1
|
López-Ornelas A, Escobedo-Avila I, Ramírez-García G, Lara-Rodarte R, Meléndez-Ramírez C, Urrieta-Chávez B, Barrios-García T, Cáceres-Chávez VA, Flores-Ponce X, Carmona F, Reynoso CA, Aguilar C, Kerik NE, Rocha L, Verdugo-Díaz L, Treviño V, Bargas J, Ramos-Mejía V, Fernández-Ruiz J, Campos-Romo A, Velasco I. Human Embryonic Stem Cell-Derived Immature Midbrain Dopaminergic Neurons Transplanted in Parkinsonian Monkeys. Cells 2023; 12:2738. [PMID: 38067166 PMCID: PMC10706241 DOI: 10.3390/cells12232738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Human embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson's disease (PD) patients. Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkinsonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro. These neurons were transplanted bilaterally into the putamen of parkinsonian NHPs, and using magnetic resonance imaging techniques, we calculated the fractional anisotropy (FA) and mean diffusivity (MD), both employed for the first time for these purposes, to detect in vivo axonal and cellular density changes in the brain. Likewise, positron-emission tomography scans were performed to evaluate grafted DANs. Histological analyses identified grafted DANs, which were quantified stereologically. After grafting, animals showed signs of partially improved motor behavior in some of the HALLWAY motor tasks. Improvement in motor evaluations was inversely correlated with increases in bilateral FA. MD did not correlate with behavior but presented a negative correlation with FA. We also found higher 11C-DTBZ binding in positron-emission tomography scans associated with grafts. Higher DA levels measured by microdialysis after stimulation with a high-potassium solution or amphetamine were present in grafted animals after ten months, which has not been previously reported. Postmortem analysis of NHP brains showed that transplanted DANs survived in the putamen long-term, without developing tumors, in immunosuppressed animals. Although these results need to be confirmed with larger groups of NHPs, our molecular, behavioral, biochemical, and imaging findings support the integration and survival of human DANs in this pre-clinical PD model.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Gabriel Ramírez-García
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Rolando Lara-Rodarte
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - César Meléndez-Ramírez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Beetsi Urrieta-Chávez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Tonatiuh Barrios-García
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey 64710, Mexico; (T.B.-G.); (V.T.)
| | - Verónica A. Cáceres-Chávez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
| | - Xóchitl Flores-Ponce
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Francia Carmona
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (F.C.); (L.R.)
| | - Carlos Alberto Reynoso
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Carlos Aguilar
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Nora E. Kerik
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Luisa Rocha
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (F.C.); (L.R.)
| | - Leticia Verdugo-Díaz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
| | - Víctor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey 64710, Mexico; (T.B.-G.); (V.T.)
| | - José Bargas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
| | - Verónica Ramos-Mejía
- Gene Regulation, Stem Cells, and Development Group, GENYO-Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain;
| | - Juan Fernández-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
| | - Aurelio Campos-Romo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| |
Collapse
|
2
|
López-León CF, Soriano J, Planet R. Rheological Characterization of Three-Dimensional Neuronal Cultures Embedded in PEGylated Fibrin Hydrogels. Gels 2023; 9:642. [PMID: 37623097 PMCID: PMC10454106 DOI: 10.3390/gels9080642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Three-dimensional (3D) neuronal cultures are valuable models for studying brain complexity in vitro, and the choice of the bulk material in which the neurons grow is a crucial factor in establishing successful cultures. Indeed, neuronal development and network functionality are influenced by the mechanical properties of the selected material; in turn, these properties may change due to neuron-matrix interactions that alter the microstructure of the material. To advance our understanding of the interplay between neurons and their environment, here we utilized a PEGylated fibrin hydrogel as a scaffold for mouse primary neuronal cultures and carried out a rheological characterization of the scaffold over a three-week period, both with and without cells. We observed that the hydrogels exhibited an elastic response that could be described in terms of the Young's modulus E. The hydrogels without neurons procured a stable E≃420 Pa, while the neuron-laden hydrogels showed a higher E≃590 Pa during the early stages of development that decreased to E≃340 Pa at maturer stages. Our results suggest that neurons and their processes dynamically modify the hydrogel structure during development, potentially compromising both the stability of the material and the functional traits of the developing neuronal network.
Collapse
Affiliation(s)
- Clara F. López-León
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Ramon Planet
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| |
Collapse
|
3
|
Xu S, Qi G, Durrett TP, Li Y, Liu X, Bai J, Chen MS, Sun XS, Wang W. High Nutritional Quality of Human-Induced Pluripotent Stem Cell-Generated Proteins through an Advanced Scalable Peptide Hydrogel 3D Suspension System. Foods 2023; 12:2713. [PMID: 37509805 PMCID: PMC10380007 DOI: 10.3390/foods12142713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cell-cultured protein technology has become increasingly attractive due to its sustainability and climate benefits. The aim of this study is to determine the nutritional quality of the human-induced pluripotent stem cell (hiPSC)-cultured proteins in an advanced 3D peptide hydrogel system for the highly efficient production of cell-cultured proteins. Our previous study demonstrated a PGmatrix peptide hydrogel for the 3D embedded culture of long-term hiPSC maintenance and expansion (PGmatrix-hiPSC (PG-3D)), which showed significantly superior pluripotency when compared with traditional 2D cell culture on Matrigel and/or Vitronectin and other existing 3D scaffolding systems such as Polyethylene glycol (PEG)-based hydrogels. In this study, we designed a PGmatrix 3D suspension (PG-3DSUSP) system from the PG-3D embedded system that allows scaling up a hiPSC 3D culture volume by 20 times (e.g., from 0.5 mL to 10 mL). The results indicated that the PG-3DSUSP was a competitive system compared to the well-established PG-3D embedded method in terms of cell growth performance and cell pluripotency. hiPSCs cultured in PG-3DSUSP consistently presented a 15-20-fold increase in growth and a 95-99% increase in viability across multiple passages with spheroids with a size range of 30-50 μm. The expression of pluripotency-related genes, including NANOG, OCT4, hTERT, REX1, and UTF1, in PG-3DSUSP-cultured hiPSCs was similar to or higher than that observed in a PG-3D system, suggesting continuous pluripotent maintenance. The nutritional value of the hiPSC-generated proteins from the PG-3DSUSP system was further evaluated for amino acid composition and in vitro protein digestibility. The amino acid composition of the hiPSC-generated proteins demonstrated a significantly higher essential amino acid content (39.0%) than human skeletal muscle protein (31.8%). In vitro protein digestibility of hiPSC-generated proteins was significantly higher (78.0 ± 0.7%) than that of the commercial beef protein isolate (75.7 ± 0.6%). Taken together, this is the first study to report an advanced PG-3DSUSP culture system to produce highly efficient hiPSC-generated proteins that possess more essential amino acids and better digestibility. The hiPSC-generated proteins with superior nutrition quality may be of particular significance as novel alternative proteins in food engineering and industries for future food, beverage, and supplement applications.
