1
|
Cheng Y, Zhu S, Ma H, Zhang S, Wei K, Wu S, Tang Y, Liu P, Luo T, Liu G, Yang R. Multimodal Locomotion and Dynamic Interaction of Hydrogel Microdisks at the Air-Water Interface under Magnetic and Light Stimuli. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61633-61644. [PMID: 39498969 DOI: 10.1021/acsami.4c12151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The potential applications of hydrogel microrobots in biomedicine and environmental exploration have sparked significant interest in understanding their behavior under multiphysical fields. This study explores the multimodal locomotion and dynamic interaction of hydrogel microrobots at the air-water interface under magnetic and light stimuli. A pair of hydrogel microrobots at the air-water interface exhibits a transition from cooperative, combined rotation to interactive behavior, involving both rotation and revolution under the influence of a rotating magnetic field (RMF), and a shift from attraction to separation under near-infrared (NIR) light, demonstrating the dynamic modulation of their behaviors in response to different stimuli. Notably, the behavioral patterns of multiple hydrogel microrobots under multiphysical fields indicate that NIR light can enhance interactive motion behaviors under RMFs and extend the range of motion trajectories. Dynamic models for each condition are established and analyzed based on dynamic equilibrium, and their behavior can be modulated by parameters such as magnetic particle concentration, magnetic field frequency, and NIR light intensity. This work introduces a novel strategy for regulating and controlling the dynamic behaviors of hydrogel microrobots, offering new insights into their multiphysical field locomotion.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Shilu Zhu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Hui Ma
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Shengting Zhang
- The First Clinical College, Anhui Medical University, Hefei, Anhui 230026, China
| | - Kun Wei
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Shiyu Wu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Yongkang Tang
- The First Clinical College, Anhui Medical University, Hefei, Anhui 230026, China
| | - Ping Liu
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Wu S, Zhou Y, Wei J, Da Z, Chen W, Shu X, Luo T, Duan Y, Yang R, Ding C, Liu G. Alginate/GelMA microparticles via oil-free interface shearing for untethered magnetic microbots. Biomater Sci 2024; 12:5562-5572. [PMID: 39292506 DOI: 10.1039/d4bm00875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Microrobots hold broad application prospects in the field of precision medicine, such as intravenous drug injection, tumor resection, opening blood vessels and imaging during abdominal surgery. However, the rapid and controllable preparation of biocompatible hydrogel microparticles still poses challenges. This study proposes the one-step direct acquisition of biocompatible sodium alginate and gelatin methacrylate (GelMA) hydrogel microparticles using an oil-free aqueous solution, ensuring production with a controllable generation frequency. An adaptive interface shearing platform is established to fabricate alginate/GelMA microparticles using a mixture of the hydrogel, photoinitiator, and Fe3O4 nanoparticles (NPs). By adjusting the static magnetic field intensity (Bs), vibration frequency, and flow rate (Q) of the dispersed phase, the size and morphology of the hydrogel microparticles can be controlled. These hydrogel microparticle robots exhibit magnetic responsiveness, demonstrating precise rotating and rolling movements under the influence of an externally rotating magnetic field (RMF). Moreover, hydrogel microparticle robots with a specific critical frequency (Cf) can be customized by adjusting the Bs and the concentration of Fe3O4 NPs. The directional in situ untethered motion of the hydrogel microparticle robots can be successfully realized and accurately controlled in the climbing over obstacles and in vitro experiments of animals, respectively. This versatile and fully biodegradable microrobot has the potential to precisely control movement to bone tissue and the natural cavity of the human body, as well as drug delivery.
Collapse
Affiliation(s)
- Shiyu Wu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Yang Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Juan Wei
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Zicheng Da
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Wenquan Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Xiaoxia Shu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Yuping Duan
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Guangli Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Tiryaki E, Álvarez-Leirós C, Majcherkiewicz JN, Chariou PL, Maceira-Campos M, Bodelón G, Steinmetz NF, Salgueiriño V. Magnetically Induced Thermal Effects on Tobacco Mosaic Virus-Based Nanocomposites for a Programmed Disassembly of Protein Cages. ACS APPLIED BIO MATERIALS 2024; 7:4804-4814. [PMID: 38934736 PMCID: PMC11253087 DOI: 10.1021/acsabm.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Protein cages are promising tools for the controlled delivery of therapeutics and imaging agents when endowed with programmable disassembly strategies. Here, we produced hybrid nanocomposites made of tobacco mosaic virus (TMV) and magnetic iron oxide nanoparticles (IONPs), designed to disrupt the viral protein cages using magnetically induced release of heat. We studied the effects of this magnetic hyperthermia on the programmable viral protein capsid disassembly using (1) elongated nanocomposites of TMV coated heterogeneously with magnetic iron oxide nanoparticles (TMV@IONPs) and (2) spherical nanocomposites of polystyrene (PS) on which we deposited presynthesized IONPs and TMV via layer-by-layer self-assembly (PS@IONPs/TMV). Notably, we found that the extent of the disassembly of the protein cages is contingent upon the specific absorption rate (SAR) of the magnetic nanoparticles, that is, the heating efficiency, and the relative position of the protein cage within the nanocomposite concerning the heating sources. This implies that the spatial arrangement of components within the hybrid nanostructure has a significant impact on the disassembly process. Understanding and optimizing this relationship will contribute to the critical spatiotemporal control for targeted drug and gene delivery using protein cages.
Collapse
Affiliation(s)
| | | | | | - Paul L. Chariou
- Department
of Bioengineering, University of California
San Diego, La Jolla, California 92093, United States
| | | | - Gustavo Bodelón
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- Departamento
de Biología Funcional y Ciencias de la Salud, Universidade de Vigo, Vigo 36310, Spain
| | - Nicole F. Steinmetz
- Department
of Bioengineering, University of California
San Diego, La Jolla, California 92093, United States
- Department
of NanoEngineering, University of California
San Diego, La Jolla, California 92093, United States
- Department
of Radiology, University of California San
Diego, La Jolla, California92093, United States
- Center for
Nano-ImmunoEngineering, University of California
San Diego, La Jolla, California92093, United States
- Institute
for Materials Discovery and Design, University
of California San Diego, La Jolla, California92093, United States
| | - Verónica Salgueiriño
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- Departamento
de Física Aplicada, Universidade
de Vigo, Vigo 36310, Spain
| |
Collapse
|
4
|
Zhang L, Li Q, Liu J, Deng Z, Zhang X, Alifu N, Zhang X, Yu Z, Liu Y, Lan Z, Wen T, Sun K. Recent advances in functionalized ferrite nanoparticles: From fundamentals to magnetic hyperthermia cancer therapy. Colloids Surf B Biointerfaces 2024; 234:113754. [PMID: 38241891 DOI: 10.1016/j.colsurfb.2024.113754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Cancers are fatal diseases that lead to most death of human beings, which urgently require effective treatments methods. Hyperthermia therapy employs magnetic nanoparticles (MNPs) as heating medium under external alternating magnetic field. Among various MNPs, ferrite nanoparticles (FNPs) have gained significant attention for hyperthermia therapy due to their exceptional magnetic properties, high stability, favorable biological compatibility, and low toxicity. The utilization of FNPs holds immense potential for enhancing the effectiveness of hyperthermia therapy. The main hurdle for hyperthermia treatment includes optimizing the heat generation capacity of FNPs and controlling the local temperature of tumor region. This review aims to comprehensively evaluate the magnetic hyperthermia treatment (MHT) of FNPs, which is accomplished by elucidating the underlying mechanism of heat generation and identifying influential factors. Based upon fundamental understanding of hyperthermia of FNPs, valuable insights will be provided for developing efficient nanoplatforms with enhanced accuracy and magnetothermal properties. Additionally, we will also survey current research focuses on modulating FNPs' properties, external conditions for MHT, novel technical methods, and recent clinical findings. Finally, current challenges in MHT with FNPs will be discussed while prospecting future directions.
Collapse
Affiliation(s)
- Linxue Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Qifan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Junxiao Liu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Zunyi Deng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xueliang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China; School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China; State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, PR China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, PR China
| | - Xiaofeng Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhong Yu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhongwen Lan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Tianlong Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China.
| | - Ke Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
5
|
Khorasani Alamdari M, Nadiri AA, Ghaforian H, Sadeghfam S. Removal of arsenic with functionalized multi-walled carbon nanotubes (MWCNTs-COOH) using the magnetic method (Fe 3O 4) from aqueous solutions. RSC Adv 2023; 13:25284-25295. [PMID: 37622011 PMCID: PMC10445216 DOI: 10.1039/d3ra04803a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Heavy metals such as arsenic are one of the most important water pollutants and cause many environmental problems. One of the mechanisms for removing arsenic from aqueous media is the adsorption process. In this study, we investigated the efficiency of magnetized multi-walled carbon nanotubes with iron oxide (Fe3O4) nanoparticles. The precipitation method was used to synthesize Fe3O4 on PAC-(Fe3O4-f/MWCNTs) functionalized multi-walled carbon nanotubes. The effects of pH, contact time, amount of adsorbent, and contaminant concentration on the adsorption process were examined. Residual arsenic concentration was measured using induction chromatography and inductively coupled plasma mass spectrometry (ICP-MS). The physical and structural characteristics of the adsorbent were analyzed using XRD, TEM, FT-IR, TGA-DTA, BET, FESEM-EDS, Raman spectrum and X-ray. Optimal conditions for arsenic removal were pH = 2, As concentration = 6 mg L-1, and contact time = 30 minutes, using 0.02 g of adsorbent at room temperature. Also, fitting regression curves to the results showed that the Freundlich model (R2 > 0.9981) and a pseudo-second-order model (R2 = 1) best describe the isothermal and kinetic models of the adsorption process, respectively.
