1
|
Kruckow KL, Zhao K, Bowdish DME, Orihuela CJ. Acute organ injury and long-term sequelae of severe pneumococcal infections. Pneumonia (Nathan) 2023; 15:5. [PMID: 36870980 PMCID: PMC9985869 DOI: 10.1186/s41479-023-00110-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a major public health problem, as it is a main cause of otitis media, community-acquired pneumonia, bacteremia, sepsis, and meningitis. Acute episodes of pneumococcal disease have been demonstrated to cause organ damage with lingering negative consequences. Cytotoxic products released by the bacterium, biomechanical and physiological stress resulting from infection, and the corresponding inflammatory response together contribute to organ damage accrued during infection. The collective result of this damage can be acutely life-threatening, but among survivors, it also contributes to the long-lasting sequelae of pneumococcal disease. These include the development of new morbidities or exacerbation of pre-existing conditions such as COPD, heart disease, and neurological impairments. Currently, pneumonia is ranked as the 9th leading cause of death, but this estimate only considers short-term mortality and likely underestimates the true long-term impact of disease. Herein, we review the data that indicates damage incurred during acute pneumococcal infection can result in long-term sequelae which reduces quality of life and life expectancy among pneumococcal disease survivors.
Collapse
Affiliation(s)
- Katherine L Kruckow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Zhao
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Mormile R. IL-6 inhibitors for critically ill patients with SARS-CoV-2 pneumonia: a suitable treatment for everyone or only for a few? Minerva Pediatr (Torino) 2023; 75:131-132. [PMID: 36799344 DOI: 10.23736/s2724-5276.20.05921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Caserta, Italy -
| |
Collapse
|
3
|
TLRs Gene Polymorphisms Associated with Pneumonia before and during COVID-19 Pandemic. Diagnostics (Basel) 2022; 13:diagnostics13010121. [PMID: 36611413 PMCID: PMC9818199 DOI: 10.3390/diagnostics13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The progression of infectious diseases depends on the characteristics of a patient's innate immunity, and the efficiency of an immune system depends on the patient's genetic factors, including SNPs in the TLR genes. In this pilot study, we determined the frequency of alleles in these SNPs in a subset of patients with pneumonia. METHODS This study assessed six SNPs from TLR genes: rs5743551 (TLR1), rs5743708, rs3804100 (TLR2), rs4986790 (TLR4), rs5743810 (TLR6), and rs3764880 (TLR8). Three groups of patients participated in this study: patients with pneumonia in 2019 (76 samples), patients with pneumonia caused by SARS-CoV-2 in 2021 (85 samples), and the control group (99 samples). RESULTS The allele and genotype frequencies obtained for each group were examined using four genetic models. Significant results were obtained when comparing the samples obtained from individuals with pneumonia before the spread of SARS-CoV-2 and from the controls for rs5743551 (TLR1) and rs3764880 (TLR8). Additionally, the comparison of COVID-19-related pneumonia cases and the control group revealed a significant result for rs3804100-G (TLR2). CONCLUSIONS Determining SNP allele frequencies and searching for their associations with the course of pneumonia are important for personalized patient management. However, our results need to be comprehensively assessed in consideration of other clinical parameters.
Collapse
|
4
|
Neutrophil trafficking to the site of infection requires Cpt1a-dependent fatty acid β-oxidation. Commun Biol 2022; 5:1366. [PMID: 36513703 PMCID: PMC9747976 DOI: 10.1038/s42003-022-04339-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular metabolism influences immune cell function, with mitochondrial fatty acid β-oxidation and oxidative phosphorylation required for multiple immune cell phenotypes. Carnitine palmitoyltransferase 1a (Cpt1a) is considered the rate-limiting enzyme for mitochondrial metabolism of long-chain fatty acids, and Cpt1a deficiency is associated with infant mortality and infection risk. This study was undertaken to test the hypothesis that impairment in Cpt1a-dependent fatty acid oxidation results in increased susceptibility to infection. Screening the Cpt1a gene for common variants predicted to affect protein function revealed allele rs2229738_T, which was associated with pneumonia risk in a targeted human phenome association study. Pharmacologic inhibition of Cpt1a increases mortality and impairs control of the infection in a murine model of bacterial pneumonia. Susceptibility to pneumonia is associated with blunted neutrophilic responses in mice and humans that result from impaired neutrophil trafficking to the site of infection. Chemotaxis responsible for neutrophil trafficking requires Cpt1a-dependent mitochondrial fatty acid oxidation for amplification of chemoattractant signals. These findings identify Cpt1a as a potential host determinant of infection susceptibility and demonstrate a requirement for mitochondrial fatty acid oxidation in neutrophil biology.