Collapse
Affiliation(s)
- Shan Xu
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| | - Guangyan Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Xuming Liu
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Ming-Shun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Prakash N, Kim J, Jeon J, Kim S, Arai Y, Bello AB, Park H, Lee SH. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs). Biomater Res 2023; 27:31. [PMID: 37072836 PMCID: PMC10114339 DOI: 10.1186/s40824-023-00371-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.
Collapse
Affiliation(s)
- Nityanand Prakash
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jiseong Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jieun Jeon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Siyeon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
6
|
de Leeuw VC, van Oostrom CTM, Zwart EP, Heusinkveld HJ, Hessel EVS. Prolonged Differentiation of Neuron-Astrocyte Co-Cultures Results in Emergence of Dopaminergic Neurons. Int J Mol Sci 2023; 24:ijms24043608. [PMID: 36835019 PMCID: PMC9959280 DOI: 10.3390/ijms24043608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Dopamine is present in a subgroup of neurons that are vital for normal brain functioning. Disruption of the dopaminergic system, e.g., by chemical compounds, contributes to the development of Parkinson's disease and potentially some neurodevelopmental disorders. Current test guidelines for chemical safety assessment do not include specific endpoints for dopamine disruption. Therefore, there is a need for the human-relevant assessment of (developmental) neurotoxicity related to dopamine disruption. The aim of this study was to determine the biological domain related to dopaminergic neurons of a human stem cell-based in vitro test, the human neural progenitor test (hNPT). Neural progenitor cells were differentiated in a neuron-astrocyte co-culture for 70 days, and dopamine-related gene and protein expression was investigated. Expression of genes specific for dopaminergic differentiation and functioning, such as LMX1B, NURR1, TH, SLC6A3, and KCNJ6, were increasing by day 14. From day 42, a network of neurons expressing the catecholamine marker TH and the dopaminergic markers VMAT2 and DAT was present. These results confirm stable gene and protein expression of dopaminergic markers in hNPT. Further characterization and chemical testing are needed to investigate if the model might be relevant in a testing strategy to test the neurotoxicity of the dopaminergic system.
Collapse
|
7
|
Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci 2023; 24:ijms24032523. [PMID: 36768843 PMCID: PMC9917335 DOI: 10.3390/ijms24032523] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tng J. W. Teddy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore 639798, Singapore
| | - Mok Jung Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Micaela Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- National Neuroscience Institute, Singapore 308433, Singapore
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
8
|
Del Campo-Montoya R, Luquin MR, Puerta E, Garbayo E, Blanco-Prieto M. Hydrogels for Brain Repair: Application to Parkinson's Disease. Expert Opin Drug Deliv 2022; 19:1521-1537. [PMID: 36240170 DOI: 10.1080/17425247.2022.2136161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Parkinson's disease is the second most common neurodegenerative disease. Currently, there are no curative therapies, with only symptomatic treatment available. One of the principal reasons for the lack of treatments is the problem of delivering drugs to the brain, mainly due to the blood-brain barrier. Hydrogels are presented as ideal platforms for delivering treatments to the brain ranging from small molecules to cell replacement therapies. AREAS COVERED The potential application of hydrogel-based therapies for Parkinson's disease is addressed. The desirable composition and mechanical properties of these therapies for brain application are discussed, alongside the preclinical research available with hydrogels in Parkinson's disease. Lastly, translational and manufacturing challenges are presented. EXPERT OPINION Parkinson's disease urgently needs novel therapies to delay its progression and for advanced stages, at which conventional therapies fail to control motor symptoms. Neurotrophic factor-loaded hydrogels with stem cells offer one of the most promising therapies. This approach may increase the striatal dopamine content while protecting and promoting the differentiation of stem cells although the generation of synapses between engrafted and host cells remains an issue to overcome. Other challenges to consider are related to the route of administration of hydrogels and their large-scale production, required to accelerate their translation toward the clinic.
