1
|
Shen S, Zhong H, Zhou X, Li G, Zhang C, Zhu Y, Yang Y. Advances in Traditional Chinese Medicine research in diabetic kidney disease treatment. PHARMACEUTICAL BIOLOGY 2024; 62:222-232. [PMID: 38357845 PMCID: PMC10877659 DOI: 10.1080/13880209.2024.2314705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) is a prominent complication arising from diabetic microangiopathy, and its prevalence and renal impact have placed it as the primary cause of end-stage renal disease. Traditional Chinese Medicine (TCM) has the distinct advantage of multifaceted and multilevel therapeutic attributes that show efficacy in improving clinical symptoms, reducing proteinuria, protecting renal function, and slowing DKD progression. Over recent decades, extensive research has explored the mechanisms of TCM for preventing and managing DKD, with substantial studies that endorse the therapeutic benefits of TCM compounds and single agents in the medical intervention of DKD. OBJECTIVE This review lays the foundation for future evidence-based research efforts and provide a reference point for DKD investigation. METHODS The relevant literature published in Chinese and English up to 30 June 2023, was sourced from PubMed, Cochrane Library, VIP Database for Chinese Technical Periodicals (VIP), Wanfang Data, CNKI, and China Biology Medicine disc (CBM). The process involved examining and summarizing research on TCM laboratory tests and clinical randomized controlled trials for DKD treatment. RESULTS AND CONCLUSIONS The TCM intervention has shown the potential to inhibit the expression of inflammatory cytokines and various growth factors, lower blood glucose levels, and significantly affect insulin resistance, lipid metabolism, and improved renal function. Furthermore, the efficacy of TCM can be optimized by tailoring personalized treatment regimens based on the unique profiles of individual patients. We anticipate further rigorous and comprehensive clinical and foundational investigations into the mechanisms underlying the role of TCM in treating DKD.
Collapse
Affiliation(s)
- Shiyi Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Huiyun Zhong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| |
Collapse
|
2
|
Zhang Y, Yang Y, Hou Y, Yan W, Zhang X, Huang X, Song Q, He F, Wang J, Sun A, Tian C. ZNF8 promotes progression of gastrointestinal cancers via a p53-dependent mechanism. Cell Signal 2024; 123:111354. [PMID: 39173856 DOI: 10.1016/j.cellsig.2024.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/09/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
p53 is a critical tumor suppressor, and the disruption of its normal function is often a prerequisite for the development or progression of tumors. Our previous works revealed that multiple members of Krüppel-associated box (KRAB) domain zinc-finger proteins (KZFPs) family regulate p53 transcriptional activity by interacting with it. But the tumor biology functions of these members have not been fully elucidated. Here, the pan-cancer analysis related to gastrointestinal cancers (GICs) revealed that ZNF8, a p53-interacting protein, is an unfavorable prognostic factor for patients with malignancies. ZNF8 interacts with p53 and further depresses its transcriptional activity in colon cancer cells. The knockdown of ZNF8 or the overexpression of ZNF8 inhibits or facilitates the in vitro colony formation, migration, invasion, and angiogenesis of p53+/+ colon cancer HCT116 cells, HepG2 cells and EC109 cells rather than p53-/- colon cancer HCT116 cells and p53-knockout HepG2 cells, respectively. Xenograft experiments conducted in vivo also showed that the knockdown of ZNF8 in p53+/+ but not in p53-/- HCT116 cells curbs the tumor growth and metastasis to lung, leading to an extended life span for tumor-bearing mice. Clinically, two independent immunohistochemistry cohorts of colon cancer and esophageal cancer also indicated that ZNF8 is higher expression in carcinoma tissues than adjacent tissues and this is associated with worse overall survival outcomes in patients without harboring p53 mutation. Together, our results provide insight into the p53-specific tumor oncogenic function of ZNF8. ZNF8 may prove to be a potential target for GICs treatment.
Collapse
Affiliation(s)
- Yiming Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Yingchuan Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yushan Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Wei Yan
- The First Medical Center of Chinese PLA General Hospital, Beijing 100036, China
| | - Xiuyuan Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Xiaofen Huang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; College of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Qin Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; College of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China; College of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| | - Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China; College of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| | - Chunyan Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China; College of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
3
|
Park JJ, Lee SJ, Baek M, Lee OJ, Nam S, Kim J, Kim JY, Shin EY, Kim EG. FRMD6 determines the cell fate towards senescence: involvement of the Hippo-YAP-CCN3 axis. Cell Death Differ 2024; 31:1398-1409. [PMID: 38926528 PMCID: PMC11519602 DOI: 10.1038/s41418-024-01333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Cellular senescence, a hallmark of aging, is pathogenically linked to the development of aging-related diseases. This study demonstrates that FRMD6, an upstream component of the Hippo/YAP signaling cascade, is a key regulator of senescence. Proteomic analysis revealed that FRMD6 is upregulated in senescent IMR90 fibroblasts under various senescence-inducing conditions. Silencing FRMD6 mitigated the senescence of IMR90 cells, suggesting its requirement in senescence. Conversely, the overexpression of FRMD6 alone induced senescence in cells and in lung tissue, establishing a causal link. The elevated FRMD6 levels correlated well with increased levels of the inhibitory phosphorylated YAP/TAZ. We identified cellular communication network factor 3 (CCN3), a key component of the senescence-associated secretory phenotype regulated by YAP, whose administration attenuated FRMD6-induced senescence in a dose-dependent manner. Mechanistically, FRMD6 interacted with and activated MST kinase, which led to YAP/TAZ inactivation. The expression of FRMD6 was regulated by the p53 and SMAD transcription factors in senescent cells. Accordingly, the expression of FRMD6 was upregulated by TGF-β treatment that activates those transcription factors. In TGF-β-treated IMR90 cells, FRMD6 mainly segregated with p21, a senescence marker, but rarely segregated with α-SMA, a myofibroblast marker, which suggests that FRMD6 has a role in directing cells towards senescence. Similarly, in TGF-β-enriched environments, such as fibroblastic foci (FF) from patients with idiopathic pulmonary fibrosis, FRMD6 co-localized with p16 in FF lining cells, while it was rarely detected in α-SMA-positive myofibroblasts that are abundant in FF. In sum, this study identifies FRMD6 as a novel regulator of senescence and elucidates the contribution of the FRMD6-Hippo/YAP-CCN3 axis to senescence.
Collapse
Affiliation(s)
- Jung-Jin Park
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Su Jin Lee
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Minwoo Baek
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Ok-Jun Lee
- Department of Pathology, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21565, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Eun-Young Shin
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea.
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
4
|
Ma Y, Yang Y, Zhang H, Mugaanyi J, Hu Y, Wu S, Lu C, Mao S, Wang K. Sarcomatoid carcinoma of the pancreas (Review). Oncol Lett 2024; 28:477. [PMID: 39161336 PMCID: PMC11332573 DOI: 10.3892/ol.2024.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/20/2024] [Indexed: 08/21/2024] Open
Abstract
Sarcomatoid carcinoma of the pancreas (SCP) is a rare and aggressive subtype of undifferentiated pancreatic ductal adenocarcinoma, with a generally poor prognosis and only sporadic cases reported worldwide. Histologically, the most notable feature of SCP is the presence of abundant of mesenchymatoid spindle tumor cells in the tumor, which lack glandular differentiation. Immunohistochemically, SCP is characterized by the expression of both mesenchymal and epithelial markers. With only a few reported cases, there is limited knowledge about its molecular and clinicopathological characteristics. Therefore, the present study performed a literature search to identify all relevant published studies. The present review provides an overview of the histogenesis, diagnosis, genetic features, prognosis and treatment of SCP, specifically focusing on the molecular alterations. Furthermore, a single-center experience is reported, which adds to the limited evidence available in the literature.
Collapse
Affiliation(s)
- Yijie Ma
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Yiwen Yang
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Huizhi Zhang
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Joseph Mugaanyi
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Yangke Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Shengdong Wu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Caide Lu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Shuqi Mao
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Ke Wang
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| |
Collapse
|
5
|
Itoh Y, Miyake K, Koinuma D, Omata C, Saitoh M, Miyazawa K. Analysis of the DNA-binding properties of TGF-β-activated Smad complexes unveils a possible molecular basis for cellular context-dependent signaling. FASEB J 2024; 38:e23877. [PMID: 39114961 DOI: 10.1096/fj.202400978r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024]
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that modulates a wide variety of cellular responses by regulating target gene expression. It principally transmits signals via receptor-activated transcription factors Smad2 and Smad3, which form trimeric complexes with Smad4 upon activation and regulate gene expression by binding to genomic DNA. Here, we examined the mechanisms by which TGF-β regulates the transcription of target genes in a cell context-dependent manner by screening a double-stranded DNA oligonucleotide library for DNA sequences bound to endogenous activated Smad complexes. Screening was performed by cyclic amplification of selected targets (CASTing) using an anti-Smad2/3 antibody and nuclear extracts isolated from three cell lines (A549, HepG2, and HaCaT) stimulated with TGF-β. The preference of the activated Smad complexes for conventional Smad-binding motifs such as Smad-binding element (SBE) and CAGA motifs was different in HepG2 than in the other two cell lines, which may indicate the distinct composition of the activated Smad complexes. Several transcription factor-binding motifs other than SBE or CAGA, including the Fos/Jun-binding motifs, were detected in the enriched sequences. Reporter assays using sequences containing these transcription factor-binding motifs together with Smad-binding motifs indicated that some of the motifs may be involved in cell type-dependent transcriptional activation by TGF-β. The results suggest that the CASTing method is useful for elucidating the molecular basis of context-dependent Smad signaling.
Collapse
Affiliation(s)
- Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kunio Miyake
- Department of Epidemiology and Environmental Medicine, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Daizo Koinuma
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chiho Omata
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masao Saitoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
6
|
Osbourne R, Thayer KM. Structural and mechanistic diversity in p53-mediated regulation of organismal longevity across taxonomical orders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606567. [PMID: 39149312 PMCID: PMC11326148 DOI: 10.1101/2024.08.05.606567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The accumulation of senescent cells induces several aging phenotypes, and the p53 tumor suppressor protein regulates one of the two known cellular senescence pathways. p53's regulation of senescence is however not clear. For example, p53 deficiency in some mice has been shown to rescue premature aging while others display significant aging phenotype when p53-deficient. This study seeks to elucidate, structurally and mechanistically, p53's roles in longevity. Through a relative evolutionary scoring (RES) algorithm, we quantify the level of evolutionary change in the residues of p53 across organisms of varying average lifespans in six taxonomic orders. Secondly, we used PEPPI to assess the likelihood of interaction between p53-or p53-linked proteins-and known senescence-regulating proteins across organisms in the orders Primates and Perciformes. Our RES algorithm found variations in the alignments within and across orders, suggesting that mechanisms of p53-mediated regulation of longevity may vary. PEPPI results suggest that longer-lived species may have evolved to regulate induction and inhibition of cellular senescence better than their shorter-lived counterparts. With experimental verification, these predictions could help elucidate the mechanisms of p53-mediated cellular senescence, ultimately clarifying our understanding of p53's connection to aging in a multiple-species context.