Collapse
Affiliation(s)
| | | | - Hossein Ghaforian
- Marine Science and Technology Department, Islamic Azad University North Tehran Branch Tehran Iran
| | - Sina Sadeghfam
- Department of civil Engineering, Faculty of Engineering, University of Maragheh Iran
| |
Collapse
|
6
|
Myrovali E, Papadopoulos K, Charalampous G, Kesapidou P, Vourlias G, Kehagias T, Angelakeris M, Wiedwald U. Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia. ACS OMEGA 2023; 8:12955-12967. [PMID: 37065034 PMCID: PMC10099415 DOI: 10.1021/acsomega.2c05962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Magnetic particle hyperthermia (MPH) is a promising method for cancer treatment using magnetic nanoparticles (MNPs), which are subjected to an alternating magnetic field for local heating to the therapeutic range of 41-45 °C. In this window, the malignant regions (i.e., cancer cells) undergo a severe thermal shock while healthy tissues sustain this thermal regime with significantly milder side effects. Since the heating efficiency is directly associated with nanoparticle size, MNPs should acquire the appropriate size to maximize heating together with minimum toxicity. Herein, we report on facile synthetic controls to synthesize MNPs by an aqueous precipitation method, whereby tuning the pH values of the solution (9.0-13.5) results in a wide range of average MNP diameters from 16 to 76 nm. With respect to their size, the structural and magnetic properties of the MNPs are evaluated by adjusting the most important parameters, i.e. the MNP surrounding medium (water/agarose), the MNP concentration (1-4 mg mL-1), and the field amplitude (20-50 mT) and frequency (103, 375, 765 kHz). Consequently, the maximum heating efficiency is determined for each MNP size and set of parameters, outlining the optimum MNPs for MPH treatment. In this way, we can address the different heat generation mechanisms (Brownian, Néel, and hysteresis losses) to different sizes and separate Brownian and hysteresis losses for optimized sizes by studying the heat generation as a function of the medium viscosity. Finally, MNPs immobilized into agarose solution are studied under low-field MPH treatment to find the optimum conditions for clinical applications.
Collapse
Affiliation(s)
- Eirini Myrovali
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- MagnaCharta,
Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Kyrillos Papadopoulos
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- MagnaCharta,
Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Georgia Charalampous
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Paraskevi Kesapidou
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - George Vourlias
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Thomas Kehagias
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Makis Angelakeris
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- MagnaCharta,
Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Ulf Wiedwald
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany)
| |
Collapse
|
7
|
Freis B, Ramirez MDLA, Kiefer C, Harlepp S, Iacovita C, Henoumont C, Affolter-Zbaraszczuk C, Meyer F, Mertz D, Boos A, Tasso M, Furgiuele S, Journe F, Saussez S, Bégin-Colin S, Laurent S. Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties—From Suspension to In Vitro Studies. Pharmaceutics 2023; 15:pharmaceutics15041104. [PMID: 37111590 PMCID: PMC10143744 DOI: 10.3390/pharmaceutics15041104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s−1·mM−1, SARMH = 580 W·g−1, SARPTT = 800 W·g−1; and r2 = 407 s−1·mM−1, SARMH = 899 W·g−1, SARPTT = 300 W·g−1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells.
Collapse
|
8
|
Zhu S, Cheng Y, Chen J, Liu G, Luo T, Yang R. Dynamically reversible cooperation and interaction of multiple rotating micromotors. LAB ON A CHIP 2023; 23:1905-1917. [PMID: 36880376 DOI: 10.1039/d3lc00108c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Micromotors have been shown to have great potential in various fields (e.g., targeted therapeutics, self-organizing systems), and research on the cooperative and interactive behaviours of multiple micromotors could potentially revolutionize many fields in terms of performing multiple or complex tasks to compensate for the limitations of individual micromotors; however, dynamically reversible transitions among diverse behaviours remain much less explored, and such dynamic transformations are advantageous for achieving complex tasks. Here, we present a microsystem consisting of multiple disk-like micromotors capable of performing reversible transformations between cooperative and interactive behaviours at the liquid surface. The micromotors with aligned magnetic particles in our system have great magnet properties, which provides a strong magnetic interaction with each other and is vital for the whole microsystem. We offer and analyse the physical models among multiple micromotors concerning the cooperative and interactive modes in the lower and higher frequency ranges, respectively, between which the state transformation can reversibly occur. Furthermore, based on the proposed reversible microsystem, the feasibility of the application of self-organization is verified by demonstrating three different dynamic self-organizing behaviours. Our proposed dynamically reversible system has great potential to serve as a paradigm for studying cooperative and interactive behaviours among multiple micromotors in the future.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| | - Yifan Cheng
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| | - Jialong Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| | - Tingting Luo
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, Biomedical Robotics Laboratory, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
9
|
Vassallo M, Martella D, Barrera G, Celegato F, Coïsson M, Ferrero R, Olivetti ES, Troia A, Sözeri H, Parmeggiani C, Wiersma DS, Tiberto P, Manzin A. Improvement of Hyperthermia Properties of Iron Oxide Nanoparticles by Surface Coating. ACS OMEGA 2023; 8:2143-2154. [PMID: 36687092 PMCID: PMC9850460 DOI: 10.1021/acsomega.2c06244] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Magnetic hyperthermia is an oncological therapy that exploits magnetic nanoparticles activated by radiofrequency magnetic fields to produce a controlled temperature increase in a diseased tissue. The specific loss power (SLP) of magnetic nanoparticles or the capability to release heat can be improved using surface treatments, which can reduce agglomeration effects, thus impacting on local magnetostatic interactions. In this work, Fe3O4 nanoparticles are synthesized via a coprecipitation reaction and fully characterized in terms of structural, morphological, dimensional, magnetic, and hyperthermia properties (under the Hergt-Dutz limit). Different types of surface coatings are tested, comparing their impact on the heating efficacy and colloidal stability, resulting that sodium citrate leads to a doubling of the SLP with a substantial improvement in dispersion and stability in solution over time; an SLP value of around 170 W/g is obtained in this case for a 100 kHz and 48 kA/m magnetic field.
Collapse
Affiliation(s)
- Marta Vassallo
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
- Dipartimento
di Elettronica e Telecomunicazioni, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129Torino, Italy
| | - Daniele Martella
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
- European
Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara, 1, 50019Sesto Fiorentino, Italy
| | - Gabriele Barrera
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Federica Celegato
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Marco Coïsson
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Riccardo Ferrero
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Elena S. Olivetti
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Adriano Troia
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Hüseyin Sözeri
- Magnetics
Laboratory, TÜBİTAK Ulusal
Metroloji Enstitüsü (UME), Gebze Yerleşkesi, 41470Kocaeli, Turkey
| | - Camilla Parmeggiani
- European
Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara, 1, 50019Sesto Fiorentino, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019Sesto Fiorentino, Italy
| | - Diederik S. Wiersma
- European
Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara, 1, 50019Sesto Fiorentino, Italy
- Department
of Physics and Astronomy, University of
Florence, Via Giovanni
Sansone, 1, 50019Sesto Fiorentino, Italy
| | - Paola Tiberto
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| | - Alessandra Manzin
- Department
of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy
| |
Collapse
|
10
|
Hedayatnasab Z, Ramazani Saadatabadi A, Shirgahi H, Mozafari M. Heat induction of iron oxide nanoparticles with rational artificial neural network design-based particle swarm optimization for magnetic cancer hyperthermia. MATERIALS RESEARCH BULLETIN 2023; 157:112035. [DOI: 10.1016/j.materresbull.2022.112035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
11
|
Lucaciu CM, Nitica S, Fizesan I, Filip L, Bilteanu L, Iacovita C. Enhanced Magnetic Hyperthermia Performance of Zinc Ferrite Nanoparticles under a Parallel and a Transverse Bias DC Magnetic Field. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3578. [PMID: 36296768 PMCID: PMC9611223 DOI: 10.3390/nano12203578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 05/23/2023]
Abstract
The collective organization of magnetic nanoparticles (MNPs) influences significantly their hyperthermic properties, relevant for their in vitro and in vivo applications. We report a systematic investigation of the effects of the concentration and the static bias direct current (DC) magnetic field superposed over the alternating magnetic field (AMF), both in a parallel and perpendicular configuration, on the specific absorption rate (SAR) by using zinc ferrite MNPs. The nonmonotonic dependence of the SAR on the concentration, with a maximum at very small concentrations (c ≤ 0.1 mgFe/mL), followed by a minimum at 0.25 mgFe/mL, and the second maximum of 3.3 kW/gFe at around 1 mgFe/mL, was explained by the passage of the MNPs from a single particle behavior to a collective one and the role of the dipolar interactions. By superposing a static 10 kA/m bias DC field on the AMF we obtained an increase in the SAR for both parallel and perpendicular orientations, up to 4285 W/gFe and 4070 W/gFe, respectively. To the best of our knowledge, this is the first experimental proof of a significant enhancement of the SAR produced by a perpendicular DC field. The effect of the DC field to increase the SAR is accompanied by an increase in the hyperthermia coercive field (HcHyp) for both configurations. No enhancement of the DC fields was noticed for the MNPs immobilized in a solid matrix but the DC field increases the HcHyp only in the parallel configuration. This translates into a higher SAR value for the perpendicular configuration as compared to the parallel configuration. These results have practical applications for magnetic hyperthermia.
Collapse
Affiliation(s)
- Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Stefan Nitica
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Iuliu Haţieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Liviu Bilteanu
- Department Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae St., 077190 Bucharest, Romania
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Zhu S, Zheng W, Wang J, Fang X, Zhang L, Niu F, Wang Y, Luo T, Liu G, Yang R. Interactive and synergistic behaviours of multiple heterogeneous microrobots. LAB ON A CHIP 2022; 22:3412-3423. [PMID: 35880648 DOI: 10.1039/d2lc00265e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microrobots have been extensively studied for biomedical applications, and significant innovations and advances have been made in diverse aspects of the field. However, most studies have been based on individual microrobots with limited capabilities, constraining their scalability of functions for practical use. Here, we demonstrate the interactive and synergistic behaviours of multiple microrobots that are heterogeneous or incompletely homogeneous. A frequency-response theory is proposed where in a certain frequency range of an external rotating magnetic field (RMF), microrobots with dispersed and linearly aligned magnetic nanoparticles (MNPs) would exhibit similar and different behaviour, respectively. These microrobots rotate following the rotation of the external field, and such complete rotational motion is interrupted when the frequency exceeds a certain value, called the critical frequency (cf), but such behaviour is more prominent in microrobots with linear MNPs. Upon further investigating the effect of various parameters on the cf of the microrobots during the fabrication process, we find that heterogeneous microrobots with specific cf values can be customized. In addition, experiments and simulations are combined to show the hydrodynamic behaviours around the rotating microrobots at different frequencies. Based on these findings, the interactive and synergistic behaviours of multiple microrobots are presented, which suggests great potential for the independent execution of multiple tasks or the synergistic performance of complex tasks and is significant for the future development of interactive synergistic microrobots in the biomedical field.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Weijie Zheng
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Jian Wang
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Xingmiao Fang
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Lijiu Zhang
- Dastroenterology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Fuzhou Niu
- School of Mechanical Engineering Suzhou University of Science and Technology Suzhou, Jiangsu 215009, China
| | - Ying Wang
- School of Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Tingting Luo
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Guangli Liu
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering and the 3D-Printing and Tissue Engineering Center (3DPTEC), Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
13
|
Magnetically Propelled Chained Nanocomposites for On-Demand Biologically Relevant Media Exploration. J Colloid Interface Sci 2022; 629:287-296. [DOI: 10.1016/j.jcis.2022.08.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
|
14
|
Rao Daruvuri H, Chandu K, Murali N, Parajuli D, Mulushoa S Y, Dasari M. Effect on structural, dc electrical resistivity, and magnetic properties by the substitution of Zn2+ on Co-Cu nano ferrite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Cerezo-Navarrete C, Marin IM, García-Miquel H, Corma A, Chaudret B, Martínez-Prieto LM. Magnetically Induced Catalytic Reduction of Biomass-Derived Oxygenated Compounds in Water. ACS Catal 2022. [PMID: 37528952 PMCID: PMC10388291 DOI: 10.1021/acscatal.2c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of energetically efficient processes for the aqueous reduction of biomass-derived compounds into chemicals is key for the optimal transformation of biomass. Herein we report an early example of the reduction of biomass-derived oxygenated compounds in water by magnetically induced catalysis. Non-coated and carbon-coated core-shell FeCo@Ni magnetic nanoparticles were used as the heating agent and the catalyst simultaneously. In this way it was possible to control the product distribution by adjusting the field amplitude applied during the magnetic catalysis, opening a precedent for this type of catalysis. Finally, the encapsulation of the magnetic nanoparticles in carbon (FeCo@Ni@C) strongly improved the stability of the magnetic catalyst in solution, making its reuse possible up to at least eight times in dioxane and four times in water.
