1
|
Gu W, Wu G, Chen G, Meng X, Xie Z, Cai S. Polyphenols alleviate metabolic disorders: the role of ubiquitin-proteasome system. Front Nutr 2024; 11:1445080. [PMID: 39188976 PMCID: PMC11345163 DOI: 10.3389/fnut.2024.1445080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic disorders include obesity, nonalcoholic fatty liver disease, insulin resistance and type 2 diabetes. It has become a major health issue around the world. Ubiquitin-proteasome system (UPS) is essential for nearly all cellular processes, functions as a primary pathway for intracellular protein degradation. Recent researches indicated that dysfunctions in the UPS may result in the accumulation of toxic proteins, lipotoxicity, oxidative stress, inflammation, and insulin resistance, all of which contribute to the development and progression of metabolic disorders. An increasing body of evidence indicates that specific dietary polyphenols ameliorate metabolic disorders by preventing lipid synthesis and transport, excessive inflammation, hyperglycemia and insulin resistance, and oxidative stress, through regulation of the UPS. This review summarized the latest research progress of natural polyphenols improving metabolic disorders by regulating lipid accumulation, inflammation, oxidative stress, and insulin resistance through the UPS. In addition, the possible mechanisms of UPS-mediated prevention of metabolic disorders are comprehensively proposed. We aim to provide new angle to the development and utilization of polyphenols in improving metabolic disorders.
Collapse
Affiliation(s)
- Wei Gu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Xianghui Meng
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Shanbao Cai
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
2
|
Kumar A, Laborit Labrada B, Lavallée-Bourget MH, Forest MP, Schwab M, Bellmann K, Houde V, Beauchemin N, Laplante M, Marette A. Regulation of PPARγ2 Stability and Activity by SHP-1. Mol Cell Biol 2024; 44:261-272. [PMID: 38828991 PMCID: PMC11253886 DOI: 10.1080/10985549.2024.2354959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
The protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1) plays an important role in modulating glucose and lipid homeostasis. We previously suggested a potential role of SHP-1 in the regulation of peroxisome proliferator-activated receptor γ2 (PPARγ2) expression and activity but the mechanisms were unexplored. PPARγ2 is the master regulator of adipogenesis, but how its activity is regulated by tyrosine phosphorylation is largely unknown. Here, we found that SHP-1 binds to PPARγ2 primarily via its N-terminal SH2-domain. We confirmed the phosphorylation of PPARγ2 on tyrosine-residue 78 (Y78), which was reduced by SHP-1 in vitro resulting in decreased PPARγ2 stability. Loss of SHP-1 led to elevated, agonist-induced expression of the classical PPARγ2 targets FABP4 and CD36, concomitant with increased lipid content in cells expressing PPARγ2, an effect blunted by abrogation of PPARγ2 phosphorylation. Collectively, we discovered that SHP-1 affects the stability of PPARγ2 through dephosphorylation thereby influencing adipogenesis.
Collapse
Affiliation(s)
- Amit Kumar
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Beisy Laborit Labrada
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marie-Hélène Lavallée-Bourget
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marie-Pier Forest
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Michael Schwab
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Kerstin Bellmann
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Vanessa Houde
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer Research Centre, Departments of Oncology, Medicine and Biochemistry, McGill University, Montreal, QC, Canada
| | - Mathieu Laplante
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer, l’Université Laval, Québec, QC, Canada
| | - André Marette
- Centre de recherche de l‘Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec, QC, Canada
| |
Collapse
|
3
|
Xu X, Qiu H. BRD4 promotes gouty arthritis through MDM2-mediated PPARγ degradation and pyroptosis. Mol Med 2024; 30:67. [PMID: 38773379 PMCID: PMC11110350 DOI: 10.1186/s10020-024-00831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Gouty arthritis (GA) is characterized by monosodium urate (MSU) crystal accumulation that instigates NLRP3-mediated pyroptosis; however, the underlying regulatory mechanisms have yet to be fully elucidated. The present research endeavors to elucidate the regulatory mechanisms underpinning this MSU-induced pyroptotic cascade in GA. METHODS J774 cells were exposed to lipopolysaccharide and MSU crystals to establish in vitro GA models, whereas C57BL/6 J male mice received MSU crystal injections to mimic in vivo GA conditions. Gene and protein expression levels were evaluated using real-time quantitative PCR, Western blotting, and immunohistochemical assays. Inflammatory markers were quantified via enzyme-linked immunosorbent assays. Pyroptosis was evaluated using immunofluorescence staining for caspase-1 and flow cytometry with caspase-1/propidium iodide staining. The interaction between MDM2 and PPARγ was analyzed through co-immunoprecipitation assays, whereas the interaction between BRD4 and the MDM2 promoter was examined using chromatin immunoprecipitation and dual-luciferase reporter assays. Mouse joint tissues were histopathologically evaluated using hematoxylin and eosin staining. RESULTS In GA, PPARγ was downregulated, whereas its overexpression mitigated NLRP3 inflammasome activation and pyroptosis. MDM2, which was upregulated in GA, destabilized PPARγ through the ubiquitin-proteasome degradation pathway, whereas its silencing attenuated NLRP3 activation by elevating PPARγ levels. Concurrently, BRD4 was elevated in GA and exacerbated NLRP3 activation and pyroptosis by transcriptionally upregulating MDM2, thereby promoting PPARγ degradation. In vivo experiments showed that BRD4 silencing ameliorated GA through this MDM2-PPARγ-pyroptosis axis. CONCLUSION BRD4 promotes inflammation and pyroptosis in GA through MDM2-mediated PPARγ degradation, underscoring the therapeutic potential of targeting this pathway in GA management.
Collapse
Affiliation(s)
- Xiaoxia Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, People's Republic of China
| | - Hongbin Qiu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, People's Republic of China.
| |
Collapse
|
4
|
Zou Y, Zhang Y, Li M, Cao K, Song C, Zhang Z, Cai K, Geng D, Chen S, Wu Y, Zhang N, Sun G, Wang J, Zhang Y, Sun Y. Regulation of lipid metabolism by E3 ubiquitin ligases in lipid-associated metabolic diseases. Int J Biol Macromol 2024; 265:130961. [PMID: 38508558 DOI: 10.1016/j.ijbiomac.2024.130961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.
