1
|
Hohensee L, Scheibner D, Luttermann C, Shelton H, Dorhoi A, Abdelwhab EM, Blohm U. PB1-F2 of low pathogenicity H7N7 restricts apoptosis in avian cells. Virus Res 2024; 349:199444. [PMID: 39089370 PMCID: PMC11386312 DOI: 10.1016/j.virusres.2024.199444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Avian influenza viruses (AIV) pose a continuous challenge to global health and economy. While countermeasures exist to control outbreaks in poultry, the persistent circulation of AIV in wild aquatic and shorebirds presents a significant challenge to effective disease prevention efforts. PB1-F2 is a non-structural protein expressed from a second open reading frame (+1) of the polymerase basic 1 (PB1) segment. The sequence and length of the PB1-F2 protein can vary depending on the host of origin. While avian isolates typically carry full-length PB1-F2, isolates from mammals, often express truncated forms. The selective advantage of the full-length PB1-F2 in avian isolates is not fully understood. Most research on the role of PB1-F2 in influenza virus replication has been conducted in mammalian systems, where PB1-F2 interfered with the host immune response and induced apoptosis. Here, we used Low Pathogenicity (LP) AIV H7N7 expressing full-length PB1-F2 as well as a knockout mutant. We found that the full-length PB1-F2 of LPAIV prolonged survival of infected cells by limiting apoptotic cell death. Furthermore, PB1-F2 knockout LPAIV significantly decreased MHC-I expression on fibroblasts, delayed tissue healing and increased phagocytic uptake of infected cells, whereas LPAIV expressing PB1-F2 has limited effects. These findings indicate that full-length PB1-F2 enables AIV to cause prolonged infections without severely harming the avian host. Our observations may explain maintenance of AIV in the natural bird reservoir in absence of severe clinical signs.
Collapse
Affiliation(s)
- Luise Hohensee
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Christine Luttermann
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Holly Shelton
- The Pirbright Institute, Pirbright, Ash Road, Surrey GU24 0NF, United Kingdom
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany.
| |
Collapse
|
2
|
Lyashko AV, Timofeeva TA, Rudneva IA, Lomakina NF, Treshchalina AA, Gambaryan AS, Sorokin EV, Tsareva TR, Adams SE, Prilipov AG, Sadykova GK, Timofeev BI, Logunov DY, Gintsburg AL. Antigenic Architecture of the H7N2 Influenza Virus Hemagglutinin Belonging to the North American Lineage. Int J Mol Sci 2023; 25:212. [PMID: 38203384 PMCID: PMC10779424 DOI: 10.3390/ijms25010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The North American low pathogenic H7N2 avian influenza A viruses, which lack the 220-loop in the hemagglutinin (HA), possess dual receptor specificity for avian- and human-like receptors. The purpose of this work was to determine which amino acid substitutions in HA affect viral antigenic and phenotypic properties that may be important for virus evolution. By obtaining escape mutants under the immune pressure of treatment with monoclonal antibodies, antigenically important amino acids were determined to be at positions 125, 135, 157, 160, 198, 200, and 275 (H3 numbering). These positions, except 125 and 275, surround the receptor binding site. The substitutions A135S and A135T led to the appearance of an N-glycosylation site at 133N, which reduced affinity for the avian-like receptor analog and weakened binding with tested monoclonal antibodies. Additionally, the A135S substitution is associated with the adaptation of avian viruses to mammals (cat, human, or mouse). The mutation A160V decreased virulence in mice and increased affinity for the human-type receptor analog. Conversely, substitution G198E, in combination with 157N or 160E, displayed reduced affinity for the human-type receptor analog.