Collapse
Affiliation(s)
- Christian Cerezo-Navarrete
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
| | - Irene Mustieles Marin
- LPCNO, Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, UPS, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Héctor García-Miquel
- ITEAM Research Institute, Universitat Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
| | - Bruno Chaudret
- LPCNO, Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, UPS, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Luis M. Martínez-Prieto
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
- Departamento de Química Inorgánica (University of Seville), Instituto de Investigaciones Químicas (CSIC-US); Avenida Americo Vespucio 49, 41092 Seville, Spain
| |
Collapse
|
16
|
Makela AV, Schott MA, Madsen CS, Greeson EM, Contag CH. Magnetic Particle Imaging of Magnetotactic Bacteria as Living Contrast Agents Is Improved by Altering Magnetosome Arrangement. NANO LETTERS 2022; 22:4630-4639. [PMID: 35686930 DOI: 10.1021/acs.nanolett.1c05042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as imaging agents to differentiate between normal and diseased tissue or track cell movement. Magnetic particle imaging (MPI) detects the magnetic properties of SPIONs, providing quantitative and sensitive image data. MPI performance depends on the size, structure, and composition of nanoparticles. Magnetotactic bacteria produce magnetosomes with properties similar to those of synthetic nanoparticles, and these can be modified by mutating biosynthetic genes. The use of Magnetospirillum gryphiswaldense, MSR-1 with a mamJ deletion, containing clustered magnetosomes instead of typical linear chains, resulted in improved MPI signal and resolution. Bioluminescent MSR-1 with the mamJ deletion were administered into tumor-bearing and healthy mice. In vivo bioluminescence imaging revealed the viability of MSR-1, and MPI detected signals in livers and tumors. The development of living contrast agents offers opportunities for imaging and therapy with multimodality imaging guiding development of these agents by tracking the location, viability, and resulting biological effects.
Collapse
Affiliation(s)
- Ashley V Makela
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United States
| | - Melissa A Schott
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United States
| | - Cody S Madsen
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Emily M Greeson
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
17
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
18
|
Ramos‐Sebastian A, Gwak S, Kim SH. Multimodal Locomotion and Active Targeted Thermal Control of Magnetic Agents for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103863. [PMID: 35060366 PMCID: PMC8895130 DOI: 10.1002/advs.202103863] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/07/2021] [Indexed: 05/27/2023]
Abstract
Magnetic microrobots can be miniaturized to a nanometric scale owing to their wireless actuation, thereby rendering them ideal for numerous biomedical applications. As a result, nowadays, there exist several mechano-electromagnetic systems for their actuation. However, magnetic actuation is not sufficient for implementation in biomedical applications, and further functionalities such as imaging and heating are required. This study proposes a multimodal electromagnetic system comprised of three pairs of Helmholtz coils, a pair of Maxwell coils, and a high-frequency solenoid to realize multimodal locomotion and heating control of magnetic microrobots. The system produces different configurations of magnetic fields that can generate magnetic forces and torques for the multimodal locomotion of magnetic microrobots, as well as generate magnetic traps that can control the locomotion of magnetic swarms. Furthermore, these magnetic fields are employed to control the magnetization of magnetic nanoparticles, affecting their magnetic relaxation mechanisms and diminishing their thermal properties. Thus, the system enables the control of the temperature increase of soft-magnetic materials and selective heating of magnetic microrobots at different positions, while suppressing the heating properties of magnetic nanoparticles located at undesired areas.
Collapse
Affiliation(s)
- Armando Ramos‐Sebastian
- Department of Electronics Convergence EngineeringWonkwang UniversityIksan54538Republic of Korea
- Present address:
Department of Convergence Technology EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - So‐Jung Gwak
- Department of Chemical EngineeringWonkwang UniversityIksan54538Republic of Korea
| | - Sung Hoon Kim
- Department of Electronics Convergence EngineeringWonkwang UniversityIksan54538Republic of Korea
- Wonkwang Institute of Materials Science and TechnologyWonkwang UniversityIksan54538Republic of Korea
| |
Collapse
|
19
|
Viveros-Méndez PX, Moreno I, Nuñez-Magos L, Aranda-Espinoza S. Aggregation of superparamagnetic colloids strongly confined in spherical cavities under magnetic fields. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1954254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- P. X. Viveros-Méndez
- Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Zacatecas, Zac., México
| | - Ivan Moreno
- Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Zacatecas, Zac., México
| | - L. Nuñez-Magos
- Instituto de Física 'Manuel Sandoval Vallarta', Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Said Aranda-Espinoza
- Instituto de Física 'Manuel Sandoval Vallarta', Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| |
Collapse
|
20
|
Chen H, Zhang H, Xu T, Yu J. An Overview of Micronanoswarms for Biomedical Applications. ACS NANO 2021; 15:15625-15644. [PMID: 34647455 DOI: 10.1021/acsnano.1c07363] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micronanoswarms have attracted extensive attention worldwide due to their great promise in biomedical applications. The collective behaviors among thousands, or even millions, of tiny active agents indicate immense potential for benefiting the progress of clinical therapeutic and diagnostic methods. In recent years, with the development of smart materials, remote actuation modalities, and automatic control strategies, the motion dexterity, environmental adaptability, and functionality versatility of micronanoswarms are improved. Swarms can thus be designed as dexterous platforms inside living bodies to perform a multitude of tasks related to healthcare. Existing surveys summarize the design, functionalization, and biomedical applications of micronanorobots and the actuation and motion control strategies of micronanoswarms. This review presents the recent progress of micronanoswarms, aiming for biomedical applications. The recent advances on structural design of artificial, living, and hybrid micronanoswarms are summarized, and the biomedical applications that could be tackled using micronanoswarms are introduced, such as targeted drug delivery, hyperthermia, imaging and sensing, and thrombolysis. Moreover, potential challenges and promising trends of future developments are discussed. It is envisioned that the future success of these promising tools will have a significant impact on clinical treatment.
Collapse
Affiliation(s)
- Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
| | - Huimin Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tiantian Xu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518126, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
| |
Collapse
|
21
|
Ovejero JG, Spizzo F, Morales MP, Del Bianco L. Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6416. [PMID: 34771940 PMCID: PMC8585339 DOI: 10.3390/ma14216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023]
Abstract
The increasing use of magnetic nanoparticles as heating agents in biomedicine is driven by their proven utility in hyperthermia therapeutic treatments and heat-triggered drug delivery methods. The growing demand of efficient and versatile nanoheaters has prompted the creation of novel types of magnetic nanoparticle systems exploiting the magnetic interaction (exchange or dipolar in nature) between two or more constituent magnetic elements (magnetic phases, primary nanoparticles) to enhance and tune the heating power. This process occurred in parallel with the progress in the methods for the chemical synthesis of nanostructures and in the comprehension of magnetic phenomena at the nanoscale. Therefore, complex magnetic architectures have been realized that we classify as: (a) core/shell nanoparticles; (b) multicore nanoparticles; (c) linear aggregates; (d) hybrid systems; (e) mixed nanoparticle systems. After a general introduction to the magnetic heating phenomenology, we illustrate the different classes of nanoparticle systems and the strategic novelty they represent. We review some of the research works that have significantly contributed to clarify the relationship between the compositional and structural properties, as determined by the synthetic process, the magnetic properties and the heating mechanism.
Collapse
Affiliation(s)
- Jesus G. Ovejero
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, E-28007 Madrid, Spain
| | - Federico Spizzo
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| | - M. Puerto Morales
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
| | - Lucia Del Bianco
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| |
Collapse
|
22
|
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021; 50:11614-11667. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
Collapse
Affiliation(s)
- Helena Gavilán
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | - Nisarg Soni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marco Cassani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Binh T Mai
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Roy Chantrell
- Department of Physics, University of York, York YO10 5DD, UK
| | | |
Collapse
|
23
|
Nuñez-Magos L, Lira-Escobedo J, Rodríguez-López R, Muñoz-Navia M, Castillo-Rivera F, Viveros-Méndez PX, Araujo E, Encinas A, Saucedo-Anaya SA, Aranda-Espinoza S. Effects of DC Magnetic Fields on Magnetoliposomes. Front Mol Biosci 2021; 8:703417. [PMID: 34589517 PMCID: PMC8473709 DOI: 10.3389/fmolb.2021.703417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/21/2021] [Indexed: 02/04/2023] Open
Abstract
The potential use of magnetic nanoparticles (MNPs) in biomedicine as magnetic resonance, drug delivery, imagenology, hyperthermia, biosensors, and biological separation has been studied in different laboratories. One of the challenges on MNP elaboration for biological applications is the size, biocompatibility, heat efficiency, stabilization in physiological conditions, and surface coating. Magnetoliposome (ML), a lipid bilayer of phospholipids encapsulating MNPs, is a system used to reduce toxicity. Encapsulated MNPs can be used as a potential drug and a gene delivery system, and in the presence of magnetic fields, MLs can be accumulated in a target tissue by a strong gradient magnetic field. Here, we present a study of the effects of DC magnetic fields on encapsulated MNPs inside liposomes. Despite their widespread applications in biotechnology and environmental, biomedical, and materials science, the effects of magnetic fields on MLs are unclear. We use a modified coprecipitation method to synthesize superparamagnetic nanoparticles (SNPs) in aqueous solutions. The SNPs are encapsulated inside phospholipid liposomes to study the interaction between phospholipids and SNPs. Material characterization of SNPs reveals round-shaped nanoparticles with an average size of 12 nm, mainly magnetite. MLs were prepared by the rehydration method. After formation, we found two types of MLs: one type is tense with SNPs encapsulated and the other is a floppy vesicle that does not show the presence of SNPs. To study the response of MLs to an applied DC magnetic field, we used a homemade chamber. Digitalized images show encapsulated SNPs assembled in chain formation when a DC magnetic field is applied. When the magnetic field is switched off, it completely disperses SNPs. Floppy MLs deform along the direction of the external applied magnetic field. Solving the relevant magnetostatic equations, we present a theoretical model to explain the ML deformations by analyzing the forces exerted by the magnetic field over the surface of the spheroidal liposome. Tangential magnetic forces acting on the ML surface result in a press force deforming MLs. The type of deformations will depend on the magnetic properties of the mediums inside and outside the MLs. The model predicts a coexistence region of oblate-prolate deformation in the zone where χ = 1. We can understand the chain formation in terms of a dipole-dipole interaction of SNP.