Collapse
Affiliation(s)
- Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Mohan Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Jing Wang
- Department of Hematology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
5
|
Nishijima T, Yamashita Y, Ashida H. Black soybean seed coat polyphenols have different effects on glucose and lipid metabolism in growing and young adult mice. Food Funct 2024; 15:1004-1020. [PMID: 38180075 DOI: 10.1039/d3fo04269c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Black soybean contains flavan-3-ols and cyanidin 3-O-glucoside in its seed coat. Polyphenol-rich black soybean seed coat extract (BE) possesses various health benefits, such as antioxidant, anti-obesity, and anti-hyperglycemic effects. However, these functions have been evaluated mainly in the growing stage of animals, and there is no comparison data for different life stages. In this present study, we compared the effect of BE in growing (5-week old) and young adult (22-week old) ICR male mice. These mice were given an AIN 93M diet containing 2.0% BE for 4 weeks. BE did not affect body weight gain in both growing and young adult mice, but it suppressed mesenteric and subcutaneous white adipose tissue weights and decreased the cell size. BE also significantly suppressed plasma free-fatty acid levels. The effect of both BE and life stages were observed in the protein expression of adipogenesis-related transcription factors; in particular, BE suppressed the expression of C/EBPα and PPARγ. No significant change was observed in lipolysis and lipogenesis factors in the white adipose tissue and liver. Alternatively, BE showed low glucose tolerance without affecting plasma insulin levels after glucose loading in young adult mice, as seen from the results of the oral glucose tolerance test. However, plasma glucose and insulin levels remained unchanged at the end of the experimental period. In conclusion, these results strongly suggest that the health-beneficial effects of BE may alter in mice at different life stages.
Collapse
Affiliation(s)
- Toshiki Nishijima
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
6
|
Ran H, Li C, Zhang M, Zhong J, Wang H. Neglected PTM in Animal Adipogenesis: E3-mediated Ubiquitination. Gene 2023:147574. [PMID: 37336271 DOI: 10.1016/j.gene.2023.147574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Ubiquitination is a widespread post-transcriptional modification (PTM) that occurs during protein degradation in eukaryotes and participates in almost all physiological and pathological processes, including animal adipogenesis. Ubiquitination is a cascade reaction regulated by the activating enzyme E1, conjugating enzyme E2, and ligase E3. Several recent studies have reported that E3 ligases play important regulatory roles in adipogenesis. However, as a key influencing factor for the recognition and connection between the substrate and ubiquitin during ubiquitination, its regulatory role in adipogenesis has not received adequate attention. In this review, we summarize the E3s' regulation and modification targets in animal adipogenesis, explain the regulatory mechanisms in lipogenic-related pathways, and further analyze the existing positive results to provide research directions of guiding significance for further studies on the regulatory mechanisms of E3s in animal adipogenesis.
Collapse
Affiliation(s)
- Hongbiao Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Chunyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
7
|
11,12-EET Regulates PPAR-γ Expression to Modulate TGF-β-Mediated Macrophage Polarization. Cells 2023; 12:cells12050700. [PMID: 36899838 PMCID: PMC10000544 DOI: 10.3390/cells12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Macrophages are highly plastic immune cells that can be reprogrammed to pro-inflammatory or pro-resolving phenotypes by different stimuli and cell microenvironments. This study set out to assess gene expression changes associated with the transforming growth factor (TGF)-β-induced polarization of classically activated macrophages into a pro-resolving phenotype. Genes upregulated by TGF-β included Pparg; which encodes the transcription factor peroxisome proliferator-activated receptor (PPAR)-γ, and several PPAR-γ target genes. TGF-β also increased PPAR-γ protein expression via activation of the Alk5 receptor to increase PPAR-γ activity. Preventing PPAR-γ activation markedly impaired macrophage phagocytosis. TGF-β repolarized macrophages from animals lacking the soluble epoxide hydrolase (sEH); however, it responded differently and expressed lower levels of PPAR-γ-regulated genes. The sEH substrate 11,12-epoxyeicosatrienoic acid (EET), which was previously reported to activate PPAR-γ, was elevated in cells from sEH-/- mice. However, 11,12-EET prevented the TGF-β-induced increase in PPAR-γ levels and activity, at least partly by promoting proteasomal degradation of the transcription factor. This mechanism is likely to underlie the impact of 11,12-EET on macrophage activation and the resolution of inflammation.
Collapse
|
8
|
Fan Y, Xu F, Wang R, He J. Lysine 222 in PPAR γ1 functions as the key site of MuRF2-mediated ubiquitination modification. Sci Rep 2023; 13:1999. [PMID: 36737649 PMCID: PMC9898238 DOI: 10.1038/s41598-023-28905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR γ) plays key roles in the development, physiology, reproduction, and homeostasis of organisms. Its expression and activity are regulated by various posttranslational modifications. We previously reported that E3 ubiquitin ligase muscle ring finger protein 2 (MuRF2) inhibits cardiac PPAR γ1 protein level and activity, eventually protects heart from diabetic cardiomyopathy; furthermore, by GST-pulldown assay, we found that MuRF2 modifies PPAR γ1 via poly-ubiquitination and accelerates PPAR γ1 proteasomal degradation. However, the key ubiquitination site on PPAR γ that MuRF2 targets for remains unclear. In the present study, we demonstrate that lysine site 222 is the receptor of MuRF2-mediated PPAR γ1 ubiquitination modification, using prediction of computational models, immunoprecipitation, ubiquitination assays, cycloheximide chasing assay and RT-qPCR. Our findings elucidated the underlying details of MuRF2 prevents heart from diabetic cardiomyopathy through the PPAR γ1 regulatory pathway.
Collapse
Affiliation(s)
- Yucheng Fan
- Department of Pathology, The First People's Hospital of Shizuishan, Affiliated to Ningxia Medical University, Shizuishan, China
| | - Fangjing Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Rui Wang
- School of Basic Medical Sciences , Ningxia Medical University, Yinchuan, China
| | - Jun He
- Department of Cardiovascular Internal Medicine, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
9
|
The Potential Roles of Post-Translational Modifications of PPARγ in Treating Diabetes. Biomolecules 2022; 12:biom12121832. [PMID: 36551260 PMCID: PMC9775095 DOI: 10.3390/biom12121832] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The number of patients with type 2 diabetes mellitus (T2DM), which is mainly characterized by insulin resistance and insulin secretion deficiency, has been soaring in recent years. Accompanied by many other metabolic syndromes, such as cardiovascular diseases, T2DM represents a big challenge to public health and economic development. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear receptor that is critical in regulating glucose and lipid metabolism, has been developed as a powerful drug target for T2DM, such as thiazolidinediones (TZDs). Despite thiazolidinediones (TZDs), a class of PPARγ agonists, having been proven to be potent insulin sensitizers, their use is restricted in the treatment of diabetes for their adverse effects. Post-translational modifications (PTMs) have shed light on the selective activation of PPARγ, which shows great potential to circumvent TZDs' side effects while maintaining insulin sensitization. In this review, we will focus on the potential effects of PTMs of PPARγ on treating T2DM in terms of phosphorylation, acetylation, ubiquitination, SUMOylation, O-GlcNAcylation, and S-nitrosylation. A better understanding of PTMs of PPARγ will help to design a new generation of safer compounds targeting PPARγ to treat type 2 diabetes.