Collapse
|
5
|
Pletz MW, Jensen AV, Bahrs C, Davenport C, Rupp J, Witzenrath M, Barten-Neiner G, Kolditz M, Dettmer S, Chalmers JD, Stolz D, Suttorp N, Aliberti S, Kuebler WM, Rohde G. Unmet needs in pneumonia research: a comprehensive approach by the CAPNETZ study group. Respir Res 2022; 23:239. [PMID: 36088316 PMCID: PMC9463667 DOI: 10.1186/s12931-022-02117-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
Despite improvements in medical science and public health, mortality of community-acquired pneumonia (CAP) has barely changed throughout the last 15 years. The current SARS-CoV-2 pandemic has once again highlighted the central importance of acute respiratory infections to human health. The “network of excellence on Community Acquired Pneumonia” (CAPNETZ) hosts the most comprehensive CAP database worldwide including more than 12,000 patients. CAPNETZ connects physicians, microbiologists, virologists, epidemiologists, and computer scientists throughout Europe. Our aim was to summarize the current situation in CAP research and identify the most pressing unmet needs in CAP research.
Methods
To identify areas of future CAP research, CAPNETZ followed a multiple-step procedure. First, research members of CAPNETZ were individually asked to identify unmet needs. Second, the top 100 experts in the field of CAP research were asked for their insights about the unmet needs in CAP (Delphi approach). Third, internal and external experts discussed unmet needs in CAP at a scientific retreat.
Results
Eleven topics for future CAP research were identified: detection of causative pathogens, next generation sequencing for antimicrobial treatment guidance, imaging diagnostics, biomarkers, risk stratification, antiviral and antibiotic treatment, adjunctive therapy, vaccines and prevention, systemic and local immune response, comorbidities, and long-term cardio-vascular complications.
Conclusion
Pneumonia is a complex disease where the interplay between pathogens, immune system and comorbidities not only impose an immediate risk of mortality but also affect the patients’ risk of developing comorbidities as well as mortality for up to a decade after pneumonia has resolved. Our review of unmet needs in CAP research has shown that there are still major shortcomings in our knowledge of CAP.
Collapse
|
6
|
Kashatnikova DA, Khadzhieva MB, Kolobkov DS, Belopolskaya OB, Smelaya TV, Gracheva AS, Kalinina EV, Larin SS, Kuzovlev AN, Salnikova LE. Pneumonia and Related Conditions in Critically Ill Patients—Insights from Basic and Experimental Studies. Int J Mol Sci 2022; 23:ijms23179896. [PMID: 36077293 PMCID: PMC9456259 DOI: 10.3390/ijms23179896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Pneumonia is an acute infectious disease with high morbidity and mortality rates. Pneumonia’s development, severity and outcome depend on age, comorbidities and the host immune response. In this study, we combined theoretical and experimental investigations to characterize pneumonia and its comorbidities as well as to assess the host immune response measured by TREC/KREC levels in patients with pneumonia. The theoretical study was carried out using the Columbia Open Health Data (COHD) resource, which provides access to clinical concept prevalence and co-occurrence from electronic health records. The experimental study included TREC/KREC assays in young adults (18–40 years) with community-acquired (CAP) (n = 164) or nosocomial (NP) (n = 99) pneumonia and healthy controls (n = 170). Co-occurring rates between pneumonia, sepsis, acute respiratory distress syndrome (ARDS) and some other related conditions common in intensive care units were the top among 4170, 3382 and 963 comorbidities in pneumonia, sepsis and ARDS, respectively. CAP patients had higher TREC levels, while NP patients had lower TREC/KREC levels compared to controls. Low TREC and KREC levels were predictive for the development of NP, ARDS, sepsis and lethal outcome (AUCTREC in the range 0.71–0.82, AUCKREC in the range 0.67–0.74). TREC/KREC analysis can be considered as a potential prognostic test in patients with pneumonia.