Collapse
Affiliation(s)
- L. Nuñez-Magos
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - J. Lira-Escobedo
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - R. Rodríguez-López
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - M. Muñoz-Navia
- Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - F. Castillo-Rivera
- CONACyT–Instituto de Geología de la Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - P. X. Viveros-Méndez
- Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - E. Araujo
- Departamento de Matematicas y Física, Instituto Tecnológico y de Estudios Superiores de Occidente, San Pedro Tlaquepaque, Mexico
| | - A. Encinas
- Laboratory of Magnetism, División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - S. A. Saucedo-Anaya
- Unidad Académica de Estudios Nucleares, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - S. Aranda-Espinoza
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
24
|
Experimental and Modelling Analysis of the Hyperthermia Properties of Iron Oxide Nanocubes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:nano11092179. [PMID: 34578497 PMCID: PMC8469622 DOI: 10.3390/nano11092179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The ability of magnetic nanoparticles (MNPs) to transform electromagnetic energy into heat is widely exploited in well-known thermal cancer therapies, such as magnetic hyperthermia, which proves useful in enhancing the radio- and chemo-sensitivity of human tumor cells. Since the heat release is ruled by the complex magnetic behavior of MNPs, a careful investigation is needed to understand the role of their intrinsic (composition, size and shape) and collective (aggregation state) properties. Here, the influence of geometrical parameters and aggregation on the specific loss power (SLP) is analyzed through in-depth structural, morphological, magnetic and thermometric characterizations supported by micromagnetic and heat transfer simulations. To this aim, different samples of cubic Fe3O4 NPs with an average size between 15 nm and 160 nm are prepared via hydrothermal route. For the analyzed samples, the magnetic behavior and heating properties result to be basically determined by the magnetic single- or multi-domain configuration and by the competition between magnetocrystalline and shape anisotropies. This is clarified by micromagnetic simulations, which enable us to also elucidate the role of magnetostatic interactions associated with locally strong aggregation.
Collapse
|
25
|
Korolkov IV, Zibert AV, Lissovskaya LI, Ludzik K, Anisovich M, Kozlovskiy AL, Shumskaya AE, Vasilyeva M, Shlimas DI, Jażdżewska M, Marciniak B, Kontek R, Chudoba D, Zdorovets MV. Boron and Gadolinium Loaded Fe 3O 4 Nanocarriers for Potential Application in Neutron Capture Therapy. Int J Mol Sci 2021; 22:8687. [PMID: 34445393 PMCID: PMC8395504 DOI: 10.3390/ijms22168687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
In this article, a novel method of simultaneous carborane- and gadolinium-containing compounds as efficient agents for neutron capture therapy (NCT) delivery via magnetic nanocarriers is presented. The presence of both Gd and B increases the efficiency of NCT and using nanocarriers enhances selectivity. These factors make NCT not only efficient, but also safe. Superparamagnetic Fe3O4 nanoparticles were treated with silane and then the polyelectrolytic layer was formed for further immobilization of NCT agents. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) and Mössbauer spectroscopies, dynamic light scattering (DLS), scanning electron microscopy (SEM), vibrating-sample magnetometry (VSM) were applied for the characterization of the chemical and element composition, structure, morphology and magnetic properties of nanocarriers. The cytotoxicity effect was evaluated on different cell lines: BxPC-3, PC-3 MCF-7, HepG2 and L929, human skin fibroblasts as normal cells. average size of nanoparticles is 110 nm; magnetization at 1T and coercivity is 43.1 emu/g and 8.1, respectively; the amount of B is 0.077 mg/g and the amount of Gd is 0.632 mg/g. Successful immobilization of NCT agents, their low cytotoxicity against normal cells and selective cytotoxicity against cancer cells as well as the superparamagnetic properties of nanocarriers were confirmed by analyses above.
Collapse
Affiliation(s)
- Ilya V. Korolkov
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
| | - Alexandr V. Zibert
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
| | - Lana I. Lissovskaya
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
| | - K. Ludzik
- Department of Physical Chemistry, University of Lodz, 90-236 Lodz, Poland
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia; (M.J.); (D.C.)
| | - M. Anisovich
- Republican Unitary Enterprise, Scientific-Practical Centre of Hygiene, 220012 Minsk, Belarus; (M.A.); (M.V.)
| | - Artem L. Kozlovskiy
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
| | - A. E. Shumskaya
- The Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - M. Vasilyeva
- Republican Unitary Enterprise, Scientific-Practical Centre of Hygiene, 220012 Minsk, Belarus; (M.A.); (M.V.)
| | - Dmitriy I. Shlimas
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
| | - Monika Jażdżewska
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia; (M.J.); (D.C.)
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Beata Marciniak
- Laboratory of Cytogenetics, Faculty of Biology and Enviromental Protection, University of Lodz, 90-231 Lodz, Poland; (B.M.); (R.K.)
| | - Renata Kontek
- Laboratory of Cytogenetics, Faculty of Biology and Enviromental Protection, University of Lodz, 90-231 Lodz, Poland; (B.M.); (R.K.)
| | - Dorota Chudoba
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia; (M.J.); (D.C.)
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Maxim V. Zdorovets
- The Institute of Nuclear Physics, Ibragimov Str. 1, Almaty 050032, Kazakhstan; (A.V.Z.); (L.I.L.); (A.L.K.); (D.I.S.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, Nur-Sultan 010008, Kazakhstan
- Department of Intelligent Information Technologies, Ural Federal University, Mira Str. 19, Ekaterinburg 620002, Russia
| |
Collapse
|
26
|
Myrovali E, Papadopoulos K, Iglesias I, Spasova M, Farle M, Wiedwald U, Angelakeris M. Long-Range Ordering Effects in Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21602-21612. [PMID: 33929817 DOI: 10.1021/acsami.1c01820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The challenge for synthesizing magnetic nanoparticle chains may be achieved under the application of fixation fields, which are the externally applied fields, enhancing collective magnetic features due to adequate control of dipolar interactions among magnetic nanoparticles. However, relatively little attention has been devoted to how size, concentration of magnetic nanoparticles, and intensity of an external magnetic field affect the evolution of chain structures and collective magnetic features. Here, iron oxide nanoparticles are developed by the coprecipitation method at diameters below (10 and 20 nm) and above (50 and 80 nm) their superparamagnetic limit (at about 25 nm) and then are subjected to a tunable fixation field (40-400 mT). Eventually, the fixation field dictates smaller particles to form chain structures in two steps, first forming clusters and then guiding chain formation via "cluster-cluster" interactions, whereas larger particles readily form chains via "particle-particle" interactions. In both cases, dipolar interactions between the neighboring nanoparticles augment, leading to a substantial increase in their collective magnetic features which in turn results in magnetic particle hyperthermia efficiency enhancement of up to one order of magnitude. This study provides new perspectives for magnetic nanoparticles by arranging them in chain formulations as enhanced performance magnetic actors in magnetically driven magnetic applications.
Collapse
Affiliation(s)
- Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| | - Kyrillos Papadopoulos
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| | - Irene Iglesias
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Marina Spasova
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Ulf Wiedwald
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Makis Angelakeris
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| |
Collapse
|
27
|
Barrera G, Allia P, Tiberto P. Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach. NANOSCALE 2021; 13:4103-4121. [PMID: 33570053 DOI: 10.1039/d0nr07397k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rate equations are used to study the dynamic magnetic properties of interacting magnetite nanoparticles viewed as double well systems (DWS) subjected to a driving field in the radio-frequency range. Dipole-dipole interaction among particles is modeled by inserting an ad-hoc term in the energy barrier to simulate the dependence of the interaction on both the interparticle distance and degree of dipole collinearity. The effective magnetic power released by an assembly of interacting nanoparticles dispersed in a diamagnetic host is shown to be a complex function of nanoparticle diameter, mean particle interdistance and frequency. Dipolar interaction markedly modifies the way a host material is heated by an assembly of embedded nanoparticles in magnetic hyperthermia treatments. Nanoparticle fraction and strength of the interaction can dramatically influence the amplitude and shape of the heating curves of the host material; the heating ability of interacting nanoparticles is shown to be either improved or reduced by their concentration in the host material. A frequency-dependent cut-off length of dipolar interactions is determined and explained. Particle polydispersity entailing a distribution of particle sizes brings about non-trivial effects on the heating curves depending on the strength of dipolar interaction.