Collapse
|
10
|
The Role of Transcription Factor PPAR-γ in the Pathogenesis of Psoriasis, Skin Cells, and Immune Cells. Int J Mol Sci 2022; 23:ijms23179708. [PMID: 36077103 PMCID: PMC9456565 DOI: 10.3390/ijms23179708] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
The peroxisome proliferator-activated receptor PPAR-γ is one of three PPAR nuclear receptors that act as ligand-activated transcription factors. In immune cells, the skin, and other organs, PPAR-γ regulates lipid, glucose, and amino acid metabolism. The receptor translates nutritional, pharmacological, and metabolic stimuli into the changes in gene expression. The activation of PPAR-γ promotes cell differentiation, reduces the proliferation rate, and modulates the immune response. In the skin, PPARs also contribute to the functioning of the skin barrier. Since we know that the route from identification to the registration of drugs is long and expensive, PPAR-γ agonists already approved for other diseases may also represent a high interest for psoriasis. In this review, we discuss the role of PPAR-γ in the activation, differentiation, and proliferation of skin and immune cells affected by psoriasis and in contributing to the pathogenesis of the disease. We also evaluate whether the agonists of PPAR-γ may become one of the therapeutic options to suppress the inflammatory response in lesional psoriatic skin and decrease the influence of comorbidities associated with psoriasis.
Collapse
|
11
|
Wang C, Zhang X, Luo L, Luo Y, Wu D, Spilca D, Le Q, Yang X, Alvarez K, Hines WC, Yang XO, Liu M. COX-2 Deficiency Promotes White Adipogenesis via PGE2-Mediated Paracrine Mechanism and Exacerbates Diet-Induced Obesity. Cells 2022; 11:1819. [PMID: 35681514 PMCID: PMC9180646 DOI: 10.3390/cells11111819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) plays a critical role in regulating innate immunity and metabolism by producing prostaglandins (PGs) and other lipid mediators. However, the implication of adipose COX-2 in obesity remains largely unknown. Using adipocyte-specific COX-2 knockout (KO) mice, we showed that depleting COX-2 in adipocytes promoted white adipose tissue development accompanied with increased size and number of adipocytes and predisposed diet-induced adiposity, obesity, and insulin resistance. The increased size and number of adipocytes by COX-2 KO were reversed by the treatment of prostaglandin E2 (PGE2) but not PGI2 and PGD2 during adipocyte differentiation. PGE2 suppresses PPARγ expression through the PKA pathway at the early phase of adipogenesis, and treatment of PGE2 or PKA activator isoproterenol diminished the increased lipid droplets in size and number in COX-2 KO primary adipocytes. Administration of PGE2 attenuated increased fat mass and fat percentage in COX-2 deficient mice. Taken together, our study demonstrated the suppressing effect of adipocyte COX-2 on adipogenesis and reveals that COX-2 restrains adipose tissue expansion via the PGE2-mediated paracrine mechanism and prevents the development of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (D.W.); (X.O.Y.)
| | - Dianna Spilca
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Que Le
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Katelyn Alvarez
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - William Curtis Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (D.W.); (X.O.Y.)
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (C.W.); (X.Z.); (L.L.); (Y.L.); (D.S.); (Q.L.); (X.Y.); (K.A.); (W.C.H.)
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
12
|
Li K, Niu Y, Yuan Y, Qiu J, Shi Y, Zhong C, Qiu Z, Li K, Lin Z, Huang Z, Zhang C, Zuo D, He W, Yuan Y, Li B. Insufficient ablation induces E3-ligase Nedd4 to promote hepatocellular carcinoma progression by tuning TGF-β signaling. Oncogene 2022; 41:3197-3209. [DOI: 10.1038/s41388-022-02334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
|
13
|
Yin L, Wang L, Shi Z, Ji X, Liu L. The Role of Peroxisome Proliferator-Activated Receptor Gamma and Atherosclerosis: Post-translational Modification and Selective Modulators. Front Physiol 2022; 13:826811. [PMID: 35309069 PMCID: PMC8924581 DOI: 10.3389/fphys.2022.826811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is the hallmark of cardiovascular disease (CVD) which is a leading cause of death in type 2 diabetes patients, and glycemic control is not beneficial in reducing the potential risk of CVD. Clinically, it was shown that Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor gamma (PPARγ) agonists, are insulin sensitizers with reducing risk of CVD, while the potential adverse effects, such as weight gain, fluid retention, bone loss, and cardiovascular risk, restricts its use in diabetic treatment. PPARγ, a ligand-activated nuclear receptor, has shown to play a crucial role in anti-atherosclerosis by promoting cholesterol efflux, repressing monocytes infiltrating into the vascular intima under endothelial layer, their transformation into macrophages, and inhibiting vascular smooth muscle cells proliferation as well as migration. The selective activation of subsets of PPARγ targets, such as through PPARγ post-translational modification, is thought to improve the safety profile of PPARγ agonists. Here, this review focuses on the significance of PPARγ activity regulation (selective activation and post-translational modification) in the occurrence, development and treatment of atherosclerosis, and further clarifies the value of PPARγ as a safe therapeutic target for anti-atherosclerosis especially in diabetic treatment.
Collapse
Affiliation(s)
- Liqin Yin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lihui Wang
- Department of Medical Imaging, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University, Shanghai, China
| | - Zunhan Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaohui Ji
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Longhua Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Longhua Liu,
| |
Collapse
|
14
|
Chiao CC, Liu YH, Phan NN, An Ton NT, Ta HDK, Anuraga G, Minh Xuan DT, Fitriani F, Putri Hermanto EM, Athoillah M, Andriani V, Ajiningrum PS, Wu YF, Lee KH, Chuang JY, Wang CY, Kao TJ. Prognostic and Genomic Analysis of Proteasome 20S Subunit Alpha (PSMA) Family Members in Breast Cancer. Diagnostics (Basel) 2021; 11:diagnostics11122220. [PMID: 34943457 PMCID: PMC8699889 DOI: 10.3390/diagnostics11122220] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
The complexity of breast cancer includes many interacting biological processes, and proteasome alpha (PSMA) subunits are reported to be involved in many cancerous diseases, although the transcriptomic expression of this gene family in breast cancer still needs to be more thoroughly investigated. Consequently, we used a holistic bioinformatics approach to study the PSMA genes involved in breast cancer by integrating several well-established high-throughput databases and tools, such as cBioPortal, Oncomine, and the Kaplan–Meier plotter. Additionally, correlations of breast cancer patient survival and PSMA messenger RNA expressions were also studied. The results demonstrated that breast cancer tissues had higher expression levels of PSMA genes compared to normal breast tissues. Furthermore, PSMA2, PSMA3, PSMA4, PSMA6, and PSMA7 showed high expression levels, which were correlated with poor survival of breast cancer patients. In contrast, PSMA5 and PSMA8 had high expression levels, which were associated with good prognoses. We also found that PSMA family genes were positively correlated with the cell cycle, ubiquinone metabolism, oxidative stress, and immune response signaling, including antigen presentation by major histocompatibility class, interferon-gamma, and the cluster of differentiation signaling. Collectively, these findings suggest that PSMA genes have the potential to serve as novel biomarkers and therapeutic targets for breast cancer. Nevertheless, the bioinformatic results from the present study would be strengthened with experimental validation in the future by prospective studies on the underlying biological mechanisms of PSMA genes and breast cancer.
