1
|
Hong XG, Zhu Y, Wang T, Chen JJ, Tang F, Jiang RR, Ma XF, Xu Q, Li H, Wang LP, Sun Y, Fang LQ, Liu W. Mapping the distribution of sandflies and sandfly-associated pathogens in China. PLoS Negl Trop Dis 2024; 18:e0012291. [PMID: 39012845 PMCID: PMC11251628 DOI: 10.1371/journal.pntd.0012291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Understanding and mapping the distribution of sandflies and sandfly-associated pathogens (SAPs) is crucial for guiding the surveillance and control effort. However, their distribution and the related risk burden in China remain poorly understood. METHODS We mapped the distribution of sandflies and SAPs using literature data from 1940 to 2022. We also mapped the human visceral leishmaniasis (VL) cases using surveillance data from 2014 to 2018. The ecological drivers of 12 main sandfly species and VL were identified by applying machine learning, and their distribution and risk were predicted in three time periods (2021-2040, 2041-2060, and 2061-2080) under three scenarios of climate and socioeconomic changes. RESULTS In the mainland of China, a total of 47 sandfly species have been reported, with the main 12 species classified into three clusters according to their ecological niches. Additionally, 6 SAPs have been identified, which include two protozoa, two bacteria, and two viruses. The incidence risk of different VL subtypes was closely associated with the distribution risk of specific vectors. The model predictions also revealed a substantial underestimation of the current sandfly distribution and VL risk. The predicted areas affected by the 12 major species of sandflies and the high-risk areas for VL were found to be 37.9-1121.0% and 136.6% larger, respectively, than the observed range in the areas. The future global changes were projected to decrease the risk of mountain-type zoonotic VL (MT-ZVL), but anthroponotic VL (AVL) and desert-type zoonotic VL (DT-ZVL) could remain stable or slightly increase. CONCLUSIONS Current field observations underestimate the spatial distributions of main sandfly species and VL in China. More active surveillance and field investigations are needed where high risks are predicted, especially in areas where the future risk of VL is projected to remain high or increase.
Collapse
Affiliation(s)
- Xue-Geng Hong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, P. R. China
| | - Tao Wang
- The 949th Chinese PLA Hospital, Altay, P. R. China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| | - Fang Tang
- Center for Disease Control and Prevention of Chinese People’s Armed Police Forces, Beijing, P. R. China
| | - Rui-Ruo Jiang
- Institute of NBC Defense, PLA Army, Beijing, P. R. China
| | - Xiao-Fang Ma
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, P. R. China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, P. R. China
| | - Li-Ping Wang
- Center for Public Health Surveillance and Information Service, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| |
Collapse
|
2
|
Mitochondrial COI and Cytb gene as valid molecular identification marker of sandfly species (Diptera: Psychodidae) in China. Acta Trop 2023; 238:106798. [PMID: 36529191 DOI: 10.1016/j.actatropica.2022.106798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The accurate identification of sandfly species is crucial because some species transmit medically significant diseases, including leishmaniasis, bartonellosis and sandfly fever. However, due to the high similarity of the external morphology in sandfly species, identification can only be performed using internal morphological characteristics after dissection, which is time consuming and requires highly experienced staff. Thus, the introduction of suitable molecular markers may solve these identification problems. This study screened suitable DNA barcodes to identify common sandfly species in China. The phlebotomine sandflies were collected from Sichuan, Henan and Hainan Provinces from 2014 to 2016. The species were identified by the morphological characteristics of the pharyngeal armature and spermatheca. The genomic DNA of sandfly was extracted individually, and mitochondrial DNA (mtDNA) cytochrome C oxidase subunit I (COI) and cytochrome B (Cytb) as well as the 18S subunit of ribosomal DNA (rDNA) were amplified using polymerase chain reaction (PCR). Additionally, intraspecific and interspecific differences (p-distance) were calculated to evaluate the feasibility of the three gene fragments as a DNA barcode. The phylogeny trees of all sandfly species in this study were constructed using neighbor joining (NJ) method. Six species were identified by the morphological features, belonging to Phlebotomus and Sergentomyia, as Ph. chinensis s. l., Ph. stantoni, Se. bailyi, Se. iyengari, Se. squamirostris, and Se. squamipleuris. Analysis based on three gene fragments revealed some degree of intraspecific polymorphism among these sandfly species in China. The largest intraspecific variation occurred in Ph. chinensis s. l. (mtDNA COI, p-distance = 0.042; mtDNA Cytb, p-distance = 0.071), but the 18S rDNA fragment showed a small variation (p-distance = 0.005). The ranges of interspecific p-distances for mtDNA COI and mtDNA Cytb were 0.138 - 0.231 and 0.128 - 0.274, respectively. However, the interspecific p-distances of 18S rDNA are relatively low ranging from 0.003 to 0.055. Both mitochondrial COI and Cytb gene fragments are valid molecular identification markers in theses sandfly species. The topological structure of phylogeny trees based on mtDNA COI, mtDNA Cytb and 18S rDNA genes were all consistent with morphological classification. And we also found there were significant intraspecies differences within Ph. chinensis s. l. (0.006-0.071) and Se. bailyi (0.002-0.032) based on mtDNA Cytb gene fragment. Sequence alignment data suggested that Ph. chinensis s. l. from Sichuan should be Ph. sichuanensis, and the sandfly specimen collected from Henan was Ph. chinensis s. s.. There could be cryptic species in Se. bailyi from China.
