Glont SE, Papachristou EK, Sawle A, Holmes KA, Carroll JS, Siersbaek R. Identification of ChIP-seq and RIME grade antibodies for Estrogen Receptor alpha. PLoS One 2019; 14:e0215340. [PMID: 30970003 PMCID: PMC6457525 DOI: 10.1371/journal.pone.0215340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/29/2019] [Indexed: 12/04/2022] Open
Abstract
Estrogen Receptor alpha (ERα) plays a major role in most breast cancers, and it is the target of endocrine therapies used in the clinic as standard of care for women with breast cancer expressing this receptor. The two methods ChIP-seq (chromatin immunoprecipitation coupled with deep sequencing) and RIME (Rapid Immunoprecipitation of Endogenous Proteins) have greatly improved our understanding of ERα function during breast cancer progression and in response to anti-estrogens. A critical component of both ChIP-seq and RIME protocols is the antibody that is used against the bait protein. To date, most of the ChIP-seq and RIME experiments for the study of ERα have been performed using the sc-543 antibody from Santa Cruz Biotechnology. However, this antibody has been discontinued, thereby severely impacting the study of ERα in normal physiology as well as diseases such as breast cancer and ovarian cancer. Here, we compare the sc-543 antibody with other commercially available antibodies, and we show that 06-935 (EMD Millipore) and ab3575 (Abcam) antibodies can successfully replace the sc-543 antibody for ChIP-seq and RIME experiments.
Collapse
Affiliation(s)
- Silvia-E. Glont
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| | - Evangelia K. Papachristou
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| | - Ashley Sawle
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| | - Kelly A. Holmes
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| | - Jason S. Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| | - Rasmus Siersbaek
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| |
Collapse
|
26
|
Huang C, Liu J, Xiong B, Yonemura Y, Yang X. Expression and prognosis analyses of forkhead box A (FOXA) family in human lung cancer. Gene 2018; 685:202-210. [PMID: 30415009 DOI: 10.1016/j.gene.2018.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 01/04/2023]
Abstract
Despite advances in early diagnosis and treatment, cancer still remains the major reason of mortality worldwide. The forkhead box A (FOXA) family is reported to participate in diverse human diseases. However, little is known about their expression and prognostic values in human lung cancer. Herein, we conducted a detailed cancer vs. normal analysis. The mRNA expression levels of FOXA family in numerous kind of cancers, including lung cancer, were analyzed using the Oncomine and GEPIA database. We observed that the mRNA expression levels of FOXA1, and FOXA3 were all increased while FOXA2 were decreased in most cancers compared with normal tissues, especially in lung cancer. Moreover, the expression levels of FOXA1, and FOXA3 are also highly expressed, while FOXA2 were decreased in almost all cancer cell lines, particularly in lung cancer cell lines, analyzing by Cancer Cell Line Encyclopedia (CCLE) and EMBL-EBI databases. Furthermore, the LinkedOmics database was used to evaluate the prognostic values, indicating that higher expression of FOXA1, FOXA3 indicated a poor overall survival (OS), while increased FOXA2 revealed a better OS in lung cancer. To conclusion, FOXA family showed significant expression differences between cancer and normal tissues, especially lung cancer, and FOXA1, FOXA3 could be promising prognostic biomarkers for lung cancer.
Collapse
Affiliation(s)
- Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, PR China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071 Wuhan, Hubei, PR China
| | - Jiuyang Liu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, PR China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, PR China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071 Wuhan, Hubei, PR China
| | - Yutaka Yonemura
- Peritoneal Dissemination Center, Kishiwada Tokushukai Hospital, Kishiwada 596-0032, Japan; Department of Surgery, Kusatsu General Hospital, Shiga 600-8189, Japan
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, PR China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, 430071 Wuhan, Hubei, PR China.