Collapse
Affiliation(s)
| | | | | | - E Garbayo
- University of navarra, pamplona, 31008 spain
| | | |
Collapse
|
9
|
Johnson HJ, Chakraborty S, Muckom RJ, Balsara NP, Schaffer DV. A scalable and tunable thermoreversible polymer for 3D human pluripotent stem cell biomanufacturing. iScience 2022; 25:104971. [PMID: 36147944 PMCID: PMC9485071 DOI: 10.1016/j.isci.2022.104971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are an exciting and promising source to enable cell replacement therapies for a variety of unmet medical needs. Though hPSCs can be successfully derived into numerous physiologically relevant cell types, effective translation to the clinic is limited by challenges in scalable production of high-quality cells, cellular immaturity following the differentiation process, and the use of animal-derived components in culture. To address these limitations, we have developed a fully defined, reproducible, and tunable thermoreversible polymer for high-quality, scalable 3D cell production. Our reproducible synthesis method enables precise control of gelation temperature (24°C–32°C), hydrogel stiffness (100–4000 Pa), and the prevention of any unintended covalent crosslinking. After material optimization, we demonstrated hPSC expansion, pluripotency maintenance, and differentiation into numerous lineages within the hydrogel. Overall, this 3D thermoreversible hydrogel platform has broad applications in scalable, high-quality cell production to overcome the biomanufacturing burden of stem cell therapy. Synthesis of a scalable, tunable, and reproducible thermoreversible hydrogel Optimization of hydrogel properties including stiffness, LCST, and viscosity Expansion and pluripotency maintenance of hESCs in the hydrogel platform Differentiation of neurons, cardiomyocytes, and hepatocytes in the hydrogel platform
Collapse
|
10
|
Abdelrahman S, Alsanie WF, Khan ZN, Albalawi HI, Felimban RI, Moretti M, Steiner N, Chaudhary AG, Hauser CAE. A Parkinson's disease model composed of 3D bioprinted dopaminergic neurons within a biomimetic peptide scaffold. Biofabrication 2022; 14. [PMID: 35793642 DOI: 10.1088/1758-5090/ac7eec] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder that affects movement. It is associated with lost dopaminergic (DA) neurons in thesubstantia nigra, a process that is not yet fully understood. To understand this deleterious disorder, there is an immense need to develop efficientin vitrothree-dimensional (3D) models that can recapitulate complex organs such as the brain. However, due to the complexity of neurons, selecting suitable biomaterials to accommodate them is challenging. Here, we report on the fabrication of functional DA neuronal 3D models using ultrashort self-assembling tetrapeptide scaffolds. Our peptide-based models demonstrate biocompatibility both for primary mouse embryonic DA neurons and for human DA neurons derived from human embryonic stem cells. DA neurons encapsulated in these scaffolds responded to 6-hydroxydopamine, a neurotoxin that selectively induces loss of DA neurons. Using multi-electrode arrays, we recorded spontaneous activity in DA neurons encapsulated within these 3D peptide scaffolds for more than 1 month without decrease of signal intensity. Additionally, vascularization of our 3D models in a co-culture with endothelial cells greatly promoted neurite outgrowth, leading to denser network formation. This increase of neuronal networks through vascularization was observed for both primary mouse DA and cortical neurons. Furthermore, we present a 3D bioprinted model of DA neurons inspired by the mouse brain and created with an extrusion-based 3D robotic bioprinting system that was developed during previous studies and is optimized with time-dependent pulsing by microfluidic pumps. We employed a hybrid fabrication strategy that relies on an external mold of the mouse brain construct that complements the shape and size of the desired bioprinted model to offer better support during printing. We hope that our 3D model provides a platform for studies of the pathogenesis of PD and other neurodegenerative disorders that may lead to better understanding and more efficient treatment strategies.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Center of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Zainab N Khan
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hamed I Albalawi
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manola Moretti
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nadia Steiner
- Biological and Environmental Science and Engineering (BESE), Laboratory of Cellular Imaging and Energetics (LCIE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Adeel G Chaudhary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Liu X, Zhang G, Wei P, Zhong L, Chen Y, Zhang J, Chen X, Zhou L. 3D-printed collagen/chitosan/secretome derived from HUCMSCs scaffolds for efficient neural network reconstruction in canines with traumatic brain injury. Regen Biomater 2022; 9:rbac043. [PMID: 35855109 PMCID: PMC9290528 DOI: 10.1093/rb/rbac043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
The secretome secreted by stem cells and bioactive material has emerged as a promising therapeutic choice for traumatic brain injury (TBI). We aimed to determine the effect of 3D-printed collagen/chitosan/secretome derived from human umbilical cord blood mesenchymal stem cells scaffolds (3D-CC-ST) on the injured tissue regeneration process. 3D-CC-ST was performed using 3D printing technology at a low temperature (−20°C), and the physical properties and degeneration rate were measured. The utilization of low temperature contributed to a higher cytocompatibility of fabricating porous 3D architectures that provide a homogeneous distribution of cells. Immediately after the establishment of the canine TBI model, 3D-CC-ST and 3D-CC (3D-printed collagen/chitosan scaffolds) were implanted into the cavity of TBI. Following implantation of scaffolds, neurological examination and motor evoked potential detection were performed to analyze locomotor function recovery. Histological and immunofluorescence staining were performed to evaluate neuro-regeneration. The group treated with 3D-CC-ST had good performance of behavior functions. Implanting 3D-CC-ST significantly reduced the cavity area, facilitated the regeneration of nerve fibers and vessel reconstruction, and promoted endogenous neuronal differentiation and synapse formation after TBI. The implantation of 3D-CC-ST also markedly reduced cell apoptosis and regulated the level of systemic inflammatory factors after TBI.