Collapse
Affiliation(s)
- Romani Osbourne
- Department of Molecular Biology & Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, United States of America
| | - Kelly M. Thayer
- College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
7
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
8
|
Yatsenko T, Rios R, Nogueira T, Salama Y, Takahashi S, Tabe Y, Naito T, Takahashi K, Hattori K, Heissig B. Urokinase-type plasminogen activator and plasminogen activator inhibitor-1 complex as a serum biomarker for COVID-19. Front Immunol 2024; 14:1299792. [PMID: 38313435 PMCID: PMC10835145 DOI: 10.3389/fimmu.2023.1299792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Patients with coronavirus disease-2019 (COVID-19) have an increased risk of thrombosis and acute respiratory distress syndrome (ARDS). Thrombosis is often attributed to increases in plasminogen activator inhibitor-1 (PAI-1) and a shut-down of fibrinolysis (blood clot dissolution). Decreased urokinase-type plasminogen activator (uPA), a protease necessary for cell-associated plasmin generation, and increased tissue-type plasminogen activator (tPA) and PAI-1 levels have been reported in COVID-19 patients. Because these factors can occur in free and complexed forms with differences in their biological functions, we examined the predictive impact of uPA, tPA, and PAI-1 in their free forms and complexes as a biomarker for COVID-19 severity and the development of ARDS. In this retrospective study of 69 Japanese adults hospitalized with COVID-19 and 20 healthy donors, we found elevated free, non-complexed PAI-1 antigen, low circulating uPA, and uPA/PAI-1 but not tPA/PAI-1 complex levels to be associated with COVID-19 severity and ARDS development. This biomarker profile was typical for patients in the complicated phase. Lack of PAI-1 activity in circulation despite free, non-complexed PAI-1 protein and plasmin/α2anti-plasmin complex correlated with suPAR and sVCAM levels, markers indicating endothelial dysfunction. Furthermore, uPA/PAI-1 complex levels positively correlated with TNFα, a cytokine reported to trigger inflammatory cell death and tissue damage. Those levels also positively correlated with lymphopenia and the pro-inflammatory factors interleukin1β (IL1β), IL6, and C-reactive protein, markers associated with the anti-viral inflammatory response. These findings argue for using uPA and uPA/PAI-1 as novel biomarkers to detect patients at risk of developing severe COVID-19, including ARDS.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Department of Enzymes Chemistry and Biochemistry, Palladin Institute of Biochemistry of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Ricardo Rios
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Tatiane Nogueira
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yoko Tabe
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Hematology/Oncology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Yu S, Zeng L, Rao F, Deng C, Zhang M, Xiao H, Xiao F, Xue Y, Wu S, Du Z, Wei W. High hydrostatic pressure participates in atrial fibrosis through the p300/p53/Smad3 pathway. FASEB J 2024; 38:e23324. [PMID: 38019188 DOI: 10.1096/fj.202300473rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/01/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
As an independent risk factor of atrial fibrillation (AF), hypertension (HTN) can induce atrial fibrosis through cyclic stretch and hydrostatic pressure. The mechanism by which high hydrostatic pressure promotes atrial fibrosis is unclear yet. p300 and p53/Smad3 play important roles in the process of atrial fibrosis. This study investigated whether high hydrostatic pressure promotes atrial fibrosis by activating the p300/p53/Smad3 pathway. Biochemical experiments were used to study the expression of p300/p53/Smad3 pathway in left atrial appendage (LAA) tissues of patients with sinus rhythm (SR), AF, AF + HTN, and C57/BL6 mice, hypertensive C57/BL6 mice and atrial fibroblasts of mice. To investigate the roles of p300 and p53 in the process of atrial fibrosis, p300 and p53 in mice atrial fibroblasts were knocked in or knocked down, respectively. The expression of p300/p53/Smad3 and fibrotic factors was higher in patients with AF and AF + HTN than those with SR only. The expressions of p300/p53/Smad3 and fibrotic factors increased in hypertensive mice. Curcumin (Cur) and knocking down of p300 reversed the expressions of these factors. 40 mmHg hydrostatic pressure/overexpression of p300 upregulated the expressions of p300/p53/Smad3 and fibrotic factors in mice LAA fibroblasts. While Cur or knocking down p300 reversed these changes. Knocking down/overexpression of p53, the expressions of p53/Smad3 and fibrotic factors also decreased/increased, correspondingly. High hydrostatic pressure promotes atrial fibrosis by activating the p300/p53/Smad3 pathway, which further increases the susceptibility to AF.
Collapse
Affiliation(s)
- Shenghuan Yu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Long Zeng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Fang Rao
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Chunyu Deng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Mengzhen Zhang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Haiyin Xiao
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Feifei Xiao
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Yumei Xue
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Shulin Wu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zhimin Du
- Dongguan Tungwah Songshan Lake Hospital, Dongguan, P.R. China
| | - Wei Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| |
Collapse
|
10
|
Nagasaka M, Inoue Y, Nagao Y, Miyajima C, Morishita D, Aoki H, Aoyama M, Imamura T, Hayashi H. SET8 is a novel negative regulator of TGF-β signaling in a methylation-independent manner. Sci Rep 2023; 13:22877. [PMID: 38129484 PMCID: PMC10739863 DOI: 10.1038/s41598-023-49961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine that induces a diverse set of cellular processes principally through Smad-dependent transcription. Transcriptional responses induced by Smads are tightly regulated by Smad cofactors and histone modifications; however, the underlying mechanisms have not yet been elucidated in detail. We herein report lysine methyltransferase SET8 as a negative regulator of TGF-β signaling. SET8 physically associates with Smad2/3 and negatively affects transcriptional activation by TGF-β in a catalytic activity-independent manner. The depletion of SET8 results in an increase in TGF-β-induced plasminogen activator inhibitor-1 (PAI-1) and p21 expression and enhances the antiproliferative effects of TGF-β. Mechanistically, SET8 occupies the PAI-1 and p21 promoters, and a treatment with TGF-β triggers the replacement of the suppressive binding of SET8 with p300 on these promoters, possibly to promote gene transcription. Collectively, the present results reveal a novel role for SET8 in the negative regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Yuji Nagao
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime, 791-0295, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
11
|
Ma X, Ma J, Leng T, Yuan Z, Hu T, Liu Q, Shen T. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren Fail 2023; 45:2146512. [PMID: 36762989 PMCID: PMC9930779 DOI: 10.1080/0886022x.2022.2146512] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes and has become the leading cause of end-stage kidney disease. The pathogenesis of DKD is complicated, and oxidative stress is considered as a core of DKD onset. High glucose can lead to increased production of reactive oxygen species (ROS) via the polyol, PKC, AGE/RAGE and hexosamine pathways, resulting in enhanced oxidative stress response. In this way, pathways such as PI3K/Akt, TGF-β1/p38-MAPK and NF-κB are activated, inducing endothelial cell apoptosis, inflammation, autophagy and fibrosis that cause histologic and functional abnormalities of the kidney and finally result in kidney injury. Presently, the treatment for DKD remains an unresolved issue. Traditional Chinese medicine (TCM) has unique advantages for DKD prevention and treatment attributed to its multi-target, multi-component, and multi-pathway characteristics. Numerous studies have proved that Chinese herbs (e.g., Golden Thread, Kudzuvine Root, Tripterygium glycosides, and Ginseng) and patent medicines (e.g., Shenshuaining Tablet, Compound Rhizoma Coptidis Capsule, and Zishen Tongluo Granule) are effective for DKD treatment. The present review described the role of oxidative stress in DKD pathogenesis and the effect of TCM intervention for DKD prevention and treatment, in an attempt to provide evidence for clinical practice.
Collapse
Affiliation(s)
- Xiaoju Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingru Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Leng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhu Yuan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,CONTACT Tao Shen School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
12
|
Anerillas C, Altés G, Gorospe M. MAPKs in the early steps of senescence implemEMTation. Front Cell Dev Biol 2023; 11:1083401. [PMID: 37009481 PMCID: PMC10060890 DOI: 10.3389/fcell.2023.1083401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Evidence is accumulating that the earliest stages of the DNA damage response can direct cells toward senescence instead of other cell fates. In particular, tightly regulated signaling through Mitogen-Activated Protein Kinases (MAPKs) in early senescence can lead to a sustained pro-survival program and suppress a pro-apoptotic program. Importantly, an epithelial-to-mesenchymal Transition (EMT)-like program appears essential for preventing apoptosis and favoring senescence following DNA damage. In this review, we discuss how MAPKs might influence EMT features to promote a senescent phenotype that increases cell survival at the detriment of tissue function.
Collapse
|
13
|
Czaplinska D, Ialchina R, Andersen HB, Yao J, Stigliani A, Dannesboe J, Flinck M, Chen X, Mitrega J, Gnosa SP, Dmytriyeva O, Alves F, Napp J, Sandelin A, Pedersen SF. Crosstalk between tumor acidosis, p53 and extracellular matrix regulates pancreatic cancer aggressiveness. Int J Cancer 2023; 152:1210-1225. [PMID: 36408933 PMCID: PMC10108304 DOI: 10.1002/ijc.34367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy with minimal treatment options and a global rise in prevalence. PDAC is characterized by frequent driver mutations including KRAS and TP53 (p53), and a dense, acidic tumor microenvironment (TME). The relation between genotype and TME in PDAC development is unknown. Strikingly, when wild type (WT) Panc02 PDAC cells were adapted to growth in an acidic TME and returned to normal pH to mimic invasive cells escaping acidic regions, they displayed a strong increase of aggressive traits such as increased growth in 3-dimensional (3D) culture, adhesion-independent colony formation and invasive outgrowth. This pattern of acidosis-induced aggressiveness was observed in 3D spheroid culture as well as upon organotypic growth in matrigel, collagen-I and combination thereof, mimicking early and later stages of PDAC development. Acid-adaptation-induced gain of cancerous traits was further increased by p53 knockout (KO), but only in specific extracellular matrix (ECM) compositions. Akt- and Transforming growth factor-β (TGFβ) signaling, as well as expression of the Na+ /H+ exchanger NHE1, were increased by acid adaptation. Whereas Akt inhibition decreased spheroid growth regardless of treatment and genotype, stimulation with TGFβI increased growth of WT control spheroids, and inhibition of TGFβ signaling tended to limit growth under acidic conditions only. Our results indicate that a complex crosstalk between tumor acidosis, ECM composition and genotype contributes to PDAC development. The findings may guide future strategies for acidosis-targeted therapies.