| |
Collapse
|
27
|
Expression of calcium pumps is differentially regulated by histone deacetylase inhibitors and estrogen receptor alpha in breast cancer cells. BMC Cancer 2018; 18:1029. [PMID: 30352569 PMCID: PMC6199715 DOI: 10.1186/s12885-018-4945-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
Background Remodeling of Ca2+ signaling is an important step in cancer progression, and altered expression of members of the Ca2+ signaling toolkit including the plasma membrane Ca2+ ATPases (PMCA proteins encoded by ATP2B genes) is common in tumors. Methods In this study PMCAs were examined in breast cancer datasets and in a variety of breast cancer cell lines representing different subtypes. We investigated how estrogen receptor alpha (ER-α) and histone deacetylase (HDAC) inhibitors regulate the expression of these pumps. Results Three distinct datasets displayed significantly lower ATP2B4 mRNA expression in invasive breast cancer tissue samples compared to normal breast tissue, whereas the expression of ATP2B1 and ATP2B2 was not altered. Studying the protein expression profiles of Ca2+ pumps in a variety of breast cancer cell lines revealed low PMCA4b expression in the ER-α positive cells, and its marked upregulation upon HDAC inhibitor treatments. PMCA4b expression was also positively regulated by the ER-α pathway in MCF-7 cells that led to enhanced Ca2+ extrusion capacity in response to 17β-estradiol (E2) treatment. E2-induced PMCA4b expression was further augmented by HDAC inhibitors. Surprisingly, E2 did not affect the expression of PMCA4b in other ER-α positive cells ZR-75-1, T-47D and BT-474. These findings were in good accordance with ChIP-seq data analysis that revealed an ER-α binding site in the ATP2B4 gene in MCF-7 cells but not in other ER-α positive tumor cells. In the triple negative cells PMCA4b expression was relatively high, and the effect of HDAC inhibitor treatment was less pronounced as compared to that of the ER-α positive cells. Although, the expression of PMCA4b was relatively high in the triple negative cells, a fraction of the protein was found in intracellular compartments that could interfere with the cellular function of the protein. Conclusions Our results suggest that the expression of Ca2+ pumps is highly regulated in breast cancer cells in a subtype specific manner. Our results suggest that hormonal imbalances, epigenetic modifications and impaired protein trafficking could interfere with the expression and cellular function of PMCA4b in the course of breast cancer progression. Electronic supplementary material The online version of this article (10.1186/s12885-018-4945-x) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
29
|
Sierecki E. The Mediator complex and the role of protein-protein interactions in the gene regulation machinery. Semin Cell Dev Biol 2018; 99:20-30. [PMID: 30278226 DOI: 10.1016/j.semcdb.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
At the core of gene regulation, a complex network of dynamic interactions between proteins, DNA and RNA has to be integrated in order to generate a binary biological output. Large protein complexes, called adaptors, transfer information from the transcription factors to the transcription machinery [1,2]. Here we focus on Mediator, one of the largest adaptor proteins in humans [3]. Assembled from 30 different subunits, this system provides extraordinary illustrations for the various roles played by protein-protein interactions. Recruitment of new subunits during evolution is an adaptive mechanism to the growing complexity of the organism. Integration of information happens at multiple scales, with allosteric effects at the level of individual subunits resulting in large conformational changes. Mediator is also rich in disordered regions that increase the potential for interactions by presenting a malleable surface to its environment. Potentially, 3000 transcription factors can interact with Mediator and so understanding the molecular mechanisms that support the processing of this overload of information is one of the great challenges in molecular biology.
Collapse
Affiliation(s)
- Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, Faculty of Medecine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
30
|
Moreau P, Cournac A, Palumbo GA, Marbouty M, Mortaza S, Thierry A, Cairo S, Lavigne M, Koszul R, Neuveut C. Tridimensional infiltration of DNA viruses into the host genome shows preferential contact with active chromatin. Nat Commun 2018; 9:4268. [PMID: 30323189 PMCID: PMC6189100 DOI: 10.1038/s41467-018-06739-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/19/2018] [Indexed: 01/05/2023] Open
Abstract
Whether non-integrated viral DNAs distribute randomly or target specific positions within the higher-order architecture of mammalian genomes remains largely unknown. Here we use Hi-C and viral DNA capture (CHi-C) in primary human hepatocytes infected by either hepatitis B virus (HBV) or adenovirus type 5 (Ad5) virus to show that they adopt different strategies in their respective positioning at active chromatin. HBV contacts preferentially CpG islands (CGIs) enriched in Cfp1 a factor required for its transcription. These CGIs are often associated with highly expressed genes (HEG) and genes deregulated during infection. Ad5 DNA interacts preferentially with transcription start sites (TSSs) and enhancers of HEG, as well as genes upregulated during infection. These results show that DNA viruses use different strategies to infiltrate genomic 3D networks and target specific regions. This targeting may facilitate the recruitment of transcription factors necessary for their own replication and contribute to the deregulation of cellular gene expression.