Collapse
Affiliation(s)
- Chung-Chieh Chiao
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Yen-Hsi Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Nu Thuy An Ton
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Gangga Anuraga
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Fenny Fitriani
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Elvira Mustikawati Putri Hermanto
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (V.A.); (P.S.A.)
| | - Purity Sabila Ajiningrum
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (V.A.); (P.S.A.)
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Kuen-Haur Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jian-Ying Chuang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
- Correspondence: (C.-Y.W.); (T.-J.K.)
| | - Tzu-Jen Kao
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (C.-Y.W.); (T.-J.K.)
| |
Collapse
|
15
|
Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochem Pharmacol 2021; 193:114764. [PMID: 34529948 DOI: 10.1016/j.bcp.2021.114764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver disease (CLD) is considered the leading cause of global mortality. In westernized countries, increased consumption of alcohol and overeating foods with high fat/ high glucose promote progression of CLD such as alcoholic liver disease (ALD) and non-alcoholic liver disease (NAFLD). Accumulating evidence and research suggest that ubiquitin, a 75 amino acid protein, plays crucial role in the pathogenesis of CLD through dynamic post-translational modifications (PTMs) exerting diverse cellular outcomes such as protein degradation through ubiquitin-proteasome system (UPS) and autophagy, and regulation of signal transduction. In this review, we present the function of ubiquitination and latest findings on diverse mechanism of PTMs, UPS and autophagy which significantly contribute to the pathogenesis of alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cirrhosis, and HCC. Despite its high prevalence, morbidity, and mortality, there are only few FDA approved drugs that could be administered to CLD patients. The goal of this review is to present a variety of pathways and therapeutic targets involving ubiquitination in the pathogenesis of CLD. Further, this review summarizes collective views of pharmaceutical inhibition or activation of recent drugs targeting UPS and autophagy system to highlight potential targets and new approaches to treat CLD.
Collapse
Affiliation(s)
- Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
16
|
Zhao GN, Tian ZW, Tian T, Zhu ZP, Zhao WJ, Tian H, Cheng X, Hu FJ, Hu ML, Tian S, Ding T, Chen S, Ji YX, Zhang P, Zhang XJ, She ZG, Yuan Y, Chen W, Bai L, Li H. TMBIM1 is an inhibitor of adipogenesis and its depletion promotes adipocyte hyperplasia and improves obesity-related metabolic disease. Cell Metab 2021; 33:1640-1654.e8. [PMID: 34107313 DOI: 10.1016/j.cmet.2021.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/12/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023]
Abstract
Obesity is characterized by the excessive accumulation of the white adipose tissue (WAT), but healthy expansion of WAT via adipocyte hyperplasia can offset the negative metabolic effects of obesity. Thus, identification of novel adipogenesis regulators that promote hyperplasia may lead to effective therapies for obesity-induced metabolic disorders. Using transcriptomic approaches, we identified transmembrane BAX inhibitor motif-containing 1 (TMBIM1) as an inhibitor of adipogenesis. Gain or loss of function of TMBIM1 in preadipocytes inhibited or promoted adipogenesis, respectively. In vivo, in response to caloric excess, adipocyte precursor (AP)-specific Tmbim1 knockout (KO) mice displayed WAT hyperplasia and improved systemic metabolic health, while overexpression of Tmbim1 in transgenic mice showed the opposite effects. Moreover, mature adipocyte-specific Tmbim1 KO did not affect WAT cellularity or nutrient homeostasis. Mechanistically, TMBIM1 binds to and promotes the autoubiquitination and degradation of NEDD4, which is an E3 ligase that stabilizes PPARγ. Our data show that TMBIM1 is a potent repressor of adipogenesis and a potential therapeutic target for obesity-related metabolic disease.
Collapse
Affiliation(s)
- Guang-Nian Zhao
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zheng-Wei Tian
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tian Tian
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Peng Zhu
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Wen-Jie Zhao
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Han Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xu Cheng
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng-Jiao Hu
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Man-Li Hu
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ting Ding
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Siping Chen
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Yan-Xiao Ji
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China.
| | - Wenping Chen
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Lan Bai
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Hongliang Li
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| |
Collapse
|
17
|
Chen Y, Wu R, Chen W, Liu Y, Liao X, Zeng B, Guo G, Lou F, Xiang Y, Wang Y, Wang X. Curcumin prevents obesity by targeting TRAF4-induced ubiquitylation in m 6 A-dependent manner. EMBO Rep 2021; 22:e52146. [PMID: 33880847 PMCID: PMC8097347 DOI: 10.15252/embr.202052146] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity has become a major health problem that has rapidly prevailed over the past several decades worldwide. Curcumin, a natural polyphenolic compound present in turmeric, has been shown to have a protective effect on against obesity and metabolic diseases. However, its underlying mechanism remains largely unknown. Here, we show that the administration of curcumin significantly prevents HFD-induced obesity and decreases the fat mass of the subcutaneous inguinal WAT (iWAT) and visceral epididymal WAT (eWAT) in mice. Mechanistically, curcumin inhibits adipogenesis by reducing the expression of AlkB homolog 5 (ALKHB5), an m6 A demethylase, which leads to higher m6 A-modified TNF receptor-associated factor 4 (TRAF4) mRNA. TRAF4 mRNA with higher m6 A level is recognized and bound by YTHDF1, leading to enhanced translation of TRAF4. TRAF4, acting as an E3 RING ubiquitin ligase, promotes degradation of adipocyte differentiation regulator PPARγ by a ubiquitin-proteasome pathway thereby inhibiting adipogenesis. Thus, m6 A-dependent TRAF4 expression upregulation by ALKBH5 and YTHDF1 contributes to curcumin-induced obesity prevention. Our findings provide mechanistic insights into how m6 A is involved in the anti-obesity effect of curcumin.
Collapse
Affiliation(s)
- Yushi Chen
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhouChina
- Key Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Ruifan Wu
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhouChina
- Key Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Wei Chen
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhouChina
- Key Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Youhua Liu
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhouChina
- Key Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Xing Liao
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhouChina
- Key Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Botao Zeng
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhouChina
- Key Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Guanqun Guo
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhouChina
- Key Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Fangfang Lou
- Jinhua Academy of Agricultural SciencesJinhuaChina
| | - Yun Xiang
- Jinhua Academy of Agricultural SciencesJinhuaChina
| | - Yizhen Wang
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhouChina
- Key Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| | - Xinxia Wang
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhouChina
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhouChina
- Key Laboratory of Animal Feed and Nutrition of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
18
|
de Carvalho MV, Gonçalves-de-Albuquerque CF, Silva AR. PPAR Gamma: From Definition to Molecular Targets and Therapy of Lung Diseases. Int J Mol Sci 2021; 22:E805. [PMID: 33467433 PMCID: PMC7830538 DOI: 10.3390/ijms22020805] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate the expression of genes related to lipid and glucose metabolism and inflammation. There are three members: PPARα, PPARβ or PPARγ. PPARγ have several ligands. The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands, we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT) or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein (MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases. Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury and including definition and mechanisms of regulation, biological effects and molecular targets, and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-based therapy.