Collapse
Affiliation(s)
- Dominika Czaplinska
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Berg Andersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jiayi Yao
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Arnaud Stigliani
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Johs Dannesboe
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoming Chen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jakub Mitrega
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian Peter Gnosa
- Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Frauke Alves
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Clinic of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Joanna Napp
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Clinic of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Sengupta S, Ghufran SM, Khan A, Biswas S, Roychoudhury S. Transition of amyloid/mutant p53 from tumor suppressor to an oncogene and therapeutic approaches to ameliorate metastasis and cancer stemness. Cancer Cell Int 2022; 22:416. [PMID: 36567312 PMCID: PMC9791775 DOI: 10.1186/s12935-022-02831-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor suppressor p53 when undergoes amyloid formation confers several gain-of-function (GOF) activities that affect molecular pathways crucial for tumorigenesis and progression like some of the p53 mutants. Even after successful cancer treatment, metastasis and recurrence can result in poor survival rates. The major cause of recurrence is mainly the remnant cancer cells with stem cell-like properties, which are resistant to any chemotherapy treatment. Several studies have demonstrated the role of p53 mutants in exacerbating cancer stemness properties and epithelial-mesenchymal transition in these remnant cancer cells. Analyzing the amyloid/mutant p53-mediated signaling pathways that trigger metastasis, relapse or chemoresistance may be helpful for the development of novel or improved individualized treatment plans. In this review, we discuss the changes in the metabolic pathways such as mevalonate pathway and different signaling pathways such as TGF-β, PI3K/AKT/mTOR, NF-κB and Wnt due to p53 amyloid formation, or mutation. In addition to this, we have discussed the role of the regulatory microRNAs and lncRNAs linked with the mutant or amyloid p53 in human malignancies. Such changes promote tumor spread, potential recurrence, and stemness. Importantly, this review discusses the cancer therapies that target either mutant or amyloid p53, restore wild-type functions, and exploit the synthetic lethal interactions with mutant p53.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Shaikh Maryam Ghufran
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Aqsa Khan
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Subhrajit Biswas
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Susanta Roychoudhury
- grid.489176.50000 0004 1803 6730Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, 700063 India ,grid.417635.20000 0001 2216 5074Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
15
|
Khan M, Lin J, Wang B, Chen C, Huang Z, Tian Y, Yuan Y, Bu J. A novel necroptosis-related gene index for predicting prognosis and a cold tumor immune microenvironment in stomach adenocarcinoma. Front Immunol 2022; 13:968165. [PMID: 36389725 PMCID: PMC9646549 DOI: 10.3389/fimmu.2022.968165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Gastric cancer (GC) represents a major global clinical problem with very limited therapeutic options and poor prognosis. Necroptosis, a recently discovered inflammatory form of cell death, has been implicated in carcinogenesis and inducing necroptosis has also been considered as a therapeutic strategy. Objective We aim to evaluate the role of this pathway in gastric cancer development, prognosis and immune aspects of its tumor microenvironment. Methods and results In this study, we evaluated the gene expression of 55 necroptosis-related genes (NRGs) that were identified via carrying out a comprehensive review of the medical literature. Necroptosis pathway was deregulated in gastric cancer samples (n=375) as compared to adjacent normal tissues (n=32) obtained from the “The Cancer Genome Atlas (TCGA)”. Based on the expression of these NRGs, two molecular subtypes were obtained through consensus clustering that also showed significant prognostic difference. Differentially expressed genes between these two clusters were retrieved and subjected to prognostic evaluation via univariate cox regression analysis and LASSO cox regression analysis. A 13-gene risk signature, termed as necroptosis-related genes prognostic index (NRGPI), was constructed that comprehensively differentiated the gastric cancer patients into high- and low-risk subgroups. The prognostic significance of NRGPI was validated in the GEO cohort (GSE84437: n=408). The NRGPI-high subgroup was characterized by upregulation of 10 genes (CYTL1, PLCL1, CGB5, CNTN1, GRP, APOD, CST6, GPX3, FCN1, SERPINE1) and downregulation of 3 genes (EFNA3, E2F2, SOX14). Further dissection of these two risk groups by differential gene expression analysis indicated involvement of signaling pathways associated with cancer cell progression and immune suppression such as WNT and TGF-β signaling pathway. Para-inflammation and type-II interferon pathways were activated in NRGPI-high patients with an increased infiltration of Tregs and M2 macrophage indicating an exhausted immune phenotype of the tumor microenvironment. These molecular characteristics were mainly driven by the eight NRGPI oncogenes (CYTL1, PLCL1, CNTN1, GRP, APOD, GPX3, FCN1, SERPINE1) as validated in the gastric cancer cell lines and clinical samples. NRGPI-high patients showed sensitivity to a number of targeted agents, in particular, the tyrosine kinase inhibitors. Conclusions Necroptosis appears to play a critical role in the development of gastric cancer, prognosis and shaping of its tumor immune microenvironment. NRGPI can be used as a promising prognostic biomarker to identify gastric cancer patients with a cold tumor immune microenvironment and poor prognosis who may response to selected molecular targeted therapy.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhong Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Junguo Bu, ; Yawei Yuan,
| | - Junguo Bu
- Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Junguo Bu, ; Yawei Yuan,
| |
Collapse
|
16
|
HMG-CoA Reductase Inhibitor Statins Activate the Transcriptional Activity of p53 by Regulating the Expression of TAZ. Pharmaceuticals (Basel) 2022; 15:ph15081015. [PMID: 36015162 PMCID: PMC9412369 DOI: 10.3390/ph15081015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) is a downstream transcriptional regulator of the Hippo pathway that controls cell growth and differentiation. The aberrant activation of TAZ correlates with a poor prognosis in human cancers, such as breast and colon cancers. We previously demonstrated that TAZ inhibited the tumor suppressor functions of p53 and enhanced cell proliferation. Statins, which are used to treat dyslipidemia, have been reported to suppress the activity of TAZ and exert anti-tumor effects. In the present study, we focused on the regulation of p53 functions by TAZ and investigated whether statins modulate these functions via TAZ. The results obtained suggest that statins, such as simvastatin and fluvastatin, activated the transcriptional function of p53 by suppressing TAZ protein expression. Furthermore, co-treatment with simvastatin and anti-tumor agents that cooperatively activate p53 suppressed cancer cell survival. These results indicate a useful mechanism by which statins enhance the effects of anti-tumor agents through the activation of p53 and may represent a novel approach to cancer therapy.
Collapse
|
17
|
Overstreet JM, Gifford CC, Tang J, Higgins PJ, Samarakoon R. Emerging role of tumor suppressor p53 in acute and chronic kidney diseases. Cell Mol Life Sci 2022; 79:474. [PMID: 35941392 PMCID: PMC11072039 DOI: 10.1007/s00018-022-04505-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023]
Abstract
p53 is a major regulator of cell cycle arrest, apoptosis, and senescence. While involvement of p53 in tumorigenesis is well established, recent studies implicate p53 in the initiation and progression of several renal diseases, which is the focus of this review. Ischemic-, aristolochic acid (AA) -, diabetic-, HIV-associated-, obstructive- and podocyte-induced nephropathies are accompanied by activation and/or elevated expression of p53. Studies utilizing chemical or renal-specific inhibition of p53 in mice confirm the pathogenic role of this transcription factor in acute kidney injury and chronic kidney disease. TGF-β1, NOX, ATM/ATR kinases, Cyclin G, HIPK, MDM2 and certain micro-RNAs are important determinants of renal p53 function in response to trauma. AA, cisplatin or TGF-β1-mediated ROS generation via NOXs promotes p53 phosphorylation and subsequent tubular dysfunction. p53-SMAD3 transcriptional cooperation downstream of TGF-β1 orchestrates induction of fibrotic factors, extracellular matrix accumulation and pathogenic renal cell communication. TGF-β1-induced micro-RNAs (such as mir-192) could facilitate p53 activation, leading to renal hypertrophy and matrix expansion in response to diabetic insults while AA-mediated mir-192 induction regulates p53 dependent epithelial G2/M arrest. The widespread involvement of p53 in tubular maladaptive repair, interstitial fibrosis, and podocyte injury indicate that p53 clinical targeting may hold promise as a novel therapeutic strategy for halting progression of certain acute and chronic renal diseases, which affect hundreds of million people worldwide.
Collapse
Affiliation(s)
| | - Cody C Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Jiaqi Tang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA.
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA.
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
18
|
Zeitlmayr S, Zierler S, Staab-Weijnitz CA, Dietrich A, Geiger F, Horgen FD, Gudermann T, Breit A. TRPM7 restrains plasmin activity and promotes transforming growth factor-β1 signaling in primary human lung fibroblasts. Arch Toxicol 2022; 96:2767-2783. [PMID: 35864199 PMCID: PMC9302958 DOI: 10.1007/s00204-022-03342-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Sustained exposure of the lung to various environmental or occupational toxins may eventually lead to pulmonary fibrosis, a devastating disease with no cure. Pulmonary fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins such as fibronectin and collagens. The peptidase plasmin degrades the ECM, but protein levels of the plasmin activator inhibitor-1 (PAI-1) are increased in fibrotic lung tissue, thereby dampening plasmin activity. Transforming growth factor-β1 (TGF-β1)-induced activation of SMAD transcription factors promotes ECM deposition by enhancing collagen, fibronectin and PAI-1 levels in pulmonary fibroblasts. Hence, counteracting TGF-β1-induced signaling is a promising approach for the therapy of pulmonary fibrosis. Transient receptor potential cation channel subfamily M Member 7 (TRPM7) supports TGF-β1-promoted SMAD signaling in T-lymphocytes and the progression of fibrosis in kidney and heart. Thus, we investigated possible effects of TRPM7 on plasmin activity, ECM levels and TGF-β1 signaling in primary human pulmonary fibroblasts (pHPF). We found that two structurally unrelated TRPM7 blockers enhanced plasmin activity and reduced fibronectin or PAI-1 protein levels in pHPF under basal conditions. Further, TRPM7 blockade strongly inhibited fibronectin and collagen deposition induced by sustained TGF-β1 stimulation. In line with these data, inhibition of TRPM7 activity diminished TGF-β1-triggered phosphorylation of SMAD-2, SMAD-3/4-dependent reporter activation and PAI-1 mRNA levels. Overall, we uncover TRPM7 as a novel supporter of TGF-β1 signaling in pHPF and propose TRPM7 blockers as new candidates to control excessive ECM levels under pathophysiological conditions conducive to pulmonary fibrosis.
Collapse
Affiliation(s)
- Sarah Zeitlmayr
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany.,Faculty of Medicine, Johannes Kepler University, Life Science Park, Huemerstraße 3-5, 4020, Linz, Austria
| | - Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Zentrum München GmbH, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Fabienne Geiger
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany.
| |
Collapse
|
19
|
Hamabe‐Horiike T, Harada S, Yoshida K, Kinoshita J, Yamaguchi T, Fushida S. Adipocytes contribute to tumor progression and invasion of peritoneal metastasis by interacting with gastric cancer cells as cancer associated fibroblasts. Cancer Rep (Hoboken) 2022; 6:e1647. [PMID: 35691615 PMCID: PMC9875653 DOI: 10.1002/cnr2.1647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Peritoneal metastasis (PM) is one of the most common causes of noncurative surgery and the most frequent recurrence pattern in gastric cancer (GC). During the process of PM, GC cells detached from primary tumor interact with human peritoneal mesothelial cells (HPMC) overlapped with adipose tissues such as the omentum or mesentery. Although the interaction with HPMC promotes the malignancy of GC, the role of adipose tissues remains unclear. AIMS We aimed to clarify how adipose tissue are affected by adjacent primary tumors during the expression of adipokines and to elucidate whether GC cells transform adipocytes into CAFs in vitro. In addition, we investigated whether GC cells are affected by adipocytes in their ability to infiltrate. METHODS We investigated the phenotypic conversion of adipocytes during the malignant process of GC cells in vivo and in vitro. We evaluated the expression levels of adiponectin in the omental adipose tissue of gastric cancer patients by western blotting. Following adipocytes/gastric cancer cells coculture, adipocyte markers, adiponectin receptors, and inflammatory cytokine markers were detected by real-time PCR and/or western blotting in the single-cultured and co-cultured adipocytes; cancer-associated fibroblast (CAF) markers were detected by immunofluorescence and western blotting in the single-cultured and co-cultured adipocytes; invasion assays were performed in single cultured and co-cultured MKN45 and OCUM. RESULTS In omental adipose tissues that are situated close to the primary tumors, the expression of adiponectin tended to decrease in patients with subserosal or serosal invasion. By co-culturing with GC cells, adipocytes were dedifferentiated and the expression levels of CAF marker FSP1 and inflammatory cytokines, PAI-1 and IL-6, significantly increased (p < 0.05). Furthermore, GC cells co-cultured with adipocytes showed enhanced invasion ability. CONCLUSION Our findings suggest that the phenotypic conversion of adipocytes may promote the malignancy of GC in the construction of the cancer microenvironment of PM.