Collapse
Affiliation(s)
- Pierrick Moreau
- Institut Pasteur, Unité Hepacivirus et Immunité Innée, 75015, Paris, France.,CNRS, UMR 3569, 75015, Paris, France.,Institut Pasteur, Département de Virologie, Paris, France
| | - Axel Cournac
- Institut Pasteur, Département Génomes et Génétique, Groupe Régulation spatiale des génomes, 75015, Paris, France.,CNRS, UMR 3525, 75015, Paris, France
| | - Gianna Aurora Palumbo
- Institut Pasteur, Unité Hepacivirus et Immunité Innée, 75015, Paris, France.,CNRS, UMR 3569, 75015, Paris, France.,Institut Pasteur, Département de Virologie, Paris, France
| | - Martial Marbouty
- Institut Pasteur, Département Génomes et Génétique, Groupe Régulation spatiale des génomes, 75015, Paris, France.,CNRS, UMR 3525, 75015, Paris, France
| | - Shogofa Mortaza
- Institut Pasteur, Département Génomes et Génétique, Groupe Régulation spatiale des génomes, 75015, Paris, France.,CNRS, UMR 3525, 75015, Paris, France
| | - Agnes Thierry
- Institut Pasteur, Département Génomes et Génétique, Groupe Régulation spatiale des génomes, 75015, Paris, France.,CNRS, UMR 3525, 75015, Paris, France
| | - Stefano Cairo
- XenTech, Research and Development Department, 91000, Evry, France
| | - Marc Lavigne
- Institut Pasteur, Département de Virologie, Paris, France.,Institut Cochin-INSERM U1016-CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Romain Koszul
- Institut Pasteur, Département Génomes et Génétique, Groupe Régulation spatiale des génomes, 75015, Paris, France. .,CNRS, UMR 3525, 75015, Paris, France.
| | - Christine Neuveut
- Institut Pasteur, Unité Hepacivirus et Immunité Innée, 75015, Paris, France. .,CNRS, UMR 3569, 75015, Paris, France. .,Institut Pasteur, Département de Virologie, Paris, France.
| |
Collapse
|
31
|
Ye C, Chen M, Chen E, Li W, Wang S, Ding Q, Wang C, Zhou C, Tang L, Hou W, Hang K, He R, Pan Z, Zhang W. Knockdown of FOXA2 enhances the osteogenic differentiation of bone marrow-derived mesenchymal stem cells partly via activation of the ERK signalling pathway. Cell Death Dis 2018; 9:836. [PMID: 30082727 PMCID: PMC6079048 DOI: 10.1038/s41419-018-0857-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023]
Abstract
Forkhead box protein A2 (FOXA2) is a core transcription factor that controls cell differentiation and may have an important role in bone metabolism. However, the role of FOXA2 during osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) remains largely unknown. In this study, decreased expression of FOXA2 was observed during osteogenic differentiation of rat BMSCs (rBMSCs). FOXA2 knockdown significantly increased osteoblast-specific gene expression, the number of mineral deposits and alkaline phosphatase activity, whereas FOXA2 overexpression inhibited osteogenesis-specific activities. Moreover, extracellular signal-regulated protein kinase (ERK) signalling was upregulated following knockdown of FOXA2. The enhanced osteogenesis due to FOXA2 knockdown was partially rescued by an ERK inhibitor. Using a rat tibial defect model, a rBMSC sheet containing knocked down FOXA2 significantly improved bone healing. Collectively, these findings indicated that FOXA2 had an essential role in osteogenic differentiation of BMSCs, partly by activation of the ERK signalling pathway.
Collapse
Affiliation(s)
- Chenyi Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Mo Chen
- Department of Rheumatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Erman Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Weixu Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Qianhai Ding
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Cong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Lan Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Weiduo Hou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Kai Hang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Rongxin He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| | - Zhijun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| | - Wei Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
32
|
Fagnocchi L, Poli V, Zippo A. Enhancer reprogramming in tumor progression: a new route towards cancer cell plasticity. Cell Mol Life Sci 2018; 75:2537-2555. [PMID: 29691590 PMCID: PMC11105402 DOI: 10.1007/s00018-018-2820-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity arises during tumor progression as a consequence of genetic insults, environmental cues, and reversible changes in the epigenetic state, favoring tumor cell plasticity. The role of enhancer reprogramming is emerging as a relevant field in cancer biology as it supports adaptation of cancer cells to those environmental changes encountered during tumor progression and metastasis seeding. In this review, we describe the cancer-related alterations that drive oncogenic enhancer activity, leading to dysregulated transcriptional programs. We discuss the molecular mechanisms of both cis- and trans-factors in overriding the regulatory circuits that maintain cell-type specificity and imposing an alternative, de-regulated enhancer activity in cancer cells. We further comment on the increasing evidence which implicates stress response and aging-signaling pathways in the enhancer landscape reprogramming during tumorigenesis. Finally, we focus on the potential therapeutic implications of these enhancer-mediated subverted transcriptional programs, putting particular emphasis on the lack of information regarding tumor progression and the metastatic outgrowth, which still remain the major cause of mortality related to cancer.