Collapse
Affiliation(s)
- Aleksandr V. Lyashko
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Tatiana A. Timofeeva
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Irina A. Rudneva
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Natalia F. Lomakina
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Anastasia A. Treshchalina
- Federal Scientific Center for the Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia (A.S.G.)
| | - Alexandra S. Gambaryan
- Federal Scientific Center for the Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia (A.S.G.)
| | - Evgenii V. Sorokin
- The Smorodintsev Research Institute of Influenza, the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia
| | - Tatiana R. Tsareva
- The Smorodintsev Research Institute of Influenza, the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia
| | - Simone E. Adams
- Institute of Microbiology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Alexey G. Prilipov
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Galina K. Sadykova
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Boris I. Timofeev
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Denis Y. Logunov
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Alexander L. Gintsburg
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| |
Collapse
|
3
|
Navarro-Lopez R, Xu W, Gomez-Romero N, Velazquez-Salinas L, Berhane Y. Phylogenetic Inference of the 2022 Highly Pathogenic H7N3 Avian Influenza Outbreak in Northern Mexico. Pathogens 2022; 11:1284. [PMID: 36365034 PMCID: PMC9692817 DOI: 10.3390/pathogens11111284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 02/06/2024] Open
Abstract
The Mexican lineage H7N3 highly pathogenic avian influenza virus (HPAIV) has persisted in Mexican poultry since its first isolation in 2012. To date, the detection of this virus has gradually expanded from the initial one state to 18 states in Mexico. Despite the HPAIV H7N3 outbreak occurring yearly, the transmission pathways have never been studied, disallowing the establishment of effective control measures. We used a phylogenetic approach to unravel the transmission pathways of 2022 H7N3 HPAIVs in the new outbreak areas in Northern Mexico. We present genetic data of H7N3 viruses produced from 18 poultry farms infected in the spring of 2022. Our results indicate that the virus responsible for the current outbreak in Northern Mexico evolved from the Mexican lineage H7N3 HPAIV discovered in 2012. In the current outbreak, we identified five clusters of infection with four noticeably different genetic backgrounds. It is a cluster IV-like virus that was transmitted into one northern state causing an outbreak, then spreading to another neighboring northern state, possibly via a human-mediated mechanical transmission mechanism. The long-distance transmission event highlights the necessity for the more rigorous enforcement of biosafety measures in outbreaks. Additionally, we examined the evolutionary processes shaping the viral genetic and antigenic diversities. It is imperative to enhance active surveillance to include birds, the environment, and humans to detect HPAI in domestic poultry at an earlier point and eliminate it.
Collapse
Affiliation(s)
- Roberto Navarro-Lopez
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Ninnet Gomez-Romero
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agriculture Research Service, USDA, Orient, NY 11944, USA
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2S2, Canada
| |
Collapse
|
4
|
Castro-Sanguinetti GR, Marques Simas PV, Apaza-Chiara AP, Callupe-Leyva JA, Rondon-Espinoza JA, Gavidia CM, More-Bayona JA, Gonzalez Veliz RI, Vakharia VN, Icochea ME. Genetic subtyping and phylogenetic analysis of HA and NA from avian influenza virus in wild birds from Peru reveals unique features among circulating strains in America. PLoS One 2022; 17:e0268957. [PMID: 35671300 PMCID: PMC9173603 DOI: 10.1371/journal.pone.0268957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Avian influenza virus (AIV) represents a major concern with productive implications in poultry systems but it is also a zoonotic agent that possesses an intrinsic pandemic risk. AIV is an enveloped, negative-sense and single-stranded RNA virus with a segmented genome. The eight genomic segments, comprising the whole genome, encode for eleven proteins. Within these proteins, Hemagglutinin (HA) and Neuraminidase (NA) are the most relevant for studies of evolution and pathogenesis considering their role in viral replication, and have also been used for classification purposes. Migratory birds are the main hosts and play a pivotal role in viral evolution and dissemination due to their migratory routes that comprise large regions worldwide. Altogether, viral and reservoir factors contribute to the emergence of avian influenza viruses with novel features and pathogenic potentials. The study aimed to conduct surveillance of AIVs in wild birds from Peru. A multi-site screening of feces of migratory birds was performed to isolate viruses and to characterize the whole genome sequences, especially the genes coding for HA and NA proteins. Four-hundred-twenty-one (421) fecal samples, collected between March 2019 and March 2020 in Lima, were obtained from 21 species of wild birds. From these, we isolated five AIV from whimbrel, kelp gull, Franklin’s gulls and Mallard, which were of low pathogenicity, including four subtypes as H6N8, H13N6, H6N2 and H2N6. Genetic analysis of HA and NA genes revealed novel features in these viruses and phylogenetic analysis exhibited a close relationship with those identified in North America (US and Canada). Furthermore, H2N6 isolate presented a NA sequence with higher genetic relationship to Chilean isolates. These results highlight that the geographical factor is of major relevance in the evolution of AIV, suggesting that AIV circulating in Peru might represent a new site for the emergence of reassortant AIVs.