Collapse
Affiliation(s)
- Toshihide Hamabe‐Horiike
- Center for Biomedical Research and Education, School of MedicineKanazawa UniversityKanazawaJapan
| | - Shin‐ichi Harada
- Center for Biomedical Research and Education, School of MedicineKanazawa UniversityKanazawaJapan
| | - Kyoko Yoshida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| |
Collapse
|
20
|
Oncogenic RAS sensitizes cells to drug-induced replication stress via transcriptional silencing of P53. Oncogene 2022; 41:2719-2733. [PMID: 35393546 PMCID: PMC9076537 DOI: 10.1038/s41388-022-02291-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells often experience high basal levels of DNA replication stress (RS), for example due to hyperactivation of oncoproteins like MYC or RAS. Therefore, cancer cells are considered to be sensitive to drugs that exacerbate the level of RS or block the intra S-phase checkpoint. Consequently, RS-inducing drugs including ATR and CHK1 inhibitors are used or evaluated as anti-cancer therapies. However, drug resistance and lack of biomarkers predicting therapeutic efficacy limit efficient use. This raises the question what determines sensitivity of individual cancer cells to RS. Here, we report that oncogenic RAS does not only enhance the sensitivity to ATR/CHK1 inhibitors by directly causing RS. Instead, we observed that HRASG12V dampens the activation of the P53-dependent transcriptional response to drug-induced RS, which in turn confers sensitivity to RS. We demonstrate that inducible expression of HRASG12V sensitized cells to ATR and CHK1 inhibitors. Using RNA-sequencing of FACS-sorted cells we discovered that P53 signaling is the sole transcriptional response to RS. However, oncogenic RAS attenuates the transcription of P53 and TGF-β pathway components which consequently dampens P53 target gene expression. Accordingly, live cell imaging showed that HRASG12V exacerbates RS in S/G2-phase, which could be rescued by stabilization of P53. Thus, our results demonstrate that transcriptional control of P53 target genes is the prime determinant in the response to ATR/CHK1 inhibitors and show that hyperactivation of the MAPK pathway impedes this response. Our findings suggest that the level of oncogenic MAPK signaling could predict sensitivity to intra-S-phase checkpoint inhibition in cancers with intact P53.
Collapse
|
21
|
Tang MY, Gorin FA, Lein PJ. Review of evidence implicating the plasminogen activator system in blood-brain barrier dysfunction associated with Alzheimer's disease. AGEING AND NEURODEGENERATIVE DISEASES 2022; 2. [PMID: 35156107 PMCID: PMC8830591 DOI: 10.20517/and.2022.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elucidating the pathogenic mechanisms of Alzheimer’s disease (AD) to identify therapeutic targets has been the focus of many decades of research. While deposition of extracellular amyloid-beta plaques and intraneuronal neurofibrillary tangles of hyperphosphorylated tau have historically been the two characteristic hallmarks of AD pathology, therapeutic strategies targeting these proteinopathies have not been successful in the clinics. Neuroinflammation has been gaining more attention as a therapeutic target because increasing evidence implicates neuroinflammation as a key factor in the early onset of AD disease progression. The peripheral immune response has emerged as an important contributor to the chronic neuroinflammation associated with AD pathophysiology. In this context, the plasminogen activator system (PAS), also referred to as the vasculature’s fibrinolytic system, is emerging as a potential factor in AD pathogenesis. Evolving evidence suggests that the PAS plays a role in linking chronic peripheral inflammatory conditions to neuroinflammation in the brain. While the PAS is better known for its peripheral functions, components of the PAS are expressed in the brain and have been demonstrated to alter neuroinflammation and blood-brain barrier (BBB) permeation. Here, we review plasmin-dependent and -independent mechanisms by which the PAS modulates the BBB in AD pathogenesis and discuss therapeutic implications of these observations.
Collapse
Affiliation(s)
- Mei-Yun Tang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fredric A Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.,Department of Neurology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
22
|
Gkountakos A, Simbolo M, Bariani E, Scarpa A, Luchini C. Undifferentiated Sarcomatoid Carcinoma of the Pancreas: From Histology and Molecular Pathology to Precision Oncology. Int J Mol Sci 2022; 23:1283. [PMID: 35163206 PMCID: PMC8835772 DOI: 10.3390/ijms23031283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 12/12/2022] Open
Abstract
Undifferentiated sarcomatoid carcinoma of the pancreas (SCP) is a rare and aggressive subtype of pancreatic cancer. Histologically, SCP is a poorly differentiated tumor characterized by the lack of glandular differentiation and the presence of mesenchymal-like, spindle-shaped tumor cells. Due to its rarity, only sporadic cases have been reported, while its molecular characterization has not been sufficiently described. Surgical resection with curative intent is the gold-standard of SCP management, but this strategy is possible only in a small proportion of cases due to SCP early metastasization. Although SCP is generally associated with a poor prognosis, some clinical cases amenable to surgical resection and followed by adjuvant chemotherapy have demonstrated a remarkably long survival. Preliminary molecular insights on the SCP molecular landscape have demonstrated the recurrent presence of KRAS and TP53 mutations, highlighting genetic similarities with conventional pancreatic ductal adenocarcinoma (PDAC). Although the use of immunotherapy in PDAC remains an unmet challenge, recent insights indicated a potentially significant role of the PD-L1/Notch3 axis in SCP, opening new horizons for immunotherapy in this cancer subtype. In this review, we described the most important clinic-pathologic features of SCP, with a specific focus on their molecular landscape and the potential targets for precision oncology.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy; (A.G.); (A.S.)
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (M.S.); (E.B.)
| | - Elena Bariani
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (M.S.); (E.B.)
| | - Aldo Scarpa
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy; (A.G.); (A.S.)
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (M.S.); (E.B.)
| | - Claudio Luchini
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy; (A.G.); (A.S.)
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (M.S.); (E.B.)
| |
Collapse
|
23
|
Deng J, Liu Y, Liu Y, Li W, Nie X. The Multiple Roles of Fibroblast Growth Factor in Diabetic Nephropathy. J Inflamm Res 2021; 14:5273-5290. [PMID: 34703268 PMCID: PMC8524061 DOI: 10.2147/jir.s334996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication in the late stages of diabetes. Currently, the etiology and pathogenesis of DN are not well understood. Even so, available evidence shows its development is associated with metabolism, oxidative stress, cytokine interaction, genetic factors, and renal microvascular disease. Diabetic nephropathy can lead to proteinuria, edema and hypertension, among other complications. In severe cases, it can cause life-threatening complications such as renal failure. Patients with type 1 diabetes, hypertension, high protein intake, and smokers have a higher risk of developing DN. Fibroblast growth factor (FGF) regulates several human processes essential for normal development. Even though FGF has been implicated in the pathological development of DN, the underlying mechanisms are not well understood. This review summarizes the role of FGF in the development of DN. Moreover, the association of FGF with metabolism, inflammation, oxidative stress and fibrosis in the context of DN is discussed. Findings of this review are expected to deepen our understanding of DN and generate ideas for developing effective prevention and treatments for the disease.
Collapse
Affiliation(s)
- Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Key Laboratory of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Institute of Materia Medica, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| |
Collapse
|
24
|
Zhang C, Li L, Hou S, Shi Z, Xu W, Wang Q, He Y, Gong Y, Fang Z, Yang Y. Astragaloside IV inhibits hepatocellular carcinoma by continually suppressing the development of fibrosis and regulating pSmad3C/3L and Nrf2/HO-1 pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114350. [PMID: 34157326 DOI: 10.1016/j.jep.2021.114350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus is a medicinal herb used in China for the prevention and treatment of diseases such as diabetes and cancer. As one of the main active ingredients of astragalus, Astragaloside IV (AS-IV) has a wide range of pharmacological effects, including anti-inflammation and anti-cancer effects. AIM OF THE STUDY Different phosphorylated forms of Smad3 differentially regulate the progression of hepatic carcinoma. The phosphorylation of the COOH-terminal of Smad3 (pSmad3C) and activation of the Nrf2/HO-1 pathway inhibits hepatic carcinoma, while phosphorylation of the linker region of Smad3 (pSmad3L) promotes progression. Thus, pSmad3C/3L and Nrf2/HO-1 pathways are potential targets for drug of anti-cancer development. AS-IV is anti-apoptotic and can inhibit hepatocellular carcinoma cell (HCC) proliferation, invasion, and tumor growth in nude mice. However, it is not clear whether AS-IV has a therapeutic effect on inhibiting the progression of primary liver cancer by regulating the pSmad3C/3L and Nrf2/HO-1 pathway. The purpose of this study is to investigate whether AS-IV inhibits hepatocellular carcinoma by regulating pSmad3C/3L and Nrf2/HO-1 pathway. MATERIALS AND METHODS primary liver cancer in mice induced by DEN/CCl4/C2H5OH (DCC) and HSC-T6/HepG2 cell models activated by TGF-β1 was investigated for the mechanisms of AS-IV. In vivo assays included liver biopsy, histopathology and post-mortem analysis included immunohistochemistry, immunofluorescent, and Western blotting analysis, and in vitro assays included immunofluorescent, and Western blotting analysis. RESULTS AS-IV significantly inhibited the development of primary liver cancer, reflecting improved liver biopsy, histopathology. The incidence and multiplicity of primary liver cancer were markedly decreased by AS-IV treatment at the 20th week. AS-IV had observable effects on the TGF-β1/Smad and Nrf2/HO-1 expression in vivo, especially up-regulated pSmad3C, pNrf2, HO-1, and NQO1, while it down-regulated pSmad2C, pSmad2L, pSmad3L, PAI-1, and α-SMA at the 12th week and the 20th week. Furthermore, in vitro analysis further confirmed that AS-IV regulated the expression of pSmad3C/3L and Nrf2/HO-1 pathway in HSC-T6 and HepG2 cells activated by TGF-β1. CONCLUSION AS-IV administration delays the occurrence of primary liver cancer by continually suppressing the development of fibrosis, the mechanism of the therapeutic effect involving the regulation of the pSmad3C/3L and Nrf2/HO-1 pathways, especially in regulation reversibility and antagonism of pSmad3C and pSmad3L and promoting the phosphorylation of Nrf2.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Lili Li
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Shu Hou
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Zhenghao Shi
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Wenjing Xu
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Qin Wang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yinghao He
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yongfang Gong
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Zhirui Fang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
25
|
Song W, Dai WJ, Zhang MH, Wang H, Yang XZ. Comprehensive Analysis of the Expression of TGF- β Signaling Regulators and Prognosis in Human Esophageal Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1812227. [PMID: 34725559 PMCID: PMC8557076 DOI: 10.1155/2021/1812227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
More and more evidences show that TGF-β has a crucial role in tumor initiation and development. However, the mechanism of the TGF-β signal regulator in esophageal cancer (EC) is still unclear. Here, we use a variety of bioinformatics methods to analyze the expression and survival data of TGF-β signal regulators in patients with EC. We extracted the expression of the S-TGF-β signal regulator from The Cancer Genome Atlas (TCGA). The cBioPortal database was used to assess the frequency of genetic variation. The TGF-β signal regulator is expressed in EC and normal tissues. The objective is to use the Kaplan-Meier plotter database to investigate the prognostic value of TGF-β signal regulators in cancer patients. The DAVID and clusterProfiler software package were used for functional enrichment analysis. We found that patients with TGF-β signaling mutations have shorter overall survival, disease-free survival, disease-specific survival, platinum overall survival, and platinum-free progression survival. We found that compared with the noncancerous tissues of patients with EC, ZFYVE9, BMPR1B, TGFB3, TGFBRAP1, ACVRL1, TGFBR2, SMAD4, SMAD7, ACVR2A, BMPR1, and SMAD9 were significantly downregulated in tumor tissues, while ACVR1 and Smad1 were significantly upregulated in tumor samples. Univariate survival analysis showed that ACVR1, TGFBR3, TGFBRAP1, BMPR1A, SMAD4, and TGFBR2 were positively correlated with overall survival (OS) prolongation. In addition, TGF-β signal transduction regulators could be divided into two classes. Subclass 1 was involved in regulating cell adhesion, PI3K-Akt signaling, and Rap1 signaling. Subclass 2 was related to regulating angiogenesis and PI3K signaling. In short, all members of TGF-β signal regulators can be used as biomarkers to predict the prognosis of patients with EC.