Collapse
|
3
|
Wang J, Gou QY, Luo GY, Hou X, Liang G, Shi M. Total RNA sequencing of Phlebotomus chinensis, a neglected vector in China, simultaneously revealed viral, bacterial, and eukaryotic microbes that are potentially pathogenic to humans. Emerg Microbes Infect 2022; 11:2080-2092. [PMID: 35916448 PMCID: PMC9448391 DOI: 10.1080/22221751.2022.2109516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phlebotomus chinensis sandfly is a neglected insect vector in China that is well-known for carrying Leishmania. Recent studies have expanded its pathogen repertoire with two novel arthropod-borne phleboviruses capable of infecting humans and animals. Despite these discoveries, our knowledge of the general pathogen diversity and overall microbiome composition of this vector species is still very limited. Here we carried out a meta-transcriptomics analysis that revealed the actively replicating/transcribing RNA viruses, DNA viruses, bacteria, and eukaryotic microbes, namely, the “total microbiome”, of several sandfly populations in China. Strikingly, “microbiome” made up 1.8% of total non-ribosomal RNA and comprised more than 87 species, among which 70 were novel, including divergent members of the genera Flavivirus and of the family Trypanosomatidae. Importantly, among these microbes we were able to reveal four distinguished types of human and/or mammalian pathogens, including two phleboviruses (hedi and wuxiang viruses), one novel Spotted fever group rickettsia, as well as a member of Leishmania donovani complex, among which hedi virus and Leishmania each had > 50% pool prevalence rate and relatively high abundance levels. Our study also showed the ubiquitous presence of an endosymbiont, namely Wolbachia, although no anti-viral or anti-pathogen effects were detected based on our data. In summary, our results uncovered the much un-explored diversity of microbes harboured by sandflies in China and demonstrated that high pathogen diversity and abundance are currently present in multiple populations, implying disease potential for exposed local human population or domestic animals.
Collapse
Affiliation(s)
- Jing Wang
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qin-Yu Gou
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Geng-Yan Luo
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xin Hou
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mang Shi
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
5
|
Molecular phylogeny of heritable symbionts and microbiota diversity analysis in phlebotominae sand flies and Culex nigripalpus from Colombia. PLoS Negl Trop Dis 2021; 15:e0009942. [PMID: 34928947 PMCID: PMC8722730 DOI: 10.1371/journal.pntd.0009942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 01/03/2022] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
Background Secondary symbionts of insects include a range of bacteria and fungi that perform various functional roles on their hosts, such as fitness, tolerance to heat stress, susceptibility to insecticides and effects on reproduction. These endosymbionts could have the potential to shape microbial communites and high potential to develop strategies for mosquito-borne disease control. Methodology/Principal findings The relative frequency and molecular phylogeny of Wolbachia, Microsporidia and Cardinium were determined of phlebotomine sand flies and mosquitoes in two regions from Colombia. Illumina Miseq using the 16S rRNA gene as a biomarker was conducted to examine the microbiota. Different percentages of natural infection by Wolbachia, Cardinium, and Microsporidia in phlebotomines and mosquitoes were detected. Phylogenetic analysis of Wolbachia shows putative new strains of Lutzomyia gomezi (wLgom), Brumptomyia hamata (wBrham), and a putative new group associated with Culex nigripalpus (Cnig) from the Andean region, located in Supergroup A and Supergroup B, respectively. The sequences of Microsporidia were obtained of Pi. pia and Cx. nigripalpus, which are located on phylogeny in the IV clade (terrestrial origin). The Cardinium of Tr. triramula and Ps. shannoni were located in group C next to Culicoides sequences while Cardinium of Mi. cayennensis formed two putative new subgroups of Cardinium in group A. In total were obtained 550 bacterial amplicon sequence variants (ASVs) and 189 taxa to the genus level. The microbiota profiles of Sand flies and mosquitoes showed mainly at the phylum level to Proteobacteria (67.6%), Firmicutes (17.9%) and Actinobacteria (7.4%). High percentages of relative abundance for Wolbachia (30%-83%) in Lu. gomezi, Ev. dubitans, Mi. micropyga, Br. hamata, and Cx. nigripalpus were found. ASVs assigned as Microsporidia were found in greater abundance in Pi. pia (23%) and Cx. nigripalpus (11%). An important finding is the detection of Rickettsia in Pi. pia (58,8%) and Bartonella sp. in Cx. nigripalpus. Conclusions/Significance We found that Wolbachia infection significantly decreased the alpha diversity and negatively impacts the number of taxa on sand flies and Culex nigripalpus. The Principal Coordinate Analysis (PCoA) is consistent, which showed statistically significant differences (PERMANOVA, F = 2.4744; R2 = 0.18363; p-value = 0.007) between the microbiota of sand flies and mosquitoes depending on its origin, host and possibly for the abundance of some endosymbionts (Wolbachia, Rickettsia). The secondary endosymbionts can positively influence the metabolism of many compounds essential for the survival of the insect vectors, provide resistance to pathogens and impact susceptibility to insecticides, as also the tolerance to heat stress. We provide information from new records of natural infection of secondary endosymbionts, such as Wolbachia, Cardinium, Microsporidia, Flavobacterium, and Rickettsia in phlebotomine sand flies and mosquitoes from Colombia. An important finding is the detection of Bartonella sp. in Cx. nigripalpus. Clear differences were found in the composition and diversity of microbiota at the intra-specific and interspecific levels in sand flies and Cx. nigripalpus, which may depend in the of the load of natural infection of endosymbionts (as Wolbachia), the geographical distribution and host.