Collapse
Affiliation(s)
- Gina R. Castro-Sanguinetti
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Paulo Vitor Marques Simas
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Ana Paola Apaza-Chiara
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Jose Alonso Callupe-Leyva
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Juan Alexander Rondon-Espinoza
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Cesar M. Gavidia
- Laboratory of Epidemiology and Veterinary Economy, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Juan Anderson More-Bayona
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
- Laboratory of Microbiology and Parasitology, Virology Section, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Rosa Isabel Gonzalez Veliz
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Vikram N. Vakharia
- Institute of Marine & Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD, United States of America
| | - Maria Eliana Icochea
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
- * E-mail:
| |
Collapse
|
5
|
Zhou A, Zhang J, Li H, Xu Q, Chen Y, Li B, Liu W, Su G, Ren X, Lao G, Luo B, Liao M, Qi W. Combined insertion of basic and non-basic amino acids at hemagglutinin cleavage site of highly pathogenic H7N9 virus promotes replication and pathogenicity in chickens and mice. Virol Sin 2022; 37:38-47. [PMID: 35234617 PMCID: PMC8922421 DOI: 10.1016/j.virs.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
|
6
|
Gischke M, Bagato O, Breithaupt A, Scheibner D, Blaurock C, Vallbracht M, Karger A, Crossley B, Veits J, Böttcher-Friebertshäuser E, Mettenleiter TC, Abdelwhab EM. The role of glycosylation in the N-terminus of the hemagglutinin of a unique H4N2 with a natural polybasic cleavage site in virus fitness in vitro and in vivo. Virulence 2021; 12:666-678. [PMID: 33538209 PMCID: PMC7872060 DOI: 10.1080/21505594.2021.1881344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
To date, only low pathogenic (LP) H5 and H7 avian influenza viruses (AIV) have been observed to naturally shift to a highly pathogenic (HP) phenotype after mutation of the monobasic hemagglutinin (HA) cleavage site (HACS) to polybasic motifs. The LPAIV monobasic HACS is activated by tissue-restricted trypsin-like enzymes, while the HPAIV polybasic HACS is activated by ubiquitous furin-like enzymes. However, glycosylation near the HACS can affect proteolytic activation and reduced virulence of some HPAIV in chickens. In 2012, a unique H4N2 virus with a polybasic HACS was isolated from quails but was LP in chickens. Whether glycosylation sites (GS) near the HACS hinder the evolution of HPAIV H4N2 remains unclear. Here, we analyzed the prevalence of potential GS in the N-terminus of HA1, 2NYT4 and 18NGT20, in all AIV sequences and studied their impact on H4N2 virus fitness. Although the two motifs are conserved, some non-H5/H7 subtypes lack one or both GS. Both sites were glycosylated in this H4N2 virus. Deglycosylation increased trypsin-independent replication in cell culture, cell-to-cell spread and syncytium formation at low-acidic pH, but negatively affected the thermostability and receptor-binding affinity. Alteration of 2NYT4 with or without 18NGT20 enabled systemic spread of the virus to different organs including the brain of chicken embryos. However, all intranasally inoculated chickens did not show clinical signs. Together, although the conserved GS near the HACS are important for HA stability and receptor binding, deglycosylation increased the H4N2 HA-activation, replication and tissue tropism suggesting a potential role for virus adaptation in poultry.
