1
|
Mohammadi E, Rahimian M, Panahi B. Bridging the gap: Phage manufacturing processes from laboratory to agri-food industry. Virus Res 2025; 353:199537. [PMID: 39880310 PMCID: PMC11833641 DOI: 10.1016/j.virusres.2025.199537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Interest in bacteriophages (phages) as sustainable biocontrol agents in the agri-food industry has increased because of growing worries about food safety and antimicrobial resistance (AMR). The phage manufacturing process is examined in this review, with particular attention paid to the crucial upstream and downstream processes needed for large-scale production. Achieving large phage yields requires upstream procedures, including fermentation and phage amplification. In the meantime, downstream procedures, including purification, endotoxin removal, and formulation, is essential for guaranteeing product quality and regulatory compliance. Despite advances in upstream and downstream process optimization of phage production processes, these methods are not effectively utilized in manufacturing processes. Additionally, the commercialization of phage products is hindered by fragmented rules and inconsistent regulations. Emerging technologies such as enhanced chromatography, continuous processing, and encapsulating techniques provide prospects for increased stability, efficiency, and scalability to fill these gaps. Furthermore, by facilitating real-time process optimization, predictive quality control (QC), and unique phage product creation, the integration of artificial intelligence (AI) and machine learning has the potential to transform the phage manufacturing industry completely. In order to provide consistent standards, encourage innovation, and bridge the gap between academic research and commercial applications, this review identifies gaps and highlights the necessity of cooperation between academia, industry, and regulatory agencies. To effectively utilize phages' potential to improve food safety, fight AMR, and promote sustainable agricultural practices, the agri-food industry must advance phage manufacturing techniques and harmonize regulatory frameworks.
Collapse
Affiliation(s)
- Elham Mohammadi
- NanoSciTec GmbH, Hermann Weinhauser str. 67, Munich 81867, Germany
| | - Mohammadreza Rahimian
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
2
|
Edeling MA, Earnest L, Carrera Montoya J, Yap AHY, Mumford J, Roberts J, Wong CY, Hans D, Grima J, Bisset N, Bodle J, Rockman S, Torresi J. Development of Methods to Produce SARS CoV-2 Virus-Like Particles at Scale. Biotechnol Bioeng 2025. [PMID: 39936889 DOI: 10.1002/bit.28937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
The devastating global toll precipitated by the SARS CoV-2 outbreak and the profound impact of vaccines in stemming that outbreak has established the need for molecular platforms capable of rapidly delivering effective, safe and accessible medical interventions in pandemic preparedness. We describe a simple, efficient and adaptable process to produce SARS CoV-2 virus-like particles (VLPs) that can be readily scaled for manufacturing. A rapid but gentle method of tangential flow filtration using a 100 kDa semi-permeable membrane concentrates and buffer exchanges 0.5 L of SARS CoV-2 VLP containing supernatant into low salt and optimal pH for anion exchange chromatography. VLPs are washed, eluted under high salt, dialyzed into physiological buffer, sterile filtered and aliquoted for storage at -80°C. Purification is completed in less than 2 days. A simple quality control process includes Western blot for coincident detection of Spike, Membrane and Envelope protein as a proxy for intact VLP, ELISA to detect conformationally sensitive Spike using readily available anti-Spike and/or anti-RBD antibodies, and negative stain and immunogold electron microscopy to validate particulate, Spike crowned VLPs. This process to produce SARS CoV-2 VLPs for preclinical studies serves as a roadmap for preparation of more distantly related VLPs for pandemic preparedness.
Collapse
Affiliation(s)
- Melissa A Edeling
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Linda Earnest
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ashley Huey Yiing Yap
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jamie Mumford
- Victorian Infectious Diseases Reference laboratory, Royal Melbourne Hospital at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jason Roberts
- Victorian Infectious Diseases Reference laboratory, Royal Melbourne Hospital at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dhiraj Hans
- Research, Innovation & Commercialisation, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Joseph Grima
- Seqirus, Vaccine Innovation Unit, Parkville, Victoria, Australia
| | - Nicole Bisset
- Seqirus, Vaccine Innovation Unit, Parkville, Victoria, Australia
| | - Jesse Bodle
- Seqirus, Vaccine Innovation Unit, Parkville, Victoria, Australia
| | - Steven Rockman
- Seqirus, Vaccine Innovation Unit, Parkville, Victoria, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Álvarez-Narváez S, Harrell TL, Nour I, Mohanty SK, Conrad SJ. Choosing the most suitable NGS technology to combine with a standardized viral enrichment protocol for obtaining complete avian orthoreovirus genomes from metagenomic samples. FRONTIERS IN BIOINFORMATICS 2025; 5:1498921. [PMID: 39967836 PMCID: PMC11833334 DOI: 10.3389/fbinf.2025.1498921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Since viruses are obligate intracellular pathogens, sequencing their genomes results in metagenomic data from both the virus and the host. Virology researchers are constantly seeking new, cost-effective strategies and bioinformatic pipelines for the retrieval of complete viral genomes from these metagenomic samples. Avian orthoreoviruses (ARVs) pose a significant and growing threat to the poultry industry and frequently cause economic losses associated with disease in production birds. Currently available commercial vaccines are ineffective against new ARV variants and ARV outbreaks are increasing worldwide, requiring whole genome sequencing (WGS) to characterize strains that evade vaccines. This study compares the effectiveness of long-read and short-read sequencing technologies for obtaining ARV complete genomes. We used eight clinical isolates of ARV, each previously processed using our published viral genome enrichment protocol. Additionally, we evaluate three assembly methods to determine which provided the most complete and reliable whole genomes: De novo, reference-guided or hybrid. The results suggest that our ARV genome enrichment protocol caused some fragmentation of the viral cDNA that impacted the length of the long reads (but not the short reads) and, as a result, caused a failure to produce complete genomes via de novo assembly. Overall, we observed that regardless of the sequencing technology, the best quality assemblies were generated by mapping quality-trimmed reads to a custom reference genome. The custom reference genomes were in turn constructed with the publicly available ARV genomic segments that shared the highest sequence similarity with the contigs from short-read de novo assemblies. Hence, we conclude that short-read sequencing is the most suitable technology to combine with our ARV genome enrichment protocol.
Collapse
Affiliation(s)
- Sonsiray Álvarez-Narváez
- US National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Telvin L. Harrell
- US National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - Islam Nour
- US National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - Sujit K. Mohanty
- US National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - Steven J. Conrad
- US National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| |
Collapse
|
4
|
Tajti G, Gebetsberger L, Pamlitschka G, Aigner-Radakovics K, Leitner J, Steinberger P, Stockinger H, Ohradanova-Repic A. Cyclophilin-CD147 interaction enables SARS-CoV-2 infection of human monocytes and their activation via Toll-like receptors 7 and 8. Front Immunol 2025; 16:1460089. [PMID: 39963132 PMCID: PMC11830813 DOI: 10.3389/fimmu.2025.1460089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Monocytes and macrophages, as important constituents of the innate immune system, are equipped with multiple Toll-like-receptors (TLRs) to recognize invading pathogens, such as SARS-CoV-2, and mount an antiviral response. Nevertheless, their uncontrolled activation can lead to hyperinflammation seen in severe COVID-19. Surprisingly, we observed that recombinant SARS-CoV-2 Spike (S) and Nucleocapsid (N) proteins triggered only a weak proinflammatory response in human peripheral blood monocytes. By employing THP-1 and Jurkat NF-κB::eGFP reporter cell lines expressing specific TLRs, various TLR ligands and blocking antibodies, we determined that surface TLRs, including TLR2/1, TLR2/6 and TLR4 do not play a major role in SARS-CoV-2 sensing. However, monocytes are potently activated by the replication-competent SARS-CoV-2, and the response correlates with the viral uptake that is observed only in monocytes, but not in lymphocytes. We show that monocyte activation involves two distinct steps. Firstly, SARS-CoV-2 infects monocytes in a process independent of the S protein and the prime SARS-CoV-2 receptor angiotensin-converting enzyme 2. Instead, the alternative SARS-CoV-2 receptor CD147, which is highly expressed on monocytes, recognizes its well-known interaction partners cyclophilins A and B that are incorporated into SARS-CoV-2 virions. Secondly, upon viral uptake via the cyclophilin-CD147 interaction, that can be inhibited by specific CD147 blocking antibodies or competition with recombinant human cyclophilin A and B, SARS-CoV-2 RNA is recognized by TLR7/8 in endosomes, leading to upregulation of tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6, comprising the core hyperinflammatory signature. Taken together, our data reveal a novel mechanism how human monocytes sense SARS-CoV-2 and suggest that targeting the cyclophilin-CD147 axis might be beneficial to alleviate overt myeloid-driven inflammation triggered by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Gabor Tajti
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Laura Gebetsberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Gregor Pamlitschka
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Katharina Aigner-Radakovics
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Judith Leitner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Peter Steinberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Anna Ohradanova-Repic
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| |
Collapse
|
5
|
Goodarzi MM, Jalalirad R. Clear insight into complex multimodal resins and impurities to overcome recombinant protein purification challenges: A review. Biotechnol Bioeng 2025; 122:5-29. [PMID: 39290077 DOI: 10.1002/bit.28846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Increasing attention has been paid to the purity of therapeutic proteins imposing extensive costs and challenges to the downstream processing of biopharmaceuticals. One of the efforts, that has been exerted to overcome such limitations, was developing multimodal or mixed-mode chromatography (MMC) resins for launching selective, orthogonal, non-affinity purification platforms. Despite relatively extensive usage of MMC resins, their real potential and fulfillment have not been extensively reviewed yet. In this work, the explanation of practical and key aspects of downstream processing of recombinant proteins with or without MMC resins was debated, as being useful for further purification process development. This review has been written as a step-by-step guide to deconvolute both inherent protein purification and MMC complexities. Here, after complete elucidation of the potential of MMC resins, the effects of frequently used additives (mobile phase modifiers) and their possible interactions during the purification process, the critical characteristics of common product-related impurities (e.g., aggregates, charge variants, fragments), host-related impurities (e.g., host cell protein and DNA) and process related impurities (e.g., endotoxin, and viruses) with solved or unsolved challenges of traditional and MMC resins have been discussed. Such collective experiences which are reported in this study could be considered as an applied guide for developing successful downstream processing in challenging conditions by providing a clear insight into complex MMC resins and impurities.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Reza Jalalirad
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| |
Collapse
|
6
|
Gebetsberger L, Malekshahi Z, Teutsch A, Tajti G, Fontaine F, Marella N, Mueller A, Prantl L, Stockinger H, Stoiber H, Ohradanova-Repic A. SARS-CoV-2 hijacks host CD55, CD59 and factor H to impair antibody-dependent complement-mediated lysis. Emerg Microbes Infect 2024; 13:2417868. [PMID: 39435487 PMCID: PMC11520101 DOI: 10.1080/22221751.2024.2417868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