Collapse
Affiliation(s)
- Wei Song
- Department of Gastroenterology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Wei-Jie Dai
- Department of Gastroenterology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Meng-hui Zhang
- Department of Gastroenterology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Han Wang
- Department of Gastroenterology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Xiao-Zhong Yang
- Department of Gastroenterology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| |
Collapse
|
26
|
Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, Zhang W, Costello A, Conti DJ, Samarakoon R, Higgins PJ. The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney. Front Cell Dev Biol 2021; 9:678524. [PMID: 34277620 PMCID: PMC8284093 DOI: 10.3389/fcell.2021.678524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Tubulointerstitial fibrosis is a common and diagnostic hallmark of a spectrum of chronic renal disorders. While the etiology varies as to the causative nature of the underlying pathology, persistent TGF-β1 signaling drives the relentless progression of renal fibrotic disease. TGF-β1 orchestrates the multifaceted program of kidney fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery or re-differentiation, capillary collapse and subsequent interstitial fibrosis eventually leading to chronic and ultimately end-stage disease. An increasing complement of non-canonical elements function as co-factors in TGF-β1 signaling. p53 is a particularly prominent transcriptional co-regulator of several TGF-β1 fibrotic-response genes by complexing with TGF-β1 receptor-activated SMADs. This cooperative p53/TGF-β1 genomic cluster includes genes involved in cellular proliferative control, survival, apoptosis, senescence, and ECM remodeling. While the molecular basis for this co-dependency remains to be determined, a subset of TGF-β1-regulated genes possess both p53- and SMAD-binding motifs. Increases in p53 expression and phosphorylation, moreover, are evident in various forms of renal injury as well as kidney allograft rejection. Targeted reduction of p53 levels by pharmacologic and genetic approaches attenuates expression of the involved genes and mitigates the fibrotic response confirming a key role for p53 in renal disorders. This review focuses on mechanisms underlying TGF-β1-induced renal fibrosis largely in the context of ureteral obstruction, which mimics the pathophysiology of pediatric unilateral ureteropelvic junction obstruction, and the role of p53 as a transcriptional regulator within the TGF-β1 repertoire of fibrosis-promoting genes.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - David M. Jones
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Angelica Costello
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| |
Collapse
|
27
|
Tokugawa M, Inoue Y, Ishiuchi K, Kujirai C, Matsuno M, Ri M, Itoh Y, Miyajima C, Morishita D, Ohoka N, Iida S, Mizukami H, Makino T, Hayashi H. Periplocin and cardiac glycosides suppress the unfolded protein response. Sci Rep 2021; 11:9528. [PMID: 33947921 PMCID: PMC8097017 DOI: 10.1038/s41598-021-89074-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
The unfolded protein response (UPR) controls protein homeostasis through transcriptional and translational regulation. However, dysregulated UPR signaling has been associated with the pathogenesis of many human diseases. Therefore, the compounds modulating UPR may provide molecular insights for these pathologies in the context of UPR. Here, we screened small-molecule compounds that suppress UPR, using a library of Myanmar wild plant extracts. The screening system to track X-box binding protein 1 (XBP1) splicing activity revealed that the ethanol extract of the Periploca calophylla stem inhibited the inositol-requiring enzyme 1 (IRE1)-XBP1 pathway. We isolated and identified periplocin as a potent inhibitor of the IRE1-XBP1 axis. Periplocin also suppressed other UPR axes, protein kinase R-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Examining the structure–activity relationship of periplocin revealed that cardiac glycosides also inhibited UPR. Moreover, periplocin suppressed the constitutive activation of XBP1 and exerted cytotoxic effects in the human multiple myeloma cell lines, AMO1 and RPMI8226. These results reveal a novel suppressive effect of periplocin or the other cardiac glycosides on UPR regulation, suggesting that these compounds will contribute to our understanding of the pathological or physiological importance of UPR.
Collapse
Affiliation(s)
- Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan. .,Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Kan'ichiro Ishiuchi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Chisane Kujirai
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Michiyo Matsuno
- The Kochi Prefectural Makino Botanical Garden, Kochi, 781-8125, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yuka Itoh
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.,Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.,Chordia Therapeutics Inc., Kanagawa, 251-0012, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, 210-9501, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Hajime Mizukami
- The Kochi Prefectural Makino Botanical Garden, Kochi, 781-8125, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan. .,Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
28
|
Abdel Mouti M, Pauklin S. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Mol Ther 2021; 29:920-936. [PMID: 33429081 PMCID: PMC7934636 DOI: 10.1016/j.ymthe.2021.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/17/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a grueling disease that is projected to become the second-deadliest cancer in the next decade. Standard treatment of pancreatic cancer is chemotherapy, which mainly targets the differentiated population of tumor cells; however, it paradoxically sets the roots of tumor relapse by the selective enrichment of intrinsically chemoresistant pancreatic cancer stem cells that are equipped with an indefinite capacity for self-renewal and differentiation, resulting in tumor regeneration and an overall anemic response to chemotherapy. Crosstalk between pancreatic tumor cells and the surrounding stromal microenvironment is also involved in the development of chemoresistance by creating a supportive niche, which enhances the stemness features and tumorigenicity of pancreatic cancer cells. In addition, the desmoplastic nature of the tumor-associated stroma acts as a physical barrier, which limits the intratumoral delivery of chemotherapeutics. In this review, we mainly focus on the transforming growth factor beta 1 (TGFB1)/inhibin subunit beta A (INHBA) homodimer/Nodal-SMAD2/3 signaling network in pancreatic cancer as a pivotal central node that regulates multiple key mechanisms involved in the development of chemoresistance, including enhancement of the stem cell-like properties and tumorigenicity of pancreatic cancer cells, mediating cooperative interactions between pancreatic cancer cells and the surrounding stroma, as well as regulating the deposition of extracellular matrix proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
29
|
Yang JH, Ku SK, Cho ILJ, Lee JH, Na CS, Ki SH. Neoagarooligosaccharide Protects against Hepatic Fibrosis via Inhibition of TGF-β/Smad Signaling Pathway. Int J Mol Sci 2021; 22:2041. [PMID: 33670808 PMCID: PMC7922480 DOI: 10.3390/ijms22042041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 01/12/2023] Open
Abstract
Hepatic fibrosis occurs when liver tissue becomes scarred from repetitive liver injury and inflammatory responses; it can progress to cirrhosis and eventually to hepatocellular carcinoma. Previously, we reported that neoagarooligosaccharides (NAOs), produced by the hydrolysis of agar by β-agarases, have hepatoprotective effects against acetaminophen overdose-induced acute liver injury. However, the effect of NAOs on chronic liver injury, including hepatic fibrosis, has not yet been elucidated. Therefore, we examined whether NAOs protect against fibrogenesis in vitro and in vivo. NAOs ameliorated PAI-1, α-SMA, CTGF and fibronectin protein expression and decreased mRNA levels of fibrogenic genes in TGF-β-treated LX-2 cells. Furthermore, downstream of TGF-β, the Smad signaling pathway was inhibited by NAOs in LX-2 cells. Treatment with NAOs diminished the severity of hepatic injury, as evidenced by reduction in serum alanine aminotransferase and aspartate aminotransferase levels, in carbon tetrachloride (CCl4)-induced liver fibrosis mouse models. Moreover, NAOs markedly blocked histopathological changes and collagen accumulation, as shown by H&E and Sirius red staining, respectively. Finally, NAOs antagonized the CCl4-induced upregulation of the protein and mRNA levels of fibrogenic genes in the liver. In conclusion, our findings suggest that NAOs may be a promising candidate for the prevention and treatment of chronic liver injury via inhibition of the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do 58245, Korea;
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Korea; (S.K.K.); (I.J.C.)
| | - IL Je Cho
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Korea; (S.K.K.); (I.J.C.)
| | - Je Hyeon Lee
- Dyne Bio Inc. Seongnam-si, Gyeonggi-do 13209, Korea;
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do 58245, Korea;
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Seoseok-dong, Gwangju 61452, Korea
| |
Collapse
|
30
|
Friedel L, Loewer A. The guardian's choice: how p53 enables context-specific decision-making in individual cells. FEBS J 2021; 289:40-52. [PMID: 33590949 DOI: 10.1111/febs.15767] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 01/20/2023]
Abstract
p53 plays a central role in defending the genomic integrity of our cells. In response to genotoxic stress, this tumour suppressor orchestrates the expression of hundreds of target genes, which induce a variety of cellular outcomes ranging from damage repair to induction of apoptosis. In this review, we examine how the p53 response is regulated on several levels in individual cells to allow precise and context-specific fate decisions. We discuss that the p53 response is not only controlled by its canonical regulators but also controlled by interconnected signalling pathways that influence the dynamics of p53 accumulation upon damage and modulate its transcriptional activity at target gene promoters. Additionally, we consider how the p53 response is diversified through a variety of mechanisms at the promoter level and beyond to induce context-specific outcomes in individual cells. These layers of regulation allow p53 to react in a stimulus-specific manner and fine-tune its signalling according to the individual needs of a given cell, enabling it to take the right decision on survival or death.