Collapse
Affiliation(s)
- Darya A. Kashatnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maryam B. Khadzhieva
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Dmitry S. Kolobkov
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olesya B. Belopolskaya
- The Resource Center “Bio-Bank Center”, Research Park of St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tamara V. Smelaya
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Alesya S. Gracheva
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Ekaterina V. Kalinina
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Sergey S. Larin
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Artem N. Kuzovlev
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Lyubov E. Salnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
- Correspondence:
| |
Collapse
|
7
|
Fishchuk L, Rossokha Z, Pokhylko V, Cherniavska Y, Tsvirenko S, Kovtun S, Medvedieva N, Vershyhora V, Gorovenko N. Modifying effects of TNF-α, IL-6 and VDR genes on the development risk and the course of COVID-19. Pilot study. Drug Metab Pers Ther 2021; 37:133-139. [PMID: 34860474 DOI: 10.1515/dmpt-2021-0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES COVID-19 continues to range around the world and set morbidity and mortality antirecords. Determining the role of genetic factors in the development of COVID-19 may contribute to the understanding of the pathogenetic mechanisms that lead to the development of complications and fatalities in this disease. The aim of our study was to analyze the effect of TNF-α (rs1800629), IL-6 (rs1800795) and VDR (rs731236 and rs1544410) genes variants on the development risk and the course of COVID-19 in intensive care patients. METHODS The study group included 31 patients with diagnosis "viral COVID-19 pneumonia". All patients underwent standard daily repeated clinical, instrumental and laboratory examinations. Determination of IL-6, TNF-α, and VDR genes variants was performed using the PCR-RFLP method. RESULTS It was found a significant increase in the rate of the CC genotype and C allele (38.7 vs. 12.0% and 0.6 vs. 0.4%, respectively) of the IL-6 gene in all patients of the study in comparison with population frequencies. There was a significantly higher rate of heterozygous genotypes TC and GA of the VDR gene in group of died patients. The rs1800629 variant of the TNF-α gene is associated with the need for respiratory support and its longer duration in patients with COVID-19. CONCLUSIONS The obtained results support a hypothesis about the influence of variants of IL-6, TNF-α and VDR genes on severity of COVID-19. However, in order to draw definite conclusions, further multifaceted research in this area are need.
Collapse
Affiliation(s)
- Liliia Fishchuk
- State Institution "Reference-Centre for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - Zoia Rossokha
- State Institution "Reference-Centre for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - Valeriy Pokhylko
- Department of Pediatrics № 1 with Propedeutics and Neonatology, Ukrainian Medical Stomatological Academy, Poltava, Ukraine
| | - Yuliia Cherniavska
- Department of Pediatrics № 1 with Propedeutics and Neonatology, Ukrainian Medical Stomatological Academy, Poltava, Ukraine
| | - Svitlana Tsvirenko
- Department of Pediatrics № 1 with Propedeutics and Neonatology, Ukrainian Medical Stomatological Academy, Poltava, Ukraine
| | - Serhii Kovtun
- Poltava Regional Clinical Infectious Diseases Hospital of Poltava Regional Council, Poltava, Ukraine
| | - Nataliia Medvedieva
- State Institution "Reference-Centre for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - Viktoriia Vershyhora
- State Institution "Reference-Centre for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - Nataliia Gorovenko
- Department of Medical and Laboratory Genetics, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Mikhailova SV, Shcherbakova LV, Logvinenko NI, Logvinenko II, Voevoda MI. Polymorphism of genes associated with infectious lung diseases in Northern Asian populations and in patients with community-acquired pneumonia. Vavilovskii Zhurnal Genet Selektsii 2021; 25:301-309. [PMID: 35083399 PMCID: PMC8698094 DOI: 10.18699/vj21.51-o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
The innate immune system is the first to respond to invading pathogens. It is responsible for invader recognition, immune-cell recruitment, adaptive-immunity activation, and regulation of inflammation intensity. Previously, two single-nucleotide polymorphisms of innate-immunity genes – rs5743708 (Arg753Gln) of the TLR2 gene
and rs8177374 (Ser180Leu) of the TIRAP gene – have been shown to be associated with both pneumonia and tuberculosis in humans, but the data are contradictory among different ethnic groups. It has also been reported that
rs10902158 at the PKP3-SIGGIR-TMEM16J genetic locus belongs to a haplotype race-specifically associated with tuberculosis. Meanwhile, a gradient of its frequency is observed in Asia. The aim of this work was to assess the effect of
selection for the genotypes of the above-mentioned SNPs on the gene pools of populations living in harsh climatic
conditions that contribute to the development of infectious lung diseases. We estimated the prevalence of these
variants in white and Asian (Chukchis and Yakuts) population samples from Northern Asia and among patients with
community-acquired pneumonia (CAP). Carriage of the rs5743708 A allele was found to predispose to severe CAP
(odds ratio 2.77, p = 0.021), whereas the GG/CT genotype of rs5743708/rs8177374 proved to be protective against
it (odds ratio 0.478, p = 0.022) in white patients. No association of rs10902158 with CAP (total or severe) was found
among whites. Stratification of CAP by causative pathogen may help eliminate the current discrepancies between
different studies. No significant difference in rs5743708 or rs8177374 was found between adolescent and long-lived
white samples. Carriage of the alleles studied is probably not associated with predisposition to longevity among
whites in Siberia. Both white and Asian populations studied were different from Western European and East Asian
populations in the variants’ prevalence. The frequency of the rs8177374 T (Ser180Leu) variant was significantly higher
in the Chukchi sample (p = 0, χ2 = 63.22) relative to the East Asian populations. This result may confirm the hypothesis
about the selection of this allele in the course of human migration into areas with unfavorable climatic conditions.