The complement system is a vital anti-microbial defence mechanism against circulating pathogens. Excessive complement activation can have deleterious outcomes for the host and is consequently tightly modulated by a set of membrane-associated and fluid-phase regulators of complement activation (RCAs). Here, we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks host cellular RCA members CD55 and CD59 and serum-derived Factor H (FH) to resist antibody-dependent complement-mediated lysis triggered by immunized human sera. Blockage of the biological functions of virion-associated CD55 and CD59 and competition of FH recruitment with functionally inactive recombinant FH-derived short consensus repeats SCR18-20 restore SARS-CoV-2 complement sensitivity in a synergistic manner. Moreover, complement-mediated virolysis is dependent on classical pathway activation and does not occur in the absence of virus-specific antibodies. Altogether, our findings present an intriguing immune escape mechanism that provides novel insights into the immunopathology observed in severe coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Laura Gebetsberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Zahra Malekshahi
- Medical University of Innsbruck, Institute of Virology, Innsbruck, Austria
| | - Aron Teutsch
- Medical University of Innsbruck, Institute of Virology, Innsbruck, Austria
| | - Gabor Tajti
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Frédéric Fontaine
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nara Marella
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André Mueller
- CeMM – Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lena Prantl
- Medical University of Innsbruck, Institute of Virology, Innsbruck, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Heribert Stoiber
- Medical University of Innsbruck, Institute of Virology, Innsbruck, Austria
| | - Anna Ohradanova-Repic
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| |
Collapse
|
7
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Zimmerman AJ, de Oliveira GP, Su X, Wood J, Fu Z, Pinckney B, Tigges J, Ghiran I, Ivanov AR. Multimode chromatography-based techniques for high purity isolation of extracellular vesicles from human blood plasma. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e147. [PMID: 38751711 PMCID: PMC11080799 DOI: 10.1002/jex2.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 05/18/2024]
Abstract
Extracellular vesicles (EVs) play a pivotal role in various biological pathways, such as immune responses and the progression of diseases, including cancer. However, it is challenging to isolate EVs at high purity from blood plasma and other biofluids due to their low abundance compared to more predominant biomolecular species such as lipoprotein particles and free protein complexes. Ultracentrifugation-based EV isolation, the current gold standard technique, cannot overcome this challenge due to the similar biophysical characteristics of such species. We developed several novel approaches to enrich EVs from plasma while depleting contaminating molecular species using multimode chromatography-based strategies. On average, we identified 716 ± 68 and 1054 ± 35 protein groups in EV isolates from 100 µL of plasma using multimode chromatography- and ultracentrifugation-based techniques, respectively. The developed methods resulted in similar EV isolates purity, providing significant advantages in simplicity, throughput, scalability, and applicability for various downstream analytical and potential clinical applications.
Collapse
Affiliation(s)
- Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Getulio Pereira de Oliveira
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Xianyi Su
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Jacqueline Wood
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Zhengxin Fu
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Brandy Pinckney
- Nano Flow Core Facility, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - John Tigges
- Nano Flow Core Facility, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Ionita Ghiran
- Department of Anesthesia, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
9
|
Bonner SE, van de Wakker SI, Phillips W, Willms E, Sluijter JPG, Hill AF, Wood MJA, Vader P. Scalable purification of extracellular vesicles with high yield and purity using multimodal flowthrough chromatography. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e138. [PMID: 38939900 PMCID: PMC11080796 DOI: 10.1002/jex2.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are cell derived membranous nanoparticles. EVs are important mediators of cell-cell communication via the transfer of bioactive content and as such they are being investigated for disease diagnostics as biomarkers and for potential therapeutic cargo delivery to recipient cells. However, existing methods for isolating EVs from biological samples suffer from challenges related to co-isolation of unwanted materials such as proteins, nucleic acids, and lipoproteins. In the pursuit of improved EV isolation techniques, we introduce multimodal flowthrough chromatography (MFC) as a scalable alternative to size exclusion chromatography (SEC). The use of MFC offers significant advantages for purifying EVs, resulting in enhanced yields and increased purity with respect to protein and nucleic acid co-isolates from conditioned 3D cell culture media. Compared to SEC, significantly higher EV yields with similar purity and preserved functionality were also obtained with MFC in 2D cell cultures. Additionally, MFC yielded EVs from serum with comparable purity to SEC and similar apolipoprotein B content. Overall, MFC presents an advancement in EV purification yielding EVs with high recovery, purity, and functionality, and offers an accessible improvement to researchers currently employing SEC.
Collapse
Affiliation(s)
| | - Simonides I. van de Wakker
- Department of Experimental CardiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - William Phillips
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Eduard Willms
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Joost P. G. Sluijter
- Department of Experimental CardiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
| | | | - Pieter Vader
- Department of Experimental CardiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
10
|
Guimerà Busquets M, Darpel KE. Purification of Epizootic Hemorrhagic Disease Virus (and Other Orbiviruses) Particles from Infected Mammalian or Insect Cells. Methods Mol Biol 2024; 2838:77-89. [PMID: 39126624 DOI: 10.1007/978-1-0716-4035-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Epizootic hemorrhagic disease virus (EHDV), like other orbiviruses, infects and replicates in mammalian and insect vector cells. Within its ruminant hosts EHDV, like bluetongue virus (BTV), it has mainly been associated with infection of endothelial cells of capillaries as well as leukocyte subsets. Furthermore, EHDV infects and replicates within its biological vector, Culicoides biting midges and Culicoides-derived cells. A wide range of common laboratory cell lines such as BHK, BSR, and Vero cells are susceptible to infection with certain EHDV strains. Cell culture supernatants of infected cells are commonly used for both in vivo and in vitro infection studies. For specific virological or immunological studies, using highly purified virus particles, however, might be beneficial or even required. Here we describe a purification method for EHDV particles, which had been originally developed for certain strains of BTV.
Collapse
Affiliation(s)
| | - Karin E Darpel
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Nair A, Loveday KA, Kenyon C, Qu J, Kis Z. Quality by Digital Design for Developing Platform RNA Vaccine and Therapeutic Manufacturing Processes. Methods Mol Biol 2024; 2786:339-364. [PMID: 38814403 DOI: 10.1007/978-1-0716-3770-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Quality by digital design (QbDD) utilizes data-driven, mechanistic, or hybrid models to define and optimize a manufacturing design space. It improves upon the QbD approach used extensively in the pharmaceutical industry. The computational models developed in this approach identify and quantify the relationship between the product's critical quality attributes (CQAs) and the critical process parameters (CPPs) of unit operations within the manufacturing process. This chapter discusses the QbDD approach in developing and optimizing unit operations such as in vitro transcription, tangential flow filtration, affinity chromatography, and lipid nanoparticle (LNP) formulation in mRNA vaccine manufacturing. QbDD can be an efficient framework for developing a production process for a disease-agnostic product that requires extensive experimental and model-based process-product interaction characterization during the early process development phase.
Collapse
Affiliation(s)
- Adithya Nair
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Kate A Loveday
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Charlotte Kenyon
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Jixin Qu
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Zoltán Kis
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK.
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
12
|
Lin QF, Wong CXL, Eaton HE, Pang X, Shmulevitz M. Reovirus genomic diversity confers plasticity for protease utility during adaptation to intracellular uncoating. J Virol 2023; 97:e0082823. [PMID: 37747236 PMCID: PMC10617468 DOI: 10.1128/jvi.00828-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/27/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE Reoviruses infect many mammals and are widely studied as a model system for enteric viruses. However, most of our reovirus knowledge comes from laboratory strains maintained on immortalized L929 cells. Herein, we asked whether naturally circulating reoviruses possess the same genetic and phenotypic characteristics as laboratory strains. Naturally circulating reoviruses obtained from sewage were extremely diverse genetically. Moreover, sewage reoviruses exhibited poor fitness on L929 cells and relied heavily on gut proteases for viral uncoating and productive infection compared to laboratory strains. We then examined how naturally circulating reoviruses might adapt to cell culture conditions. Within three passages, virus isolates from the parental sewage population were selected, displaying improved fitness and intracellular uncoating in L929 cells. Remarkably, selected progeny clones were present at 0.01% of the parental population. Altogether, using reovirus as a model, our study demonstrates how the high genetic diversity of naturally circulating viruses results in rapid adaptation to new environments.
Collapse
Affiliation(s)
- Qi Feng Lin
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Casey X. L. Wong
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Heather E. Eaton
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratories (ProvLab), Alberta Precision Laboratories (APL), Edmonton, Alberta, Canada
| | - Maya Shmulevitz
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Kilgore R, Minzoni A, Shastry S, Smith W, Barbieri E, Wu Y, LeBarre JP, Chu W, O'Brien J, Menegatti S. The downstream bioprocess toolbox for therapeutic viral vectors. J Chromatogr A 2023; 1709:464337. [PMID: 37722177 DOI: 10.1016/j.chroma.2023.464337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Will Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Juliana O'Brien
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
14
|
Narvaez SA, Harrell TL, Oluwayinka O, Sellers HS, Khalid Z, Hauck R, Chowdhury EU, Conrad SJ. Optimizing the Conditions for Whole-Genome Sequencing of Avian Reoviruses. Viruses 2023; 15:1938. [PMID: 37766345 PMCID: PMC10536876 DOI: 10.3390/v15091938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Whole-genome sequencing (WGS) is becoming an essential tool to characterize the genomes of avian reovirus (ARV), a viral disease of economic significance to poultry producers. The current strategies and procedures used to obtain the complete genome sequences of ARV isolates are not cost-effective because most of the genetic material data resulting from next-generation sequencing belong to the host and cannot be used to assemble the viral genome. The purpose of this study was to develop a workflow to enrich the ARV genomic content in a sample before subjecting it to next-generation sequencing (NGS). Herein, we compare four different ARV purification and enrichment approaches at the virion, RNA and cDNA levels to determine which treatment or treatment combination would provide a higher proportion of ARV-specific reads after WGS. Seven ARV isolates were subjected to different combinations of virion purification via ultracentrifugation in sucrose density gradient or Capto Core 700 resin with or without a subsequent Benzonase treatment, followed by a chicken rRNA depletion step after RNA extraction and a final ARV cDNA amplification step using a single-primer amplification assay. Our results show that the combination of Capto Core 700 resin, Chicken rRNA depletion and cDNA amplification is the most cost-effective strategy to obtain ARV whole genomes after short-read sequencing.