Collapse
|
6
|
Pilgrim J, Thongprem P, Davison HR, Siozios S, Baylis M, Zakharov EV, Ratnasingham S, deWaard JR, Macadam CR, Smith MA, Hurst GDD. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Gigascience 2021; 10:giab021. [PMID: 33764469 PMCID: PMC7992394 DOI: 10.1093/gigascience/giab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 03/05/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia. RESULTS This study describes the serendipitous discovery of Rickettsia amplicons in the Barcode of Life Data System (BOLD), a sequence database specifically designed for the curation of mitochondrial DNA barcodes. Of 184,585 barcode sequences analysed, Rickettsia is observed in ∼0.41% of barcode submissions and is more likely to be found than Wolbachia (0.17%). The Torix group of Rickettsia are shown to account for 95% of all unintended amplifications from the genus. A further targeted PCR screen of 1,612 individuals from 169 terrestrial and aquatic invertebrate species identified mostly Torix strains and supports the "aquatic hot spot" hypothesis for Torix infection. Furthermore, the analysis of 1,341 SRA deposits indicates that Torix infections represent a significant proportion of all Rickettsia symbioses found in arthropod genome projects. CONCLUSIONS This study supports a previous hypothesis that suggests that Torix Rickettsia are overrepresented in aquatic insects. In addition, multiple methods reveal further putative hot spots of Torix Rickettsia infection, including in phloem-feeding bugs, parasitoid wasps, spiders, and vectors of disease. The unknown host effects and transmission strategies of these endosymbionts make these newly discovered associations important to inform future directions of investigation involving the understudied Torix Rickettsia.
Collapse
Affiliation(s)
- Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Panupong Thongprem
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Helen R Davison
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Evgeny V Zakharov
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Sujeevan Ratnasingham
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Jeremy R deWaard
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Craig R Macadam
- Buglife – The Invertebrate Conservation Trust, Balallan House, 24 Allan Park, Stirling FK8 2QG, UK
| | - M Alex Smith
- Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1, Canada
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| |
Collapse
|
7
|
Lozano-Sardaneta YN, Valderrama A, Sánchez-Montes S, Grostieta E, Colunga-Salas P, Sánchez-Cordero V, Becker I. Rickettsial agents detected in the genus Psathyromyia (Diptera:Phlebotominae) from a Biosphere Reserve of Veracruz, Mexico. Parasitol Int 2021; 82:102286. [PMID: 33486127 DOI: 10.1016/j.parint.2021.102286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022]
Abstract
Phlebotomine sand flies are considered the main vectors of Leishmania, the causal agents of leishmaniasis, which is a serious emerging public health problem worldwide. The use of biological control alternatives, like endosymbiotic bacteria (Wolbachia and Rickettsia), have been proposed to decrease sand fly populations and reduce Leishmania transmissions, yet only few records on the detection of Wolbachia or Rickettsia in sand flies are available worldwide. The aim of this study was to perform the molecular detection of Rickettsial agents associated with sand flies from the last patch of a rainforest in south-eastern Mexico, where a high prevalence of Leishmania infantum has been reported. Sampling effort of sand flies covered 300 trap-nights between 2011 and 2013, and a total of 925 specimens from twelve species were morphologically identified. Using PCR techniques, we identified a new lineage of the endosymbionts Rickettsia in Psathyromyia aclydifera (prevalence of 19.54%), and Wolbachia in Psathyromyia shannoni and Lutzomyia sp. (prevalence of 25%). The detected Wolbachia lineage was similar to the wWhi strain found in Pa. shannoni from Colombia and Nyssomyia whitmani from Brazil; whereas the identified Rickettsia represents a new lineage worldwide. This is the first record of Rickettsial agents associated to sand flies from this region, yet it remains for analysed if these bacteria possibly play a role as vector control agents, capable of reducing the sand fly populations in Mexico.
Collapse
Affiliation(s)
- Yokomi N Lozano-Sardaneta
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06726, Mexico
| | - Anayansi Valderrama
- Department of Research in Medical Entomology, Commemorative Gorgas Institute for Health Study, Panama 0816-02593, Panama
| | - Sokani Sánchez-Montes
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06726, Mexico; Facultad de Ciencias Biológicas y Agropecuarias región Tuxpan, Universidad Veracruzana, Veracruz 92870, Mexico
| | - Estefania Grostieta
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06726, Mexico
| | - Pablo Colunga-Salas
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06726, Mexico
| | - Víctor Sánchez-Cordero
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 06726, Mexico.
| |
Collapse
|
8
|
Madhav M, Baker D, Morgan JAT, Asgari S, James P. Wolbachia: A tool for livestock ectoparasite control. Vet Parasitol 2020; 288:109297. [PMID: 33248417 DOI: 10.1016/j.vetpar.2020.109297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Ectoparasites and livestock-associated insects are a major concern throughout the world because of their economic and welfare impacts. Effective control is challenging and relies mainly on the use of chemical insecticides and acaricides. Wolbachia, an arthropod and nematode-infecting, maternally-transmitted endosymbiont is currently of widespread interest for use in novel strategies for the control of a range of arthropod-vectored human diseases and plant pests but to date has received only limited consideration for use in the control of diseases of veterinary concern. Here, we review the currently available information on Wolbachia in veterinary ectoparasites and disease vectors, consider the feasibility for use of Wolbachia in the control of livestock pests and diseases and highlight critical issues which need further investigation.