Collapse
Affiliation(s)
- Xiaoyin Liu
- West China Hospital, West China Medical School, Sichuan University Department of Neurosurgery, , Chengdu 610041, Sichuan, China
- Tianjin Key Laboratory of Neurotrauma Repair,Pingjin Hospital Brain Center , Characteristic Medical Center of People’s Armed Police Forces, Tianjin 300162, China
| | - Guijun Zhang
- West China Hospital, West China Medical School, Sichuan University Department of Neurosurgery, , Chengdu 610041, Sichuan, China
| | - Pan Wei
- The First People's Hospital Of Long Quan yi District Department of Neurosurgery, , Chengdu 610000, Sichuan, China
| | - Lin Zhong
- The First Affiliated Hospital of Chengdu Medical College , Chengdu 610500, Sichuan, China
| | - Yaxing Chen
- West China Hospital, West China Medical School, Sichuan University Department of Neurosurgery, , Chengdu 610041, Sichuan, China
| | - Jianyong Zhang
- the Affiliated Hospital of Guizhou Medical University Department of General Surgery, , Guiyang CN 540000, P. R., Guizhou, China
| | - Xuyi Chen
- Tianjin Key Laboratory of Neurotrauma Repair,Pingjin Hospital Brain Center , Characteristic Medical Center of People’s Armed Police Forces, Tianjin 300162, China
- Institute of Medical Security for Maritime Rights Protection of Characteristic Medical Center of Chinese People’s Armed Police Force (PAP) , Tianjin, 300162, China
| | - Liangxue Zhou
- West China Hospital, West China Medical School, Sichuan University Department of Neurosurgery, , Chengdu 610041, Sichuan, China
| |
Collapse
|
12
|
Havins L, Capel A, Christie SD, Lewis MP, Roach P. Gradient biomimetic platforms for neurogenesis studies. J Neural Eng 2021; 19. [PMID: 34942614 DOI: 10.1088/1741-2552/ac4639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023]
Abstract
There is a need for the development of new cellular therapies for the treatment of many diseases, with the central nervous system (CNS) currently an area of specific focus. Due to the complexity and delicacy of its biology, there is currently a limited understanding of neurogenesis and consequently a lack of reliable test platforms, resulting in several CNS based diseases having no cure. The ability to differentiate pluripotent stem cells into specific neuronal sub-types may enable scalable manufacture for clinical therapies, with a focus also on the purity and quality of the cell population. This focus is targeted towards an urgent need for the diseases that currently have no cure, e.g. Parkinson's disease. Differentiation studies carried out using traditional 2D cell culture techniques are designed using biological signals and morphogens known to be important for neurogenesis in vivo. However, such studies are limited by their simplistic nature, including a general poor efficiency and reproducibility, high reagent costs and an inability to scale-up the process to a manufacture-wide design for clinical use. Biomimetic approaches to recapitulate a more in vivo-like environment are progressing rapidly within this field, with application of bio(chemical) gradients presented both as 2D surfaces and within a 3D volume. This review focusses on the development and application of these advanced extracellular environments particularly for the neural niche. We emphasise the progress that has been made specifically in the area of stem cell derived neuronal differentiation. Increasing developments in biomaterial approaches to manufacture stem cells will enable the improvement of differentiation protocols, enhancing the efficiency and repeatability of the process with a move towards up-scaling. Progress in this area brings these techniques closer to enabling the development of therapies for the clinic.
Collapse
Affiliation(s)
- Laurissa Havins
- Department of Chemistry, Loughborough University, Dept Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Andrew Capel
- Loughborough University, 2National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Steven D Christie
- Department of Chemistry, Loughborough University, Dept Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Mark P Lewis
- Loughborough University School of Sport Exercise and Health Sciences, National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Paul Roach
- Chemistry, Loughborough University, Dept Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
13
|
Brambach M, Ernst A, Nolbrant S, Drouin-Ouellet J, Kirkeby A, Parmar M, Olariu V. Neural tube patterning: from a minimal model for rostrocaudal patterning toward an integrated 3D model. iScience 2021; 24:102559. [PMID: 34142058 PMCID: PMC8184516 DOI: 10.1016/j.isci.2021.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 10/27/2022] Open
Abstract
Rostrocaudal patterning of the neural tube is a defining event in vertebrate brain development. This process is driven by morphogen gradients which specify the fate of neural progenitor cells, leading to the partitioning of the tube. Although this is extensively studied experimentally, an integrated view of the genetic circuitry is lacking. Here, we present a minimal gene regulatory model for rostrocaudal patterning, whose tristable topology was determined in a data-driven way. Using this model, we identified the repression of hindbrain fate as promising strategy for the improvement of current protocols for the generation of dopaminergic neurons. Furthermore, we combined our model with an established minimal model for dorsoventral patterning on a realistic 3D neural tube and found that key features of neural tube patterning could be recapitulated. Doing so, we demonstrate how data and models from different sources can be combined to simulate complex in vivo processes.
Collapse
Affiliation(s)
- Max Brambach
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, 223 63, Sweden
| | - Ariane Ernst
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, 223 63, Sweden
| | - Sara Nolbrant
- Departments of Experimental Medical Science and Clinical Sciences, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | | | - Agnete Kirkeby
- Departments of Experimental Medical Science and Clinical Sciences, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Malin Parmar
- Departments of Experimental Medical Science and Clinical Sciences, Wallenberg Neuroscience Center, and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Victor Olariu
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, 223 63, Sweden
| |
Collapse
|
14
|
Absalan F, Pasandi MS, Ghasemi Hamidabadi H, Saeednia S, Bojnordi MN, Zahiri M, Alizadeh R, Bagher Z. Matrigel enhances differentiation of human adipose tissue-derived stem cells into dopaminergic neuron. Neurosci Lett 2021; 760:136070. [PMID: 34147538 DOI: 10.1016/j.neulet.2021.136070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Therapy based stem cells have offered a novel therapeutic approach for the improvement of neurodegenerative diseases, specially Parkinson. Hence, developing a well-established culture model with appropriate stem cells is extremely crucial in regenerative engineering to provide efficient targeted cells. Human adult mesenchymal stem cells derived from adipose tissue (hADSCs) have emerged as a promising source of stem cells due to their unique potentials of self-renewal and differentiation into other stem cells. The purpose of this study was to investigate the differentiation capacity of hADSCs into dopaminergic and neuron-like cells in the 3D culture plate (Matrigel). METHODS AND MATERIALS hADSCs were obtained from adipose tissues of patients and then characterized morphologically with flowcytometry. Isolated cells were harvested to perform differentiation on Matrigel and tissue culture plate (TCP) supplemented with induction factors. The survival rate of cells during neural induction was monitored by MTT. The expression of specific cell markers was analyzed by QRT-PCR and immunocytochemistry on days 2, 8 and 14. The level of released dopamine was measured using HPLC technique. RESULTS Matrigel had a positive effect on maintaining cell growth compared to those on TCP. Moreover, the number of TH and MAPII positive cells is substantially higher in Matrigel than in TCP. Sox2 and Nestin had a prominent expression in hADSCs within the first days of differentiation. The gene expression of neural markers such as TH, Nurr1, LMX1A and DAT was detected and increased after day 8. Moreover, the dopamine released in the cell harvested on Matrigel was greater than those seeded on TCP. CONCLUSIONS Overall, hADSCs could generate dopaminergic cells, which suggest its strong capability to serve as a tool for Parkinson disease model in the regenerative medicine.