Collapse
Affiliation(s)
- Sonsiray Alvarez Narvaez
- US Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA 30605, USA; (S.A.N.); (T.L.H.); (O.O.)
| | - Telvin L. Harrell
- US Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA 30605, USA; (S.A.N.); (T.L.H.); (O.O.)
| | - Olatunde Oluwayinka
- US Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA 30605, USA; (S.A.N.); (T.L.H.); (O.O.)
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Holly S. Sellers
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Zubair Khalid
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (Z.K.); (R.H.)
| | - Ruediger Hauck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (Z.K.); (R.H.)
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL 36849, USA
| | - Erfan U. Chowdhury
- Alabama Department of Agriculture and Industries, Veterinary Diagnostic Laboratory System, Auburn, AL 36832, USA;
| | - Steven J. Conrad
- US Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA 30605, USA; (S.A.N.); (T.L.H.); (O.O.)
| |
Collapse
|
15
|
Lothert K, Harsy YMJ, Endres P, Müller E, Wolff MW. Evaluation of restricted access media for the purification of cell culture-derived Orf viruses. Eng Life Sci 2023; 23:e2300009. [PMID: 37664009 PMCID: PMC10472920 DOI: 10.1002/elsc.202300009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
Recently, multimodal chromatography using restricted access media (RAM) for the purification of nanoparticles, such as viruses has regained increasing attention. These chromatography resins combine size exclusion on the particle shell and adsorptive interaction within the core. Accordingly, smaller process-related impurities, for example, DNA and proteins, can be retained, while larger product viruses can pass unhindered. We evaluated a range of currently available RAM, differing in the shells' pore cut-off and the core chemistry, for the purification of a cell culture-derived clarified model virus, namely the Orf virus (ORFV). We examined impurity depletion and product recovery as relevant criteria for the evaluation of column performance, as well as scale-up robustness and regeneration potential for evaluating a multiple use application. The results indicate that some columns, for example, the Capto Core, enable both a high DNA and protein removal, while others, for example, the Monomix Core 60 (MC60), are more suitable for DNA depletion. Furthermore, column regeneration is facilitated by using columns with larger shell pores (5000 vs. 700 kDa) and weaker binding interactions (anion exchange vs. multimodal). According to these findings, the choice of RAM resins should be selected according to the respective feed sample composition and the planned number of application cycles.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences Mittelhessen (THM)GiessenGermany
| | - Yasmina M. J. Harsy
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences Mittelhessen (THM)GiessenGermany
| | - Patrick Endres
- Tosoh Bioscience GmbH, Separations Business Unit ‐ EuropeGriesheimGermany
| | - Egbert Müller
- Tosoh Bioscience GmbH, Separations Business Unit ‐ EuropeGriesheimGermany
| | - Michael W. Wolff
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences Mittelhessen (THM)GiessenGermany
| |
Collapse
|
16
|
Lothert K, Wolff MW. Affinity and Pseudo-Affinity Membrane Chromatography for Viral Vector and Vaccine Purifications: A Review. MEMBRANES 2023; 13:770. [PMID: 37755191 PMCID: PMC10537005 DOI: 10.3390/membranes13090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Several chromatographic approaches have been established over the last decades for the production of pharmaceutically relevant viruses. Due to the large size of these products compared to other biopharmaceuticals, e.g., proteins, convective flow media have proven to be superior to bead-based resins in terms of process productivity and column capacity. One representative of such convective flow materials is membranes, which can be modified to suit the particular operating principle and are also suitable for economical single-use applications. Among the different membrane variants, affinity surfaces allow for the most selective separation of the target molecule from other components in the feed solution, especially from host cell-derived DNA and proteins. A successful membrane affinity chromatography, however, requires the identification and implementation of ligands, which can be applied economically while at the same time being stable during the process and non-toxic in the case of any leaching. This review summarizes the current evaluation of membrane-based affinity purifications for viruses and virus-like particles, including traditional resin and monolith approaches and the advantages of membrane applications. An overview of potential affinity ligands is given, as well as considerations of suitable affinity platform technologies, e.g., for different virus serotypes, including a description of processes using pseudo-affinity matrices, such as sulfated cellulose membrane adsorbers.
Collapse
Affiliation(s)
| | - Michael W. Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| |
Collapse
|
17
|
Mayer V, Frank AC, Preinsperger S, Csar P, Steppert P, Jungbauer A, Pereira Aguilar P. Removal of chromatin by salt-tolerant endonucleases for production of recombinant measles virus. Biotechnol Prog 2023; 39:e3342. [PMID: 36974026 DOI: 10.1002/btpr.3342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Host cell DNA is a critical impurity in downstream processing of enveloped viruses. Especially, DNA in the form of chromatin is often neglected. Endonuclease treatment is an almost mandatory step in manufacturing of viral vaccines. In order to find the optimal performer, four different endonucleases, two of them salt tolerant, were evaluated in downstream processing of recombinant measles virus. Endonuclease treatment was performed under optimal temperature conditions after clarification and before the purification by flow-through chromatography with a core shell chromatography medium: Capto™ Core 700. Virus infectivity was measured by TCID50. DNA and histone presence in process and purified samples was determined using PicoGreen™ assay and Western blot analysis using an anti-histone antibody, respectively. All tested endonucleases allowed the reduction of DNA content improving product purity. The salt-tolerant endonucleases SAN and M-SAN were more efficient in the removal of chromatin compared with the non-salt-tolerant endonucleases Benzonase® and DENARASE®. Removal of chromatin using M-SAN was also possible without the addition of extra salt to the cell culture supernatant. The combination of the endonuclease treatment, using salt-tolerant endonucleases with flow-through chromatography, using core-shell particles, resulted in high purity and purification efficiency. This strategy has all features for a platform downstream process of recombinant measles virus and beyond.
Collapse
Affiliation(s)
- Viktoria Mayer
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna-Carina Frank
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Shirin Preinsperger
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patrick Csar
- Themis Bioscience GmbH (A Subsidiary of Merck & Co., Inc, Kenilworth, NJ, USA), Vienna, Austria
| | - Petra Steppert
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alois Jungbauer
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patricia Pereira Aguilar
- acib - Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
18
|
Fujimoto N, Nagaoka K, Tatsuno I, Oishi H, Tomita M, Hasegawa T, Tanaka Y, Matsumoto T. Wavelength dependence of ultraviolet light inactivation for SARS-CoV-2 omicron variants. Sci Rep 2023; 13:9706. [PMID: 37322228 PMCID: PMC10272214 DOI: 10.1038/s41598-023-36610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Ultraviolet (UV) irradiation offers an effective and convenient method for the disinfection of pathogenic microorganisms. However, UV irradiation causes protein and/or DNA damage; therefore, further insight into the performance of different UV wavelengths and their applications is needed to reduce risks to the human body. In this paper, we determined the efficacy of UV inactivation of the SARS-CoV-2 omicron BA.2 and BA.5 variants in a liquid suspension at various UV wavelengths by the 50% tissue culture infection dose (TCID50) method and quantitative polymerase chain reaction (qPCR) assay. The inactivation efficacy of 220 nm light, which is considered safe for the human body, was approximately the same as that of health hazardous 260 nm light for both BA.2 and BA.5. Based on the inactivation rate constants determined by the TCID50 and qPCR methods versus the UV wavelength, the action spectra were determined, and BA.2 and BA.5 showed almost the same spectra. This result suggests that both variants have the same UV inactivation characteristics.
Collapse
Affiliation(s)
- Nahoko Fujimoto
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Ichiro Tatsuno
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Hisashi Oishi
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Makoto Tomita
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Tadao Hasegawa
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Takahiro Matsumoto
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan.
| |
Collapse
|
19
|
Mizuta R, Inoue F, Sasaki Y, Sawada SI, Akiyoshi K. A Facile Method to Coat Nanoparticles with Lipid Bilayer Membrane: Hybrid Silica Nanoparticles Disguised as Biomembrane Vesicles by Particle Penetration of Concentrated Lipid Layers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206153. [PMID: 36634998 DOI: 10.1002/smll.202206153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Natural membrane vesicles, including extracellular vesicles and enveloped viruses, participate in various events in vivo. To study and manipulate these events, biomembrane-coated nanoparticles inspired by natural membrane vesicles are developed. Herein, an efficient method is presented to prepare organic-inorganic hybrid materials in high yields that can accommodate various lipid compositions and particle sizes. To demonstrate this method, silica nanoparticles are passed through concentrated lipid layers prepared using density gradient centrifugation, followed by purification, to obtain lipid membrane-coated nanoparticles. Various lipids, including neutral, anionic, and cationic lipids, are used to prepare concentrated lipid layers. Single-particle analysis by imaging flow cytometry determines that silica nanoparticles are uniformly coated with a single lipid bilayer. Moreover, cellular uptake of silica nanoparticles is enhanced when covered with a lipid membrane containing cationic lipids. Finally, cell-free protein expression is applied to embed a membrane protein, namely the Spike protein of severe acute respiratory syndrome coronavirus 2, into the coating of the nanoparticles, with the correct orientation. Therefore, this method can be used to develop organic-inorganic hybrid nanomaterials with an inorganic core and a virus-like coating, serving as carriers for targeted delivery of cargos such as proteins, DNA, and drugs.