Collapse
Affiliation(s)
- Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Claudia Blaurock
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Beate Crossley
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, United States
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
7
|
Song W, Huang X, Guan W, Chen P, Wang P, Zheng M, Li Z, Wang Y, Yang Z, Chen H, Wang X. Multiple basic amino acids in the cleavage site of H7N9 hemagglutinin contribute to high virulence in mice. J Thorac Dis 2021; 13:4650-4660. [PMID: 34527306 PMCID: PMC8411188 DOI: 10.21037/jtd-21-226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Background Avian influenza A (H7N9) virus has caused more than 1,500 cases of human infection since its emergence in early 2013. Displaying little or no pathogenicity in poultry, but a 40% case-fatality rate in humans, five waves of H7N9 human infections occurred in China during 2013–2017, caused solely by a low pathogenicity strain. However, avian isolates possessing a polybasic connecting peptide in the hemagglutinin (HA) protein were detected in mid-2016, indicating that a highly pathogenic virus had emerged and was co-circulating with the low pathogenicity strains. Methods Here we characterize the pathogenicity of a newly emerged human H7N9 variant with a PEVPKRKRTAR/GLF insertion motif at the cleavage site of the HA protein in vitro and in vivo. Results This variant replicates in MDCK cells independently of TPCK-trypsin, which is indicative of high pathogenicity in chickens. The 50% mouse lethal dose (MLD50) of this novel isolate was less than 10 plaque forming units (PFU), compared with 3.16×104 for an identical virus lacking the polybasic insertion, indicating a high virulence phenotype. Conclusions Our results demonstrate that the multiple basic amino acid insertion in the HA protein of the H7N9 variant confers high virulence in mammals, highlighting a potential risk to humans. Continuous viral surveillance is therefore necessary in the China region to improve pandemic preparedness.
Collapse
Affiliation(s)
- Wenjun Song
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaofeng Huang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Wenda Guan
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Min Zheng
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Gultyaev AP, Spronken MI, Funk M, Fouchier RAM, Richard M. Insertions of codons encoding basic amino acids in H7 hemagglutinins of influenza A viruses occur by recombination with RNA at hotspots near snoRNA binding sites. RNA (NEW YORK, N.Y.) 2021; 27:123-132. [PMID: 33188057 PMCID: PMC7812872 DOI: 10.1261/rna.077495.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
The presence of multiple basic amino acids in the protease cleavage site of the hemagglutinin (HA) protein is the main molecular determinant of virulence of highly pathogenic avian influenza (HPAI) viruses. Recombination of HA RNA with other RNA molecules of host or virus origin is a dominant mechanism of multibasic cleavage site (MBCS) acquisition for H7 subtype HA. Using alignments of HA RNA sequences from documented cases of MBCS insertion due to recombination, we show that such recombination with host RNAs is most likely to occur at particular hotspots in ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and viral RNAs. The locations of these hotspots in highly abundant RNAs indicate that RNA recombination is facilitated by the binding of small nucleolar RNA (snoRNA) near the recombination points.