Collapse
Affiliation(s)
- Márcia V. de Carvalho
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
| | - Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
19
|
Noh KH, Kang HM, Yoo W, Min Y, Kim D, Kim M, Wang S, Lim JH, Jung CR. Ubiquitination of PPAR-gamma by pVHL inhibits ACLY expression and lipid metabolism, is implicated in tumor progression. Metabolism 2020; 110:154302. [PMID: 32589900 DOI: 10.1016/j.metabol.2020.154302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/29/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Intracellular lipid accumulation is associated with various diseases, particularly cancer. Mitochondrial dysfunction is considered as a cause of lipid accumulation; however, the related underlying mechanism remains unclear. FINDINGS We found that Von Hippel-Lindau (VHL)-deficiency led to lipid accumulation and mitochondrial dysfunction in renal cell carcinoma cells. Moreover, VHL downregulated ATP-citrate lyase (ACLY), a key enzyme in de novo lipid synthesis, at the transcriptional level, which inhibited intracellular lipid accumulation in human renal carcinoma tissues. We identified PPARγ as the transcription factor regulating ACLY expression by binding to the cis-regulatory site PPRE on its promoter. VHL directly interacted with and promoted ubiquitination of PPARγ, leading to its degradation both in vitro and in vivo, resulting in the downregulation of ACLY. Furthermore, adenovirus-mediated VHL overexpression substantially ameliorated hepatic steatosis induced by a high-fat diet in db/db mice. Importantly, low VHL expression was associated with high ACLY expression and poor prognosis in human liver carcinoma in a dataset in The Cancer Genome Atlas. CONCLUSIONS VHL plays role in cellular lipid metabolism via regulating mitochondria and targeting PPARγ, a transcription factor for ACLY independent of hypoxia-inducible factor 1α. A novel VHL-PPARγ-ACLY axis and its implication in fatty liver disease and cancer were uncovered.
Collapse
Affiliation(s)
- Kyung Hee Noh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea.
| | - Hyun Mi Kang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Wonbeak Yoo
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Yoohong Min
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea; Department of Biology, Chungnam National University, 34134 Daejeon, Republic of Korea
| | - Daehun Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea
| | - Mijin Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea; Department of Microbiology, Chungbuk National University, 28644, Chungbuk, Republic of Korea
| | - Sihyung Wang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea.
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Sangphech N, Keawvilai P, Palaga T. Notch signaling increases PPARγ protein stability and enhances lipid uptake through AKT in IL-4-stimulated THP-1 and primary human macrophages. FEBS Open Bio 2020; 10:1082-1095. [PMID: 32274896 PMCID: PMC7262939 DOI: 10.1002/2211-5463.12858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
Notch signaling and nuclear receptor PPARγ are involved in macrophage polarization, but cross talk between them has not been reported in macrophages. In this study, the effect of Notch signaling on PPARγ in IL‐4‐stimulated human macrophages (M(IL‐4)) was investigated using THP‐1‐derived macrophages and human monocyte‐derived macrophages as models. Human M(IL‐4) increased the expression of JAGGED1 and activated Notch signaling. Overexpression of Notch1 intracellular domain (NIC1) increased PPARγ expression, while inhibiting Notch signaling decreased PPARγ levels in M(IL‐4). NIC1 overexpression in THP‐1‐derived macrophages increased PPARγ protein stability by delaying its proteasome‐mediated degradation, but did not affect its mRNA. Phosphorylation of AKT was enhanced in NIC1‐overexpressing cells, and a specific AKT inhibitor reduced the level of PPARγ. NIC1‐overexpressing THP‐1 cells exhibited increased CD36 levels via activation of PPARγ, resulting in enhanced intracellular lipid accumulation. In summary, this study provides evidence linking Notch signaling and PPARγ via AKT in M(IL‐4).
Collapse
Affiliation(s)
- Naunpun Sangphech
- Inter-disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Pornlapat Keawvilai
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand.,Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Comparative Study of PPAR γ Targets in Human Extravillous and Villous Cytotrophoblasts. PPAR Res 2020; 2020:9210748. [PMID: 32308672 PMCID: PMC7152979 DOI: 10.1155/2020/9210748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Trophoblasts, as the cells that make up the main part of the placenta, undergo cell differentiation processes such as invasion, migration, and fusion. Abnormalities in these processes can lead to a series of gestational diseases whose underlying mechanisms are still unclear. One protein that has proven to be essential in placentation is the peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in the nuclei of extravillous cytotrophoblasts (EVCTs) in the first trimester and villous cytotrophoblasts (VCTs) throughout pregnancy. Here, we aimed to explore the genome-wide effects of PPARγ on EVCTs and VCTs via treatment with the PPARγ-agonist rosiglitazone. EVCTs and VCTs were purified from human chorionic villi, cultured in vitro, and treated with rosiglitazone. The transcriptomes of both types of cells were then quantified using microarray profiling. Differentially expressed genes (DEGs) were filtered and submitted for gene ontology (GO) annotation and pathway analysis with ClueGO. The online tool STRING was used to predict PPARγ and DEG protein interactions, while iRegulon was used to predict the binding sites for PPARγ and DEG promoters. GO and pathway terms were compared between EVCTs and VCTs with clusterProfiler. Visualizations were prepared in Cytoscape. From our microarray data, 139 DEGs were detected in rosiglitazone-treated EVCTs (RT-EVCTs) and 197 DEGs in rosiglitazone-treated VCTs (RT-VCTs). Downstream annotation analysis revealed the similarities and differences between RT-EVCTs and RT-VCTs with respect to the biological processes, molecular functions, cellular components, and KEGG pathways affected by the treatment, as well as predicted binding sites for both protein-protein interactions and transcription factor-target gene interactions. These results provide a broad perspective of PPARγ-activated processes in trophoblasts; further analysis of the transcriptomic signatures of RT-EVCTs and RT-VCTs should open new avenues for future research and contribute to the discovery of possible drug-targeted genes or pathways in the human placenta.