Collapse
Affiliation(s)
- Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Fumihito Inoue
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, A3-317, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
20
|
Winter DL, Lebhar H, McCluskey JB, Glover DJ. A versatile multimodal chromatography strategy to rapidly purify protein nanostructures assembled in cell lysates. J Nanobiotechnology 2023; 21:66. [PMID: 36829140 PMCID: PMC9960191 DOI: 10.1186/s12951-023-01817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Protein nanostructures produced through the self-assembly of individual subunits are attractive scaffolds to attach and position functional molecules for applications in biomaterials, metabolic engineering, tissue engineering, and a plethora of nanomaterials. However, the assembly of multicomponent protein nanomaterials is generally a laborious process that requires each protein component to be separately expressed and purified prior to assembly. Moreover, excess components not incorporated into the final assembly must be removed from the solution and thereby necessitate additional processing steps. RESULTS We developed an efficient approach to purify functionalized protein nanostructures directly from bacterial lysates through a type of multimodal chromatography (MMC) that combines size-exclusion, hydrophilic interaction, and ion exchange to separate recombinant protein assemblies from excess free subunits and bacterial proteins. We employed the ultrastable filamentous protein gamma-prefoldin as a material scaffold that can be functionalized with a variety of protein domains through SpyTag/SpyCatcher conjugation chemistry. The purification of recombinant gamma-prefoldin filaments from bacterial lysates using MMC was tested across a wide range of salt concentrations and pH, demonstrating that the MMC resin is robust, however the optimal choice of salt species, salt concentration, and pH is likely dependent on the protein nanostructure to be purified. In addition, we show that pre-processing of the samples with tangential flow filtration to remove nucleotides and metabolites improves resin capacity, and that post-processing with Triton X-114 phase partitioning is useful to remove lipids and any remaining lipid-associated protein. Subsequently, functionalized protein filaments were purified from bacterial lysates using MMC and shown to be free of unincorporated subunits. The assembly and purification of protein filaments with varying amounts of functionalization was confirmed using polyacrylamide gel electrophoresis, Förster resonance energy transfer, and transmission electron microscopy. Finally, we compared our MMC workflow to anion exchange chromatography with the purification of encapsulin nanocompartments containing a fluorescent protein as a cargo, demonstrating the versatility of the protocol and that the purity of the assembly is comparable to more traditional procedures. CONCLUSIONS We envision that the use of MMC will increase the throughput of protein nanostructure prototyping as well as enable the upscaling of the bioproduction of protein nanodevices.
Collapse
Affiliation(s)
- Daniel L. Winter
- grid.1005.40000 0004 4902 0432School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Hélène Lebhar
- grid.1005.40000 0004 4902 0432Recombinant Products Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Joshua B. McCluskey
- grid.1005.40000 0004 4902 0432School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Dominic J. Glover
- grid.1005.40000 0004 4902 0432School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Mi X, Wang SC, Winters MA, Carta G. Protein adsorption on core-shell resins for flow-through purifications: Effect of protein molecular size, shape, and salt concentration. Biotechnol Prog 2023; 39:e3300. [PMID: 36101005 DOI: 10.1002/btpr.3300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022]
Abstract
This work addresses the functional properties of the core-shell resins Capto Core 400 and 700 for a broad range of proteins spanning 66.5 to 660 kDa in molecular mass, including bovine serum albumin (BSA) in monomer and dimer form, fibronectin, thyroglobulin, and BSA conjugates with 10 and 30 kDa poly(ethylene glycol) chains. Negatively charged latex nanoparticles (NPs) with nominal diameters of 20, 40, and 100 nm are also studied as surrogates for bioparticles. Protein binding and its trends with respect to salt concentration depend on the protein size and are different for the two agarose-based multimodal resins. For the smaller proteins, the amount of protein bound over practical time scales is limited by the resin surface area and is larger for Capto Core 400 compared with Capto Core 700. For the larger proteins, diffusion is severely restricted in Capto Core 400, resulting in lower binding capacities than those observed for Capto Core 700 despite the larger surface area. Adding 500 mM NaCl reduces the local bound protein concentration and diffusional hindrance resulting in higher binding capacities for the large proteins in Capto Core 400 compared with low ionic strength conditions. The NPs are essentially completely excluded from the Capto Core 400 pores. However, 20 and 40 nm NPs bind significantly to Capto Core 700, further hindering protein diffusion. A model is provided to predict the dynamic binding capacities as a function of residence time.
Collapse
Affiliation(s)
- Xue Mi
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Sheng-Ching Wang
- Vaccine Process Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Michael A Winters
- Vaccine Process Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Neog S, Kumar S, Trivedi V. Isolation and characterization of Newcastle disease virus from biological fluids using column chromatography. Biomed Chromatogr 2023; 37:e5527. [PMID: 36250786 DOI: 10.1002/bmc.5527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Newcastle disease virus (NDV), belonging to the species avian orthoavulavirus 1, genus Orthoavulavirus, and family Paramyxoviridae, is responsible for Newcastle disease in poultry and other avian species. It has shown significant potential as an oncolytic virus and as a vector for vaccine delivery. NDV from infected biological serum is usually isolated or purified using density gradient ultracentrifugation. However, it has many disadvantages, including the fact that it is time consuming and can process only a limited quantity of sample at one time. In our study, native agarose gel electrophoresis and dynamic light scattering (DLS) analysis showed that NDV carried a net negative surface charge. Thus, we purified the virus using a HiTrap Q Sepharose Fast Flow anion exchange column with salt elution. Hemagglutination assay and plaque assay showed that the procedure yielded high-purity NDV particles with a recovery of more than 80%, and the process was fast and simple. The purity of the virus was confirmed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The hydrodynamic volume and 'dry state' diameter of the purified NDV were analyzed using dynamic light scattering and transmission electron microscopy and were to be in the range of 200-300 nm. The viruses did not exhibit any deviation from their known physical properties. The genome of the virus was also detected by amplifying a 423-bp region using reverse transcription-polymerase chain reaction. Our study confirmed that NDV could be effectively purified using an anion exchange column. In addition, the procedure could be easily upscaled or downscaled based on the experimental requirements.
Collapse
Affiliation(s)
- Siddharth Neog
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Sachin Kumar
- Viral Immunology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| |
Collapse
|
23
|
Klann PJ, Wang X, Elfert A, Zhang W, Köhler C, Güttsches AK, Jacobsen F, Weyen U, Roos A, Ehrke-Schulz E, Ehrhardt A, Vorgerd M, Bayer W. Seroprevalence of Binding and Neutralizing Antibodies against 39 Human Adenovirus Types in Patients with Neuromuscular Disorders. Viruses 2022; 15:79. [PMID: 36680119 PMCID: PMC9866721 DOI: 10.3390/v15010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
High pre-existing antibodies against viral vectors reduce their functionality and may lead to adverse complications. To circumvent this problem in future gene therapy approaches, we tested the seroprevalence of a large range of human adenovirus types in patients with neuromuscular disorders (NMDs) to find appropriate viral vector candidates for gene replacement therapy for NMDs. Binding and neutralizing antibodies against 39 human adenovirus types were tested in the sera of 133 patients with NMDs and 76 healthy controls aged 17-92 years. The influence of age, sex, and NMDs on antibody levels was analyzed. The seroprevalence of different adenoviruses in the cohort varied widely. The highest levels of binding antibodies were detected against HAdV-D27, -C1, -D24, -D70, -B14, -C6, -D13, -B34, and -E4, whereas the lowest reactivity was detected against HAdV-F41, -A31, -B11, -D75, -D8, -D65, -D26, -D80, and -D17. The highest neutralizing reactivity was observed against HAdV-B3, -C2, -E4, -C1, -G52, -C5, and -F41, whereas the lowest neutralizing reactivity was observed against HAdV-D74, -B34, -D73, -B37, -D48, -D13, -D75, -D8, -B35, and -B16. We detected no influence of sex and only minor differences between different age groups. Importantly, there were no significant differences between healthy controls and patients with NMDs. Our data show that patients with NMDs have very similar levels of binding and neutralizing antibodies against HAdV compared to healthy individuals, and we identified HAdV-A31, -B16, -B34, -B35, -D8, -D37, -D48, -D73, -D74, -D75, and -D80 as promising candidates for future vector development due to their low binding and neutralizing antibody prevalence.
Collapse
Affiliation(s)
- Patrick Julian Klann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Xiaoyan Wang
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Anna Elfert
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Cornelia Köhler
- Clinics for Pediatrics and Adolescent Medicine, University Hospital Sankt Josef, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Anne-Katrin Güttsches
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Frank Jacobsen
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Ute Weyen
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Andreas Roos
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Matthias Vorgerd
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
24
|
Eilts F, Steger M, Pagallies F, Rziha HJ, Hardt M, Amann R, Wolff MW. Comparison of sample preparation techniques for the physicochemical characterization of Orf virus particles. J Virol Methods 2022; 310:114614. [PMID: 36084768 DOI: 10.1016/j.jviromet.2022.114614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
The determination of the electrostatic charge of biological nanoparticles requires a purified, mono-disperse, and concentrated sample. Previous studies proofed an impact of the preparation protocol on the stability and electro-hydrodynamics of viruses, whereas commonly used methods are often complex and do not allow the required sample throughput. In the present study, the application of the (I) steric exclusion chromatography (SXC) for the Orf virus (ORFV) purification and subsequent physicochemical characterization was evaluated and compared to (II) SXC followed by centrifugal diafiltration and (III) sucrose cushion ultracentrifugation. The three methods were characterized in terms of protein removal, size distribution, infectious virus recovery, visual appearance, and electrophoretic mobility as a function of pH. All preparation techniques achieved a protein removal of more than 99 %, and (I) an infectious ORFV recovery of more than 85 %. Monodisperse samples were realized by (I) and (III). In summary, ORFV samples prepared by (I) and (III) displayed comparable quality. Additionally, (I) offered the shortest operation time and easy application. Based on the obtained data, the three procedures were ranked according to eight criteria of possible practical relevance, which delineate the potential of SXC as virus preparation method for physicochemical analysis.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany.
| | - Marleen Steger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Hanns-Joachim Rziha
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Schubertstraße 81, 35392 Giessen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany; PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
25
|
Analysis of the Prevalence of Binding and Neutralizing Antibodies against 39 Human Adenovirus Types in Student Cohorts Reveals Low-Prevalence Types and a Decline in Binding Antibody Levels during the SARS-CoV-2 Pandemic. J Virol 2022; 96:e0113322. [DOI: 10.1128/jvi.01133-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vectors based on human adenoviruses (HAdVs) are important for the development of novel immunizations, oncolytic therapies, and gene therapies. The use of HAdV-based vaccines against Ebola virus, the rapid adaptation of the vector technology for vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and their very good efficacy have shown the great potential of HAdV-based vaccines.