Collapse
Affiliation(s)
| | - L. V. Shcherbakova
- Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | | | - I. I. Logvinenko
- Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences;
Novosibirsk State Medical University
| | | |
Collapse
|
9
|
Dukhinova M, Kokinos E, Kuchur P, Komissarov A, Shtro A. Macrophage-derived cytokines in pneumonia: Linking cellular immunology and genetics. Cytokine Growth Factor Rev 2021; 59:46-61. [PMID: 33342718 PMCID: PMC8035975 DOI: 10.1016/j.cytogfr.2020.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Macrophages represent the first line of anti-pathogen defense - they encounter invading pathogens to perform the phagocytic activity, to deliver the plethora of pro- and anti-inflammatory cytokines, and to shape the tissue microenvironment. Throughout pneumonia course, alveolar macrophages and infiltrated blood monocytes produce increasing cytokine amounts, which activates the antiviral/antibacterial immunity but can also provoke the risk of the so-called cytokine "storm" and normal tissue damage. Subsequently, the question of how the cytokine spectrum is shaped and balanced in the pneumonia context remains a hot topic in medical immunology, particularly in the COVID19 pandemic era. The diversity in cytokine profiles, involved in pneumonia pathogenesis, is determined by the variations in cytokine-receptor interactions, which may lead to severe cytokine storm and functional decline of particular tissues and organs, for example, cardiovascular and respiratory systems. Cytokines and their receptors form unique profiles in individual patients, depending on the (a) microenvironmental context (comorbidities and associated treatment), (b) lung monocyte heterogeneity, and (c) genetic variations. These multidisciplinary strategies can be proactively considered beforehand and during the pneumonia course and potentially allow the new age of personalized immunotherapy.
Collapse
Affiliation(s)
- Marina Dukhinova
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia.
| | - Elena Kokinos
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Polina Kuchur
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Alexey Komissarov
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia
| | - Anna Shtro
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg, Russia; Department of Chemotherapy, Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| |
Collapse
|
10
|
Zeng Q, Tang T, Huang B, Bu S, Xiao Y, Dai Y, Wei Z, Huang L, Jiang S. rs1840680 single nucleotide polymorphism in Pentraxin 3: a potential protective biomarker of severe community-acquired pneumonia. J Int Med Res 2021; 49:3000605211010621. [PMID: 33906523 PMCID: PMC8111280 DOI: 10.1177/03000605211010621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective Single nucleotide polymorphisms (SNPs) of pentraxin 3 (PTX3) are associated with various outcomes of lung infections. This study aimed to analyze the relationship between PTX3 polymorphisms and the severity of community-acquired pneumonia (CAP). Methods This is a retrospective case-control study comprising 43 patients with severe CAP (SCAP) and 97 patients with non-severe CAP. Three SNPs in the PTX3 gene (rs2305619, rs3816527, and rs1840680) from peripheral blood samples were genotyped by real-time polymerase chain reaction. The association between each SNP and the CAP severity was analyzed by logistic regression analysis. Results We found that the rs1840680 polymorphism was significantly associated with CAP clinical severity. However, no such association was observed for the genotypes and allele frequencies of rs2305619 or rs3816527. The PTX3 rs1840680 AG genotype was an independent factor for a lower risk of SCAP after multivariate logistic regression analysis. Male sex and coronary heart disease were associated with an increased risk of SCAP. Conclusions The PTX3 rs1840680 AG genotype was found to be associated with a lower risk of SCAP, and may serve as a potential protective biomarker to help clinical judgment and management.