Collapse
|
22
|
Dou H, Duan Y, Zhang X, Yu Q, Di Q, Song Y, Li P, Gong Y. Aryl hydrocarbon receptor (AhR) regulates adipocyte differentiation by assembling CRL4B ubiquitin ligase to target PPARγ for proteasomal degradation. J Biol Chem 2019; 294:18504-18515. [PMID: 31653699 DOI: 10.1074/jbc.ra119.009282] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is the central regulator of adipogenesis, and its dysregulation is linked to obesity and metabolic diseases. Identification of the factors that regulate PPARγ expression and activity is therefore crucial for combating obesity. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with a known role in xenobiotic detoxification. Recent studies have suggested that AhR also plays essential roles in energy metabolism. However, the detailed mechanisms remain unclear. We previously reported that experiments with adipocyte-specific Cullin 4b (Cul4b)-knockout mice showed that CUL4B suppresses adipogenesis by targeting PPARγ. Here, using immunoprecipitation, ubiquitination, real-time PCR, and GST-pulldown assays, we report that AhR functions as the substrate receptor in CUL4B-RING E3 ubiquitin ligase (CRL4B) complex and is required for recruiting PPARγ. AhR overexpression reduced PPARγ stability and suppressed adipocyte differentiation, and AhR knockdown stimulated adipocyte differentiation in 3T3-L1 cells. Furthermore, we found that two lysine sites on residues 268 and 293 in PPARγ are targeted for CRL4B-mediated ubiquitination, indicating cross-talk between acetylation and ubiquitination. Our findings establish a critical role of AhR in regulating PPARγ stability and suggest that the AhR-PPARγ interaction may represent a potential therapeutic target for managing metabolic diseases arising from PPARγ dysfunction.
Collapse
Affiliation(s)
- Hao Dou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yuyao Duan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qian Yu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qian Di
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yu Song
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Peishan Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
23
|
Abstract
Excessive intake of high-energy diets is an important cause of most obesity. The intervention of rats with high-fat diet can replicate the ideal animal model for studying the occurrence of human nutritional obesity. Proteomics and bioinformatics analyses can help us to systematically and comprehensively study the effect of high-fat diet on rat liver. In the present study, 4056 proteins were identified in rat liver by using tandem mass tag. A total of 198 proteins were significantly changed, of which 103 were significantly up-regulated and ninety-five were significantly down-regulated. These significant differentially expressed proteins are primarily involved in lipid metabolism and glucose metabolism processes. The intake of a high-fat diet forces the body to maintain physiological balance by regulating these key protein spots to inhibit fatty acid synthesis, promote fatty acid oxidation and accelerate fatty acid degradation. The present study enriches our understanding of metabolic disorders induced by high-fat diets at the protein level.
Collapse
|
24
|
Liu J, Yao Q, Xiao L, Ma W, Li F, Lai B, Wang N. PPARγ induces NEDD4 gene expression to promote autophagy and insulin action. FEBS J 2019; 287:529-545. [PMID: 31423749 DOI: 10.1111/febs.15042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/24/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
Abstract
The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated protein 4 (NEDD4) plays a crucial role in governing a number of signaling pathways, including insulin and autophagy signaling. However, the molecular mechanism by which NEDD4 gene is transcriptionally regulated has not been fully elucidated. Here, we reported that NEDD4 mRNA and protein levels were increased by peroxisome proliferator-activated receptor-γ (PPARγ) in HepG2 hepatocytes. PPARγ antagonist GW9662 abolished thiazolidinedione (TZD)-induced NEDD4 expression. ChIP and luciferase reporter assays showed that PPARγ directly bound to the potential PPAR-responsive elements (PPREs) within the promoter region of the human NEDD4 gene. In addition, TZDs increased Akt phosphorylation and glucose uptake, which were abrogated through NEDD4 depletion. Furthermore, we showed that NEDD4-mediated autophagy induction and Akt phosphorylation were suppressed by oleic acid and high glucose treatment, activation of PPARγ successfully prevented this suppression. In conclusion, these results suggest that PPARγ plays a novel role in linking glucose metabolism and protein homeostasis through NEDD4-mediated effects on the autophagy machinery.
Collapse
Affiliation(s)
- Jia Liu
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Qinyu Yao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Lei Xiao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Wen Ma
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Fan Li
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Baochang Lai
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Nanping Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, China
| |
Collapse
|
25
|
Korbecki J, Bobiński R, Dutka M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 2019; 68:443-458. [PMID: 30927048 PMCID: PMC6517359 DOI: 10.1007/s00011-019-01231-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/24/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
The peroxisome proliferator-activated receptor (PPAR) family includes three transcription factors: PPARα, PPARβ/δ, and PPARγ. PPAR are nuclear receptors activated by oxidised and nitrated fatty acid derivatives as well as by cyclopentenone prostaglandins (PGA2 and 15d-PGJ2) during the inflammatory response. This results in the modulation of the pro-inflammatory response, preventing it from being excessively activated. Other activators of these receptors are nonsteroidal anti-inflammatory drug (NSAID) and fatty acids, especially polyunsaturated fatty acid (PUFA) (arachidonic acid, ALA, EPA, and DHA). The main function of PPAR during the inflammatory reaction is to promote the inactivation of NF-κB. Possible mechanisms of inactivation include direct binding and thus inactivation of p65 NF-κB or ubiquitination leading to proteolytic degradation of p65 NF-κB. PPAR also exert indirect effects on NF-κB. They promote the expression of antioxidant enzymes, such as catalase, superoxide dismutase, or heme oxygenase-1, resulting in a reduction in the concentration of reactive oxygen species (ROS), i.e., secondary transmitters in inflammatory reactions. PPAR also cause an increase in the expression of IκBα, SIRT1, and PTEN, which interferes with the activation and function of NF-κB in inflammatory reactions.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Molecular Biology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18 Str., 40-752, Katowice, Poland. .,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa 2 Str., 43-309, Bielsko-Biała, Poland.
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa 2 Str., 43-309, Bielsko-Biała, Poland
| | - Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa 2 Str., 43-309, Bielsko-Biała, Poland
| |
Collapse
|
26
|
Yao Q, Liu J, Xiao L, Wang N. Sonic hedgehog signaling instigates high-fat diet-induced insulin resistance by targeting PPARγ stability. J Biol Chem 2019; 294:3284-3293. [PMID: 30573683 PMCID: PMC6398147 DOI: 10.1074/jbc.ra118.004411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major risk for patients with chronic metabolic disorders including type 2 diabetes. Sonic hedgehog (Shh) is a morphogen that regulates the pancreas and adipose tissue formation during embryonic development. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily and one of the most important regulators of insulin action. Here, we evaluated the role and mechanism of Shh signaling in obesity-associated insulin resistance and characterized its effect on PPARγ. We showed that Shh expression was up-regulated in subcutaneous fat from obese mice. In differentiated 3T3-L1 and primary cultured adipocytes from rats, recombinant Shh protein and SAG (an agonist of Shh signaling) activated an extracellular signal-regulated kinase (ERK)-dependent noncanonical pathway and induced PPARγ phosphorylation at serine 112, which decreased PPARγ activity. Meanwhile, Shh signaling degraded PPARγ protein via binding of PPARγ to neural precursor cell-expressed developmentally down-regulated protein 4-1 (NEDD4-1). Furthermore, vismodegib, an inhibitor of Shh signaling, attenuated ERK phosphorylation induced by a high fat diet (HFD) and restored PPARγ protein level, thus ameliorating glucose intolerance and insulin resistance in obese mice. Our finding suggests that Shh in subcutaneous fat decreases PPARγ activity and stability via activation of an ERK-dependent noncanonical pathway, resulting in impaired insulin action. Inhibition of Shh may serve as a potential therapeutic approach to treat obesity-related diabetes.