Collapse
|
26
|
Faircloth J, Goulter RM, Manuel CS, Arbogast JW, Escudero-Abarca B, Jaykus LA. The Efficacy of Commercial Surface Sanitizers against Norovirus on Formica Surfaces with and without Inclusion of a Wiping Step. Appl Environ Microbiol 2022; 88:e0080722. [PMID: 36005755 PMCID: PMC9469706 DOI: 10.1128/aem.00807-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Commonly used surface sanitizers often lack activity against human noroviruses (hNoVs). The impact of inactivation versus removal when these products are applied via wiping is poorly characterized. The purpose of this work was to assess the anti-hNoV efficacy of various surface sanitizer chemistries, as applied to a laminate material commonly used for restaurant tabletops, using standard surface assays (ASTM E1053-11) and a newly developed wiping protocol. Four commercially available products with different active ingredient(s) (i.e., ethanol [EtOH], acid + anionic surfactant [AAS], quaternary ammonium compound [QAC], and sodium hypochlorite [NaOCl]) and a water control were evaluated against hNoV GII.4 Sydney, hNoV GI.6, and the cultivable surrogate Tulane virus (TuV). Virus concentration was evaluated using RNase-reverse transcriptase (RT)-quantitative PCR (qPCR) (hNoV) and infectivity assay (TuV). Only the EtOH-based product significantly reduced virus concentration (>3.5 log10 reduction [LR]) by surface assay, with all other products producing ≤0.5 LR. The inclusion of a wiping step enhanced the efficacy of all products, producing complete virus elimination for the EtOH-based product and 1.6 to 3.8 LR for the other chemistries. For hNoVs, no detectable residual virus could be recovered from paper towels used to wipe the EtOH-based product, while high concentrations of virus could be recovered from the used paper towel and the wiped coupon (1.5 to 2.5 log10 lower genome equivalent copies [GEC] compared to control) for the QAC- and AAS-based products and for water. These results illustrate the variability in anti-hNoV activity of representative surface sanitizers and highlights the value of wiping, the efficacy of which appears to be driven by a combination of virus inactivation and removal. IMPORTANCE Human noroviruses (hNoVs) are the leading cause of acute gastroenteritis and food-borne disease worldwide. Noroviruses are difficult to inactivate, being recalcitrant to sanitizers and disinfectants commonly used by the retail food sector. This comparative study demonstrates the variability in anti-hNoV activity of representative surface sanitizers, even those allowed to make label claims based on the cultivable surrogate, feline calicivirus (FCV). It also highlights the importance of wiping in the process of sanitization, which significantly improves product efficacy through the action of physical removal of surface microbes. There is a need for more and better product formulations with demonstrated efficacy against hNoVs, which will likely necessitate the use of alternative cultivable surrogates, such as Tulane virus (TuV). These findings help food safety professionals make informed decisions on sanitizing product selection and application methods in order to reduce the risk of hNoV contamination and transmission in their facilities.
Collapse
Affiliation(s)
- Jeremy Faircloth
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rebecca M. Goulter
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | - Blanca Escudero-Abarca
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
27
|
Plavec Z, Domanska A, Liu X, Laine P, Paulin L, Varjosalo M, Auvinen P, Wolf SG, Anastasina M, Butcher SJ. SARS-CoV-2 Production, Purification Methods and UV Inactivation for Proteomics and Structural Studies. Viruses 2022; 14:v14091989. [PMID: 36146795 PMCID: PMC9505060 DOI: 10.3390/v14091989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 is the causative agent of COVID-19. During the pandemic of 2019–2022, at least 500 million have been infected and over 6.3 million people have died from COVID-19. The virus is pleomorphic, and due to its pathogenicity is often handled in very restrictive biosafety containments laboratories. We developed two effective and rapid purification methods followed by UV inactivation that allow easy downstream handling of the virus. We monitored the purification through titering, sequencing, mass spectrometry and electron cryogenic microscopy. Although pelleting through a sucrose cushion, followed by gentle resuspension overnight gave the best particle recovery, infectivity decreased, and the purity was significantly worse than if using the size exclusion resin Capto Core. Capto Core can be used in batch mode, and was seven times faster than the pelleting method, obviating the need for ultracentrifugation in the containment laboratory, but resulting in a dilute virus. UV inactivation was readily optimized to allow handling of the inactivated samples under standard operating conditions. When containment laboratory space is limited, we recommend the use of Capto Core for purification and UV for inactivation as a simple, rapid workflow prior, for instance, to electron cryogenic microscopy or cell activation experiments.
Collapse
Affiliation(s)
- Zlatka Plavec
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Aušra Domanska
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria Anastasina
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (M.A.); (S.J.B.); Tel.: +358-5044-84629 (M.A.); +358-5041-55492 (S.J.B.)
| | - Sarah J. Butcher
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (M.A.); (S.J.B.); Tel.: +358-5044-84629 (M.A.); +358-5041-55492 (S.J.B.)
| |
Collapse
|
28
|
Fu X, Williams A, Bakhshayeshi M, Pieracci J. Leveraging high-throughput purification to accelerate viral vector process development. J Chromatogr A 2021; 1663:462744. [PMID: 34971861 DOI: 10.1016/j.chroma.2021.462744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
Recombinant adeno-associated virus (AAV) has been broadly used as a delivery tool for gene therapy applications. The development of a robust purification process is essential for delivering high purity and quality AAV products to clinic. The short clinical timelines and material limitations of early-stage development pose unique challenges to developing robust and scalable downstream purification processes. One approach to overcome these limitations is to leverage high throughput (HTP) strategies and automation technologies for purification process development, an approach that is well established in protein biologics and other areas. However, due to the unique challenges related to viral vector purification, implementing HTP approaches for gene therapy process development has not been explored extensively. In this paper, we established a HTP chromatography platform and demonstrated its capability to facilitate gene therapy purification process development using both mini-columns and self-packed resin plates. The end-to-end development workflow for AAV HTP purification is detailed in this work with the expectation of serving as an introductory for the AAV purification development field. Comparable process performance was confirmed between a bench-scale chromatography process and an HTP chromatography format. Slightly lower recovery was observed using the HTP format (62% vs 75%), as well as %full capsid enrichment (71% vs. 82%). Comparable impurity clearance capability was demonstrated between the two different systems as well. It was concluded that the established HTP chromatography formats can serve as a surrogate to bench-scale chromatography development to reduce material needs and development timelines for AAV purification development.
Collapse
Affiliation(s)
- Xiaotong Fu
- Gene Therapy Process Development, Biogen, 225 Binney St, Cambridge, MA 02142, United States.
| | - Asher Williams
- Gene Therapy Process Development, Biogen, 225 Binney St, Cambridge, MA 02142, United States
| | - Meisam Bakhshayeshi
- Gene Therapy Process Development, Biogen, 225 Binney St, Cambridge, MA 02142, United States
| | - John Pieracci
- Gene Therapy Process Development, Biogen, 225 Binney St, Cambridge, MA 02142, United States
| |
Collapse
|
29
|
Highly Efficient Purification of Recombinant VSV-∆G-Spike Vaccine against SARS-CoV-2 by Flow-Through Chromatography. BIOTECH 2021; 10:biotech10040022. [PMID: 35822796 PMCID: PMC9245476 DOI: 10.3390/biotech10040022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023] Open
Abstract
This study reports a highly efficient, rapid one-step purification process for the production of the recombinant vesicular stomatitis virus-based vaccine, rVSV-∆G-spike (rVSV-S), recently developed by the Israel Institute for Biological Research (IIBR) for the prevention of COVID-19. Several purification strategies are evaluated using a variety of chromatography methods, including membrane adsorbers and packed-bed ion-exchange chromatography. Cell harvest is initially treated with endonuclease, clarified, and further concentrated by ultrafiltration before chromatography purification. The use of anion-exchange chromatography in all forms results in strong binding of the virus to the media, necessitating a high salt concentration for elution. The large virus and spike protein binds very strongly to the high surface area of the membrane adsorbents, resulting in poor virus recovery (<15%), while the use of packed-bed chromatography, where the surface area is smaller, achieves better recovery (up to 33%). Finally, a highly efficient chromatography purification process with CaptoTM Core 700 resin, which does not require binding and the elution of the virus, is described. rVSV-S cannot enter the inner pores of the resin and is collected in the flow-through eluent. Purification of the rVSV-S virus with CaptoTM Core 700 resulted in viral infectivity above 85% for this step, with the efficient removal of host cell proteins, consistent with regulatory requirements. Similar results were obtained without an initial ultrafiltration step.
Collapse
|
30
|
Scaled preparation of extracellular vesicles from conditioned media. Adv Drug Deliv Rev 2021; 177:113940. [PMID: 34419502 DOI: 10.1016/j.addr.2021.113940] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) especially of mesenchymal stem/stomal cells (MSCs) are increasingly considered as biotherapeutic agents for a variety of different diseases. For translating them effectively into the clinics, scalable production processes fulfilling good manufacturing practice (GMP) are needed. Like for other biotherapeutic agents, the manufacturing of EV products can be subdivided in the upstream and downstream processing and the subsequent quality control, each of them containing several unit operations. During upstream processing (USP), cells are isolated, stored (cell banking) and expanded; furthermore, EV-containing conditioned media are produced. During downstream processing (DSP), conditioned media (CM) are processed to obtain concentrated and purified EV products. CM are either stored until DSP or are directly processed. As first unit operation in DSP, clarification removes remaining cells, debris and other larger impurities. The key operations of each EV DSP is volume-reduction combined with purification of the concentrated EVs. Most of the EV preparation methods used in conventional research labs including differential centrifugation procedures are limited in their scalability. Consequently, it is a major challenge in the therapeutic EV field to identify appropriate EV concentration and purification methods allowing scale up. As EVs share several features with enveloped viruses, that are used for more than two decades in the clinics now, several principles can be adopted to EV manufacturing. Here, we introduce and discuss volume reducing and purification methods frequently used for viruses and analyze their value for the manufacturing of EV-based therapeutics.