Collapse
Affiliation(s)
- Mukund Madhav
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalton Baker
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jess A T Morgan
- Department of Agriculture and Fisheries, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Chen HM, Chen HY, Tao F, Gao JP, Li KL, Shi H, Peng H, Ma YJ. Leishmania infection and blood sources analysis in Phlebotomus chinensis (Diptera: Psychodidae) along extension region of the loess plateau, China. Infect Dis Poverty 2020; 9:125. [PMID: 32867841 PMCID: PMC7461359 DOI: 10.1186/s40249-020-00746-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) was one of the most important parasitic diseases in China, caused by Leishmania protozoans and transmitted by sand flies. Recently VL cases have reappeared in China, including the extension region of the Loess Plateau. The purpose of this study was to collect fundamental data on the host-vector VL system in the Loess Plateau to assist in the development of prevention and control measures. METHODS Sand flies were collected by light traps from rural areas in Shanxian, Henan, China in 2015, as well as in Wuxiang and Yangquan, Shanxi, China in 2017. The blood sources of sand flies were analyzed by PCR detecting the host-specific mitochondrial cytochrome b (mtDNA cyt b) gene fragments. Leishmania infection in sand flies was detected by amplifying and sequencing ribosomal DNA internal transcribed spacer 1 (ITS1). The Leishmania specific antibodies in the sera of local dogs were detected by ELISA kit. RESULTS Blood sources showed diversity in the extension region of the Loess Plateau, including human, chicken, dog, cattle, pig and goat. Multiple blood sources within a sand fly were observed in samples from Yangquan (17/118, 14.4%) and Wuxiang (12/108, 11.1%). Leishmania DNA was detected in sand flies collected from Yangquan with minimum infection rate of 1.00%. The ITS1 sequences were conserved with the Leishmania donovani complex. The positive rate of Leishmania specific antibodies in dogs was 5.97%. CONCLUSIONS This study detected the blood sources and Leishmania parasites infection of sand flies by molecular methods in the extension region of Loess Plateau, China. A high epidemic risk of leishmaniasis is currently indicated by the results as the infection of Leishmania in sand flies, the extensive blood sources of sand flies including humans, and positive antibody of Leishmania in local dog sera. Given the recent increase of VL cases, asymptomatic patients, dogs and other potential infected animals should be screened and treated. Furthermore, the density of sand flies needs to be controlled and personal protection should be strengthened.
Collapse
Affiliation(s)
- Han-Ming Chen
- Department of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Hui-Ying Chen
- Department of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Feng Tao
- Department of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Jing-Peng Gao
- Department of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Kai-Li Li
- Department of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Hua Shi
- Institute of Disease Control and Prevention of People's Liberation Army of China, Beijing, 100071, China
| | - Heng Peng
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| | - Ya-Jun Ma
- Department of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
10
|
Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus Sandflies. Pathogens 2020; 9:pathogens9060428. [PMID: 32485988 PMCID: PMC7350354 DOI: 10.3390/pathogens9060428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Phlebotomine sandflies are vectors of the humans' and mammals' parasite Leishmania spp. Although the role of gut microbiome in the biological cycle of insects is acknowledged, we still know little about the factors modulating the composition of the gut microbiota of sandflies. We tested whether host species impose a strong structural effect on the gut microbiota of Phlebotomus spp. Sandflies were collected from the island of Leros, Greece, and classified to P. papatasi, P. neglectus, P. tobbi, and P. similis, all being negative to Leishmania spp. The prokaryotic gut microbiota was determined via 16S rRNA gene amplicon sequencing. Phlebotomus species supported distinct microbial communities (p < 0.001). P. papatasi microbiota was the most distinct over-dominated by three Spiroplasma, Wolbachia and Paenibacillus operational taxonomic units (OTUs), while another Wolbachia OTU prevailed in P. neglectus. Conversely, the microbiota of P. tobbi and P. similis was composed of several less dominant OTUs. Archaea showed low presence with the dominant OTUs belonging to methanogenic Euryarcheota, ammonia-oxidizing Thaumarcheota, and Nanoarchaeota. We provide first insights into the composition of the bacterial and archaeal community of Phlebotomus sandflies and showed that, in the absence of Leishmania, host genotype is the major modulator of Phlebotomus sandfly gut microbiota.
Collapse
|
11
|
Vivero RJ, Villegas-Plazas M, Cadavid-Restrepo GE, Herrera CXM, Uribe SI, Junca H. Wild specimens of sand fly phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome. Sci Rep 2019; 9:17746. [PMID: 31780680 PMCID: PMC6883041 DOI: 10.1038/s41598-019-53769-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Phlebotomine sand flies are remarkable vectors of several etiologic agents (virus, bacterial, trypanosomatid Leishmania), posing a heavy health burden for human populations mainly located at developing countries. Their intestinal microbiota is involved in a wide range of biological and physiological processes, and could exclude or facilitate such transmission of pathogens. In this study, we investigated the Eubacterial microbiome from digestive tracts of Lu. evansi adults structure using 16S rRNA gene sequence amplicon high throughput sequencing (Illumina MiSeq) obtained from digestive tracts of Lu. evansi adults. The samples were collected at two locations with high incidence of the disease in humans: peri-urban and forest ecosystems from the department of Sucre, Colombia. 289,068 quality-filtered reads of V4 region of 16S rRNA gene were obtained and clustered into 1,762 operational taxonomic units (OTUs) with 97% similarity. Regarding eubacterial diversity, 14 bacterial phyla and 2 new candidate phyla were found to be consistently associated with the gut microbiome content. Proteobacteria, Firmicutes, and Bacteroidetes were the most abundant phyla in all the samples and the core microbiome was particularly dominated by Methylobacterium genus. Methylobacterium species, are known to have mutualistic relationships with some plants and are involved in shaping the microbial community in the phyllosphere. As a remarkable feature, OTUs classified as Wolbachia spp. were found abundant on peri-urban ecosystem samples, in adult male (OTUs n = 776) and unfed female (OTUs n = 324). Furthermore, our results provide evidence of OTUs classified as Cardinium endosymbiont in relative abundance, notably higher with respect to Wolbachia. The variation in insect gut microbiota may be determined by the environment as also for the type of feeding. Our findings increase the richness of the microbiota associated with Lu. evansi. In this study, OTUs of Methylobacterium found in Lu. evansi was higher in engorged females, suggesting that there are interactions between microbes from plant sources, blood nutrients and the parasites they transmit during the blood intake.