Collapse
Affiliation(s)
- Forouzan Absalan
- Medical Faculty, Abadan University of Medical Sciences, Abadan, Iran
| | - Marzieh Sharifi Pasandi
- Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hatef Ghasemi Hamidabadi
- Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Sara Saeednia
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maryam Nazm Bojnordi
- Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maria Zahiri
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Walker AS, Raliski BK, Karbasi K, Zhang P, Sanders K, Miller EW. Optical Spike Detection and Connectivity Analysis With a Far-Red Voltage-Sensitive Fluorophore Reveals Changes to Network Connectivity in Development and Disease. Front Neurosci 2021; 15:643859. [PMID: 34054405 PMCID: PMC8155641 DOI: 10.3389/fnins.2021.643859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The ability to optically record dynamics of neuronal membrane potential promises to revolutionize our understanding of neurobiology. In this study, we show that the far-red voltage sensitive fluorophore, Berkeley Red Sensor of Transmembrane potential-1, or BeRST 1, can be used to monitor neuronal membrane potential changes across dozens of neurons at a sampling rate of 500 Hz. Notably, voltage imaging with BeRST 1 can be implemented with affordable, commercially available illumination sources, optics, and detectors. BeRST 1 is well-tolerated in cultures of rat hippocampal neurons and provides exceptional optical recording fidelity, as judged by dual fluorescence imaging and patch-clamp electrophysiology. We developed a semi-automated spike-picking program to reduce user bias when calling action potentials and used this in conjunction with BeRST 1 to develop an optical spike and connectivity analysis (OSCA) for high-throughput dissection of neuronal activity dynamics. The high temporal resolution of BeRST 1 enables dissection of firing rate changes in response to acute, pharmacological interventions with commonly used inhibitors like gabazine and picrotoxin. Over longer periods of time, BeRST 1 also tracks chronic perturbations to neurons exposed to amyloid beta 1-42 (Aβ 1-42), revealing modest changes to spiking frequency but profound changes to overall network connectivity. Finally, we use OSCA to track changes in neuronal connectivity during maturation in culture, providing a functional readout of network assembly. We envision that use of BeRST 1 and OSCA described here will be of use to the broad neuroscience community.
Collapse
Affiliation(s)
- Alison S. Walker
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Benjamin K. Raliski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Kaveh Karbasi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Patrick Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Kate Sanders
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
16
|
Kajtez J, Nilsson F, Fiorenzano A, Parmar M, Emnéus J. 3D biomaterial models of human brain disease. Neurochem Int 2021; 147:105043. [PMID: 33887378 DOI: 10.1016/j.neuint.2021.105043] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 01/25/2023]
Abstract
Inherent limitations of the traditional approaches to study brain function and disease, such as rodent models and 2D cell culture platforms, have led to the development of 3D in vitro cell culture systems. These systems, products of multidisciplinary efforts encompassing stem cell biology, materials engineering, and biofabrication, have quickly shown great potential to mimic biochemical composition, structural properties, and cellular morphology and diversity found in the native brain tissue. Crucial to these developments have been the advancements in stem cell technology and cell reprogramming protocols that allow reproducible generation of human subtype-specific neurons and glia in laboratory conditions. At the same time, biomaterials have been designed to provide cells in 3D with a microenvironment that mimics functional and structural aspects of the native extracellular matrix with increasing fidelity. In this article, we review the use of biomaterials in 3D in vitro models of neurological disorders with focus on hydrogel technology and with biochemical composition and physical properties of the in vivo environment as reference.
Collapse
Affiliation(s)
- Janko Kajtez
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden.
| | - Fredrik Nilsson
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Alessandro Fiorenzano
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Malin Parmar
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Krishnan UM. Biomaterials in the treatment of Parkinson's disease. Neurochem Int 2021; 145:105003. [PMID: 33657427 DOI: 10.1016/j.neuint.2021.105003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease is a neurodegenerative disease, the treatment of which is mainly centred around supplementation of dopamine. Additional targets have been identified and newer chemotherapeutic agents have been introduced but their clinical efficacy is limited due to solubility, bioavailability issues and inability to cross the blood-brain barrier (BBB). A wide range of biomaterials ranging from biomolecules, polymers, inorganic metal and metal oxide nanoparticles have been employed to assist the delivery of these therapeutic agents into the brain. Additionally, strategies to deliver cells to restore the dopaminergic neurons also have shown promise due to the integration of biocompatible materials that aid neurogenesis through a combination of topographical, chemical and mechanical cues. Neuroprosthetics is an area that may become significant in treatment of motor deficits associated with Parkinson's disease, and involves development of highly conductive and robust electrode materials with excellent cytocompatibility. This review summarizes the major role played by biomaterials in design of novel strategies and in the improvement of existing therapeutic methods as well as the emerging trends in this domain.