Collapse
Affiliation(s)
- Gabriele Barrera
- INRIM, Advanced Materials Metrology and Life Sciences, Strada delle Cacce 91, I-10135 Torino, Italy.
| | - Paolo Allia
- INRIM, Advanced Materials Metrology and Life Sciences, Strada delle Cacce 91, I-10135 Torino, Italy.
| | - Paola Tiberto
- INRIM, Advanced Materials Metrology and Life Sciences, Strada delle Cacce 91, I-10135 Torino, Italy.
| |
Collapse
|
28
|
Leonel AG, Mansur AAP, Carvalho SM, Outon LEF, Ardisson JD, Krambrock K, Mansur HS. Tunable magnetothermal properties of cobalt-doped magnetite-carboxymethylcellulose ferrofluids: smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy. NANOSCALE ADVANCES 2021; 3:1029-1046. [PMID: 36133299 PMCID: PMC9416810 DOI: 10.1039/d0na00820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/02/2021] [Indexed: 05/09/2023]
Abstract
Magnetite nanoparticles are one of the most promising ferrofluids for hyperthermia applications due to the combination of unique physicochemical and magnetic properties. In this study, we designed and produced superparamagnetic ferrofluids composed of magnetite (Fe3O4, MION) and cobalt-doped magnetite (Co x -MION, x = 3, 5, and 10% mol of cobalt) nanoconjugates through an eco-friendly aqueous method using carboxymethylcellulose (CMC) as the biocompatible macromolecular ligand. The effect of the gradual increase of cobalt content in Fe3O4 nanocolloids was investigated in-depth using XRD, XRF, XPS, FTIR, DLS, zeta potential, EMR, and VSM analyses. Additionally, the cytotoxicity of these nanoconjugates and their ability to cause cancer cell death through heat induction were evaluated by MTT assays in vitro. The results demonstrated that the progressive substitution of Co in the magnetite host material significantly affected the magnetic anisotropy properties of the ferrofluids. Therefore, Co-doped ferrite (Co x Fe(3-x)O4) nanoconjugates enhanced the cell-killing activities in magnetic hyperthermia experiments under alternating magnetic field performed with human brain cancer cells (U87). On the other hand, the Co-doping process retained the pristine inverse spinel crystalline structure of MIONs, and it has not significantly altered the average nanoparticle size (ca.∼7.1 ± 1.6 nm). Thus, the incorporation of cobalt into magnetite-polymer nanostructures may constitute a smart strategy for tuning their magnetothermal capability towards cancer therapy by heat generation.
Collapse
Affiliation(s)
- Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Luis Eugenio F Outon
- Departament of Physics, Federal University of Minas Gerais - UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 Belo Horizonte/MG 31.270-901 Brazil +55-31-34091843 +55-31-34091843
| | - José Domingos Ardisson
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN Av. Antônio Carlos 6627 - Belo Horizonte MG Brazil
| | - Klaus Krambrock
- Departament of Physics, Federal University of Minas Gerais - UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 Belo Horizonte/MG 31.270-901 Brazil +55-31-34091843 +55-31-34091843
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| |
Collapse
|
29
|
Balousis A, Maniotis N, Samaras T. Improvement of Magnetic Particle Hyperthermia: Healthy Tissues Sparing by Reduction in Eddy Currents. NANOMATERIALS 2021; 11:nano11020556. [PMID: 33672340 PMCID: PMC7926340 DOI: 10.3390/nano11020556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 01/30/2023]
Abstract
Attenuation of the unwanted heating of normal tissues due to eddy currents presents a major challenge in magnetic particle hyperthermia for cancer treatment. Eddy currents are a direct consequence of the applied alternating magnetic field, which is used to excite the nanoparticles in the tumor and have been shown to limit treatment efficacy in clinical trials. To overcome these challenges, this paper presents simple, clinically applicable, numerical approaches which reduce the temperature increase due to eddy currents in normal tissue and simultaneously retain magnetic nanoparticles heating efficiency within the tumor. More specifically, two protocols are examined which involve moving the heating source, an electromagnetic coil, relative to a tumor-bearing phantom tissue during the exposure. In the first protocol, the linear motion of the coil on one side with respect to the hypothesized tumor location inside the phantom is simulated. The estimated maximum temperature increase in the healthy tissue and tumor is reduced by 12% and 9%, respectively, compared to a non-moving coil, which is the control protocol. The second technique involves a symmetrical variation of the first one, where the coil is moving left and right of the phantom in a bidirectional fashion. This protocol is considered as the optimum one, since the estimated maximum temperature rise of the healthy tissue and tumor is reduced by 25% and 1%, respectively, compared to the control protocol. Thus, the advantages of a linearly moving coil are assessed through tissue sparing, rendering this technique suitable for magnetic particle hyperthermia treatment.
Collapse
Affiliation(s)
- Alexandros Balousis
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.B.); (T.S.)
| | - Nikolaos Maniotis
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.B.); (T.S.)
- Correspondence: ; Tel.: +30-6955-118-490
| | - Theodoros Samaras
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.B.); (T.S.)
- Department of Physics, University of Malta, 2080 Msida, Malta
| |
Collapse
|
30
|
Pilati V, Gomide G, Gomes RC, Goya GF, Depeyrot J. Colloidal Stability and Concentration Effects on Nanoparticle Heat Delivery for Magnetic Fluid Hyperthermia. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1129-1140. [PMID: 33443443 DOI: 10.1021/acs.langmuir.0c03052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The heat produced by magnetic nanoparticles, when they are submitted to a time-varying magnetic field, has been used in many auspicious biotechnological applications. In the search for better performance in terms of the specific power absorption (SPA) index, researchers have studied the influence of the chemical composition, size and dispersion, shape, and exchange stiffness in morphochemical structures. Monodisperse assemblies of magnetic nanoparticles have been produced using elaborate synthetic procedures, where the product is generally dispersed in organic solvents. However, the colloidal stability of these rough dispersions has not received much attention in these studies, hampering experimental determination of the SPA. To investigate the influence of colloidal stability on the heating response of ferrofluids, we produced bimagnetic core@shell NPs chemically composed of a ZnMn mixed ferrite core covered by a maghemite shell. Aqueous ferrofluids were prepared with these samples using the electric double layer (EDL) as a strategy to maintain colloidal stability. By starting from a proper sample, ultrastable concentrated ferrofluids were achieved by both tuning the ion/counterion ratio and controlling the water content. As the colloidal stability mainly depends on the ion configuration on the surface of the magnetic nanoparticles, different levels of nanoparticle clustering are achieved by changing the ionic force and pH of the medium. Thus, the samples were submitted to two procedures of EDL destabilization, which involved dilution with an alkaline solution and a neutral pH viscous medium. The SPA results of all prepared ferrofluid samples show a reduction of up to half the efficiency of the standard sample when the ferrofluids are in a neutral pH or concentrated regime. Such results are explained in terms of magnetic dipolar interactions. Our results point to the importance of ferrofluid colloidal stability in a more reliable experimental determination of the NP heat generation performance.
Collapse
Affiliation(s)
- Vanessa Pilati
- Complex Fluids Group, Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70919-970 Brasília, Federal District, Brazil
| | - Guilherme Gomide
- Complex Fluids Group, Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70919-970 Brasília, Federal District, Brazil
| | - Rafael Cabreira Gomes
- Departamento de Física, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Gerardo F Goya
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Jérôme Depeyrot
- Complex Fluids Group, Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70919-970 Brasília, Federal District, Brazil
| |
Collapse
|
31
|
Avugadda SK, Wickramasinghe S, Niculaes D, Ju M, Lak A, Silvestri N, Nitti S, Roy I, Samia ACS, Pellegrino T. Uncovering the Magnetic Particle Imaging and Magnetic Resonance Imaging Features of Iron Oxide Nanocube Clusters. NANOMATERIALS 2020; 11:nano11010062. [PMID: 33383768 PMCID: PMC7824301 DOI: 10.3390/nano11010062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Multifunctional imaging nanoprobes continue to garner strong interest for their great potential in the detection and monitoring of cancer. In this study, we investigate a series of spatially arranged iron oxide nanocube-based clusters (i.e., chain-like dimer/trimer, centrosymmetric clusters, and enzymatically cleavable two-dimensional clusters) as magnetic particle imaging and magnetic resonance imaging probes. Our findings demonstrate that the short nanocube chain assemblies exhibit remarkable magnetic particle imaging signal enhancement with respect to the individually dispersed or the centrosymmetric cluster analogues. This result can be attributed to the beneficial uniaxial magnetic dipolar coupling occurring in the chain-like nanocube assembly. Moreover, we could effectively synthesize enzymatically cleavable two-dimensional nanocube clusters, which upon exposure to a lytic enzyme, exhibit a progressive increase in magnetic particle imaging signal at well-defined incubation time points. The increase in magnetic particle imaging signal can be used to trace the disassembly of the large planar clusters into smaller nanocube chains by enzymatic polymer degradation. These studies demonstrate that chain-like assemblies of iron oxide nanocubes offer the best spatial arrangement to improve magnetic particle imaging signals. In addition, the nanocube clusters synthesized in this study also show remarkable transverse magnetic resonance imaging relaxation signals. These nanoprobes, previously showcased for their outstanding heat performance in magnetic hyperthermia applications, have great potential as dual imaging probes and could be employed to improve the tumor thermo-therapeutic efficacy, while offering a readable magnetic signal for image mapping of material disassemblies at tumor sites.
Collapse
Affiliation(s)
- Sahitya Kumar Avugadda
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Sameera Wickramasinghe
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; (S.W.); (M.J.)
| | - Dina Niculaes
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Minseon Ju
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; (S.W.); (M.J.)
| | - Aidin Lak
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Niccolò Silvestri
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Simone Nitti
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2 TN, UK;
| | - Anna Cristina S. Samia
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; (S.W.); (M.J.)
- Correspondence: (A.C.S.S.); (T.P.)
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
- Correspondence: (A.C.S.S.); (T.P.)
| |
Collapse
|
32
|
Kerroum MAA, Iacovita C, Baaziz W, Ihiawakrim D, Rogez G, Benaissa M, Lucaciu CM, Ersen O. Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in Zn xFe 3-xO 4 Nanoparticles. Int J Mol Sci 2020; 21:E7775. [PMID: 33096631 PMCID: PMC7590026 DOI: 10.3390/ijms21207775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Superparamagnetic ZnxFe3-xO4 magnetic nanoparticles (0 ≤ x < 0.5) with spherical shapes of 16 nm average diameter and different zinc doping level have been successfully synthesized by co-precipitation method. The homogeneous zinc substitution of iron cations into the magnetite crystalline structure has led to an increase in the saturation magnetization of nanoparticles up to 120 Am2/kg for x ~ 0.3. The specific absorption rate (SAR) values increased considerably when x is varied between 0 and 0.3 and then decreased for x ~ 0.5. The SAR values are reduced upon the immobilization of the nanoparticles in a solid matrix being significantly increased by a pre-alignment step in a uniform static magnetic field before immobilization. The SAR values displayed a quadratic dependence on the alternating magnetic field amplitude (H) up to 35 kA/m. Above this value, a clear saturation effect of SAR was observed that was successfully described qualitatively and quantitatively by considering the non-linear field's effects and the magnetic field dependence of both Brown and Neel relaxation times. The Neel relaxation time depends more steeply on H as compared with the Brown relaxation time, and the magnetization relaxation might be dominated by the Neel mechanism, even for nanoparticles with large diameter.
Collapse
Affiliation(s)
- Mohamed Alae Ait Kerroum
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg CEDEX 2, France; (M.A.A.K.); (W.B.); (D.I.); (G.R.)
- Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Faculty of Sciences, BP 1014 RP, Mohammed V University in Rabat, 10000 Rabat, Morocco;
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg CEDEX 2, France; (M.A.A.K.); (W.B.); (D.I.); (G.R.)
| | - Dris Ihiawakrim
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg CEDEX 2, France; (M.A.A.K.); (W.B.); (D.I.); (G.R.)
| | - Guillaume Rogez
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg CEDEX 2, France; (M.A.A.K.); (W.B.); (D.I.); (G.R.)
| | - Mohammed Benaissa
- Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Faculty of Sciences, BP 1014 RP, Mohammed V University in Rabat, 10000 Rabat, Morocco;
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg CEDEX 2, France; (M.A.A.K.); (W.B.); (D.I.); (G.R.)
| |
Collapse
|
33
|
Kapuscinski M, Munier P, Segad M, Bergström L. Two-Stage Assembly of Mesocrystal Fibers with Tunable Diameters in Weak Magnetic Fields. NANO LETTERS 2020; 20:7359-7366. [PMID: 32924498 PMCID: PMC7587140 DOI: 10.1021/acs.nanolett.0c02770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Controlling the morphology and crystallographic coherence of assemblies of magnetic nanoparticles is a promising route to functional materials. Time-resolved small-angle X-ray scattering (SAXS) was combined with microscopy and scaling analysis to probe and analyze evaporation-induced assembly in levitating drops and thin films of superparamagnetic iron oxide nanocubes in weak magnetic fields. We show that assembly of micrometer-sized mesocrystals with a cubic shape preceded the formation of fibers with a high degree of crystallographic coherence and tunable diameters. The second-stage assembly of aligned cuboidal mesocrystals into fibers was driven by the magnetic field, but the first-stage assembly of the oleate-capped nanocubes was unaffected by weak magnetic fields. The transition from 3D growth of the primary mesocrystals to the second stage 1D assembly of the elongated fibers was related to the size and field dependence of isotropic van der Waals and directional dipolar interactions between the interacting mesocrystals.
Collapse
Affiliation(s)
- Martin Kapuscinski
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Pierre Munier
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Mo Segad
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Lennart Bergström
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
34
|
Zhao Z, Rinaldi C. Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains. Phys Med Biol 2020; 65:185013. [PMID: 32442999 DOI: 10.1088/1361-6560/ab95dd] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The magnetic particle imaging (MPI) performance of collections of chains of magnetic nanoparticles with Néel and Brownian relaxation mechanisms was studied by carrying out simulations based on the Landau-Lifshitz-Gilbert equation and rotational Brownian dynamics, respectively. The effect of magnetic dipole-dipole interactions within chains on the time-domain average magnetic dipole moment and corresponding dynamic hysteresis loops, harmonic spectra, and point spread functions (PSFs) of the particle chains was evaluated. The results show that interactions within chains lead to 'square-like' dynamic hysteresis loops and enhanced MPI performance, compared to chains of non-interacting nanoparticles. For nanoparticles with the Brownian relaxation mechanism, subjected to a superimposed alternating and ramping magnetic field mimicking the magnetic field in MPI applications, we studied the dependence of x-space MPI performance of particle chains on parameters such as the amplitude of the alternating magnetic field, surface-to-surface separation between nanoparticles, solvent viscosity, and the number of nanoparticles in a chain. The results illustrate that magnetic dipole-dipole interactions within a chain contribute to enhanced MPI performance, and also suggest that there exist optimal values of the above parameters that lead to the best x-space MPI performance, i.e. maximum peak signal intensity and smallest full-width-at-half-maximum in PSFs.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, United States of America
| | | |
Collapse
|
35
|
Sundar S, Ganesh V. Bio-assisted preparation of efficiently architectured nanostructures of γ-Fe 2O 3 as a molecular recognition platform for simultaneous detection of biomarkers. Sci Rep 2020; 10:15071. [PMID: 32934306 PMCID: PMC7493908 DOI: 10.1038/s41598-020-71934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
Magnetic nanoparticles of iron oxide (γ-Fe2O3) have been prepared using bio-assisted method and their application in the field of biosensors is demonstrated. Particularly in this work, different nanostructures of γ-Fe2O3 namely nanospheres (NS), nanograsses (NG) and nanowires (NW) are prepared using a bio-surfactant namely Furostanol Saponin (FS) present in Fenugreek seeds extract through co-precipitation method by following "green" route. Three distinct morphologies of iron oxide nanostructures possessing the same crystal structure, magnetic properties, and varied size distribution are prepared and characterized. The resultant materials are analyzed using field emission scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometer and Fourier transform infrared spectroscopy. Moreover, the effect of reaction time and concentration of FS on the resultant morphologies of γ-Fe2O3 nanostructures are systematically investigated. Among different shapes, NWs and NSs of γ-Fe2O3 are found to exhibit better sensing behaviour for both the individual and simultaneous electrochemical detection of most popular biomarkers namely dopamine (DA) and uric acid (UA). Electrochemical studies reveal that γ-Fe2O3 NWs showed better sensing characteristics than γ-Fe2O3 NSs and NGs in terms of distinguishable voltammetric signals for DA and UA with enhanced oxidation current values. Differential pulse voltammetric studies exhibit linear dependence on DA and UA concentrations in the range of 0.15-75 µM and 5 μM - 0.15 mM respectively. The detection limit values for DA and UA are determined to be 150 nM and 5 µM. In addition γ-Fe2O3 NWs modified electrode showed higher sensitivity, reduced overpotential along with good selectivity towards the determination of DA and UA even in the presence of other common interferents. Thus the proposed biosensor electrode is very easy to fabricate, eco-friendly, cheaper and possesses higher surface area suggesting the unique structural patterns of γ-Fe2O3 nanostructures to be a promising candidate for electrochemical bio-sensing and biomedical applications.
Collapse
Affiliation(s)
- Sasikala Sundar
- Electrodics and Electrocatalysis (EEC) Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi, Tamilnadu, 630003, India
| | - V Ganesh
- Electrodics and Electrocatalysis (EEC) Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi, Tamilnadu, 630003, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
36
|
Lavorato GC, Rubert AA, Xing Y, Das R, Robles J, Litterst FJ, Baggio-Saitovitch E, Phan MH, Srikanth H, Vericat C, Fonticelli MH. Shell-mediated control of surface chemistry of highly stoichiometric magnetite nanoparticles. NANOSCALE 2020; 12:13626-13636. [PMID: 32558841 DOI: 10.1021/acsanm.9b02449] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetite (Fe3O4) nanoparticles are one of the most studied nanomaterials for different nanotechnological and biomedical applications. However, Fe3O4 nanomaterials gradually oxidize to maghemite (γ-Fe2O3) under conventional environmental conditions leading to changes in their functional properties that determine their performance in many applications. Here we propose a novel strategy to control the surface chemistry of monodisperse 12 nm magnetite nanoparticles by means of a 3 nm-thick Zn-ferrite epitaxial coating in core/shell nanostructures. We have carried out a combined Mössbauer spectroscopy, dc magnetometry, X-ray photoelectron spectroscopy and spatially resolved electron energy loss spectroscopy study on iron oxide and Fe3O4/Zn0.6Fe2.4O4 core/shell nanoparticles aged under ambient conditions for 6 months. Our results reveal that while the aged iron oxide nanoparticles consist of a mixture of γ-Fe2O3 and Fe3O4, the Zn-ferrite-coating preserves a highly stoichiometric Fe3O4 core. Therefore, the aged core/shell nanoparticles present a sharp Verwey transition, an increased saturation magnetization and the possibility of tuning the effective anisotropy through exchange-coupling at the core/shell interface. The inhibition of the oxidation of the Fe3O4 cores can be accounted for in terms of the chemical nature of the shell layer and an epitaxial crystal symmetry matching between the core and the shell.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata - CONICET, 1900 La Plata, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xie M, Zhang W, Fan C, Wu C, Feng Q, Wu J, Li Y, Gao R, Li Z, Wang Q, Cheng Y, He B. Bioinspired Soft Microrobots with Precise Magneto-Collective Control for Microvascular Thrombolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000366. [PMID: 32430939 DOI: 10.1002/adma.202000366] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 05/22/2023]
Abstract
New-era soft microrobots for biomedical applications need to mimic the essential structures and collective functions of creatures from nature. Biocompatible interfaces, intelligent functionalities, and precise locomotion control in a collective manner are the key parameters to design soft microrobots for the complex bio-environment. In this work, a biomimetic magnetic microrobot (BMM) inspired by magnetotactic bacteria (MTB) with speedy motion response and accurate positioning is developed for targeted thrombolysis. Similar to the magnetosome structure in MTB, the BMM is composed of aligned iron oxide nanoparticle (MNP) chains embedded in a non-swelling microgel shell. Linear chains in BMMs are achieved due to the interparticle dipolar interactions of MNPs under a static magnetic field. Simulation results show that, the degree and speed of assembly is proportional to the field strength. The BMM achieves the maximum speed of 161.7 µm s-1 and accurate positioning control under a rotating magnetic field with less than 4% deviation. Importantly, the locomotion analyses of BMMs demonstrate the frequency-dependent synchronization under 8 Hz and asynchronization at higher frequencies due to the increased drag torque. The BMMs can deliver and release thrombolytic drugs via magneto-collective control, which is promising for ultra-minimal invasive thrombolysis.
Collapse
Affiliation(s)
- Meihua Xie
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
| | - Wei Zhang
- School of Electronics and Information Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Chengying Fan
- School of Electronics and Information Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Chu Wu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qishuai Feng
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
| | - Jiaojiao Wu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
| | - Yingze Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
| | - Rui Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
| | - Zhenguang Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Cheng
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai, 200123, China
| | - Bin He
- School of Electronics and Information Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| |
Collapse
|
38
|
Gu H, Lee SW, Carnicelli J, Zhang T, Ren D. Magnetically driven active topography for long-term biofilm control. Nat Commun 2020; 11:2211. [PMID: 32371860 PMCID: PMC7200660 DOI: 10.1038/s41467-020-16055-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Microbial biofilm formation on indwelling medical devices causes persistent infections that cannot be cured with conventional antibiotics. To address this unmet challenge, we engineer tunable active surface topographies with micron-sized pillars that can beat at a programmable frequency and force level in an electromagnetic field. Compared to the flat and static controls, active topographies with the optimized design prevent biofilm formation and remove established biofilms of uropathogenic Escherichia coli (UPEC), Pseudomonas aeruginosa, and Staphylococcus aureus, with up to 3.7 logs of biomass reduction. In addition, the detached biofilm cells are found sensitized to bactericidal antibiotics to the level comparable to exponential-phase planktonic cells. Based on these findings, a prototype catheter is engineered and found to remain clean for at least 30 days under the flow of artificial urine medium, while the control catheters are blocked by UPEC biofilms within 5 days.