Collapse
|
31
|
Dhamane S, Patil U, Smith M, Adhikari M, Nazem A, Conrad JC, Kourentzi K, Willson RC. Isocratic reporter-exclusion immunoassay using restricted-access adsorbents. Analyst 2021; 146:4835-4840. [PMID: 34198311 PMCID: PMC9798887 DOI: 10.1039/d1an00396h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We introduce analyte-dependent exclusion of reporter reagents from restricted-access adsorbents as the basis of an isocratic reporter-exclusion immunoassay for viruses, proteins, and other analytes. Capto™ Core 700 and related resins possess a noninteracting size-selective outer layer surrounding a high-capacity nonspecific mixed-mode capture adsorbent core. In the absence of analyte, antibody-enzyme reporter conjugates can enter the adsorbent and be captured, and their signal is lost. In the presence of large or artificially-expanded analytes, reporter reagents bind to analyte species to form complexes large enough to be excluded from the adsorbent core, allowing their signal to be observed. This assay principle is demonstrated using M13 bacteriophage virus and human chorionic gonadotropin as model analytes. The simple isocratic detection approach described here allows a rapid implementation of immunoassay for detection of a wide range of analytes and uses inexpensive, generally-applicable, and stable column materials instead of costly analyte-specific immunoaffinity adsorbents.
Collapse
Affiliation(s)
- Sagar Dhamane
- Department of Biology and Biochemistry, University of Houston, Houston, TX USA
| | - Ujwal Patil
- Department of Biology and Biochemistry, University of Houston, Houston, TX USA
| | - Maxwell Smith
- Department of Chemical and Biomolecular Engineering, University of Houston, TX USA
| | - Meena Adhikari
- Department of Biology and Biochemistry, University of Houston, Houston, TX USA
| | - Ahmad Nazem
- Department of Biomedical Engineering, University of Houston, Houston, TX USA
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, TX USA
| | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, TX USA
| | - Richard C. Willson
- Department of Biology and Biochemistry, University of Houston, Houston, TX USA,Department of Biomedical Engineering, University of Houston, Houston, TX USA,Department of Chemical and Biomolecular Engineering, University of Houston, TX USA,Escuela de Medicina y Ciencias de las Salud ITESM, Monterrey, Mexico,Corresponding author. (Richard C. Willson)
| |
Collapse
|
32
|
Buschmann D, Mussack V, Byrd JB. Separation, characterization, and standardization of extracellular vesicles for drug delivery applications. Adv Drug Deliv Rev 2021; 174:348-368. [PMID: 33964356 PMCID: PMC8217305 DOI: 10.1016/j.addr.2021.04.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are membranous nanovesicles secreted from living cells, shuttling macromolecules in intercellular communication and potentially possessing intrinsic therapeutic activity. Due to their stability, low immunogenicity, and inherent interaction with recipient cells, EVs also hold great promise as drug delivery vehicles. Indeed, they have been used to deliver nucleic acids, proteins, and small molecules in preclinical investigations. Furthermore, EV-based drugs have entered early clinical trials for cancer or neurodegenerative diseases. Despite their appeal as delivery vectors, however, EV-based drug delivery progress has been hampered by heterogeneity of sample types and methods as well as a persistent lack of standardization, validation, and comprehensive reporting. This review highlights specific requirements for EVs in drug delivery and describes the most pertinent approaches for separation and characterization. Despite residual uncertainties related to pharmacodynamics, pharmacokinetics, and potential off-target effects, clinical-grade, high-potency EV drugs might be achievable through GMP-compliant workflows in a highly standardized environment.
Collapse
Affiliation(s)
- Dominik Buschmann
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - James Brian Byrd
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Cubas-Gaona LL, Flageul A, Courtillon C, Briand FX, Contrant M, Bougeard S, Lucas P, Quenault H, Leroux A, Keita A, Amelot M, Grasland B, Blanchard Y, Eterradossi N, Brown PA, Soubies SM. Genome Evolution of Two Genetically Homogeneous Infectious Bursal Disease Virus Strains During Passages in vitro and ex vivo in the Presence of a Mutagenic Nucleoside Analog. Front Microbiol 2021; 12:678563. [PMID: 34177862 PMCID: PMC8226269 DOI: 10.3389/fmicb.2021.678563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The avibirnavirus infectious bursal disease virus (IBDV) is responsible for a highly contagious and sometimes lethal disease of chickens (Gallus gallus). IBDV genetic variation is well-described for both field and live-attenuated vaccine strains, however, the dynamics and selection pressures behind this genetic evolution remain poorly documented. Here, genetically homogeneous virus stocks were generated using reverse genetics for a very virulent strain, rvv, and a vaccine-related strain, rCu-1. These viruses were serially passaged at controlled multiplicities of infection in several biological systems, including primary chickens B cells, the main cell type targeted by IBDV in vivo. Passages were also performed in the absence or presence of a strong selective pressure using the antiviral nucleoside analog 7-deaza-2'-C-methyladenosine (7DMA). Next Generation Sequencing (NGS) of viral genomes after the last passage in each biological system revealed that (i) a higher viral diversity was generated in segment A than in segment B, regardless 7DMA treatment and viral strain, (ii) diversity in segment B was increased by 7DMA treatment in both viruses, (iii) passaging of IBDV in primary chicken B cells, regardless of 7DMA treatment, did not select cell-culture adapted variants of rvv, preserving its capsid protein (VP2) properties, (iv) mutations in coding and non-coding regions of rCu-1 segment A could potentially associate to higher viral fitness, and (v) a specific selection, upon 7DMA addition, of a Thr329Ala substitution occurred in the viral polymerase VP1. The latter change, together with Ala270Thr change in VP2, proved to be associated with viral attenuation in vivo. These results identify genome sequences that are important for IBDV evolution in response to selection pressures. Such information will help tailor better strategies for controlling IBDV infection in chickens.
Collapse
Affiliation(s)
- Liliana L Cubas-Gaona
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Alexandre Flageul
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Céline Courtillon
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Francois-Xavier Briand
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Maud Contrant
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Stephanie Bougeard
- Epidemiology, Animal Health and Welfare Unit (EPISABE), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Pierrick Lucas
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Hélène Quenault
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Aurélie Leroux
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Alassane Keita
- Experimental Poultry Unit (SELEAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Michel Amelot
- Experimental Poultry Unit (SELEAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Béatrice Grasland
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Yannick Blanchard
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Nicolas Eterradossi
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Paul Alun Brown
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| | - Sébastien Mathieu Soubies
- Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC), French Agency for Food, Environmental and Occupational Heath Safety (ANSES), Ploufragan, France
| |
Collapse
|
34
|
Mi X, Fuks P, Wang SC, Winters MA, Carta G. Protein Adsorption on Core-shell Particles: Comparison of Capto™ Core 400 and 700 Resins. J Chromatogr A 2021; 1651:462314. [PMID: 34144396 DOI: 10.1016/j.chroma.2021.462314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 01/15/2023]
Abstract
Structural and functional characteristics of the two core-shell resins Capto™ Core 400 and 700, which are useful for the flow-through purification of bioparticles such as viruses, viral vectors, and vaccines, are compared using bovine serum albumin (BSA) and thyroglobulin (Tg) as models for small and large protein contaminants. Both resins are agarose-based and contain an adsorbing core surrounded by an inert shell. Although shell thicknesses are comparable (3.6 and 4.2 µm for Capto Core 400 and 700, respectively), the two resins differ substantially in pore size (pore radii of 19 and 50 nm, respectively). Because of the smaller pores and higher surface area, the BSA binding capacity of Capto Core 400 is approximately double that of Capto Core 700. However, for the much larger Tg, the attainable capacity is substantially larger for Capto Core 700. Mass transfer in both resins is affected by diffusional resistances through the shell and within the adsorbing core. For BSA, core and shell effective pore diffusivities are about 0.25 × 10-7 and 0.6 × 10-7 cm2/s, respectively, for Capto Core 400, and about 1.6 × 10-7 and 2.6 × 10-7 cm2/s, respectively, for Capto Core 700. These values decrease dramatically for Tg to 0.022 × 10-7 and 0.088 × 10-7 cm2/s and to 0.13 × 10-7 and 0.59 × 10-7 cm2/s for Capto Core 400 and 700, respectively. Adsorbed Tg further hinders diffusion of BSA in both resins. Column measurements show that, despite the higher static capacity of Capto Core 400 for BSA, the dynamic binding capacity is greater for Capto Core 700 as a result of its faster kinetics. However, some of this advantage is lost if the feed is a mixture of BSA and Tg since, in this case, Tg binding leads to greater diffusional hindrance for BSA.