Collapse
MESH Headings
- Amino Acids, Basic/genetics
- Amino Acids, Basic/metabolism
- Animals
- Base Pairing
- Base Sequence
- Chickens/virology
- Codon
- Gene Expression Regulation
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Influenza A virus/genetics
- Influenza A virus/metabolism
- Influenza A virus/pathogenicity
- Influenza in Birds/virology
- Influenza, Human/virology
- Mutagenesis, Insertional
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombination, Genetic
- Sequence Alignment
- Virulence
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, the Netherlands
| | - Monique I Spronken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
9
|
Insertion of Basic Amino Acids in the Hemagglutinin Cleavage Site of H4N2 Avian Influenza Virus (AIV)-Reduced Virus Fitness in Chickens is Restored by Reassortment with Highly Pathogenic H5N1 AIV. Int J Mol Sci 2020; 21:ijms21072353. [PMID: 32231159 PMCID: PMC7178042 DOI: 10.3390/ijms21072353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/02/2023] Open
Abstract
Highly pathogenic (HP) avian influenza viruses (AIVs) are naturally restricted to H5 and H7 subtypes with a polybasic cleavage site (CS) in hemagglutinin (HA) and any AIV with an intravenous pathogenicity index (IVPI) ≥ 1.2. Although only a few non-H5/H7 viruses fulfill the criteria of HPAIV; it remains unclear why these viruses did not spread in domestic birds. In 2012, a unique H4N2 virus with a polybasic CS 322PEKRRTR/G329 was isolated from quails in California which, however, was avirulent in chickens. This is the only known non-H5/H7 virus with four basic amino acids in the HACS. Here, we investigated the virulence of this virus in chickens after expansion of the polybasic CS by substitution of T327R (322PEKRRRR/G329) or T327K (322PEKRRKR/G329) with or without reassortment with HPAIV H5N1 and H7N7. The impact of single mutations or reassortment on virus fitness in vitro and in vivo was studied. Efficient cell culture replication of T327R/K carrying H4N2 viruses increased by treatment with trypsin, particularly in MDCK cells, and reassortment with HPAIV H5N1. Replication, virus excretion and bird-to-bird transmission of H4N2 was remarkably compromised by the CS mutations, but restored after reassortment with HPAIV H5N1, although not with HPAIV H7N7. Viruses carrying the H4-HA with or without R327 or K327 mutations and the other seven gene segments from HPAIV H5N1 exhibited high virulence and efficient transmission in chickens. Together, increasing the number of basic amino acids in the H4N2 HACS was detrimental for viral fitness particularly in vivo but compensated by reassortment with HPAIV H5N1. This may explain the absence of non-H5/H7 HPAIV in poultry.
Collapse
|
10
|
Wu H, Liu F, Yang F, Xiao Y, Yao H, Wu N. Amino acid substitutions involved in the adaptation of a novel H7N7 avian influenza virus in mice. Res Vet Sci 2020; 130:203-206. [PMID: 32200160 DOI: 10.1016/j.rvsc.2020.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
The H7N7 avian influenza viruses can infect humans and poses a great threat to human health. To identify the amino acid substitutions that are associated with adaptation of avian-origin H7N7 virus to mammals, adaptation of the H7N7 virus was carried out by serial lung-to-lung passage in mice. Genomic analysis of the mouse-adapted virus revealed amino acid changes in the PB2 (E525G, M645I, and D701N), NP (I475V), HA(D103N), and NA(K142E) proteins. The adapted H7N7 virus was more virulent in mice than the wild-type virus. Our results suggest that continued surveillance of poultry populations for these substitutions in the H7N7 virus is required.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
11
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
12
|
Variable impact of the hemagglutinin polybasic cleavage site on virulence and pathogenesis of avian influenza H7N7 virus in chickens, turkeys and ducks. Sci Rep 2019; 9:11556. [PMID: 31399610 PMCID: PMC6689016 DOI: 10.1038/s41598-019-47938-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/24/2019] [Indexed: 11/09/2022] Open
Abstract
Avian influenza viruses (AIV) are classified into 16 hemagglutinin (HA; H1-H16) and 9 neuraminidase (NA; N1-N9) subtypes. All AIV are low pathogenic (LP) in birds, but subtypes H5 and H7 AIV can evolve into highly pathogenic (HP) forms. In the last two decades evolution of HPAIV H7 from LPAIV has been frequently reported. However, little is known about the pathogenesis and evolution of HP H7 from LP ancestors particularly, in non-chicken hosts. In 2015, both LP and HP H7N7 AIV were isolated from chickens in two neighbouring farms in Germany. Here, the virulence of these isogenic H7N7 LP, HP and LP virus carrying a polybasic HA cleavage site (HACS) from HP (designated LP-Poly) was studied in chickens, turkeys and different duck breeds. The LP precursor was avirulent in all birds. In contrast, all inoculated and contact chickens and turkeys died after infection with HP. HP infected Pekin and Mallard ducks remained clinically healthy, while Muscovy ducks exhibited moderate depression and excreted viruses at significantly higher amounts. The polybasic HACS increased virulence in a species-specific manner with intravenous pathogenicity indices of 3.0, 1.9 and 0.2 in chickens, turkeys and Muscovy ducks, respectively. Infection of endothelial cells was only observed in chickens. In summary, Pekin and Mallard were more resistant to HPAIV H7N7 than chickens, turkeys and Muscovy ducks. The polybasic HACS was the main determinant for virulence and endotheliotropism of HPAIV H7N7 in chickens, whereas other viral and/or host factors play an essential role in virulence and pathogenesis in turkeys and ducks.