Collapse
Affiliation(s)
- Rafael J Vivero
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Molecular y Celular, Universidad Nacional de Colombia sede Medellín, Street 59 A # 63-20, Medellín, Postal Code, 050003, Colombia. .,PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Street 62 # 52-59, SIU-Sede de Investigación Universitaria, Laboratory 632, Medellín, Postal Code, 050003, Colombia.
| | - Marcela Villegas-Plazas
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div. Ecogenomics & Holobionts, Microbiomas Foundation, LT11A, Chía, Postal Code, 250008, Colombia
| | - Gloria E Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Molecular y Celular, Universidad Nacional de Colombia sede Medellín, Street 59 A # 63-20, Medellín, Postal Code, 050003, Colombia
| | - Claudia Ximena Moreno Herrera
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Molecular y Celular, Universidad Nacional de Colombia sede Medellín, Street 59 A # 63-20, Medellín, Postal Code, 050003, Colombia
| | - Sandra I Uribe
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, sede Medellín, Street 59 A # 63-20, Medellín, Postal Code, 050003, Colombia
| | - Howard Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div. Ecogenomics & Holobionts, Microbiomas Foundation, LT11A, Chía, Postal Code, 250008, Colombia.
| |
Collapse
|
12
|
The changing distribution of Leishmania infantum Nicolle, 1908 and its Mediterranean sandfly vectors in the last 140 kys. Sci Rep 2019; 9:11820. [PMID: 31413351 PMCID: PMC6694126 DOI: 10.1038/s41598-019-48350-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/30/2019] [Indexed: 12/03/2022] Open
Abstract
The understanding of the effects of past climatic changes on the distribution of vector arthropods can strongly support the understanding of the future potential impact of anthropogenic climatic change on the geographical risk of vector-borne diseases. The zoogeographical patterns of the European sandfly vectors may suffer the continuously changing climate of the last 140 kys. The former range of L. infantum and six Phlebotomus species were modelled for the Last Interglacial, the Last Glacial Maximum and the Mid-Holocene Periods. It was found that the potential distribution of the parasite was much smaller in the Last Glacial Period L. infantum mainly could persist in the western shelves of the Mediterranean Sea. West and East Mediterranean sandfly species inhabited partly distinct refugia. The Apennine Peninsula, Sicily and the Iberian refugium formed a habitat chain along with the coastal areas of the West Mediterranean Basin. There was no direct connection between the Eastern and the Western sandfly refugia in the last 140 kys. The modelled distribution of sandfly taxa for the Middle Holocene Period can explain the relict populations of sandfly taxa in such Central European countries. The former genetic studies strongly confirm the existence of the modelled glacial refugees.
Collapse
|
13
|
Moitra S, Pawlowic MC, Hsu FF, Zhang K. Phosphatidylcholine synthesis through cholinephosphate cytidylyltransferase is dispensable in Leishmania major. Sci Rep 2019; 9:7602. [PMID: 31110206 PMCID: PMC6527706 DOI: 10.1038/s41598-019-44086-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/09/2019] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylcholine (PC) is a major cell membrane constituent and precursor of important second messengers. In Leishmania parasites, PC synthesis can occur via the choline branch of the Kennedy pathway, the N-methylation of phosphatidylethanolamine (PE), or the remodeling of exogenous phospholipids. To investigate the role of de novo PC synthesis in Leishmania major, we focused on the cholinephosphate cytidylyltransferase (CPCT) which catalyzes the formation of CDP-choline, a key intermediate in the choline branch of the Kennedy pathway. Without CPCT, L. major parasites cannot incorporate choline into PC, yet the CPCT-null mutants contain similar levels of PC and PE as wild type parasites. Loss of CPCT does not affect the growth of parasites in complete medium or their virulence in mice. These results suggest that other mechanisms of PC synthesis can compensate the loss of CPCT. Importantly, CPCT-null parasites exhibited severe growth defects when ethanolamine and exogenous lipids became limited or when they were co-cultured with certain bacteria that are known to be members of sandfly midgut microbiota. These findings suggest that Leishmania employ multiple PC synthesis pathways to utilize a diverse pool of nutrients, which may be crucial for their survival and development in the sandfly.
Collapse
Affiliation(s)
- Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mattie C Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
- Wellcome Centre for Anti-Infectives Research (WCAIR), Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, 660S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
14
|
Hall RJ, Flanagan LA, Bottery MJ, Springthorpe V, Thorpe S, Darby AC, Wood AJ, Thomas GH. A Tale of Three Species: Adaptation of Sodalis glossinidius to Tsetse Biology, Wigglesworthia Metabolism, and Host Diet. mBio 2019; 10:e02106-18. [PMID: 30602581 PMCID: PMC6315101 DOI: 10.1128/mbio.02106-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
The tsetse fly is the insect vector for the Trypanosoma brucei parasite, the causative agent of human African trypanosomiasis. The colonization and spread of the trypanosome correlate positively with the presence of a secondary symbiotic bacterium, Sodalis glossinidius The metabolic requirements and interactions of the bacterium with its host are poorly understood, and herein we describe a metabolic model of S. glossinidius metabolism. The model enabled the design and experimental verification of a defined medium that supports S. glossinidius growth ex vivo This has been used subsequently to analyze in vitro aspects of S. glossinidius metabolism, revealing multiple unique adaptations of the symbiont to its environment. Continued dependence on a sugar, and the importance of the chitin monomer N-acetyl-d-glucosamine as a carbon and energy source, suggests adaptation to host-derived molecules. Adaptation to the amino acid-rich blood diet is revealed by a strong dependence on l-glutamate as a source of carbon and nitrogen and by the ability to rescue a predicted l-arginine auxotrophy. Finally, the selective loss of thiamine biosynthesis, a vitamin provided to the host by the primary symbiont Wigglesworthia glossinidia, reveals an intersymbiont dependence. The reductive evolution of S. glossinidius to exploit environmentally derived metabolites has resulted in multiple weaknesses in the metabolic network. These weaknesses may become targets for reagents that inhibit S. glossinidius growth and aid the reduction of trypanosomal transmission.IMPORTANCE Human African trypanosomiasis is caused by the Trypanosoma brucei parasite. The tsetse fly vector is of interest for its potential to prevent disease spread, as it is essential for T. brucei life cycle progression and transmission. The tsetse's mutualistic endosymbiont Sodalis glossinidius has a link to trypanosome establishment, providing a disease control target. Here, we describe a new, experimentally verified model of S. glossinidius metabolism. This model has enabled the development of a defined growth medium that was used successfully to test aspects of S. glossinidius metabolism. We present S. glossinidius as uniquely adapted to life in the tsetse, through its reliance on the blood diet and host-derived sugars. Additionally, S. glossinidius has adapted to the tsetse's obligate symbiont Wigglesworthia glossinidia by scavenging a vitamin it produces for the insect. This work highlights the use of metabolic modeling to design defined growth media for symbiotic bacteria and may provide novel inhibitory targets to block trypanosome transmission.