Collapse
Affiliation(s)
- Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Joseph Carnicelli
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Teng Zhang
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
- Department of Mechanical and Aerospace Engineering, Syracuse University, 214 Link Hall, Syracuse, New York, 13244, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA.
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA.
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York, 13244, USA.
- Department of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York, 13244, USA.
| |
Collapse
|
39
|
Hassan M, Zhan H, Wang J, Liu J, Chen J. Self-Assembly Anisotropic Magnetic Nanowire Films Induced by External Magnetic Field. ChemistryOpen 2020; 9:588-592. [PMID: 32440462 PMCID: PMC7239272 DOI: 10.1002/open.202000106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/30/2020] [Indexed: 12/02/2022] Open
Abstract
Self-assembly generated materials induced by an external magnetic field have attracted considerable interest following the development of nanodevices. However, the fabrication of macroscopic and anisotropic magnetic films at the nanoscale remains a challenge. Here, anisotropic magnetic films are successfully prepared using a solution-based nanowire assembly strategy under a magnetic field. The assembly process is manipulated by changing the thickness of silica shell coated on the surface of magnetic nanowires. The anisotropic magnetic films show highly anisotropic magnetization under different angles of magnetic field and better magnetization properties than that of disordered magnetic films. The well-defined nanowire arrays enable magnetization anisotropic property which may be useful in the magnetic energy conversion technologies and biomedical sciences which lie far beyond those achievable with traditional magnetic materials.
Collapse
Affiliation(s)
- Muhammad Hassan
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of ChemistryUniversity of Science and Technology of ChinaHefei230026China
| | - Hui‐Juan Zhan
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of ChemistryUniversity of Science and Technology of ChinaHefei230026China
| | - Jin‐Long Wang
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of ChemistryUniversity of Science and Technology of ChinaHefei230026China
| | - Jian‐Wei Liu
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of ChemistryUniversity of Science and Technology of ChinaHefei230026China
| | - Jia‐Fu Chen
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of ChemistryUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
40
|
Myrovali E, Maniotis N, Samaras T, Angelakeris M. Spatial focusing of magnetic particle hyperthermia. NANOSCALE ADVANCES 2020; 2:408-416. [PMID: 36133972 PMCID: PMC9417684 DOI: 10.1039/c9na00667b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/24/2019] [Indexed: 05/09/2023]
Abstract
Magnetic particle hyperthermia is a promising cancer therapy, but a typical constraint of its applicability is localizing heat solely to malignant regions sparing healthy surrounding tissues. By simultaneous application of a constant magnetic field together with the hyperthermia inducing alternating magnetic field, heating focus may be confined to smaller regions in a tunable manner. The main objective of this work is to evaluate the focusing parameters, by adequate selection of magnetic nanoparticles and field conditions, and explore spatially focused magnetic particle hyperthermia efficiency in tissue phantom systems comprising agarose gel and magnetic nanoparticles. Our results suggest the possibility of spatially focused heating efficiency of magnetic nanoparticles through the application of a constant magnetic field. Tuning of the constant magnetic field parameters may result in minimizing thermal shock in surrounding regions without affecting the beneficiary thermal outcome in the focusing region.
Collapse
Affiliation(s)
- Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| | - Nikos Maniotis
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| | - Theodoros Samaras
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
- Department of Physics, University of Malta Msida MSD 2080 Malta
| | - Makis Angelakeris
- School of Physics, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH 57001 Thessaloniki Greece
| |
Collapse
|
41
|
Role of zinc substitution in magnetic hyperthermia properties of magnetite nanoparticles: interplay between intrinsic properties and dipolar interactions. Sci Rep 2019; 9:18048. [PMID: 31792227 PMCID: PMC6889006 DOI: 10.1038/s41598-019-54250-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/05/2019] [Indexed: 01/29/2023] Open
Abstract
Optimizing the intrinsic properties of magnetic nanoparticles for magnetic hyperthermia is of considerable concern. In addition, the heating efficiency of the nanoparticles can be substantially influenced by dipolar interactions. Since adequate control of the intrinsic properties of magnetic nanoparticles is not straightforward, experimentally studying the complex interplay between these properties and dipolar interactions affecting the specific loss power can be challenging. Substituting zinc in magnetite structure is considered as an elegant approach to tune its properties. Here, we present experimental and numerical simulation results of magnetic hyperthermia studies using a series of zinc-substituted magnetite nanoparticles (ZnxFe1-xFe2O4, x = 0.0, 0.1, 0.2, 0.3 and 0.4). All experiments were conducted in linear regime and the results were inferred based on the numerical simulations conducted in the framework of the linear response theory. The results showed that depending on the nanoparticles intrinsic properties, interparticle interactions can have different effects on the specific loss power. When dipolar interactions were strong enough to affect the heating efficiency, the parameter σ = KeffV/kBT (Keff is the effective anisotropy and V the volume of the particles) determined the type of the effect. Finally, the sample x = 0.1 showed a superior performance with a relatively high intrinsic loss power 5.4 nHm2kg-1.
Collapse
|
42
|
Iacovita C, Florea A, Scorus L, Pall E, Dudric R, Moldovan AI, Stiufiuc R, Tetean R, Lucaciu CM. Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1489. [PMID: 31635415 PMCID: PMC6835619 DOI: 10.3390/nano9101489] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/04/2023]
Abstract
Manganese and zinc ferrite magnetic nanoparticles (MNPs) were successfully synthesizedusing the polyol method in ethylene glycol and were found to have high saturation magnetizationvalues (90-95 emu/g at 4 K) when formed by ~30-nm crystallites assembled in an ~80-nm multicorestructure. Hyperthermia data revealed a sigmoidal dependence of the specific absorption rate (SAR)on the alternating magnetic field (AMF) amplitude, with remarkable saturation SAR values in waterof ~1200 W/gFe+Mn and ~800 W/gFe+Zn for the Mn and Zn ferrites, respectively. The immobilizationof the MNPs in a solid matrix reduced the maximum SAR values by ~300 W/gFe+Mn, Zn for bothferrites. The alignment of the MNPs in a uniform static magnetic field, before their immobilizationin a solid matrix, significantly increased their heating performance. Toxicity assays performed infour cell lines revealed a lower toxicity for the Mn ferrites, while in the case of the Zn ferrites, only~50% of cells were viable upon their incubation for 24 h with 0.2 mg/mL of MNPs. Cellular uptakeexperiments revealed that both MNPs entered the cells in a time-dependent manner, as they werefound initially in endosomes and later in the cytosol. All of the studied cell lines were more sensitiveto the ZnFe2O4 MNPs.
Collapse
Affiliation(s)
- Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.
| | - Lavinia Scorus
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.
| | - Emoke Pall
- Department of Reproduction Obstetrics and Veterinary Gynecology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania.
| | - Roxana Dudric
- Faculty of Physics, "Babes Bolyai" University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| | - Alin Iulian Moldovan
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania.
| | - Rares Stiufiuc
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania.
| | - Romulus Tetean
- Faculty of Physics, "Babes Bolyai" University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania.
| |
Collapse
|
43
|
Kotoulas A, Dendrinou-Samara C, Angelakeris M, Kalogirou O. The Effect of Polyol Composition on the Structural and Magnetic Properties of Magnetite Nanoparticles for Magnetic Particle Hyperthermia. MATERIALS 2019; 12:ma12172663. [PMID: 31438616 PMCID: PMC6747565 DOI: 10.3390/ma12172663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
A study of the influence of polyols, with or without an additional reducing agent, on crystallites’ size and magnetic features in Fe3O4 nanoparticles and on their performance in magnetic particle hyperthermia is presented. Three different samples were synthesized by thermal decomposition of an iron precursor in the presence of NaBH4 in a polyol. So far, triethylene glycol (TrEG) and polyethylene glycol (PEG 1000 and PEG 8000) that exhibit different physical and chemical properties have been used in order to investigate the influence of the polyols on the composition and the size of the NPs. Additionally, the presence of a different reducing agent such as hydrazine, has been tested for comparison reasons in case of TrEG. Three more samples were prepared solvothermally by using the same polyols, which led to different crystallite sizes. The magnetic core of the nanoparticles was characterized, while the presence of the surfactant was studied qualitatively and quantitatively. Concerning the magnetic features, all samples present magnetic hysteresis including remanence and coercivity revealing that they are thermally blocked at room temperature. Finally, a study on the influence of the MNPs heating efficiency from their size and the field amplitude was accomplished. In our polyol process the main idea was to control the specific loss power (SLP) values by the nanoparticles’ size and consequently by the polyol itself.
Collapse
Affiliation(s)
- Anastasios Kotoulas
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | | - Orestis Kalogirou
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
44
|
Avugadda SK, Materia ME, Nigmatullin R, Cabrera D, Marotta R, Cabada TF, Marcello E, Nitti S, Artés-Ibañez EJ, Basnett P, Wilhelm C, Teran FJ, Roy I, Pellegrino T. Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:5450-5463. [PMID: 31631940 PMCID: PMC6795213 DOI: 10.1021/acs.chemmater.9b00728] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/25/2019] [Indexed: 05/24/2023]
Abstract
Here, we report a nanoplatform based on iron oxide nanocubes (IONCs) coated with a bioresorbable polymer that, upon exposure to lytic enzymes, can be disassembled increasing the heat performances in comparison with the initial clusters. We have developed two-dimensional (2D) clusters by exploiting benchmark IONCs as heat mediators for magnetic hyperthermia and a polyhydroxyalkanoate (PHA) copolymer, a biodegradable polymer produced by bacteria that can be digested by intracellular esterase enzymes. The comparison of magnetic heat performance of the 2D assemblies with 3D centrosymmetrical assemblies or single IONCs emphasizes the benefit of the 2D assembly. Moreover, the heat losses of 2D assemblies dispersed in water are better than the 3D assemblies but worse than for single nanocubes. On the other hand, when the 2D magnetic beads (2D-MNBs) are incubated with the esterase enzyme at a physiological temperature, their magnetic heat performances began to progressively increase. After 2 h of incubation, specific absorption rate values of the 2D assembly double the ones of individually coated nanocubes. Such an increase can be mainly correlated to the splitting of the 2D-MNBs into smaller size clusters with a chain-like configuration containing few nanocubes. Moreover, 2D-MNBs exhibited nonvariable heat performances even after intentionally inducing their aggregation. Magnetophoresis measurements indicate a comparable response of 3D and 2D clusters to external magnets (0.3 T) that is by far faster than that of single nanocubes. This feature is crucial for a physical accumulation of magnetic materials in the presence of magnetic field gradients. This system is the first example of a nanoplatform that, upon exposure to lytic enzymes, such as those present in a tumor environment, can be disassembled from the initial 2D-MNB organization to chain-like assemblies with clear improvement of the heat magnetic losses resulting in better heat dissipation performances. The potential application of 2D nanoassemblies based on the cleavable PHAs for preserving their magnetic losses inside cells will benefit hyperthermia therapies mediated by magnetic nanoparticles under alternating magnetic fields.