Collapse
|
13
|
Yu Z, Ren Z, Zhao Y, Cheng K, Sun W, Zhang X, Wu J, He H, Xia X, Gao Y. PB2 and hemagglutinin mutations confer a virulent phenotype on an H1N2 avian influenza virus in mice. Arch Virol 2019; 164:2023-2029. [PMID: 31111259 DOI: 10.1007/s00705-019-04283-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/15/2019] [Indexed: 11/30/2022]
Abstract
We previously obtained mouse-adapted variants of H1N2 avian influenza virus that contained PB2-L134H, PB2-I647L, PB2-D701N, HA-G228S, and M1-D231N mutations. Here, we analyzed the effects of these mutations on viral pathogenicity in a mammalian model. By evaluating the virulence of mouse-adapted H1N2 variants at different generations, we found that the PB2-D701N and HA-G228S mutations both contribute to the virulence of this virus in mammals. Furthermore, we found that the PB2-D701N and HA-G228S mutations both enhance the ability of the virus to replicate in vivo and in vitro and that the PB2-D701N substitution results in an expansion of viral tissue tropism. These results suggest that the PB2-D701N mutation and the HA-G228S mutation are the major mammalian determinants of H1N2 virus. These results help us to understand more about the mechanisms by which influenza viruses adapt to mammals, and monitoring of these mutations can be used in continuous influenza surveillance to assess the pandemic potential of avian influenza virus variants.
Collapse
Affiliation(s)
- Zhijun Yu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, No. 1 Jiaoxiao road, Jinan, 250023, Shandong, China.
| | - Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Science of PLA, 666 Liuyingxi St., Changchun, 130122, People's Republic of China
| | - Kaihui Cheng
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250132, China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Science of PLA, 666 Liuyingxi St., Changchun, 130122, People's Republic of China
| | - Xinghai Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Science of PLA, 666 Liuyingxi St., Changchun, 130122, People's Republic of China
| | - Jiaqiang Wu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, No. 1 Jiaoxiao road, Jinan, 250023, Shandong, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Science of PLA, 666 Liuyingxi St., Changchun, 130122, People's Republic of China.
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Science of PLA, 666 Liuyingxi St., Changchun, 130122, People's Republic of China.
| |
Collapse
|
14
|
Hufsky F, Ibrahim B, Modha S, Clokie MRJ, Deinhardt-Emmer S, Dutilh BE, Lycett S, Simmonds P, Thiel V, Abroi A, Adriaenssens EM, Escalera-Zamudio M, Kelly JN, Lamkiewicz K, Lu L, Susat J, Sicheritz T, Robertson DL, Marz M. The Third Annual Meeting of the European Virus Bioinformatics Center. Viruses 2019; 11:E420. [PMID: 31060321 PMCID: PMC6563321 DOI: 10.3390/v11050420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 01/21/2023] Open
Abstract
The Third Annual Meeting of the European Virus Bioinformatics Center (EVBC) took place in Glasgow, United Kingdom, 28-29 March 2019. Virus bioinformatics has become central to virology research, and advances in bioinformatics have led to improved approaches to investigate viral infections and outbreaks, being successfully used to detect, control, and treat infections of humans and animals. This active field of research has attracted approximately 110 experts in virology and bioinformatics/computational biology from Europe and other parts of the world to attend the two-day meeting in Glasgow to increase scientific exchange between laboratory- and computer-based researchers. The meeting was held at the McIntyre Building of the University of Glasgow; a perfect location, as it was originally built to be a place for "rubbing your brains with those of other people", as Rector Stanley Baldwin described it. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The meeting featured eight invited and twelve contributed talks, on the four main topics: (1) systems virology, (2) virus-host interactions and the virome, (3) virus classification and evolution and (4) epidemiology, surveillance and evolution. Further, the meeting featured 34 oral poster presentations, all of which focused on specific areas of virus bioinformatics. This report summarizes the main research findings and highlights presented at the meeting.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Bashar Ibrahim
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- Chair of Bioinformatics, Matthias-Schleiden-Institute, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Stefanie Deinhardt-Emmer
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
- Section for Experimental Virology, Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, D-07747 Jena, Germany.