Collapse
Affiliation(s)
- Rebecca J Hall
- Department of Biology, University of York, York, United Kingdom
| | | | | | | | - Stephen Thorpe
- Department of Biology, University of York, York, United Kingdom
| | - Alistair C Darby
- University of Liverpool, Institute of Integrative Biology, Liverpool, United Kingdom
| | - A Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Gavin H Thomas
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
15
|
Zhou F, Wu X, Xu L, Guo S, Chen G, Zhang X. Repressed Beauveria bassiana infections in Delia antiqua due to associated microbiota. PEST MANAGEMENT SCIENCE 2019; 75:170-179. [PMID: 29797399 DOI: 10.1002/ps.5084] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/18/2018] [Accepted: 05/17/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Insects form both mutualistic and antagonistic relationships with microbes, and some antagonistic microbes have been used as biocontrol agents (BCAs) in pest management. Contextually, BCAs may be inhibited by beneficial insect symbionts, which can become potential barriers to entomopathogen-dependent pest biocontrol. Using the symbioses formed by one devastating dipteran pest, Delia antiqua, and its associated microbes as a model system, we sought to determine whether the antagonistic interaction between BCAs and microbial symbionts could affect the outcome of entomopathogen-dependent pest biocontrol. RESULTS The result showed that in contrast to non-axenic D. antiqua larvae, i.e., onion maggots, axenic larvae lost resistance to the entomopathogenic Beauveria bassiana, and the re-inoculation of microbiota increased the resistance of axenic larvae to B. bassiana. Furthermore, bacteria frequently isolated from larvae, including Citrobacter freundii, Enterobacter ludwigii, Pseudomonas protegens, Serratia plymuthica, Sphingobacterium faecium and Stenotrophomonas maltophilia, suppressed B. bassiana conidia germination and hyphal growth, and the re-inoculation of specific individual bacteria enhanced the resistance of axenic larvae to B. bassiana. CONCLUSION Bacteria associated with larvae, including C. freundii, E. ludwigii, P. protegens, S. plymuthica, S. faecium and S. maltophilia, can inhibit B. bassiana infection. Removing the microbiota can suppress larval resistance to fungal infection. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Letian Xu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, China
| | - Shuhai Guo
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guanhong Chen
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
16
|
Jiménez-Cortés JG, García-Contreras R, Bucio-Torres MI, Cabrera-Bravo M, Córdoba-Aguilar A, Benelli G, Salazar-Schettino PM. Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Trop 2018; 186:69-101. [PMID: 30003907 DOI: 10.1016/j.actatropica.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Due to their high impact on public health, human blood-feeding arthropods are one of the most relevant animal groups. Bacterial symbionts have been long known to play a role in the metabolism, and reproduction of these arthropod vectors. Nowadays, we have a more complete picture of their functions, acknowledging the wide influence of bacterial symbionts on processes ranging from the immune response of the arthropod host to the possible establishment of pathogens and parasites. One or two primary symbiont species have been found to co-evolve along with their host in each taxon (being ticks an exception), leading to various kinds of symbiosis, mostly mutualistic in nature. Moreover, several secondary symbiont species are shared by all arthropod groups. With respect to gut microbiota, several bacterial symbionts genera are hosted in common, indicating that these bacterial groups are prone to invade several hematophagous arthropod species feeding on humans. The main mechanisms underlying bacterium-arthropod symbiosis are discussed, highlighting that even primary symbionts elicit an immune response from the host. Bacterial groups in the gut microbiota play a key role in immune homeostasis, and in some cases symbiont bacteria could be competing directly or indirectly with pathogens and parasites. Finally, the effects climate change, great human migrations, and the increasingly frequent interactions of wild and domestic animal species are analyzed, along with their implications on microbiota alteration and their possible impacts on public health and the control of pathogens and parasites harbored in arthropod vectors of human parasites and pathogens.
Collapse
Affiliation(s)
- J Guillermo Jiménez-Cortés
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Martha I Bucio-Torres
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Margarita Cabrera-Bravo
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Alex Córdoba-Aguilar
- Laboratorio de Ecología de la Conducta de Artrópodos, Instituto de Ecología, Universidad Nacional Autónoma de México, México
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Paz M Salazar-Schettino
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
17
|
Karatepe B, Aksoy S, Karatepe M. Investigation of Wolbachia spp. and Spiroplasma spp. in Phlebotomus species by molecular methods. Sci Rep 2018; 8:10616. [PMID: 30006543 PMCID: PMC6045589 DOI: 10.1038/s41598-018-29031-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to determine the presence of Wolbachia spp. and Spiroplasma spp. in natural populations of sand flies in Turkey by molecular methods. A total of 40 Phlebotomus specimens (19 female and 21 male) were used in this study. Genomic DNA from whole sand flies was isolated and Wolbachia spp. infection prevalence was investigated by using Wolbachia gene specific primer sets (wsp and GroEL). In addition, the DNA were analyzed for the presence of Spiroplasma infections utilizing bacterium specific 16 S rDNA PCR-amplification primers. Results of this analysis showed a Wolbachia infection prevalence of 70% (28/40). There was no sex-bias in infection prevalence, being 76% (16/21) and 63% (12/19) in males and females, respectively. Analysis of Spiroplasma infections indicated that 26% (5/19) of female sand flies were positive for infection, while none of the screened males (0/21) were positive. Of the 40 sand fly samples, only 2 were found to be positive for both Wolbachia spp. and Spiroplasma spp. The present study demonstrates the presence of Wolbachia and Spiroplasma infections in the natural sand fly populations in Turkey. This is the first report on Spiroplasma infection in the sand flies from Turkey.