Collapse
Affiliation(s)
- Qiaojun Zeng
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tiantian Tang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Biru Huang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shiyi Bu
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingqi Xiao
- Department of Respiratory Medicine, Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Yumeng Dai
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zixin Wei
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linjie Huang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanping Jiang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Monticelli M, Mele BH, Andreotti G, Cubellis MV, Riccio G. Why does SARS-CoV-2 hit in different ways? Host genetic factors can influence the acquisition or the course of COVID-19. Eur J Med Genet 2021; 64:104227. [PMID: 33872774 PMCID: PMC8051015 DOI: 10.1016/j.ejmg.2021.104227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/14/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023]
Abstract
The identification of high-risk factors for the infection by SARS-CoV-2 and the negative outcome of COVID-19 is crucial. The genetic background of the host might account for individual responses to SARS-CoV-2 infection besides age and comorbidities. A list of candidate polymorphisms is needed to drive targeted screens, given the existence of frequent polymorphisms in the general population. We carried out text mining in the scientific literature to draw up a list of genes referable to the term "SARS-CoV*". We looked for frequent mutations that are likely to affect protein function in these genes. Ten genes, mostly involved in innate immunity, and thirteen common variants were identified, for some of these the involvement in COVID-19 is supported by publicly available epidemiological data. We looked for available data on the population distribution of these variants and we demonstrated that the prevalence of five of them, Arg52Cys (rs5030737), Gly54Asp (rs1800450) and Gly57Glu (rs1800451) in MBL2, Ala59Thr (rs25680) in CD27, and Val197Met (rs12329760) in TMPRSS2, correlates with the number of cases and/or deaths of COVID-19 observed in different countries. The association of the TMPRSS2 variant provides epidemiological evidence of the usefulness of transmembrane protease serine 2 inhibitors for the cure of COVID-19. The identified genetic variants represent a basis for the design of a cost-effective assay for population screening of genetic risk factors in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Maria Monticelli
- Department of Biology, Università Federico II, 80126, Napoli, Italy.
| | - Bruno Hay Mele
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | | | - Maria Vittoria Cubellis
- Department of Biology, Università Federico II, 80126, Napoli, Italy; Istituto di Chimica Biomolecolare -CNR, 80078, Pozzuoli, Italy.
| | - Guglielmo Riccio
- Scuola di Specializzazione in Pediatria, Università degli Studi di Trieste, 34127, Trieste, Italy.
| |
Collapse
|
12
|
Borilova Linhartova P, Danek Z, Deissova T, Hromcik F, Lipovy B, Szaraz D, Janos J, Fassmann A, Bartova J, Drizhal I, Izakovicova Holla L. Interleukin Gene Variability and Periodontal Bacteria in Patients with Generalized Aggressive Form of Periodontitis. Int J Mol Sci 2020; 21:ijms21134728. [PMID: 32630798 PMCID: PMC7370291 DOI: 10.3390/ijms21134728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Host genetic predispositions to dysregulated immune response can influence the development of the aggressive form of periodontitis (AgP) through susceptibility to oral dysbiosis and subsequent host-microbe interaction. This case-control study aimed to perform a multilocus analysis of functional variants in selected interleukin (IL) genes in patients with the generalized form of AgP in a homogenous population. Twelve polymorphisms in IL-1 gene cluster, IL-6 and its receptor, IL-10, IL-17A, and IL-18 were determined in 91 AgP patients and 210 controls. Analysis of seven selected periodontal bacteria in subgingival sulci/pockets was performed with a commercial DNA-microarray kit in a subgroup of 76 individuals. The pilot in vitro study included stimulation of peripheral blood monocytes (PBMC) from 20 individuals with periodontal bacteria and measurement of IL-10 levels using the Luminex method. Only the unctional polymorphism IL-10 −1087 A/G (rs1800896) and specific IL-10 haplotypes were associated with the development of the disease (p < 0.05, Pcorr > 0.05). Four bacterial species occurred more frequently in AgP than in controls (p < 0.01, Pcorr < 0.05). Elevated IL-10 levels were found in AgP patients, carriers of IL-10 −1087GG genotype, and PBMCs stimulated by periodontal bacteria (p < 0.05, Pcorr > 0.05). We therefore conclude that a combination of genetic predisposition to the altered expression of IL-10 and the presence of specific periodontal bacteria may contribute to Th1/Th2 balance disruption and AgP development.