Collapse
Affiliation(s)
- Laura Friedel
- Systems Biology of the Stress Response, Department of Biology, Technical University of Darmstadt, Germany
| | - Alexander Loewer
- Systems Biology of the Stress Response, Department of Biology, Technical University of Darmstadt, Germany
| |
Collapse
|
31
|
Tzekaki EE, Geromichalos G, Lavrentiadou SN, Tsantarliotou MP, Pantazaki AA, Papaspyropoulos A. Oleuropein is a natural inhibitor of PAI-1-mediated proliferation in human ER-/PR- breast cancer cells. Breast Cancer Res Treat 2021; 186:305-316. [PMID: 33389400 DOI: 10.1007/s10549-020-06054-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Elevated expression of PAI-1 has been widely linked with adverse outcomes in a variety of human cancers, such as breast, gastric and ovarian cancers, rendering PAI-1 a prognostic biomarker. As a result, several chemical inhibitors are currently being developed against PAI-1; however, the clinical setting where they might confer survival benefits has not yet been elucidated. METHODS RNA sequencing data analysis from the TCGA/GTEx cancer portals (n = 3607 samples). In silico molecular docking analyses to predict functional macromolecule interactions. ER-/PR- (MDA-MB-231) and ER+/PR+ (MCF-7) breast cancer cell lines implemented to assess the effect of oleuropein as a natural inhibitor of PAI-1-mediated oncogenic proliferation. RESULTS We show that high PAI-1 levels inversely correlate with ER and PR expressions in a wide panel of estrogen/progesterone-responsive human malignancies. By implementing an in silico molecular docking analysis, we identify oleuropein, a phenolic component of olive oil, as a potent PAI-1-binding molecule displaying increased affinity compared to the other olive oil constituents. We demonstrate that EVOO or oleuropein treatment alone may act as a natural PAI-1 inhibitor by incrementally destabilising PAI-1 levels selectively in ER-/PR- breast cancer cells, accompanied by downstream caspase activation and cell growth inhibition. In contrast, ER+/PR+ breast cancer cells, where PAI-1 expression is absent or low, do not adequately respond to treatment. CONCLUSIONS Our study demonstrates an inverse correlation between PAI-1 and ESR1/PGR levels, as well as overall patient survival in estrogen/progesterone-responsive human tumours. With a focus on breast cancer, our data identify oleuropein as a natural PAI-1 inhibitor and suggest that oleuropein-mediated PAI-1 destabilisation may confer clinical benefit only in ER-/PR- tumours.
Collapse
Affiliation(s)
- Elena E Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - George Geromichalos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Sophia N Lavrentiadou
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria P Tsantarliotou
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Angelos Papaspyropoulos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
32
|
Hermawan A, Ikawati M, Jenie RI, Khumaira A, Putri H, Nurhayati IP, Angraini SM, Muflikhasari HA. Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies. Saudi Pharm J 2021; 29:12-26. [PMID: 33603536 PMCID: PMC7873751 DOI: 10.1016/j.jsps.2020.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer therapy is a strategic measure in inhibiting breast cancer stem cell (BCSC) pathways. Naringenin, a citrus flavonoid, was found to increase breast cancer cells' sensitivity to chemotherapeutic agents. Bioinformatics study and 3D tumorsphere in vitro modeling in breast cancer (mammosphere) were used in this study, which aims to explore the potential therapeutic targets of naringenin (PTTNs) in inhibiting BCSCs. Bioinformatic analyses identified direct target proteins (DTPs), indirect target proteins (ITPs), naringenin-mediated proteins (NMPs), BCSC regulatory genes, and PTTNs. The PTTNs were further analyzed for gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured in serum-free media. The effects of naringenin were measured by MTT-based cytotoxicity, mammosphere forming potential (MFP), colony formation, scratch wound-healing assay, and flow cytometry-based cell cycle analyses and apoptosis assays. Gene expression analysis was performed using real-time quantitative polymerase chain reaction (q-RT PCR). Bioinformatics analysis revealed p53 and estrogen receptor alpha (ERα) as PTTNs, and KEGG pathway enrichment analysis revealed that TGF-ß and Wnt/ß-catenin pathways are regulated by PTTNs. Naringenin demonstrated cytotoxicity and inhibited mammosphere and colony formation, migration, and epithelial to mesenchymal transition in the mammosphere. The mRNA of tumor suppressors P53 and ERα were downregulated in the mammosphere, but were significantly upregulated upon naringenin treatment. By modulating the P53 and ERα mRNA, naringenin has the potential of inhibiting BCSCs. Further studies on the molecular mechanism and formulation of naringenin in BCSCs would be beneficial for its development as a BCSC-targeting drug.
Collapse
Key Words
- BCSCs, Breast cancer stem cells
- Bioinformatics
- Breast cancer stem cells
- CSC, Cancer stem cell
- DAVID, Database for Annotation, Visualization, and Integrated Discovery
- DTPs, Direct target proteins
- DXR, Doxorubicin
- EGF, Epidermal growth factor
- EMT, Epithelial to mesenchymal transition
- ERα
- FITC, fluorescein isothiocyanate
- GO, Gene ontology
- ITPs, Indirect target proteins
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MET, Metformin
- MFP, Mammosphere forming potential
- NAR, Naringenin
- NMPs, Naringenin-mediated proteins
- Naringenin
- P53
- PE, phycoerythrin
- PPI, Protein-protein interaction
- PTTN, Potential target of naringenin in inhibition of BCSCs
- ROS, Reactive oxygen species
- Targeted therapy
- q-RT PCR, Quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Muthi Ikawati
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Riris Istighfari Jenie
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Annisa Khumaira
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Ika Putri Nurhayati
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Sonia Meta Angraini
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Haruma Anggraini Muflikhasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| |
Collapse
|
33
|
Bai L, Wang W, Xiang Y, Wang S, Wan S, Zhu Y. Aberrant elevation of GDF8 impairs granulosa cell glucose metabolism via upregulating SERPINE1 expression in patients with PCOS. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:294-309. [PMID: 33425488 PMCID: PMC7779537 DOI: 10.1016/j.omtn.2020.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Clinical investigations have demonstrated that polycystic ovary syndrome (PCOS) is often accompanied by insulin resistance (IR) in more than 70% of women with PCOS. However, the etiology of PCOS with IR remains to be characterized. Growth differentiation factor 8 (GDF8) is an intraovarian factor that plays a vital role in the regulation of follicle development and ovulation. Previous studies have reported that GDF8 is a pathogenic factor in glucose metabolism disorder in IR patients. To date, the role of GDF8 on glucose metabolism of granulosa cell in PCOS patients remains to be determined. In the current study, we demonstrated that the expression and accumulation of GDF8 in human granulosa-lutein (hGL) cells and follicular fluid from PCOS patients were higher compared with those of non-PCOS women. GDF8 treatment caused glucose metabolism defects in hGL cells. Transcriptome sequencing results showed that SERPINE1 mediated GDF8-induced impairment of hGL glucose metabolism defects. Using pharmacological and small interfering RNA (siRNA)-mediated knockdown approaches, we demonstrated that GDF8 upregulated the expression of SERPINE1 via the ALK5-mediated SMAD2/3-SMAD4 signaling pathway. Interestingly, the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway was also activated with GDF8 treatment but did not participate in the effect of GDF8 on SERPINE1 expression. Our results also showed that TP53 was required for the GDF8-stimulated increase in SERPINE1 expression. Importantly, our study demonstrated that SB-431542 treatment significantly improved DHEA-induced PCOS-like ovaries. These findings support a potential role for GDF8 in metabolic disorders in PCOS.
Collapse
Affiliation(s)
- Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Wei Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Yu Xiang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Shuyi Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Shan Wan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Yimin Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.,Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| |
Collapse
|
34
|
Kaynarcalidan O, Oğuzoğlu TÇ. The oncogenic pathways of papillomaviruses. Vet Comp Oncol 2020; 19:7-16. [PMID: 33084187 DOI: 10.1111/vco.12659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Papillomaviruses are oncogenic DNA viruses and induce hyperplastic benign lesions of both cutaneous and mucosal tissues in their various hosts, including many domestic and wild animals as well as humans. There are some Papillomavirus genotypes that can infect hosts different from their own, such as BPV 1 and BPV 2 originated from cattle, which can also infect horses and are responsible for fibroblastic tumours in horses. This review article summarizes the origin and evolution of papillomaviruses as an etiological agent in the historical process. The main focus in this review is the evaluation of the interactions between high-risk papillomavirus oncoproteins and programmed cell-death pathways. It further exemplifies the role of these interactions in the malignant cell transformation process. In parallel with this, the use and importance of the bovine model system to enlighten the papillomavirus-associated cancers is discussed with an in-depth examination. Furthermore, it focuses on the epidemiological situation of BPV infections in Turkey in the cattle herds.
Collapse
Affiliation(s)
- Onur Kaynarcalidan
- Institute for Virology Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuba Çiğdem Oğuzoğlu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
35
|
Xue VW, Chung JYF, Córdoba CAG, Cheung AHK, Kang W, Lam EWF, Leung KT, To KF, Lan HY, Tang PMK. Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020. [PMID: 33114183 DOI: 10.3390/cancers12113099.pmid:33114183;pmcid:pmc7690808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Cristina Alexandra García Córdoba
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
36
|
Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel) 2020; 12:cancers12113099. [PMID: 33114183 PMCID: PMC7690808 DOI: 10.3390/cancers12113099] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Transforming growth factor beta (TGF-β) is a multifunctional cytokine that can restrict cancer onset but also promote cancer progression at late stages of cancer. The ability of TGF-β in producing diverse and sometimes opposing effects relies on its potential to control different cellular signalling and gene expression in distinct cell types, and environmental settings. The tumour promoting role of TGF-β is primarily mediated through its effects on the local tumour microenvironment (TME) of the cancer cells. In this review, we discuss the most recent research on the role and regulation of TGF-β, with a specific focus on its functions on promoting cancer progression through targeting different immune cells in the TME as well as its therapeutic perspectives. Abstract Transforming growth factor-β (TGF-β) was originally identified as an anti-tumour cytokine. However, there is increasing evidence that it has important roles in the tumour microenvironment (TME) in facilitating cancer progression. TGF-β actively shapes the TME via modulating the host immunity. These actions are highly cell-type specific and complicated, involving both canonical and non-canonical pathways. In this review, we systemically update how TGF-β signalling acts as a checkpoint regulator for cancer immunomodulation. A better appreciation of the underlying pathogenic mechanisms at the molecular level can lead to the discovery of novel and more effective therapeutic strategies for cancer.