Collapse
Affiliation(s)
- Bilge Karatepe
- Niğde Ömer Halisdemir University, Bor Vocational School, Bor-Niğde, Turkey.
| | - Serap Aksoy
- Yale University, School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, USA
| | - Mustafa Karatepe
- Niğde Ömer Halisdemir University, Bor Vocational School, Bor-Niğde, Turkey
| |
Collapse
|
18
|
Abstract
In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.
Collapse
|
19
|
Blankenchip CL, Michels DE, Braker HE, Goffredi SK. Diet breadth and exploitation of exotic plants shift the core microbiome of Cephaloleia, a group of tropical herbivorous beetles. PeerJ 2018; 6:e4793. [PMID: 29785353 PMCID: PMC5960584 DOI: 10.7717/peerj.4793] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/29/2018] [Indexed: 01/20/2023] Open
Abstract
The beetle genus Cephaloleia has evolved in association with tropical ginger plants and for many species their specific host plant associations are known. Here we show that the core microbiome of six closely related Costa Rican Cephaloleia species comprises only eight bacterial groups, including members of the Acinetobacter, Enterobacteriacea, Pseudomonas, Lactococcus, and Comamonas. The Acinetobacter and Enterobacteriacea together accounted for 35% of the total average 16S rRNA ribotypes recovered from all specimens. Further, microbiome diversity and community structure was significantly linked to beetle diet breadth, between those foraging on less than two plant types (specialists) versus over nine plant types (generalists). Moraxellaceae, Enterobacteriaceae, and Pseudomonadaceae were highly prevalent in specialist species, and also present in eggs, while Rickettsiaceae associated exclusively with generalist beetles. Bacteria isolated from Cephaloleia digestive systems had distinct capabilities and suggested a possible beneficial role in both digestion of plant-based compounds, including xylose, mannitol, and pectin, and possible detoxification, via lipases. Cephaloleia species are currently expanding their diets to include exotic invasive plants, yet it is unknown whether their microbial community plays a role in this transition. In this study, colonization of invasive plants was correlated with a dysbiosis of the microbiome, suggesting a possible relationship between gut bacteria and niche adaptation.
Collapse
Affiliation(s)
| | - Dana E Michels
- Department of Biology, Occidental College, Los Angeles, CA, USA
| | | | | |
Collapse
|
20
|
Dada N, Sheth M, Liebman K, Pinto J, Lenhart A. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci Rep 2018; 8:2084. [PMID: 29391526 PMCID: PMC5794770 DOI: 10.1038/s41598-018-20367-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/17/2018] [Indexed: 02/04/2023] Open
Abstract
In light of the declining global malaria burden attained largely due to insecticides, a deeper understanding of the factors driving insecticide resistance is needed to mitigate its growing threat to malaria vector control programs. Following evidence of microbiota-mediated insecticide resistance in agricultural pests, we undertook a comparative study of the microbiota in mosquitoes of differing insecticide resistance status. The microbiota of wild-caught Anopheles albimanus, an important Latin American malaria vector, that were resistant (FEN_Res) or susceptible (FEN_Sus) to the organophosphate (OP) insecticide fenitrothion were characterized and compared using whole metagenome sequencing. Results showed differing composition of the microbiota and its functions between FEN_Res and FEN_Sus, with significant enrichment of OP-degrading bacteria and enzymes in FEN_Res compared to FEN_Sus. Lower bacterial diversity was observed in FEN_Res compared to FEN_Sus, suggesting the enrichment of bacterial taxa with a competitive advantage in response to insecticide selection pressure. We report and characterize for the first time whole metagenomes of An. albimanus, revealing associations between the microbiota and phenotypic resistance to the insecticide fenitrothion. This study lays the groundwork for further investigation of the role of the mosquito microbiota in insecticide resistance.
Collapse
Affiliation(s)
- Nsa Dada
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE. MS G-49, Atlanta, GA 30329, United States of America
- American Society for Microbiology, 1752 N Street, N. W. Washington, D. C., 20036, United States of America
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging & Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE, Atlanta, GA 30329, United States of America
| | - Kelly Liebman
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE. MS G-49, Atlanta, GA 30329, United States of America
- Vector-Borne Disease Section, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, 850 Marina Bay Parkway, Richmond, CA 94804, United States of America
| | - Jesus Pinto
- Instituto Nacional de Salud, Avenida Defensores del Morro (Ex-Huaylas) 2268, Chorrillos, Lima, Peru
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE. MS G-49, Atlanta, GA 30329, United States of America.
| |
Collapse
|
21
|
Takatsuka J, Nakai M, Shinoda T. A virus carries a gene encoding juvenile hormone acid methyltransferase, a key regulatory enzyme in insect metamorphosis. Sci Rep 2017; 7:13522. [PMID: 29051595 PMCID: PMC5648886 DOI: 10.1038/s41598-017-14059-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022] Open
Abstract
Microbial parasitism, infection, and symbiosis in animals often modulate host endocrine systems, resulting in alterations of phenotypic traits of the host that can have profound effects on the ecology and evolution of both the microorganisms and their hosts. Information about the mechanisms and genetic bases of such modulations by animal parasites is available from studies of steroid hormones. However, reports involving other hormones are scarce. We found that an insect virus, a betaentomopoxvirus, encodes a juvenile hormone acid methyltransferase that can synthesize an important insect hormone, the sesquiterpenoid juvenile hormone. Phylogenetic analysis suggested that this gene is of bacterial origin. Our study challenges the conventional view that functional enzymes in the late phase of the juvenile hormone biosynthesis pathway are almost exclusive to insects or arthropods, and shed light on juvenoid hormone synthesis beyond Eukaryota. This striking example demonstrates that even animal parasites having no metabolic pathways for molecules resembling host hormones can nevertheless influence the synthesis of such hormones, and provides a new context for studying animal parasite strategies in diverse systems such as host-parasite, host-symbiont or host-vector-parasite.