Collapse
Affiliation(s)
- Petra Borilova Linhartova
- Clinic of Stomatology, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic; (P.B.L.); (F.H.); (J.J.); (L.I.H.)
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.D.); (B.L.)
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic;
| | - Zdenek Danek
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.D.); (B.L.)
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic;
- Clinic of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavska 20, 62500 Brno, Czech Republic
- Correspondence: ; Tel.: +420-532-232-484
| | - Tereza Deissova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.D.); (B.L.)
| | - Filip Hromcik
- Clinic of Stomatology, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic; (P.B.L.); (F.H.); (J.J.); (L.I.H.)
- Clinic of Stomatology, St. Anne’s University Hospital, Pekarska 664/53, 60200 Brno, Czech Republic;
| | - Bretislav Lipovy
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.D.); (B.L.)
- Department of Burns and Plastic Surgery, Faculty of Medicine, Masaryk University, Jihlavska 20, 62500 Brno, Czech Republic
- Department of Burns and Plastic Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
| | - David Szaraz
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic;
- Clinic of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavska 20, 62500 Brno, Czech Republic
| | - Julius Janos
- Clinic of Stomatology, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic; (P.B.L.); (F.H.); (J.J.); (L.I.H.)
| | - Antonin Fassmann
- Clinic of Stomatology, St. Anne’s University Hospital, Pekarska 664/53, 60200 Brno, Czech Republic;
| | - Jirina Bartova
- Institute of Clinical and Experimental Dental Medicine, First Faculty of Medicine, Charles University, Karlovo nam. 554/32, 12808 Prague, Czech Republic;
- Institute of Clinical and Experimental Dental Medicine, General University Hospital, Karlovo nam. 554/32, 12808 Prague, Czech Republic
| | - Ivo Drizhal
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 50003 Hradec Kralove, Czech Republic;
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Faculty of Medicine, Masaryk University, Pekarska 664/53, 60200 Brno, Czech Republic; (P.B.L.); (F.H.); (J.J.); (L.I.H.)
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.D.); (B.L.)
- Clinic of Stomatology, St. Anne’s University Hospital, Pekarska 664/53, 60200 Brno, Czech Republic;
| |
Collapse
|
13
|
Elkoumi MA, Abdellatif SH, Mohamed FY, Sherif AH, Elashkar SSA, Saleh RM, Boraey NF, Abdelaal NM, Akeel NE, Elhewala AA, Mosbah AA, Zakaria MT, Soliman MM, Salah A, Sedky YM, Sobieh AA, Mashali MH, Waked NM, Elshreif AM, Hafez SF, Hashem MIA, Shehab MM, Soliman AA, Emam AA, Ahmed AAA, Fahim MS, Elshehawy NA, Abdel-Aziz MM, Abdou AM, El-Shehawy AA, Youssef MAA, Fahmy DS, Malek MM, Osman SF, Ibrahim MAM, Alanwar MI, Zeidan NMS. Ficolin-1 gene (FCN1) -144 C/A polymorphism is associated with adverse outcome of severe pneumonia in the under-five Egyptian children: A multicenter study. Pediatr Pulmonol 2020; 55:1175-1183. [PMID: 32142211 DOI: 10.1002/ppul.24719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pneumonia is the foremost cause of child death worldwide. M-ficolin is encoded by the FCN1 gene and represents a novel link between innate and adaptive immunity. OBJECTIVES To investigate the FCN1 -144 C/A (rs10117466) polymorphism as a potential marker for pneumonia severity and adverse outcome namely complications or mortality in the under-five Egyptian children. METHODS This was a prospective multicenter study that included 620 children hospitalized with World Health Organization-defined severe pneumonia and 620 matched healthy control children. Polymorphism rs10117466 of the FCN1 gene promoter was analyzed by PCR-SSP, while serum M-ficolin levels were assessed by ELISA. RESULTS The FCN1 A/A genotype and A allele at the -144 position were more frequently observed in patients compared to the control children (43.4% vs 27.6%; odds ratio [OR]: 1.62; [95% confidence interval {CI}: 1.18-2.2]; for the A/A genotype) and (60.8% vs 52.5%; OR: 1.4; [95% CI: 1.19-1.65]; for the A allele); P < .01. The FCN1 -144 A/A homozygous patients had significantly higher serum M-ficolin concentrations (mean: 1844 ± 396 ng/mL) compared with those carrying the C/C or C/A genotype (mean: 857 ± 278 and 1073 ± 323 ng/mL, respectively; P = .002). FCN1 -144 A/A genotype was an independent risk factor for adverse outcomes in children with severe pneumonia (adjusted OR = 4.85, [95% CI: 2.96-10.25]; P = .01). CONCLUSION The FCN1 A/A genotype at the -144 position was associated with high M-ficolin serum levels and possibly contributes to enhanced inflammatory response resulting in the adverse outcome of pneumonia in the under-five Egyptian children.