Collapse
|
37
|
Anti-Inflammatory Activity of Kurarinone Involves Induction of HO-1 via the KEAP1/Nrf2 Pathway. Antioxidants (Basel) 2020; 9:antiox9090842. [PMID: 32916869 PMCID: PMC7554885 DOI: 10.3390/antiox9090842] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Kurarinone, a flavonoid isolated from the roots of Sophora flavescens, was suggested to exert potent antioxidant and immunosuppressive effects. However, the underlying mechanisms remain unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates the antioxidant defense system with anti-inflammatory activity. In the present study, we demonstrated that kurarinone activated Nrf2 and increased the expression of antioxidant enzymes, including heme oxygenase-1 (HO-1). Mechanistically, kurarinone downregulated the expression of kelch-like ECH-associated protein 1 (KEAP1), subsequently leading to the activation of Nrf2. Kurarinone also inhibited the expression of the inflammatory cytokine, interleukin (IL)-1β, and inducible nitric oxide synthase (iNos) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The overexpression of HO-1 suppressed the LPS-induced production of inflammatory mediators in RAW264.7 cells, and the immunosuppressive effects of kurarinone were partially inhibited by a treatment with Tin Protomorphyrin IX (TinPPIX), an inhibitor of HO-1. These results indicate that kurarinone activates the KEAP1/Nrf2 pathway to induce HO-1 expression, thereby exerting immunosuppressive effects.
Collapse
|
38
|
Loss of oral mucosal stem cell markers in oral submucous fibrosis and their reactivation in malignant transformation. Int J Oral Sci 2020; 12:23. [PMID: 32826859 PMCID: PMC7442837 DOI: 10.1038/s41368-020-00090-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
The integrity of the basal stem cell layer is critical for epithelial homoeostasis. In this paper, we review the expression of oral mucosal stem cell markers (OM-SCMs) in oral submucous fibrosis (OSF), oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) to understand the role of basal cells in potentiating cancer stem cell behaviour in OSF. While the loss of basal cell clonogenicity triggers epithelial atrophy in OSF, the transition of the epithelium from atrophic to hyperplastic and eventually neoplastic involves the reactivation of basal stemness. The vacillating expression patterns of OM-SCMs confirm the role of keratins 5, 14, 19, CD44, β1-integrin, p63, sex-determining region Y box (SOX2), octamer-binding transcription factor 4 (Oct-4), c-MYC, B-cell-specific Moloney murine leukaemia virus integration site 1 (Bmi-1) and aldehyde dehydrogenase 1 (ALDH1) in OSF, OPMDs and OSCC. The downregulation of OM-SCMs in the atrophic epithelium of OSF and their upregulation during malignant transformation are illustrated with relevant literature in this review.
Collapse
|
39
|
Park HJ, Chi GY, Choi YH, Park SH. Lupeol suppresses plasminogen activator inhibitor-1-mediated macrophage recruitment and attenuates M2 macrophage polarization. Biochem Biophys Res Commun 2020; 527:889-895. [PMID: 32430175 DOI: 10.1016/j.bbrc.2020.04.160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022]
Abstract
Tumor-associated macrophages (TAMs) are closely related with poor prognosis of cancers. The current study investigated whether lupeol regulates TAMs by focusing on the recruitment and polarization of macrophages. We found that lupeol suppressed the recruitment of THP-1 macrophages (THP-1 cells differentiated into macrophages) towards H1299 lung carcinoma cells by inhibiting plasminogen activator inhibitor-1 (PAI-1) production from H1299 cells. The reduced migration of THP-1 macrophages by lupeol was recovered by adding recombinant human PAI-1 as a chemoattractant. Knockdown of PAI-1 or treatment of tiplaxtinin, a PAI-1 inhibitor, in H1299 cells abrogated the chemotaxis of macrophages. Furthermore, lupeol suppressed the interleukin (IL)-4- and IL-13-induced M2 macrophage polarization. The mRNA expression of M2 macrophage markers and the phosphorylation of signal transducer and activator of transcription 6 (STAT6) were commonly decreased by lupeol in RAW264.7 cells. In addition, lupeol-suppressed M2 macrophage polarization led to the reduced migration of Lewis lung carcinoma (LLC) cells. Taken together, our results suggest that lupeol attenuates PAI-1-mediated macrophage recruitment towards cancer cells and inhibits M2 macrophage polarization.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea
| | - Gyoo-Yong Chi
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea.
| |
Collapse
|
40
|
Hu Y, Yu J, Wang Q, Zhang L, Chen X, Cao Y, Zhao J, Xu Y, Jiang D, Wang Y, Xiong W. Tartrate-Resistant Acid Phosphatase 5/ACP5 Interacts with p53 to Control the Expression of SMAD3 in Lung Adenocarcinoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 16:272-288. [PMID: 32181328 PMCID: PMC7066063 DOI: 10.1016/j.omto.2020.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
Tartrate-resistant acid phosphatase 5 (TRAP/ACP5) has been shown to involve the development and prognosis of multiple tumors in previous studies; however, the mechanism in lung cancer is still unclear, and thus this study investigated the role of ACP5 in the progression of lung adenocarcinoma. After a series of in vitro and in vivo experiments, we observed that ACP5 expression was increased in lung adenocarcinomas (40/69, 57.97%); importantly, an increased ACP5 level was associated with patient age (p = 0.044) and lymph node metastasis (p = 0.0385). ACP5 overexpression significantly enhanced A549 and NCI-H1975 cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) and reduced cell apoptosis. Knocking down the expression of ACP5 could rescue the above cell phenotypes. Furthermore, enhancing ACP5 expression promoted lung adenocarcinoma cell hyperplasia and intrapulmonary metastasis in a mouse model. Additionally, mechanistic studies revealed that ACP5 might regulate p53 phosphorylation at Ser392, thereby enhancing the ubiquitination of p53, which then underwent degradation. Reducing the levels of p53 intensified the transcription of SMAD3, which promotes EMT in lung adenocarcinoma cells. In summary, the present study provides a theoretical basis and important scientific evidence on the key role of ACP5 in lung adenocarcinoma progression by inducing EMT via the regulation of p53/SMAD3 signaling.
Collapse
Affiliation(s)
- Yinan Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xueying Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yong Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Dingsheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
- Corresponding author: Yi Wang, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
- Department of Respiratory Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai 200011, China
- Corresponding author: Weining Xiong, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
41
|
Lin S, Yu L, Ni Y, He L, Weng X, Lu X, Zhang C. Fibroblast Growth Factor 21 Attenuates Diabetes-Induced Renal Fibrosis by Negatively Regulating TGF-β-p53-Smad2/3-Mediated Epithelial-to-Mesenchymal Transition via Activation of AKT. Diabetes Metab J 2020; 44:158-172. [PMID: 31701691 PMCID: PMC7043973 DOI: 10.4093/dmj.2018.0235] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is required for renal fibrosis, which is a characteristic of diabetic nephropathy (DN). Our previous study demonstrated that fibroblast growth factor 21 (FGF21) prevented DN associated with the suppressing renal connective tissue growth factor expression, a key marker of renal fibrosis. Therefore, the effects of FGF21 on renal fibrosis in a DN mouse model and the underlying mechanisms were investigated in this study. METHODS Type 1 diabetes mellitus was induced in C57BL/6J mice by intraperitoneal injections of multiple low doses of streptozotocin. Then, diabetic and non-diabetic mice were treated with or without FGF21 in the presence of pifithrin-α (p53 inhibitor) or 10-[4'-(N,N-Diethylamino)butyl]-2-chlorophenoxazine hydrochloride (10-DEBC) hydrochloride (Akt inhibitor) for 4 months. RESULTS DN was diagnosed by renal dysfunction, hypertrophy, tubulointerstitial lesions, and glomerulosclerosis associated with severe fibrosis, all of which were prevented by FGF21. FGF21 also suppressed the diabetes-induced renal EMT in DN mice by negatively regulating transforming growth factor beta (TGF-β)-induced nuclear translocation of Smad2/3, which is required for the transcription of multiple fibrotic genes. The mechanistic studies showed that FGF21 attenuated nuclear translocation of Smad2/3 by inhibiting renal activity of its conjugated protein p53, which carries Smad2/3 into the nucleus. Moreover pifithrin-α inhibited the FGF21-induced preventive effects on the renal EMT and subsequent renal fibrosis in DN mice. In addition, 10-DEBC also blocked FGF21-induced inhibition of renal p53 activity by phosphorylation of mouse double minute-2 homolog (MDM2). CONCLUSION FGF21 prevents renal fibrosis via negative regulation of the TGF-β/Smad2/3-mediated EMT process by activation of the Akt/MDM2/p53 signaling pathway.
Collapse
Affiliation(s)
- Sundong Lin
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongqing Ni
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lulu He
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Weng
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
42
|
Transcriptional Coactivator TAZ Negatively Regulates Tumor Suppressor p53 Activity and Cellular Senescence. Cells 2020; 9:cells9010171. [PMID: 31936650 PMCID: PMC7016652 DOI: 10.3390/cells9010171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Transcriptional coactivator with a PDZ-binding motif (TAZ) is one of the mammalian orthologs of Drosophila Yorkie, a transcriptional coactivator of the Hippo pathway. TAZ has been suggested to function as a regulator that modulates the expression of cell proliferation and anti-apoptotic genes in order to stimulate cell proliferation. TAZ has also been associated with a poor prognosis in several cancers, including breast cancer. However, the physiological role of TAZ in tumorigenesis remains unclear. We herein demonstrated that TAZ negatively regulated the activity of the tumor suppressor p53. The overexpression of TAZ down-regulated p53 transcriptional activity and its downstream gene expression. In contrast, TAZ knockdown up-regulated p21 expression induced by p53 activation. Regarding the underlying mechanism, TAZ inhibited the interaction between p53 and p300 and suppressed the p300-mediated acetylation of p53. Furthermore, TAZ knockdown induced cellular senescence in a p53-dependent manner. These results suggest that TAZ negatively regulates the tumor suppressor functions of p53 and attenuates p53-mediated cellular senescence.