Collapse
Affiliation(s)
- Uma Maheswari Krishnan
- School of Arts, Science & Humanities, Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, 613 401, India.
| |
Collapse
|
18
|
Gong J, Meng T, Yang J, Hu N, Zhao H, Tian T. Three-dimensional in vitro tissue culture models of brain organoids. Exp Neurol 2021; 339:113619. [PMID: 33497645 DOI: 10.1016/j.expneurol.2021.113619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Brain organoids are three-dimensional self-assembled structures that are derived from human induced pluripotent stem cells (hiPSCs). They can recapitulate the spatiotemporal organization and function of the brain, presenting a robust system for in vitro modeling of brain development, evolution, and diseases. Significant advances in biomaterials, microscale technologies, gene editing technologies, and stem cell biology have enabled the construction of human specific brain structures in vitro. However, the limitations of long-term culture, necrosis, and hypoxic cores in different culture models obstruct brain organoid growth and survival. The in vitro models should facilitate oxygen and nutrient absorption, which is essential to generate complex organoids and provides a biomimetic microenvironment for modeling human brain organogenesis and human diseases. This review aims to highlight the progress in the culture devices of brain organoids, including dish, bioreactor, and organ-on-a-chip models. With the modulation of bioactive molecules and biomaterials, the generated organoids recapitulate the key features of the human brain in a more reproducible and hyperoxic fashion. Furthermore, an outlook for future preclinical studies and the genetic modifications of brain organoids is presented.
Collapse
Affiliation(s)
- Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Tianyue Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hezhao Zhao
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tian Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
19
|
Muckom RJ, Sampayo RG, Johnson HJ, Schaffer DV. Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002931. [PMID: 33510596 PMCID: PMC7840150 DOI: 10.1002/adfm.202002931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed. Finally, regulatory aspects of combined material-cell approaches for CNS therapies are considered.
Collapse
Affiliation(s)
- Riya J Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Hunter J Johnson
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94704, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
20
|
Venkataraman L, Fair SR, McElroy CA, Hester ME, Fu H. Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer's disease. Stem Cell Rev Rep 2020; 18:696-717. [PMID: 33180261 PMCID: PMC7658915 DOI: 10.1007/s12015-020-10068-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Many neurodegenerative diseases (NDs) such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis and Huntington’s disease, are characterized by the progressive accumulation of abnormal proteinaceous assemblies in specific cell types and regions of the brain, leading to cellular dysfunction and brain damage. Although animal- and in vitro-based studies of NDs have provided the field with an extensive understanding of some of the mechanisms underlying these diseases, findings from these studies have not yielded substantial progress in identifying treatment options for patient populations. This necessitates the development of complementary model systems that are better suited to recapitulate human-specific features of ND pathogenesis. Three-dimensional (3D) culture systems, such as cerebral organoids generated from human induced pluripotent stem cells, hold significant potential to model NDs in a complex, tissue-like environment. In this review, we discuss the advantages of 3D culture systems and 3D modeling of NDs, especially AD and FTD. We also provide an overview of the challenges and limitations of the current 3D culture systems. Finally, we propose a few potential future directions in applying state-of-the-art technologies in 3D culture systems to understand the mechanisms of NDs and to accelerate drug discovery. Graphical abstract ![]()
Collapse
Affiliation(s)
- Lalitha Venkataraman
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Mark E Hester
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
21
|
Priester C, MacDonald A, Dhar M, Bow A. Examining the Characteristics and Applications of Mesenchymal, Induced Pluripotent, and Embryonic Stem Cells for Tissue Engineering Approaches across the Germ Layers. Pharmaceuticals (Basel) 2020; 13:E344. [PMID: 33114710 PMCID: PMC7692540 DOI: 10.3390/ph13110344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The field of regenerative medicine utilizes a wide array of technologies and techniques for repairing and restoring function to damaged tissues. Among these, stem cells offer one of the most potent and promising biological tools to facilitate such goals. Implementation of mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) offer varying advantages based on availability and efficacy in the target tissue. The focus of this review is to discuss characteristics of these three subset stem cell populations and examine their utility in tissue engineering. In particular, the development of therapeutics that utilize cell-based approaches, divided by germinal layer to further assess research targeting specific tissues of the mesoderm, ectoderm, and endoderm. The combinatorial application of MSCs, iPSCs, and ESCs with natural and synthetic scaffold technologies can enhance the reparative capacity and survival of implanted cells. Continued efforts to generate more standardized approaches for these cells may provide improved study-to-study variations on implementation, thereby increasing the clinical translatability of cell-based therapeutics. Coupling clinically translatable research with commercially oriented methods offers the potential to drastically advance medical treatments for multiple diseases and injuries, improving the quality of life for many individuals.
Collapse
Affiliation(s)
- Caitlin Priester
- Department of Animal Science, University of Tennessee, Knoxville, TN 37998, USA;
| | - Amber MacDonald
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Austin Bow
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| |
Collapse
|
22
|
Muckom R, Bao X, Tran E, Chen E, Murugappan A, Dordick JS, Clark DS, Schaffer DV. High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates. SCIENCE ADVANCES 2020; 6:eaaz1457. [PMID: 32821815 PMCID: PMC7413735 DOI: 10.1126/sciadv.aaz1457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 06/25/2020] [Indexed: 05/12/2023]
Abstract
The emergence of several cell therapy candidates in the clinic is an encouraging sign for human diseases/disorders that currently have no effective treatment; however, scalable production of these cell therapies has become a bottleneck. To overcome this barrier, three-dimensional (3D) cell culture strategies have been considered for enhanced cell production. Here, we demonstrate a high-throughput 3D culture platform used to systematically screen 1200 culture conditions with varying doses, durations, dynamics, and combinations of signaling cues to derive oligodendrocyte progenitor cells and midbrain dopaminergic neurons from human pluripotent stem cells (hPSCs). Statistical models of the robust dataset reveal previously unidentified patterns about cell competence to Wnt, retinoic acid, and sonic hedgehog signals, and their interactions, which may offer insights into the combinatorial roles these signals play in human central nervous system development. These insights can be harnessed to optimize production of hPSC-derived cell replacement therapies for a range of neurological indications.