Collapse
Affiliation(s)
- Qinyu Yao
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Jia Liu
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Lei Xiao
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Nanping Wang
- the Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
27
|
Zhu K, Tang Y, Xu X, Dang H, Tang LY, Wang X, Wang XW, Zhang YE. Non-proteolytic ubiquitin modification of PPARγ by Smurf1 protects the liver from steatosis. PLoS Biol 2018; 16:e3000091. [PMID: 30566427 PMCID: PMC6317813 DOI: 10.1371/journal.pbio.3000091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/03/2019] [Accepted: 12/03/2018] [Indexed: 01/14/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by abnormal accumulation of triglycerides (TG) in the liver and other metabolic syndrome symptoms, but its molecular genetic causes are not completely understood. Here, we show that mice deficient for ubiquitin ligase (E3) Smad ubiquitin regulatory factor 1 (Smurf1) spontaneously develop hepatic steatosis as they age and exhibit the exacerbated phenotype under a high-fat diet (HFD). Our data indicate that loss of Smurf1 up-regulates the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes involved in lipid synthesis and fatty acid uptake. We further show that PPARγ is a direct substrate of Smurf1-mediated non-proteolytic lysine 63 (K63)-linked ubiquitin modification that suppresses its transcriptional activity, and treatment of Smurf1-deficient mice with a PPARγ antagonist, GW9662, completely reversed the lipid accumulation in the liver. Finally, we demonstrate an inverse correlation of low SMURF1 expression to high body mass index (BMI) values in human patients, thus revealing a new role of SMURF1 in NAFLD pathogenesis.
Collapse
Affiliation(s)
- Kun Zhu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yi Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xuan Xu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Liu-Ya Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiang Wang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ying E. Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
28
|
Wang Q, Tang J, Jiang S, Huang Z, Song A, Hou S, Gao X, Ruan HB. Inhibition of PPARγ, adipogenesis and insulin sensitivity by MAGED1. J Endocrinol 2018; 239:167-180. [PMID: 30121577 DOI: 10.1530/joe-18-0349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipogenesis and a target of the thiazolidinedione (TZD) class of antidiabetic drugs; therefore, identifying novel regulators of PPARγ action in adipocytes is essential for the future development of therapeutics for diabetes. MAGE family member D1 (MAGED1), by acting as an adaptor for ubiquitin-dependent degradation pathways and a co-factor for transcription, plays an important role in neural development, cell differentiation and circadian rhythm. Here, we showed that MAGED1 expression was downregulated during adipogenesis and loss of MAGED1 promoted preadipocyte proliferation and differentiation in vitro. MAGED1 bound to PPARγ and suppressed the stability and transcriptional activity of PPARγ. Compared to WT littermates, MAGED1-deficient mice showed increased levels of PPARγ protein and its target genes, more CD29+CD34+Sca-1+ adipocyte precursors and hyperplasia of white adipose tissues (WATs). Moreover, MAGED1-deficient mice developed late-onset obesity as a result of decreased energy expenditure and physical activity. However, these mice were metabolically healthy as shown by improved glucose clearance and insulin sensitivity, normal levels of serum lipids and enhanced secretion of adipokines such as leptin and adiponectin. Taken together, our data identify MAGED1 as a novel negative regulator of PPARγ activity, adipogenesis and insulin sensitivity in mice. MAGED1 might therefore serve as a novel pharmaceutical target to treat obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Qinghua Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu, China
| | - Jing Tang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Shujun Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zan Huang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Siyuan Hou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
29
|
The E3 ubiquitin ligase TRIM25 regulates adipocyte differentiation via proteasome-mediated degradation of PPARγ. Exp Mol Med 2018; 50:1-11. [PMID: 30323259 PMCID: PMC6189217 DOI: 10.1038/s12276-018-0162-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 01/04/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent transcription factor that regulates adipocyte differentiation and glucose homeostasis. The transcriptional activity of PPARγ is regulated not only by ligands but also by post-translational modifications (PTMs). In this study, we demonstrate that a novel E3 ligase of PPARγ, tripartite motif-containing 25 (TRIM25), directly induced the ubiquitination of PPARγ, leading to its proteasome-dependent degradation. During adipocyte differentiation, both TRIM25 mRNA and protein expression significantly decreased and negatively correlated with the expression of PPARγ. The stable expression of TRIM25 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 cells. In contrast, the specific knockdown of TRIM25 increased PPARγ protein levels and stimulated adipocyte differentiation. Furthermore, TRIM25-knockout mouse embryonic fibroblasts (MEFs) exhibited an increased adipocyte differentiation capability compared with wild-type MEFs. Taken together, these data indicate that TRIM25 is a novel E3 ubiquitin ligase of PPARγ and that TRIM25 is a novel target for PPARγ-associated metabolic diseases.
Collapse
|
30
|
Wu B, Sun X, Gupta HB, Yuan B, Li J, Ge F, Chiang HC, Zhang X, Zhang C, Zhang D, Yang J, Hu Y, Curiel TJ, Li R. Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncoimmunology 2018; 7:e1500107. [PMID: 30393583 PMCID: PMC6209395 DOI: 10.1080/2162402x.2018.1500107] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) modulate antitumor immunity and are major targets of checkpoint blockade immunotherapy. However, clinical trials of anti-PD-L1 and anti-PD-1 antibodies in breast cancer demonstrate only modest efficacy. Furthermore, specific PD-L1 contributions in various tissue and cell compartments to antitumor immunity remain incompletely elucidated. Here we show that PD-L1 expression is markedly elevated in mature adipocytes versus preadipocytes. Adipocyte PD-L1 prevents anti-PD-L1 antibody from activating important antitumor functions of CD8+ T cells in vitro. Adipocyte PD-L1 ablation obliterates, whereas forced preadipocyte PD-L1 expression confers, these inhibitory effects. Pharmacologic inhibition of adipogenesis selectively reduces PD-L1 expression in mouse adipose tissue and enhances the antitumor efficacy of anti-PD-L1 or anti-PD-1 antibodies in syngeneic mammary tumor models. Our findings provide a previously unappreciated approach to bolster anticancer immunotherapy efficacy and suggest a mechanism for the role of adipose tissue in breast cancer progression.