Collapse
|
43
|
Zhang Y, Zhang M, Zhu W, Pan X, Wang Q, Gao X, Wang C, Zhang X, Liu Y, Li S, Sun H. Role of Elevated Thrombospondin-1 in Kainic Acid-Induced Status Epilepticus. Neurosci Bull 2019; 36:263-276. [PMID: 31664678 DOI: 10.1007/s12264-019-00437-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/22/2019] [Indexed: 11/29/2022] Open
Abstract
Previous studies have suggested that thrombospondin-1 (TSP-1) regulates the transforming growth factor beta 1 (TGF-β1)/phosphorylated Smad2/3 (pSmad2/3) pathway. Moreover, TSP-1 is closely associated with epilepsy. However, the role of the TSP-1-regulated TGF-β1/pSmad2/3 pathway in seizures remains unclear. In this study, changes in this pathway were assessed following kainic acid (KA)-induced status epilepticus (SE) in rats. The results showed that increases in the TSP-1/TGF-β1/pSmad2/3 levels spatially and temporally matched the increases in glial fibrillary acidic protein (GFAP)/chondroitin sulfate (CS56) levels following KA administration. Inhibition of TSP-1 expression by small interfering RNA or inhibition of TGF-β1 activation with a Leu-Ser-Lys-Leu peptide significantly reduced the severity of KA-induced acute seizures. These anti-seizure effects were accompanied by decreased GFAP/CS56 expression and Smad2/3 phosphorylation. Moreover, inhibiting Smad2/3 phosphorylation with ponatinib or SIS3 also significantly reduced seizure severity, alongside reducing GFAP/CS56 immunoreactivity. These results suggest that the TSP-1-regulated TGF-β1/pSmad2/3 pathway plays a key role in KA-induced SE and astrogliosis, and that inhibiting this pathway may be a potential anti-seizure strategy.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Chaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiuli Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yuxia Liu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
44
|
Higgins CE, Tang J, Mian BM, Higgins SP, Gifford CC, Conti DJ, Meldrum KK, Samarakoon R, Higgins PJ. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications. FASEB J 2019; 33:10596-10606. [PMID: 31284746 PMCID: PMC6766640 DOI: 10.1096/fj.201900943r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease affects >15% of the U.S. population and >850 million individuals worldwide. Fibrosis is the common outcome of many chronic renal disorders and, although the etiology varies (i.e., diabetes, hypertension, ischemia, acute injury, and urologic obstructive disorders), persistently elevated renal TGF-β1 levels result in the relentless progression of fibrotic disease. TGF-β1 orchestrates the multifaceted program of renal fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery and redifferentiation, and subsequent tubulointerstitial fibrosis, eventually leading to chronic renal disease. Recent findings implicate p53 as a cofactor in the TGF-β1-induced signaling pathway and a transcriptional coregulator of several TGF-β1 profibrotic response genes by complexing with receptor-activated SMADs, which are homologous to the small worms (SMA) and Drosophilia mothers against decapentaplegic (MAD) gene families. The cooperative p53-TGF-β1 genomic cluster includes genes involved in cell growth control and extracellular matrix remodeling [e.g., plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor, clade E, member 1), connective tissue growth factor, and collagen I]. Although the molecular basis for this codependency is unclear, many TGF-β1-responsive genes possess p53 binding motifs. p53 up-regulation and increased p53 phosphorylation; moreover, they are evident in nephrotoxin- and ischemia/reperfusion-induced injury, diabetic nephropathy, ureteral obstructive disease, and kidney allograft rejection. Pharmacologic and genetic approaches that target p53 attenuate expression of the involved genes and mitigate the fibrotic response, confirming a key role for p53 in renal disorders. This review focuses on mechanisms whereby p53 functions as a transcriptional regulator within the TGF-β1 cluster with an emphasis on the potent fibrosis-promoting PAI-1 gene.-Higgins, C. E., Tang, J., Mian, B. M., Higgins, S. P., Gifford, C. C., Conti, D. J., Meldrum, K. K., Samarakoon, R., Higgins, P. J. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Kirstan K. Meldrum
- Division of Pediatric Urology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| |
Collapse
|
45
|
Fukuura K, Inoue Y, Miyajima C, Watanabe S, Tokugawa M, Morishita D, Ohoka N, Komada M, Hayashi H. The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21. J Biol Chem 2019; 294:16429-16439. [PMID: 31533987 DOI: 10.1074/jbc.ra119.009006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/13/2019] [Indexed: 01/12/2023] Open
Abstract
Su(var)3-9, Enhancer-of-zeste, and Trithorax (SET) domain-containing protein 8 (SET8) is the sole enzyme that monomethylates Lys-20 of histone H4 (H4K20). SET8 has been implicated in the regulation of multiple biological processes, such as gene transcription, the cell cycle, and senescence. SET8 quickly undergoes ubiquitination and degradation by several E3 ubiquitin ligases; however, the enzyme that deubiquitinates SET8 has not yet been identified. Here we demonstrated that ubiquitin-specific peptidase 17-like family member (USP17) deubiquitinates and therefore stabilizes the SET8 protein. We observed that USP17 interacts with SET8 and removes polyubiquitin chains from SET8. USP17 knockdown not only decreased SET8 protein levels and H4K20 monomethylation but also increased the levels of the cyclin-dependent kinase inhibitor p21. As a consequence, USP17 knockdown suppressed cell proliferation. We noted that USP17 was down-regulated in replicative senescence and that USP17 inhibition alone was sufficient to trigger cellular senescence. These results reveal a regulatory mechanism whereby USP17 prevents cellular senescence by removing ubiquitin marks from and stabilizing SET8 and transcriptionally repressing p21.
Collapse
Affiliation(s)
- Keishi Fukuura
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan .,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shin Watanabe
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Masayuki Komada
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan .,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
46
|
Nishikawa S, Itoh Y, Tokugawa M, Inoue Y, Nakashima KI, Hori Y, Miyajima C, Yoshida K, Morishita D, Ohoka N, Inoue M, Mizukami H, Makino T, Hayashi H. Kurarinone from Sophora Flavescens Roots Triggers ATF4 Activation and Cytostatic Effects Through PERK Phosphorylation. Molecules 2019; 24:E3110. [PMID: 31461933 PMCID: PMC6749437 DOI: 10.3390/molecules24173110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 01/28/2023] Open
Abstract
In response to cellular stresses, activating transcriptional factor 4 (ATF4) regulates the expression of both stress-relieving genes and apoptosis-inducing genes, eliciting cell fate determination. Since pharmacological activation of ATF4 exerts potent anti-tumor effects, modulators of ATF4 activation may have potential in cancer therapy. We herein attempted to identify small molecules that activate ATF4. A cell-based screening to monitor TRB3 promoter activation was performed using crude drugs used in traditional Japanese Kampo medicine. We found that an extract from Sophora flavescens roots exhibited potent TRB3 promoter activation. The activity-guided fractionation revealed that kurarinone was identified as the active ingredient. Intriguingly, ATF4 activation in response to kurarinone required PKR-like endoplasmic reticulum kinase (PERK). Moreover, kurarinone induced the cyclin-dependent kinase inhibitor p21 as well as cytostasis in cancer cells. Importantly, the cytostatic effect of kurarinone was reduced by pharmacological inhibition of PERK. These results indicate that kurarinone triggers ATF4 activation through PERK and exerts cytostatic effects on cancer cells. Taken together, our results suggest that modulation of the PERK-ATF4 pathway with kurarinone has potential as a cancer treatment.
Collapse
Affiliation(s)
- Sakiko Nishikawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Yuka Itoh
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan.
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| | - Ken-Ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Yuka Hori
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kou Yoshida
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Hajime Mizukami
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences and Nagoya City University, Nagoya 467-8603, Japan.
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
47
|
Nagasaka M, Tsuzuki K, Ozeki Y, Tokugawa M, Ohoka N, Inoue Y, Hayashi H. Lysine-Specific Demethylase 1 (LSD1/KDM1A) Is a Novel Target Gene of c-Myc. Biol Pharm Bull 2019; 42:481-488. [PMID: 30828079 DOI: 10.1248/bpb.b18-00892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) is a histone demethylase and specifically catalyzes the demethylation of mono- and di-methylated histone H3 lysine 4 (H3K4). The LSD1-mediated demethylation of H3K4 promotes the assembly of the c-Myc-induced transcription initiation complex. Although LSD1 and c-Myc are both strongly expressed in human cancers, the mechanisms by which their activities are coordinated remain unclear. We herein demonstrated that LSD1 is a direct target gene of c-Myc. The knockdown of c-Myc decreased the expression of LSD1 in several cancer cell lines. We identified two non-canonical E-boxes in the proximal promoter region of the LSD1 gene. A chromatin immunoprecipitation assay showed that c-Myc bound to these E-boxes in the LSD1 promoter. Importantly, LSD1 mRNA expression correlated with c-Myc expression in human acute myeloid leukemia (AML), glioblastoma, stomach adenocarcinoma, and prostate adenocarcinoma. The present results suggest that LSD1 is induced by c-Myc and forms a positive feedback mechanism in transcription reactions by c-Myc.
Collapse
Affiliation(s)
- Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Kaori Tsuzuki
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Yu Ozeki
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University.,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University.,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
48
|
Investigation of expression and effects of TGF-β1 and MMP-9 in lens epithelial cells of diabetic cataract rats. Exp Ther Med 2019; 17:4522-4526. [PMID: 31086584 PMCID: PMC6488997 DOI: 10.3892/etm.2019.7471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/11/2019] [Indexed: 12/23/2022] Open
Abstract
Expressions and effects of transforming growth factor- 1 (TGF-β1) and matrix metalloproteinase-9 (MMP-9) in lens epithelial cells (LECs) of diabetic cataract rats were investigated. A total of 40 female Sprague-Dawley rats were randomly divided into study and control group. Rats in study group were successfully modeled diabetic cataract rats, and rats in control group were normal rats. Immunohistochemical staining was used to determine positive and negative granules in cytoplasm, and image proplus image analysis system to calculate the integral optical density of the average positive area. Quantitative analysis was performed on TGF-β1 and MMP-9 in LECs of rats in study and control groups at the 2nd and 4th weekends. There were no statistically significant differences in length and age between the two groups of rats (P>0.05). Glucose concentration in the blood of rats in study group after modeling was significantly higher than that before modeling (P<0.001), and that after modeling was significantly higher in study group than that in control group (P<0.001). The expression of TGF-β1 protein in LECs of rats in study group at T2 (the 4th weekend) was significantly higher than that at T1 (the 2nd weekend) (P<0.001), and that of TGF-β1 protein was significantly higher in study group than that in control group at T1 and T2 (P<0.001). The expression of MMP-9 protein in LECs of rats in study group at T2 was significantly higher than that at T1 (P<0.001), and that of MMP-9 protein was significantly higher in study group than that in control group at T1 and T2 (P<0.001). The TGF-β1 expression was positively correlated with the MMP-9 expression in LECs of diabetic cataract rats (r=0.825, P<001). The increased expression of MMP-9 and TGF-β1 may play an important role in the occurrence and development of diabetic cataract.
Collapse
|
49
|
Casadevall D, Li X, Powles RL, Wali VB, Buza N, Pelekanou V, Dhawan A, Foldi J, Szekely B, Lopez-Giraldez F, Hatzis C, Pusztai L. Genomic and Immune Profiling of a Patient With Triple-Negative Breast Cancer That Progressed During Neoadjuvant Chemotherapy Plus PD-L1 Blockade. JCO Precis Oncol 2019; 3:1800335. [PMID: 32914041 PMCID: PMC7450962 DOI: 10.1200/po.18.00335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 01/26/2023] Open
Affiliation(s)
- David Casadevall
- Yale School of Medicine, New Haven, CT.,Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | | | | | | | | | | | | | | | - Borbala Szekely
- Yale School of Medicine, New Haven, CT.,National Institute of Oncology, Budapest, Hungary
| | | | | | | |
Collapse
|
50
|
Tsuzuki K, Itoh Y, Inoue Y, Hayashi H. TRB
1 negatively regulates gluconeogenesis by suppressing the transcriptional activity of
FOXO
1. FEBS Lett 2019; 593:369-380. [DOI: 10.1002/1873-3468.13314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/15/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Kaori Tsuzuki
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University Japan
| | - Yuka Itoh
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University Japan
- Department of Biochemistry Graduate School of Medicine University of Yamanashi Japan
| | - Yasumichi Inoue
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University Japan
- Department of Innovative Therapeutics Sciences Cooperative Major in Nanopharmaceutical Sciences Graduate School of Pharmaceutical Sciences Nagoya City University Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University Japan
- Department of Innovative Therapeutics Sciences Cooperative Major in Nanopharmaceutical Sciences Graduate School of Pharmaceutical Sciences Nagoya City University Japan
| |
Collapse
|