Collapse
Affiliation(s)
- Mohamed A Elkoumi
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sawsan H Abdellatif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Faisal Y Mohamed
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ahmed H Sherif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa S A Elashkar
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rabab M Saleh
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa F Boraey
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - NourEldin M Abdelaal
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Nagwa E Akeel
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Elhewala
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amira A Mosbah
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mervat T Zakaria
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohammed M Soliman
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed Salah
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Yasser M Sedky
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Alaa A Sobieh
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohamed H Mashali
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nevin M Waked
- Department of Pediatrics, Faculty of Medicine, October 6 University, Cairo, Egypt
| | - Anas M Elshreif
- Department of Pediatrics, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Sahbaa F Hafez
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mustafa I A Hashem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M Shehab
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Attia A Soliman
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Emam
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Mohamed S Fahim
- Department of Anathesia, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Naglaa A Elshehawy
- Department of Anathesia, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Marwa M Abdel-Aziz
- Department of Anathesia, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Adel M Abdou
- Department of Clinical pathology, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Ahmed A El-Shehawy
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Manal A A Youssef
- Department of Rheumatology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia S Fahmy
- Department of Rheumatology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mai M Malek
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherif F Osman
- Department of Radiology, Texas Tech University Health Sciences Center El Paso, El Paso, Texas
| | - Mohamed A M Ibrahim
- Department of Clinical pathology, Faculty of Medicine, Sohag University, Egypt
| | - Mohamed I Alanwar
- Department of Cardiothoracic surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nancy M S Zeidan
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Host defense against community-acquired pneumonia depends on an intact innate and acquired immune system. This review analyses the correlation between specific defects and polymorphisms of immunity genes with susceptibility for pneumonia. RECENT FINDINGS Mutations in BTK, Bruton's tyrosine kinase, lead to X-linked agammaglobulinemia, a disease characterized by recurrent respiratory tract infections, including pneumonia. BTK inhibitors, which are used for treatment of leukemia, have pneumonia as side effect. Polymorphisms in B lymphocyte growth and differentiation factors, including IL-6 and IL-10, Fcg RIIa receptors, as well as genetic variants of ACE, angiotensin-converting enzyme, also are associated with increased susceptibility for pneumonia. SUMMARY Delineation of underlying genetic defects and polymorphisms may add in diagnosis, therapy, and prognosis of community-acquired pneumonia. In case of humoral immunodeficiency, antibody replacement therapy may be indicated.
Collapse
|
15
|
Abstract
Pneumonia is a highly prevalent disease with considerable morbidity and mortality. However, diagnosis and therapy still rely on antiquated methods, leading to the vast overuse of antimicrobials, which carries risks for both society and the individual. Furthermore, outcomes in severe pneumonia remain poor. Genomic techniques have the potential to transform the management of pneumonia through deep characterization of pathogens as well as the host response to infection. This characterization will enable the delivery of selective antimicrobials and immunomodulatory therapy that will help to offset the disorder associated with overexuberant immune responses.