Collapse
Affiliation(s)
- Riya Muckom
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Eric Tran
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Evelyn Chen
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Abirami Murugappan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan S. Dordick
- Department of Chemical and Biomolecular Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Corresponding author. (D.S.C.); (D.V.S.)
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Corresponding author. (D.S.C.); (D.V.S.)
| |
Collapse
|
23
|
Fernandes CSM, Rodrigues AL, Alves VD, Fernandes TG, Pina AS, Roque ACA. Natural Multimerization Rules the Performance of Affinity-Based Physical Hydrogels for Stem Cell Encapsulation and Differentiation. Biomacromolecules 2020; 21:3081-3091. [DOI: 10.1021/acs.biomac.0c00473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Cláudia S. M. Fernandes
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - André L. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 049-001 Lisboa, Portugal
| | - Vitor D. Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 049-001 Lisboa, Portugal
| | - Ana Sofia Pina
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Ana Cecília A. Roque
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
24
|
Godbe JM, Freeman R, Burbulla LF, Lewis J, Krainc D, Stupp SI. Gelator length precisely tunes supramolecular hydrogel stiffness and neuronal phenotype in 3D culture. ACS Biomater Sci Eng 2020; 6:1196-1207. [PMID: 33094153 PMCID: PMC7575210 DOI: 10.1021/acsbiomaterials.9b01585] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The brain is one of the softest tissues in the body with storage moduli (G') that range from hundreds to thousands of pascals (Pa) depending upon the anatomic region. Furthermore, pathological processes such as injury, aging and disease can cause subtle changes in the mechanical properties throughout the central nervous system. However, these changes in mechanical properties lie within an extremely narrow range of moduli and there is great interest in understanding their effect on neuron biology. We report here the design of supramolecular hydrogels based on anionic peptide amphiphile nanofibers using oligo-L-lysines of different molecular lengths to precisely tune gel stiffness over the range of interest and found that G' increases by 10.5 Pa for each additional lysine monomer in the oligo-L-lysine chain. We found that small changes in storage modulus on the order of 70 Pa significantly affect survival, neurite growth and tyrosine hydroxylase-positive population in dopaminergic neurons derived from induced pluripotent stem cells. The work reported here offers a strategy to tune mechanical stiffness of hydrogels for use in 3D neuronal cell cultures and transplantation matrices for neural regeneration.
Collapse
Affiliation(s)
- Jacqueline M. Godbe
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ronit Freeman
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Lena F. Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, United States
| | - Jacob Lewis
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, United States
| | - Samuel I. Stupp
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Motor and sensitive recovery after injection of a physically cross-linked PNIPAAm-g-PEG hydrogel in rat hemisectioned spinal cord. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110354. [DOI: 10.1016/j.msec.2019.110354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/20/2019] [Indexed: 12/28/2022]
|
26
|
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
27
|
Xing F, Li L, Zhou C, Long C, Wu L, Lei H, Kong Q, Fan Y, Xiang Z, Zhang X. Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells Int 2019; 2019:2180925. [PMID: 31949436 PMCID: PMC6948329 DOI: 10.1155/2019/2180925] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
It is well known that stem cells reside within tissue engineering functional microenvironments that physically localize them and direct their stem cell fate. Recent efforts in the development of more complex and engineered scaffold technologies, together with new understanding of stem cell behavior in vitro, have provided a new impetus to study regulation and directing stem cell fate. A variety of tissue engineering technologies have been developed to regulate the fate of stem cells. Traditional methods to change the fate of stem cells are adding growth factors or some signaling pathways. In recent years, many studies have revealed that the geometrical microenvironment played an essential role in regulating the fate of stem cells, and the physical factors of scaffolds including mechanical properties, pore sizes, porosity, surface stiffness, three-dimensional structures, and mechanical stimulation may affect the fate of stem cells. Chemical factors such as cell-adhesive ligands and exogenous growth factors would also regulate the fate of stem cells. Understanding how these physical and chemical cues affect the fate of stem cells is essential for building more complex and controlled scaffolds for directing stem cell fate.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Lang Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Cheng Long
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| |
Collapse
|
28
|
Caiazza MC, Lang C, Wade-Martins R. What we can learn from iPSC-derived cellular models of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2019; 252:3-25. [PMID: 32247368 DOI: 10.1016/bs.pbr.2019.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder with no known cure. In order to better understand the pathological mechanisms which lead to neuronal cell death and to accelerate the process of drug discovery, a reliable in vitro model is required. Unfortunately, research into PD and neurodegeneration in general has long suffered from a lack of adequate in vitro models, mainly due to the inaccessibility of live neurons from vulnerable areas of the human brain. Recent reprogramming technologies have recently made it possible to reliably derive human induced pluripotent stem cells (iPSCs) from patients and healthy subjects to generate specific, difficult to obtain, cellular sub-types. These iPSC-derived cells can be employed to model disease to better understand pathological mechanisms and underlying cellular vulnerability. Therefore, in this chapter, we will discuss the techniques involved in the reprogramming of somatic cells into iPSCs, the evolution of iPSC differentiation methods and their application in neurodegenerative disease modeling.