| | - Bas E Dutilh
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 26, Nijmegen 6525 GA, The Netherlands.
| | - Samantha Lycett
- Infection & Immunity Division, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK.
| | - Volker Thiel
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Facility, University of Bern, 3012 Bern, Switzerland.
| | - Aare Abroi
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia.
| | - Evelien M Adriaenssens
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.
| | | | - Jenna Nicole Kelly
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Facility, University of Bern, 3012 Bern, Switzerland.
| | - Kevin Lamkiewicz
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Lu Lu
- Usher Institute of Population Health Sciences & Informatics, Ashworth Laboratories, Kings Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, 24118 Kiel, Germany.
| | - Thomas Sicheritz
- Natural History Museum of Denmark, University of Copenhagen, DK-1123 Copenhagen, Denmark.
| | - David L Robertson
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany.
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
15
|
Suttie A, Yann S, Y P, Tum S, Deng YM, Hul V, Horm VS, Barr I, Greenhill A, Horwood PF, Osbjer K, Karlsson EA, Dussart P. Detection of Low Pathogenicity Influenza A(H7N3) Virus during Duck Mortality Event, Cambodia, 2017. Emerg Infect Dis 2019; 24:1103-1107. [PMID: 29774842 PMCID: PMC6004859 DOI: 10.3201/eid2406.172099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In January 2017, an estimated 3,700 (93%) of 4,000 Khaki Campbell ducks (Anas platyrhynchos domesticus) died in Kampong Thom Province, Cambodia. We detected low pathogenicity avian influenza A(H7N3) virus and anatid herpesvirus 1 (duck plague) in the affected flock; however, the exact cause of the mortality event remains unclear.
Collapse
|
16
|
Chen J, Zhang J, Zhu W, Zhang Y, Tan H, Liu M, Cai M, Shen J, Ly H, Chen J. First genome report and analysis of chicken H7N9 influenza viruses with poly-basic amino acids insertion in the hemagglutinin cleavage site. Sci Rep 2017; 7:9972. [PMID: 28855633 PMCID: PMC5577273 DOI: 10.1038/s41598-017-10605-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
We report the full-length sequence of two chicken source influenza A (H7N9) viruses found in Guangdong live poultry market (LPM) during the most recent wave of human infections (from October 2016 to the present time). These viruses carry insertion of poly-basic amino acids (KGKRTAR/G) at the protease cleavage site of the HA protein, which were previously found in the highly pathogenic (HP) human influenza A (H7N9) [IAV(H7N9)] strains. Phylogenetic analysis of these two novel avian influenza viruses (AIVs) suggested that their genomes reassorted between the Yangtze River Delta (YRD) and Pearl River Delta (PRD) clades. Molecular clock analysis indicated that they emerged several months before the HP human strains. Collectively, our results suggest that IAV(H7N9) viruses evolve in chickens through antigenic drift to include a signature HP sequence in the HA gene, which highlights challenges in risk assessment and public health management of IAV(H7N9) infections at the human-animal interface.
Collapse
Affiliation(s)
- Jidang Chen
- School of Life Science and Engineering, Foshan University, Foshan, China.,Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Jipei Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Wanjun Zhu
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Yishan Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hualong Tan
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Minfang Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mingsheng Cai
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaren Shen
- Shanghai Municipal Center for Disease Control and Prevention (SCDC), Shanghai, China
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA.
| | - Jianhong Chen
- School of Life Science and Engineering, Foshan University, Foshan, China.
| |
Collapse
|