Collapse
Affiliation(s)
- Samir Gautam
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA
| | - Lokesh Sharma
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA
| | - Charles S Dela Cruz
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA.
| |
Collapse
|
16
|
Tereshchenko SY, Smolnikova MV. Congenitally impaired pattern-recognition receptors in pathogenesis of pediatric invasive and recurrent pneumococcal infection. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-2-229-238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Here we review currently available data showing that innate immune signs predisposing to recurrent and invasive pneumococcal infections were identified in children. Streptococcus pneumoniae (pneumococcus) belongs to Grampositive bacteria being the major cause of morbidity and mortality in infants, especially in developing countries and in communities with low socioeconomic status. Due to the lack of anti-pneumococcal vaccination, the significant proportion of pneumococcus carriers develop non-invasive (pneumonia, otitis media, sinusitis) and severe invasive (bacteremia/septicemia, meningitis) pneumococcal infection. A great deal of diverse factors related to pneumococcus biological features (virulence factors) as well individualized host-specific immunity are implicated in efficient bacterial penetration across the mucous membranes. The TLR signaling system plays a crucial role in the human nonspecific defense upon the first encounter with the pathogen. Various TLRs comprise the first pattern recognition receptor fami ly ever described which sense ligands derived from the outer bacterial wall. The complement system is the ancient innate immunity component mainly involved in intravascular elimination of bacterial agents. In addition, the complement proteins serve as a bridge between innate and adaptive immunity, ensuring optimal conditions for B- and T-cell maturation and differentiation. Because pneumococcus secretes the IgA protease, a local protective effects related to IgA antibodies might not be so prominent. Therefore, B-cell immunodeficiency and impaired complement system hold a lead place among congenital causes resulting in severe and recurrent pneumococcal infections in children. Thus, based on available data, we concluded that impaired B-cell function, the complement components deficiency as well as receptor-recognition receptors (TLR-2, -9, -4, MYD88 adapter protein, TLR cascade enzymes: IRAK4, NEMO, NOD-like receptors: NOD2, NLRP3; C-type lectins: MBL, Dextin-2, and, possibly, ficoline) play the most important role among congenital immunodeficiencies predisposing to invasive and recurrent pneumococcal infections play the most important role among congenital immunodeficiencies predisposing to invasive and recurrent pneumococcal infections, and should be used as a rationale for immunological surveillance and organizing immunogenetics screening in these patients.
Collapse
|
17
|
Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metab Brain Dis 2019; 34:385-415. [PMID: 30758706 PMCID: PMC6428797 DOI: 10.1007/s11011-019-0388-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
A model of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals. The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation, endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and T cells, including regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| |
Collapse
|
18
|
Whole Exome Sequencing Identifies New Host Genomic Susceptibility Factors in Empyema Caused by Streptococcus pneumoniae in Children: A Pilot Study. Genes (Basel) 2018; 9:genes9050240. [PMID: 29751582 PMCID: PMC5977180 DOI: 10.3390/genes9050240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
Pneumonia is the leading cause of death amongst infectious diseases. Streptococcus pneumoniae is responsible for about 25% of pneumonia cases worldwide, and it is a major cause of childhood mortality. We carried out a whole exome sequencing (WES) study in eight patients with complicated cases of pneumococcal pneumonia (empyema). An initial assessment of statistical association of WES variation with pneumonia was carried out using data from the 1000 Genomes Project (1000G) for the Iberian Peninsula (IBS) as reference controls. Pseudo-replication statistical analyses were carried out using different European control groups. Association tests pointed to single nucleotide polymorphism (SNP) rs201967957 (gene MEIS1; chromosome 2; p-valueIBS = 3.71 × 10-13) and rs576099063 (gene TSPAN15; chromosome 10; p-valueIBS = 2.36 × 10-8) as the best candidate variants associated to pneumococcal pneumonia. A burden gene test of pathogenicity signaled four genes, namely, OR9G9, MUC6, MUC3A and APOB, which carry significantly increased pathogenic variation when compared to controls. By analyzing various transcriptomic data repositories, we found strong supportive evidence for the role of MEIS1, TSPAN15 and APOBR (encoding the receptor of the APOB protein) in pneumonia in mouse and human models. Furthermore, the association of the olfactory receptor gene OR9G9 has recently been related to some viral infectious diseases, while the role of mucin genes (MUC6 and MUC3A), encoding mucin glycoproteins, are well-known factors related to chronic obstructive airway disease. WES emerges as a promising technique to disentangle the genetic basis of host genome susceptibility to infectious respiratory diseases.
Collapse
|
19
|
Genetic ancestry effects on the distribution of toll-like receptors (TLRs) gene polymorphisms in a population of the Atlantic Forest, São Paulo, Brazil. Hum Immunol 2018; 79:101-108. [DOI: 10.1016/j.humimm.2017.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 02/06/2023]
|