Collapse
Affiliation(s)
- Bogang Wu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Xiujie Sun
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Harshita B. Gupta
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Bin Yuan
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Jingwei Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Fei Ge
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Xiaowen Zhang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Chi Zhang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Deyi Zhang
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Jing Yang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Tyler J. Curiel
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| |
Collapse
|
31
|
Zhao Z, Xu D, Wang Z, Wang L, Han R, Wang Z, Liao L, Chen Y. Hepatic PPARα function is controlled by polyubiquitination and proteasome-mediated degradation through the coordinated actions of PAQR3 and HUWE1. Hepatology 2018; 68:289-303. [PMID: 29331071 PMCID: PMC6055728 DOI: 10.1002/hep.29786] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/16/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023]
Abstract
UNLABELLED Peroxisome proliferator-activated receptor α (PPARα) is a key transcriptional factor that regulates hepatic lipid catabolism by stimulating fatty acid oxidation and ketogenesis in an adaptive response to nutrient starvation. However, how PPARα is regulated by posttranslational modification is poorly understood. In this study, we identified that progestin and adipoQ receptor 3 (PAQR3) promotes PPARα ubiquitination through the E3 ubiquitin ligase HUWE1, thereby negatively modulating PPARα functions both in vitro and in vivo. Adenovirus-mediated Paqr3 knockdown and liver-specific deletion of the Paqr3 gene reduced hepatic triglyceride levels while increasing fatty acid oxidation and ketogenesis upon fasting. PAQR3 deficiency enhanced the fasting-induced expression of PPARα target genes, including those involved in fatty acid oxidation and fibroblast growth factor 21, a key molecule that mediates the metabolism-modulating effects of PPARα. PAQR3 directly interacted with PPARα and increased the polyubiquitination and proteasome-mediated degradation of PPARα. Furthermore, the E3 ubiquitin ligase HUWE1 was identified to mediate PPARα polyubiquitination. Additionally, PAQR3 enhanced the interaction between HUWE1 and PPARα. CONCLUSION Ubiquitination modification through the coordinated action of PAQR3 with HUWE1 plays a crucial role in regulating the activity of PPARα in response to starvation. (Hepatology 2018;68:289-303).
Collapse
Affiliation(s)
- Zilong Zhao
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Daqian Xu
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Zheng Wang
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Lin Wang
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Ruomei Han
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Zhenzhen Wang
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yan Chen
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
32
|
Functional Regulation of PPARs through Post-Translational Modifications. Int J Mol Sci 2018; 19:ijms19061738. [PMID: 29895749 PMCID: PMC6032173 DOI: 10.3390/ijms19061738] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and they are essential regulators of cell differentiation, tissue development, and energy metabolism. Given their central roles in sensing the cellular metabolic state and controlling metabolic homeostasis, PPARs became important targets of drug development for the management of metabolic disorders. The function of PPARs is mainly regulated through ligand binding, which induces structural changes, further affecting the interactions with co-activators or co-repressors to stimulate or inhibit their functions. In addition, PPAR functions are also regulated by various Post-translational modifications (PTMs). These PTMs include phosphorylation, SUMOylation, ubiquitination, acetylation, and O-GlcNAcylation, which are found at numerous modification sites. The addition of these PTMs has a wide spectrum of consequences on protein stability, transactivation function, and co-factor interaction. Moreover, certain PTMs in PPAR proteins have been associated with the status of metabolic diseases. In this review, we summarize the PTMs found on the three PPAR isoforms PPARα, PPARβ/δ, and PPARγ, and their corresponding modifying enzymes. We also discuss the functional roles of these PTMs in regulating metabolic homeostasis and provide a perspective for future research in this intriguing field.
Collapse
|
33
|
Melatonin promotes triacylglycerol accumulation via MT2 receptor during differentiation in bovine intramuscular preadipocytes. Sci Rep 2017; 7:15080. [PMID: 29118419 PMCID: PMC5678110 DOI: 10.1038/s41598-017-12780-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a derivative of tryptophan which is produced and secreted mainly by the pineal gland and regulates a variety of important central and peripheral actions. To examine the potential effects of melatonin on the proliferation and differentiation of bovine intramuscular preadipocytes (BIPs), BIPs were incubated with different concentrations of melatonin. Melatonin supplementation at 1 mM significantly increased peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein (C/EBP) β, and C/EBPα expression and promoted the differentiation of BIPs into adipocytes with large lipid droplets and high cellular triacylglycerol (TAG) levels. Melatonin also significantly enhanced lipolysis and up-regulated the expression of lipolytic genes and proteins, including hormone sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL), and perilipin 1 (PLIN1). Moreover, melatonin reduced intracellular reactive oxygen species (ROS) levels by increasing the expression levels and activities of superoxide dismutase 1 (SOD1) and glutathione peroxidase 4 (GPX4). Finally, the positive effects of melatonin on adipogenesis, lipolysis, and redox status were reversed by treatment with luzindole, anantagonist of nonspecific melatonin receptors 1 (MT1) and 2 (MT2), and 4-phenyl-2-propionamidotetraline (4P-PDOT), a selective MT2 antagonist. These results reveal that melatonin promotes TAG accumulation via MT2 receptor during differentiation in BIPs.
Collapse
|
34
|
Feng S, Yang G, Yang H, Liang Z, Zhang R, Fan Y, Zhang G. NEDD4 is involved in acquisition of epithelial-mesenchymal transition in cisplatin-resistant nasopharyngeal carcinoma cells. Cell Cycle 2017; 16:869-878. [PMID: 28379054 DOI: 10.1080/15384101.2017.1308617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly invasive head-neck cancer derived from the nasopharyngeal epithelium, mainly prevalent in southern China and Southeast Asia. Radiotherapy and adjuvant cisplatin (DDP) chemotherapy are standard administrations applied in the treatment of NPC. However, resistance to chemotherapeutic drugs has recently become more common, resulting in worse treatment outcome for NPC therapy. To elucidate the underlying molecular basis of drug resistance to DDP in NPC cells, we examined the morphocytology, cell motility and molecular changes in DDP-resistant NPC cells with respect to epithelial-mesenchymal transition (EMT) features. We found that EMT is closely associated with DDP-induced drug resistance in NPC cells, as DDP-resistant cells displayed morphological and molecular markers changes consistent with EMT. Wound healing and Transwell Boyden chamber assays revealed an enhanced migration and invasion potential in DDP-resistant NPC cells. Mechanistically, upregulation of NEDD4 was observed to relate to EMT in DDP-resistant cells. More importantly, depletion of NEDD4 in resistant cells led to a partial reversion of EMT phenotypes to MET characteristics. These data suggest that NEDD4 is largely involved in EMT features and chemoresistance of NPC cancer cells. NEDD4 could be a novel therapeutic target to overcome drug resistance in successful administrations of NPC.
Collapse
Affiliation(s)
- Shaoyan Feng
- a Department of Otorhinolaryngology, Head and Neck Surgery , The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China.,b Department of Otorhinolaryngology , Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University , Zhuhai , China
| | - Guangwei Yang
- c Department of Radiation Oncology , The Fifth Affiliated Hospital of Sun Yat-sen University , Zhuhai , China
| | - Haidi Yang
- d Department of Otolaryngology , Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou , China
| | - Zibin Liang
- c Department of Radiation Oncology , The Fifth Affiliated Hospital of Sun Yat-sen University , Zhuhai , China
| | - Rongkai Zhang
- e Department of Orthopaedics , The Fifth Affiliated Hospital of Sun Yat-sen University , Zhuhai , China
| | - Yunping Fan
- b Department of Otorhinolaryngology , Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University , Zhuhai , China
| | - Gehua Zhang
- a Department of Otorhinolaryngology, Head and Neck Surgery , The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|