Collapse
Affiliation(s)
- Xue Mi
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Preston Fuks
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sheng-Ching Wang
- Vaccine Process Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Michael A Winters
- Vaccine Process Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
35
|
Analysis of the Evolution of Pandemic Influenza A(H1N1) Virus Neuraminidase Reveals Entanglement of Different Phenotypic Characteristics. mBio 2021; 12:mBio.00287-21. [PMID: 33975931 PMCID: PMC8262965 DOI: 10.1128/mbio.00287-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus (IAV) neuraminidase (NA) is essential for virion release from cells and decoy receptors and an important target of antiviral drugs and antibodies. Adaptation to a new host sialome and escape from the host immune system are forces driving the selection of mutations in the NA gene. Phylogenetic analysis shows that until 2015, 16 amino acid substitutions in NA became fixed in the virus population after introduction in the human population of the pandemic IAV H1N1 (H1N1pdm09) in 2009. The accumulative effect of these substitutions, in the order in which they appeared, was analyzed using recombinant proteins and viruses in combination with different functional assays. The results indicate that NA activity did not evolve to a single optimum but rather fluctuated within a certain bandwidth. Furthermore, antigenic and enzymatic properties of NA were intertwined, with several residues affecting multiple properties. For example, the substitution K432E in the second sialic acid binding site, next to the catalytic site, was shown to affect catalytic activity, substrate specificity, and the pH optimum for maximum activity. This substitution also altered antigenicity of NA, which may explain its selection. We propose that the entanglement of NA phenotypes may be an important determining factor in the evolution of NA.IMPORTANCE Since its emergence in 2009, the pandemic H1N1 influenza A virus (IAV) has caused significant disease and mortality in humans. IAVs contain two envelope glycoproteins, the receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA). NA is essential for virion release from cells and decoy receptors, is an important target of antiviral drugs, and is increasingly being recognized as an important vaccine antigen. Not much is known, however, about the evolution of this protein upon the emergence of the novel pandemic H1N1 virus, with respect to its enzymatic activity and antigenicity. By reconstructing the evolutionary path of NA, we show that antigenic and enzymatic properties of NA are intertwined, with several residues affecting multiple properties. Understanding the entanglement of NA phenotypes will lead to better comprehension of IAV evolution and may help the development of NA-based vaccines.
Collapse
|
36
|
Folgueiras-González A, van den Braak R, Deijs M, van der Hoek L, de Groof A. A Versatile Processing Workflow to Enable Pathogen Detection in Clinical Samples from Organs Using VIDISCA. Diagnostics (Basel) 2021; 11:diagnostics11050791. [PMID: 33925752 PMCID: PMC8145099 DOI: 10.3390/diagnostics11050791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, refined molecular methods coupled with powerful high throughput sequencing technologies have increased the potential of virus discovery in clinical samples. However, host genetic material remains a complicating factor that interferes with discovery of novel viruses in solid tissue samples as the relative abundance of the virus material is low. Physical enrichment processing methods, although usually complicated, labor-intensive, and costly, have proven to be successful for improving sensitivity of virus detection in complex samples. In order to further increase detectability, we studied the application of fast and simple high-throughput virus enrichment methods on tissue homogenates. Probe sonication in high EDTA concentrations, organic extraction with Vertrel™ XF, or a combination of both, were applied prior to chromatography-like enrichment using Capto™ Core 700 resin, after which effects on virus detection sensitivity by the VIDISCA method were determined. Sonication in the presence of high concentrations of EDTA showed the best performance with an increased proportion of viral reads, up to 9.4 times, yet minimal effect on the host background signal. When this sonication procedure in high EDTA concentrations was followed by organic extraction with Vertrel™ XF and two rounds of core bead chromatography enrichment, an increase up to 10.5 times in the proportion of viral reads in the processed samples was achieved, with reduction of host background sequencing. We present a simple and semi-high-throughput method that can be used to enrich homogenized tissue samples for viral reads.
Collapse
Affiliation(s)
- Alba Folgueiras-González
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Robin van den Braak
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Ad de Groof
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
- Correspondence:
| |
Collapse
|
37
|
Abdelsattar AS, Dawoud A, Makky S, Nofal R, Aziz RK, El-Shibiny A. Bacteriophages: from isolation to application. Curr Pharm Biotechnol 2021; 23:337-360. [PMID: 33902418 DOI: 10.2174/1389201022666210426092002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Bacteriophages are considered as a potential alternative to fight pathogenic bacteria during the antibiotic resistance era. With their high specificity, they are being widely used in various applications: medicine, food industry, agriculture, animal farms, biotechnology, diagnosis, etc. Many techniques have been designed by different researchers for phage isolation, purification, and amplification, each of which has strengths and weaknesses. However, all aim at having a reasonably pure phage sample that can be further characterized. Phages can be characterized based on their physiological, morphological or inactivation tests. Microscopy, in particular, has opened a wide gate not only for visualizing phage morphological structure, but also for monitoring biochemistry and behavior. Meanwhile, computational analysis of phage genomes provides more details about phage history, lifestyle, and potential for toxigenic or lysogenic conversion, which translate to safety in biocontrol and phage therapy applications. This review summarizes phage application pipelines at different levels and addresses specific restrictions and knowledge gaps in the field. Recently developed computational approaches, which are used in phage genome analysis, are critically assessed. We hope that this assessment provides researchers with useful insights for selection of suitable approaches for Phage-related research aims and applications.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Rana Nofal
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Qasr El-Ainy St, Cairo. Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| |
Collapse
|
38
|
João J, Lampreia J, Prazeres DMF, Azevedo AM. Manufacturing of bacteriophages for therapeutic applications. Biotechnol Adv 2021; 49:107758. [PMID: 33895333 DOI: 10.1016/j.biotechadv.2021.107758] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022]
Abstract
Bacteriophages, or simply phages, are the most abundant biological entities on Earth. One of the most interesting characteristics of these viruses, which infect and use bacteria as their host organisms, is their high level of specificity. Since their discovery, phages became a tool for the comprehension of basic molecular biology and originated applications in a variety of areas such as agriculture, biotechnology, food safety, veterinary, pollution remediation and wastewater treatment. In particular, phages offer a solution to one of the major problems in public health nowadays, i.e. the emergence of multidrug-resistant bacteria. In these situations, the use of virulent phages as therapeutic agents offers an alternative to the classic, antibiotic-based strategies. The development of phage therapies should be accompanied by the improvement of phage biomanufacturing processes, both at laboratory and industrial scales. In this review, we first present some historical and general aspects related with the discovery, usage and biology of phages and provide a brief overview of the most relevant phage therapy applications. Then, we showcase current processes used for the production and purification of phages and future alternatives in development. On the production side, key factors such as the bacterial physiological state, the conditions of phage infection and the operation parameters are described alongside with the different operation modes, from batch to semi-continuous and continuous. Traditional purification methods used in the initial phage isolation steps are then described followed by the presentation of current state-of-the-art purification approaches. Continuous purification of phages is finally presented as a future biomanufacturing trend.
Collapse
Affiliation(s)
- Jorge João
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - João Lampreia
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Duarte Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Ana M Azevedo
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| |
Collapse
|
39
|
Tsai BW, Lau S, Chen Q, Chamley LW. Comparison of methods for separating fluorescently labelled placental extracellular vesicles from free stain. Placenta 2021; 109:1-3. [PMID: 33895684 DOI: 10.1016/j.placenta.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 01/02/2023]
Abstract
The field of extracellular vesicles (EVs) is relatively new and the methods for EV isolation and quantification are still maturing. For example, there is no consensus on how to separate free stain from labelled EVs. Here we report a comparison of the recovery of labelled EVs following separation from free stain using ultracentrifugation, diafiltration with different devices and a charged size exclusion chromatography column. Of the methods we tested, the charged size exclusion column provided the greatest recovery of labelled EVs.
Collapse
Affiliation(s)
- Bridget W Tsai
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, Unviersity of Auckland, New Zealand.
| | - Sandy Lau
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, Unviersity of Auckland, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, Unviersity of Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, Unviersity of Auckland, New Zealand
| |
Collapse
|
40
|
Perry C, Rayat ACME. Lentiviral Vector Bioprocessing. Viruses 2021; 13:268. [PMID: 33572347 PMCID: PMC7916122 DOI: 10.3390/v13020268] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes.
Collapse
Affiliation(s)
- Christopher Perry
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Andrea C. M. E. Rayat
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
| |
Collapse
|
41
|
Mertz M, Golombek F, Boye S, Moreno S, Castiglione K. Fast and effective chromatographic separation of polymersomes from proteins by multimodal chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1162:122459. [DOI: 10.1016/j.jchromb.2020.122459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
|
42
|
McNamara RP, Dittmer DP. Modern Techniques for the Isolation of Extracellular Vesicles and Viruses. J Neuroimmune Pharmacol 2020. [PMID: 31512168 DOI: 10.1007/s11481-%20019-09874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular signaling is pivotal to maintain organismal homeostasis. A quickly emerging field of interest within extracellular signaling is the study of extracellular vesicles (EV), which act as messaging vehicles for nucleic acids, proteins, metabolites, lipids, etc. from donor cells to recipient cells. This transfer of biologically active material within a vesicular body is similar to the infection of a cell through a virus particle, which transfers genetic material from one cell to another to preserve an infection state, and viruses are known to modulate EV. Although considerable heterogeneity exists within EV and viruses, this review focuses on those that are small (< 200 nm in diameter) and of relatively low density (< 1.3 g/mL). A multitude of isolation methods for EV and virus particles exist. In this review, we present an update on methods for their isolation, purification, and phenotypic characterization. We hope that the information we provide will be of use to basic science and clinical investigators, as well as biotechnologists in this emerging field. Graphical Abstract.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
43
|
Lothert K, Pagallies F, Eilts F, Sivanesapillai A, Hardt M, Moebus A, Feger T, Amann R, Wolff MW. A scalable downstream process for the purification of the cell culture-derived Orf virus for human or veterinary applications. J Biotechnol 2020; 323:221-230. [PMID: 32860824 DOI: 10.1016/j.jbiotec.2020.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
The large demand for safe and efficient viral vector-based vaccines and gene therapies against both inherited and acquired diseases accelerates the development of viral vectors. One outstanding example, the Orf virus, has a wide range of applications, a superior efficacy and an excellent safety profile combined with a reduced pathogenicity compared to other viral vectors. However, besides these favorable attributes, an efficient and scalable downstream process still needs to be developed. Recently, we screened potential chromatographic stationary phases for Orf virus purification. Based on these previous accomplishments, we developed a complete downstream process for the cell culture-derived Orf virus. The described process comprises a membrane-based clarification step, a nuclease treatment, steric exclusion chromatography, and a secondary chromatographic purification step using Capto® Core 700 resin. The applicability of this process to a variety of diverse Orf virus vectors was shown, testing two different genotypes. These studies render the possibility to apply the developed downstream scheme for both genotypes, and lead to overall virus yields of about 64 %, with step recoveries of >70 % for the clarification, and >90 % for the chromatography train. Protein concentrations of the final product are below the detection limits, and the final DNA concentration of about 1 ng per 1E + 06 infective virus units resembles a total DNA depletion of 96-98 %.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Arabi Sivanesapillai
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Giessen, Germany
| | - Anna Moebus
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Giessen, Germany
| | - Thomas Feger
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
44
|
Lothert K, Pagallies F, Feger T, Amann R, Wolff MW. Selection of chromatographic methods for the purification of cell culture-derived Orf virus for its application as a vaccine or viral vector. J Biotechnol 2020; 323:62-72. [PMID: 32763261 PMCID: PMC7403136 DOI: 10.1016/j.jbiotec.2020.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/02/2022]
Abstract
Estimation of the isoelectric point and size of Vero cell-derived Orf virus. Limited dynamic binding capacity of tested Orf virus to sulfated cellulose. Purification of Orf virus by steric exclusion chromatography lead to 84 % recovery. Hydrophobic interaction chromatography suitable for Orf virus purification. Promising unit operations for a scalable DSP to produce Orf virus viral vectors.