Collapse
Affiliation(s)
- Luca Fagnocchi
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Vittoria Poli
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alessio Zippo
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, 20122, Milan, Italy.
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
33
|
Putlyaev EV, Ibragimov AN, Lebedeva LA, Georgiev PG, Shidlovskii YV. Structure and Functions of the Mediator Complex. BIOCHEMISTRY (MOSCOW) 2018; 83:423-436. [PMID: 29626929 DOI: 10.1134/s0006297918040132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mediator is a key factor in the regulation of expression of RNA polymerase II-transcribed genes. Recent studies have shown that Mediator acts as a coordinator of transcription activation and participates in maintaining chromatin architecture in the cell nucleus. In this review, we present current concepts on the structure and functions of Mediator.
Collapse
Affiliation(s)
- E V Putlyaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | |
Collapse
|
34
|
Rhodes J, Mazza D, Nasmyth K, Uphoff S. Scc2/Nipbl hops between chromosomal cohesin rings after loading. eLife 2017; 6:e30000. [PMID: 28914604 PMCID: PMC5621834 DOI: 10.7554/elife.30000] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/08/2017] [Indexed: 11/13/2022] Open
Abstract
The cohesin complex mediates DNA-DNA interactions both between (sister chromatid cohesion) and within chromosomes (DNA looping). It has been suggested that intra-chromosome loops are generated by extrusion of DNAs through the lumen of cohesin's ring. Scc2 (Nipbl) stimulates cohesin's ABC-like ATPase and is essential for loading cohesin onto chromosomes. However, it is possible that the stimulation of cohesin's ATPase by Scc2 also has a post-loading function, for example driving loop extrusion. Using fluorescence recovery after photobleaching (FRAP) and single-molecule tracking in human cells, we show that Scc2 binds dynamically to chromatin, principally through an association with cohesin. Scc2's movement within chromatin is consistent with a 'stop-and-go' or 'hopping' motion. We suggest that a low diffusion coefficient, a low stoichiometry relative to cohesin, and a high affinity for chromosomal cohesin enables Scc2 to move rapidly from one chromosomal cohesin complex to another, performing a function distinct from loading.
Collapse
Affiliation(s)
- James Rhodes
- Department of BiochemistryOxford UniversityOxfordUnited Kingdom
| | - Davide Mazza
- Istituto Scientifico Ospedale San RaffaeleCentro di Imaging SperimentaleMilanoItaly
- Fondazione CENEuropean Center for NanomedicineMilanoItaly
| | - Kim Nasmyth
- Department of BiochemistryOxford UniversityOxfordUnited Kingdom
| | - Stephan Uphoff
- Department of BiochemistryOxford UniversityOxfordUnited Kingdom
| |
Collapse
|
35
|
Connected Gene Communities Underlie Transcriptional Changes in Cornelia de Lange Syndrome. Genetics 2017; 207:139-151. [PMID: 28679547 DOI: 10.1534/genetics.117.202291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a complex multisystem developmental disorder caused by mutations in cohesin subunits and regulators. While its precise molecular mechanisms are not well defined, they point toward a global deregulation of the transcriptional gene expression program. Cohesin is associated with the boundaries of chromosome domains and with enhancer and promoter regions connecting the three-dimensional genome organization with transcriptional regulation. Here, we show that connected gene communities, structures emerging from the interactions of noncoding regulatory elements and genes in the three-dimensional chromosomal space, provide a molecular explanation for the pathoetiology of CdLS associated with mutations in the cohesin-loading factor NIPBL and the cohesin subunit SMC1A NIPBL and cohesin are important constituents of connected gene communities that are centrally positioned at noncoding regulatory elements. Accordingly, genes deregulated in CdLS are positioned within reach of NIPBL- and cohesin-occupied regions through promoter-promoter interactions. Our findings suggest a dynamic model where NIPBL loads cohesin to connect genes in communities, offering an explanation for the gene expression deregulation in the CdLS.
Collapse
|