Collapse
Affiliation(s)
- Sahitya Kumar Avugadda
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Dipartimento di Chimica
e Chimica Industriale, Università
di Genova, Via Dodecaneso,
31, 16146 Genova, Italy
| | | | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - David Cabrera
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
| | - Roberto Marotta
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | | | - Elena Marcello
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - Simone Nitti
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Emilio J. Artés-Ibañez
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
| | - Pooja Basnett
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes
(MSC) UMR 7057 CNRS and Université Paris Diderot, 75205 Paris Cedex
05, France
| | - Francisco J. Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología
(CSIC), Nanobiotecnología (iMdea
Nanociencia), 28049 Madrid, Spain
| | - Ipsita Roy
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | | |
Collapse
|
45
|
Balcells L, Stanković I, Konstantinović Z, Alagh A, Fuentes V, López-Mir L, Oró J, Mestres N, García C, Pomar A, Martínez B. Spontaneous in-flight assembly of magnetic nanoparticles into macroscopic chains. NANOSCALE 2019; 11:14194-14202. [PMID: 31198921 DOI: 10.1039/c9nr02314c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Knowing the interactions controlling aggregation processes in magnetic nanoparticles is of strong interest in preventing or promoting nanoparticles' aggregation at wish for different applications. Dipolar magnetic interactions, proportional to the particle volume, are identified as the key driving force behind the formation of macroscopic aggregates for particle sizes above about 20 nm. However, aggregates' shape and size are also strongly influenced by topological ordering. 1-D macroscopic chains of several micrometer lengths are obtained with cube-shaped magnetic nanoparticles prepared by the gas-aggregation technique. Using an analytical model and molecular dynamics simulations, the energy landscape of interacting cube-shaped magnetic nanoparticles is analysed revealing unintuitive dependence of the force acting on particles with the displacement and explaining pathways leading to their assembly into long linear chains. The mechanical behaviour and magnetic structure of the chains are studied by a combination of atomic and magnetic force measurements, and computer simulation. The results demonstrate that [111] magnetic anisotropy of the cube-shaped nanoparticles strongly influences chain assembly features.
Collapse
Affiliation(s)
- Lluis Balcells
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
SAXS Analysis of Magnetic Field Influence on Magnetic Nanoparticle Clusters. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4020055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we investigated the local colloidal structure of ferrofluid, in the presence of the external magnetic field. The nanoparticles studied here are of the core-shell type, with the core formed by manganese ferrite and maghemite shell, and were synthesized by the coprecipitation method in alkaline medium. Measures of Small Angle X-ray Scattering (SAXS) performed in the Brazilian Synchrotron Light Laboratory (LNLS) were used for the study of the local colloidal structure of ferrofluid, so it was possible to study two levels of structure, cluster and isolated particles, in the regimes with and without applied magnetic field. In the methodology used here there is a combination of the information obtained in the system with and without magnetic field application. In this way, it is possible to undertake a better investigation of the colloidal dispersion. The theoretical formalism used: (i) the unification equation proposed by Beaucage G.; (ii) the analysis of the radial distribution function p ( r ) and (iii) theoretical calculation of the radius of gyration as a function of the moment of inertia of the spherical of n-nanoparticles.
Collapse
|
47
|
Del Bianco L, Spizzo F, Barucca G, Ruggiero MR, Geninatti Crich S, Forzan M, Sieni E, Sgarbossa P. Mechanism of magnetic heating in Mn-doped magnetite nanoparticles and the role of intertwined structural and magnetic properties. NANOSCALE 2019; 11:10896-10910. [PMID: 31139801 DOI: 10.1039/c9nr03131f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the mechanism of heat generation, induced by an alternating magnetic field, in magnetite nanoparticles doped with manganese, produced by thermal decomposition from organometallic precursors. We investigate a set of four samples obtained by varying the duration of the reflux treatment carried out at a temperature of 300 °C during the synthetic procedure. On increasing this parameter from 60 to 180 minutes, the mean size of the nanoparticles increases, though remaining below 10 nm, as well as the saturation magnetization, which in all the samples, thanks to the Mn doping, is higher than that in magnetite nanoparticles taken as a reference. The combination of these two events has two main consequences. First, it determines the intensity of dipolar interactions between the nanoparticles, thus influencing their magnetic relaxing behavior, which, in turn, is closely related to the heating efficiency. Secondly, in a heating test, it is possible to operate in the regime of non-linear magnetic response of the nanoparticles at values of amplitude and frequency of the alternating field usually employed for biomedical applications. We show that, in this regime, the Specific Absorption Rate (SAR) in each sample depends linearly on the fraction of nanoparticles that are not superparamagnetic. This opens the possibility of modulating the heating capacity of the produced nanoparticles, so as to match specific needs, changing only a single synthesis parameter and opportunely exploiting the strict connection between structural features, magnetic properties and measurement conditions.
Collapse
Affiliation(s)
- L Del Bianco
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Asensio JM, Marbaix J, Mille N, Lacroix LM, Soulantica K, Fazzini PF, Carrey J, Chaudret B. To heat or not to heat: a study of the performances of iron carbide nanoparticles in magnetic heating. NANOSCALE 2019; 11:5402-5411. [PMID: 30854537 DOI: 10.1039/c8nr10235j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Heating magnetic nanoparticles with high frequency magnetic fields is a topic of interest for biological applications (magnetic hyperthermia) as well as for heterogeneous catalysis. This study shows why FeC NPs of similar structures and static magnetic properties display radically different heating power (SAR from 0 to 2 kW g-1). By combining results from Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and static and time-dependent high-frequency magnetic measurements, we propose a model describing the heating mechanism in FeC nanoparticles. Using, for the first time, time-dependent high-frequency hysteresis loop measurements, it is shown that in the samples displaying the larger heating powers, the hysteresis is strongly time dependent. More precisely, the hysteresis area increases by a factor 10 on a timescale of a few tens of seconds. This effect is directly related to the ability of the nanoparticles to form chains under magnetic excitation, which depends on the presence or not of strong dipolar couplings. These differences are due to different ligand concentrations on the surface of the particles. As a result, this study allows the design of a scalable synthesis of nanomaterials displaying a controllable and reproducible SAR.
Collapse
Affiliation(s)
- Juan M Asensio
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077 Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Araújo-Custódio S, Gomez-Florit M, Tomás AR, Mendes BB, Babo PS, Mithieux SM, Weiss A, Domingues RMA, Reis RL, Gomes ME. Injectable and Magnetic Responsive Hydrogels with Bioinspired Ordered Structures. ACS Biomater Sci Eng 2019; 5:1392-1404. [PMID: 33405615 DOI: 10.1021/acsbiomaterials.8b01179] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injectable hydrogels are particularly interesting for applications in minimally invasive tissue engineering and regenerative medicine strategies. However, the typical isotropic microstructure of these biomaterials limits their potential for the regeneration of ordered tissues. In the present work, we decorated rod-shaped cellulose nanocrystals with magnetic nanoparticles and coated these with polydopamine and polyethylene glycol polymer brushes to obtain chemical and colloidal stable nanoparticles. Then, these nanoparticles (0.1-0.5 wt %) were incorporated within gelatin hydrogels, creating injectable and magnetically responsive materials with potential for various biomedical applications. Nanoparticle alignment within the hydrogel matrix was achieved under exposure to uniform low magnetic fields (108 mT), resulting in biomaterials with directional microstructure and anisotropic mechanical properties. The biological performance of these nanocomposite hydrogels was studied using adipose tissue derived human stem cells. Cells encapsulated in the nanocomposite hydrogels showed high rates of viability demonstrating that the nanocomposite biomaterials are not cytotoxic. Remarkably, the microstructural patterns stemming from nanoparticle alignment induced the directional growth of seeded and, to a lower extent, encapsulated cells in the hydrogels, suggesting that this injectable system might find application in both cellular and acellular strategies targeting the regeneration of anisotropic tissues.
Collapse
Affiliation(s)
- Sandra Araújo-Custódio
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Gomez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana R Tomás
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara B Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro S Babo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Suzanne M Mithieux
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia.,School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anthony Weiss
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia.,School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
50
|
Efremova MV, Nalench YA, Myrovali E, Garanina AS, Grebennikov IS, Gifer PK, Abakumov MA, Spasova M, Angelakeris M, Savchenko AG, Farle M, Klyachko NL, Majouga AG, Wiedwald U. Size-selected Fe 3O 4-Au hybrid nanoparticles for improved magnetism-based theranostics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2684-2699. [PMID: 30416920 PMCID: PMC6204820 DOI: 10.3762/bjnano.9.251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/17/2018] [Indexed: 05/24/2023]
Abstract
Size-selected Fe3O4-Au hybrid nanoparticles with diameters of 6-44 nm (Fe3O4) and 3-11 nm (Au) were prepared by high temperature, wet chemical synthesis. High-quality Fe3O4 nanocrystals with bulk-like magnetic behavior were obtained as confirmed by the presence of the Verwey transition. The 25 nm diameter Fe3O4-Au hybrid nanomaterial sample (in aqueous and agarose phantom systems) showed the best characteristics for application as contrast agents in magnetic resonance imaging and for local heating using magnetic particle hyperthermia. Due to the octahedral shape and the large saturation magnetization of the magnetite particles, we obtained an extraordinarily high r 2-relaxivity of 495 mM-1·s-1 along with a specific loss power of 617 W·gFe -1 and 327 W·gFe -1 for hyperthermia in aqueous and agarose systems, respectively. The functional in vitro hyperthermia test for the 4T1 mouse breast cancer cell line demonstrated 80% and 100% cell death for immediate exposure and after precultivation of the cells for 6 h with 25 nm Fe3O4-Au hybrid nanomaterials, respectively. This confirms that the improved magnetic properties of the bifunctional particles present a next step in magnetic-particle-based theranostics.
Collapse
Affiliation(s)
- Maria V Efremova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Yulia A Nalench
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Eirini Myrovali
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anastasiia S Garanina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Ivan S Grebennikov
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Polina K Gifer
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Maxim A Abakumov
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow, 117997, Russia
| | - Marina Spasova
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| | - Makis Angelakeris
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| | - Natalia L Klyachko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Ulf Wiedwald
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen (CENIDE), Duisburg, 47057, Germany
| |
Collapse
|