In recent years, the Orf virus has become a promising tool for protective recombinant vaccines and oncolytic therapy. However, suitable methods for an Orf virus production, including up- and downstream, are very limited. The presented study focuses on downstream processing, describing the evaluation of different chromatographic unit operations. In this context, ion exchange-, pseudo-affinity- and steric exclusion chromatography were employed for the purification of the cell culture-derived Orf virus, aiming at a maximum in virus recovery and contaminant depletion. The most promising chromatographic methods for capturing the virus particles were the steric exclusion- or salt-tolerant anion exchange membrane chromatography, recovering 84 % and 86 % of the infectious virus. Combining the steric exclusion chromatography with a subsequent Capto™ Core 700 resin or hydrophobic interaction membrane chromatography as a secondary chromatographic step, overall virus recoveries of up to 76 % were achieved. Furthermore, a complete cellular protein removal and a host cell DNA depletion of up to 82 % was possible for the steric exclusion membranes and the Capto™ Core 700 combination. The study reveals a range of possible unit operations suited for the chromatographic purification of the cell culture-derived Orf virus, depending on the intended application, i.e. a human or veterinary use, and the required purity.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Thomas Feger
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
45
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
46
|
Pereira Aguilar P, Reiter K, Wetter V, Steppert P, Maresch D, Ling WL, Satzer P, Jungbauer A. Capture and purification of Human Immunodeficiency Virus-1 virus-like particles: Convective media vs porous beads. J Chromatogr A 2020; 1627:461378. [PMID: 32823092 DOI: 10.1016/j.chroma.2020.461378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 02/04/2023]
Abstract
Downstream processing (DSP) of large bionanoparticles is still a challenge. The present study aims to systematically compare some of the most commonly used DSP strategies for capture and purification of enveloped viruses and virus-like particles (eVLPs) by using the same staring material and analytical tools. As a model, Human Immunodeficiency Virus-1 (HIV-1) gag VLPs produced in CHO cells were used. Four different DSP strategies were tested. An anion-exchange monolith and a membrane adsorber, for direct capture and purification of eVLPs, and a polymer-grafted anion-exchange resin and a heparin-affinity resin for eVLP purification after a first flow-through step to remove small impurities. All tested strategies were suitable for capture and purification of eVLPs. The performance of the different strategies was evaluated regarding its binding capacity, ability to separate different particle populations and product purity. The highest binding capacity regarding total particles was obtained using the anion exchange membrane adsorber (5.3 × 1012 part/mL membrane), however this method did not allow the separation of different particle populations. Despite having a lower binding capacity (1.5 × 1011 part/mL column) and requiring a pre-processing step with flow-through chromatography, Heparin-affinity chromatography showed the best performance regarding separation of different particle populations, allowing not only the separation of HIV-1 gag VLPs from host cell derived bionanoparticles but also from chromatin. This work additionally shows the importance of thorough sample characterization combining several biochemical and biophysical methods in eVLP DSP.
Collapse
Affiliation(s)
- Patricia Pereira Aguilar
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Katrin Reiter
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Viktoria Wetter
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Petra Steppert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Peter Satzer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria.
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
47
|
Santry LA, Jacquemart R, Vandersluis M, Zhao M, Domm JM, McAusland TM, Shang X, Major PM, Stout JG, Wootton SK. Interference chromatography: a novel approach to optimizing chromatographic selectivity and separation performance for virus purification. BMC Biotechnol 2020; 20:32. [PMID: 32552807 PMCID: PMC7301511 DOI: 10.1186/s12896-020-00627-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 06/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Oncolytic viruses are playing an increasingly important role in cancer immunotherapy applications. Given the preclinical and clinical efficacy of these virus-based therapeutics, there is a need for fast, simple, and inexpensive downstream processing methodologies to purify biologically active viral agents that meet the increasingly higher safety standards stipulated by regulatory authorities like the Food and Drug Administration and the European Agency for the Evaluation of Medicinal Products. However, the production of virus materials for clinical dosing of oncolytic virotherapies is currently limited—in quantity, quality, and timeliness—by current purification technologies. Adsorption of virus particles to solid phases provides a convenient and practical choice for large-scale fractionation and recovery of viruses from cell and media contaminants. Indeed, chromatography has been deemed the most promising technology for large-scale purification of viruses for biomedical applications. The implementation of new chromatography media has improved process performance, but low yields and long processing times required to reach the desired purity are still limiting. Results Here we report the development of an interference chromatography-based process for purifying high titer, clinical grade oncolytic Newcastle disease virus using NatriFlo® HD-Q membrane technology. This novel approach to optimizing chromatographic performance utilizes differences in molecular bonding interactions to achieve high purity in a single ion exchange step. Conclusions When used in conjunction with membrane chromatography, this high yield method based on interference chromatography has the potential to deliver efficient, scalable processes to enable viable production of oncolytic virotherapies.
Collapse
Affiliation(s)
- Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Renaud Jacquemart
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada.,Present Address: BioVectra Inc., 24 Ivey Lane, PO Box 766, Windsor, Nova Scotia, B0N 2T0, Canada
| | | | - Mochao Zhao
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada
| | - Jake M Domm
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Xiaojiao Shang
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada
| | - Pierre M Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON, L8V 5C2, Canada
| | - James G Stout
- MilliporeSigma, 5295 John Lucas Drive, Burlington, Ontario, L7L 6A8, Canada.,Present Address: BioVectra Inc., 24 Ivey Lane, PO Box 766, Windsor, Nova Scotia, B0N 2T0, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
48
|
Zhang F, Luo J, Teng M, Xing G, Guo J, Zhang Y. Purification of cell-derived Japanese encephalitis virus by dual-mode chromatography. Biotechnol Appl Biochem 2020; 68:547-553. [PMID: 32458417 DOI: 10.1002/bab.1960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/16/2020] [Indexed: 11/09/2022]
Abstract
Purification of the enveloped virus poses a challenge as one must retain viral infectivity to preserve immunogenicity. The traditional process of virus purification is time-consuming, laborious and hard to scale up. Here, a rapid, simple and extensible laboratory program for the purification of Japanese encephalitis virus (JEV) was developed by using differential centrifugation, ultrafiltration, Sepharose 4 fast flow gel chromatography, and CaptoTM Core 700 chromatography. The entire process recovered 61.64% of the original virus, and the purified virus particles maintained good activity and immunogenicity. The purification process described has potential application in large-scale production of high-purity JEV.
Collapse
Affiliation(s)
- Fuliang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, People's Republic of China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, People's Republic of China
| | - Jun Luo
- Henan Provincial Key Laboratory of Animal Immunology, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agriculture Sciences, Zhengzhou, People's Republic of China
| | - Man Teng
- Henan Provincial Key Laboratory of Animal Immunology, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agriculture Sciences, Zhengzhou, People's Republic of China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agriculture Sciences, Zhengzhou, People's Republic of China
| | - Junqing Guo
- Henan Provincial Key Laboratory of Animal Immunology, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agriculture Sciences, Zhengzhou, People's Republic of China
| | - Yihua Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
49
|
Sánchez-Trasviña C, Fuks P, Mushagasha C, Kimerer L, Mayolo-Deloisa K, Rito-Palomares M, Carta G. Structure and functional properties of Capto™ Core 700 core-shell particles. J Chromatogr A 2020; 1621:461079. [DOI: 10.1016/j.chroma.2020.461079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/13/2023]
|
50
|
Proteomics as a tool for live attenuated influenza vaccine characterisation. Vaccine 2019; 38:868-877. [PMID: 31708181 DOI: 10.1016/j.vaccine.2019.10.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/23/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022]
Abstract
Many viral vaccines, including the majority of influenza vaccines, are grown in embryonated chicken eggs and purified by sucrose gradient ultracentrifugation. For influenza vaccines this process is well established, but the viral strains recommended for use in vaccines are updated frequently. As viral strains can have different growth properties and responses to purification, these updates risk changes in the composition of the vaccine product. Changes of this sort are hard to assess, as influenza virions are complex structures containing variable ratios of both viral and host proteins. To address this, we used liquid chromatography and tandem mass spectrometry (LC-MS/MS), a flexible and sensitive method ideally suited to identifying and quantifying the proteins present in complex mixtures. By applying LC-MS/MS to the pilot scale manufacturing process of the live attenuated influenza vaccine (LAIV) FluMist® Quadrivalent vaccine (AstraZeneca), we were able to obtain a detailed description of how viral and host proteins are removed or retained at each stage of LAIV purification. LC-MS/MS allowed us to quantify the removal of individual host proteins at each stage of the purification process, confirming that LAIV purification efficiently depletes the majority of host proteins and identifying the small subset of host proteins which are associated with intact virions. LC-MS/MS also identified substantial differences in the retention of the immunosuppressive viral protein NS1 in purified virions. Finally, LC-MS/MS allowed us to detect subtle variations in the LAIV production process, both upstream of purification and during downstream purification stages. This demonstrates the potential utility of LC-MS/MS for optimising the purification of complex biological mixtures and shows that it is a promising approach for process optimisation in a wide variety of vaccine manufacturing platforms.
Collapse
|