Collapse
Affiliation(s)
- Jun Takatsuka
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, Japan.
| | - Madoka Nakai
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tetsuro Shinoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Fraihi W, Fares W, Perrin P, Dorkeld F, Sereno D, Barhoumi W, Sbissi I, Cherni S, Chelbi I, Durvasula R, Ramalho-Ortigao M, Gtari M, Zhioua E. An integrated overview of the midgut bacterial flora composition of Phlebotomus perniciosus, a vector of zoonotic visceral leishmaniasis in the Western Mediterranean Basin. PLoS Negl Trop Dis 2017; 11:e0005484. [PMID: 28355207 PMCID: PMC5386300 DOI: 10.1371/journal.pntd.0005484] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/10/2017] [Accepted: 03/11/2017] [Indexed: 11/25/2022] Open
Abstract
Background The Leishmania developmental life cycle within its sand fly vector occurs exclusively in the lumen of the insect’s digestive tract in the presence of symbiotic bacteria. The composition of the gut microbiota and the factors that influence its composition are currently poorly understood. A set of factors, including the host and its environment, may influence this composition. It has been demonstrated that the insect gut microbiota influences the development of several human pathogens, such as Plasmodium falciparum. For sand flies and Leishmania, understanding the interactions between the parasite and the microbial environment of the vector midgut can provide new tools to control Leishmania transmission. Methodology/Principal findings The midguts of female Phlebotomus perniciosus from laboratory colonies or from the field were collected during the months of July, September and October 2011 and dissected. The midguts were analyzed by culture-dependent and culture-independent methods. A total of 441 and 115 cultivable isolates were assigned to 30 and 11 phylotypes from field-collected and colonized P. perniciosus, respectively. Analysis of monthly variations in microbiota composition shows a species diversity decline in October, which is to the end of the Leishmania infantum transmission period. In parallel, a compilation and a meta-analysis of all available data concerning the microbiota of two Psychodidae genera, namely Phlebotomus and Lutzomyia, was performed and compared to P. perniciosus, data obtained herein. This integrated analysis did not reveal any substantial divergences between Old and New world sand flies with regards to the midgut bacterial phyla and genera diversity. But clearly, most bacterial species (>76%) are sparsely distributed between Phlebotominae species. Conclusion/Significance Our results pinpoint the need for a more exhaustive understanding of the bacterial richness and abundance at the species level in Phlebotominae sand flies in order to capture the role of midgut bacteria during Leishmania development and transmission. The occurrence of Bacillus subtilis in P. perniciosus and at least two other sand fly species studied so far suggests that this bacterial species is a potential candidate for paratransgenic or biolological approaches for the control of sand fly populations in order to prevent Leishmania transmission. The use of conventional microbiological methods gave us the opportunity to investigate the richness of symbiotic bacteria that inhabit the gut of P. perniciosus during its main period of activity. Our results were subsequently analyzed in the framework of what has been done on sand flies microbiota in order to validate our results and to address the question of the definition of the core bacterial microbiota of sand flies. A meta-analysis on the respective gut microbiota of Old and New World sand flies shows that the majority of bacterial species is observed only in one host whereas less than 8% are shared by more than two hosts. Our results pinpoint the need for a more exhaustive understanding of the microbiota composition and dynamic in phlebotominae, with the aim to implement new biological approaches for the control of sand fly populations in order to prevent Leishmania transmission.
Collapse
Affiliation(s)
- Wael Fraihi
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
- Laboratory of Microorganisms and Active Biomolecules, University of Tunis-El Manar, Faculty of Sciences, Tunis, Tunisia
| | - Wasfi Fares
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Pascale Perrin
- MIVEGEC/Université de Montpellier CNRS/UMR 5244/IRD 224 - Centre IRD, Montpellier, France
| | - Franck Dorkeld
- INRA - UMR 1062 CBGP (INRA, IRD, CIRAD), Montpellier SupAgro, Montferrier-Sur-Lez, France
| | - Denis Sereno
- MIVEGEC/Université de Montpellier CNRS/UMR 5244/IRD 224 - Centre IRD, Montpellier, France
- UMR177, Centre IRD de Montpellier, Montpellier, France
- * E-mail: (EZ); (DS)
| | - Walid Barhoumi
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Imed Sbissi
- Laboratory of Microorganisms and Active Biomolecules, University of Tunis-El Manar, Faculty of Sciences, Tunis, Tunisia
| | - Saifedine Cherni
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Ifhem Chelbi
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Ravi Durvasula
- Division of Infectious Diseases, Center for Global Health, Department of Internal Medicine, UNM School of Medicine Albuquerque, New Mexico, United States of America
| | - Marcelo Ramalho-Ortigao
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Maher Gtari
- Laboratory of Microorganisms and Active Biomolecules, University of Tunis-El Manar, Faculty of Sciences, Tunis, Tunisia
| | - Elyes Zhioua
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
- * E-mail: (EZ); (DS)
| |
Collapse
|