Collapse
Affiliation(s)
- Maria Claudia Caiazza
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Charmaine Lang
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
29
|
Kim SH, Lee S, Lee H, Cho M, Schaffer DV, Jang JH. AAVR-Displaying Interfaces: Serotype-Independent Adeno-Associated Virus Capture and Local Delivery Systems. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:432-443. [PMID: 31670142 PMCID: PMC6831863 DOI: 10.1016/j.omtn.2019.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Interfacing gene delivery vehicles with biomaterials has the potential to play a key role in diversifying gene transfer capabilities, including localized, patterned, and controlled delivery. However, strategies for modifying biomaterials to interact with delivery vectors must be redesigned whenever new delivery vehicles and applications are explored. We have developed a vector-independent biomaterial platform capable of interacting with various adeno-associated viral (AAV) serotypes. A water-soluble, cysteine-tagged, recombinant protein version of the recently discovered multi-AAV serotype receptor (AAVR), referred to as cys-AAVR, was conjugated to maleimide-displaying polycaprolactone (PCL) materials using click chemistry. The resulting cys-AAVR-PCL system bound to a broad range of therapeutically relevant AAV serotypes, thereby providing a platform capable of modulating the delivery of all AAV serotypes. Intramuscular injection of cys-AAVR-PCL microspheres with bound AAV vectors resulted in localized and sustained gene delivery as well as reduced spread to off-target organs compared to a vector solution. This cys-AAVR-PCL system is thus an effective approach for biomaterial-based AAV gene delivery for a broad range of therapeutic applications.
Collapse
Affiliation(s)
- Seung-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Slgirim Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Heehyung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Mira Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-3220, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-3220, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-3220, USA.
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|
30
|
Überbacher C, Obergasteiger J, Volta M, Venezia S, Müller S, Pesce I, Pizzi S, Lamonaca G, Picard A, Cattelan G, Malpeli G, Zoli M, Beccano-Kelly D, Flynn R, Wade-Martins R, Pramstaller PP, Hicks AA, Cowley SA, Corti C. Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons. Stem Cell Res 2019; 41:101656. [PMID: 31733438 PMCID: PMC7322529 DOI: 10.1016/j.scr.2019.101656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have become indispensable for disease modelling. They are an important resource to access patient cells harbouring disease-causing mutations. Derivation of midbrain dopaminergic (DAergic) neurons from hiPSCs of PD patients represents the only option to model physiological processes in a cell type that is not otherwise accessible from human patients. However, differentiation does not produce a homogenous population of DA neurons and contaminant cell types may interfere with the readout of the in vitro system. Here, we use CRISPR/Cas9 to generate novel knock-in reporter lines for DA neurons, engineered with an endogenous fluorescent tyrosine hydroxylase - enhanced green fluorescent protein (TH-eGFP) reporter. We present a reproducible knock-in strategy combined with a highly specific homologous directed repair (HDR) screening approach using digital droplet PCR (ddPCR). The knock-in cell lines that we created show a functioning fluorescent reporter system for DA neurons that are identifiable by flow cytometry.
Collapse
Affiliation(s)
- Christa Überbacher
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy; Department of Biomedical, Metabolic and Neural Sciences, Università di Modena e Reggio Emilia, Modena, Italy.
| | - Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Serena Venezia
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Stefan Müller
- Institute of Human Genetics, Munich University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Isabella Pesce
- CIBIO - Centre for Integrative Biology, Università degli Studi di Trento, Trento, Italy
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giulia Lamonaca
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giada Cattelan
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy; Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Università di Modena e Reggio Emilia, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Dayne Beccano-Kelly
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Rowan Flynn
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Sally A Cowley
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK; James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
31
|
Zimmermann JA, Schaffer DV. Engineering biomaterials to control the neural differentiation of stem cells. Brain Res Bull 2019; 150:50-60. [DOI: 10.1016/j.brainresbull.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
|
32
|
Harkness L, Chen X, Jia Z, Davies AM, Monteiro M, Gray P, Pera M. Fibronectin-conjugated thermoresponsive nanobridges generate three dimensional human pluripotent stem cell cultures for differentiation towards the neural lineages. Stem Cell Res 2019; 38:101441. [PMID: 31082678 DOI: 10.1016/j.scr.2019.101441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/31/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Production of 3-dimensional neural progenitor cultures from human pluripotent stem cells offers the potential to generate large numbers of cells. We utilised our nanobridge system to generate 3D hPSC aggregates for differentiation towards the neural lineage, and investigate the ability to passage aggregates while maintaining cells at a stem/progenitor stage. Over 38 days, aggregate cultures exhibited upregulation and maintenance of neural-associated markers and demonstrated up to 10 fold increase in cell number. Aggregates undergoing neural induction in the presence or absence of nanobridges demonstrated no differences in marker expression, proliferation or viability. However, aggregates formed without nanobridges were statistically significantly fewer and smaller by passage 3. Organoids, cultured from aggregates, and treated with retinoic acid or rock inhibitor demonstrated terminal differentiation as assessed by immunohistochemistry. These data demonstrate that nanobridge 3D hPSC can differentiate to neural stem/progenitor cells, and be maintained at this stage through serial passaging and expansion.
Collapse
Affiliation(s)
- Linda Harkness
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Xiaoli Chen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anthony M Davies
- Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - Michael Monteiro
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin Pera
- The Florey Institute of Neuroscience and Mental Health and the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; The Jackson Laboratory, Bar Harbor, ME 04609, United States; The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
33
|
Bertucci TB, Dai G. Biomaterial Engineering for Controlling Pluripotent Stem Cell Fate. Stem Cells Int 2018; 2018:9068203. [PMID: 30627175 PMCID: PMC6304878 DOI: 10.1155/2018/9068203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/11/2018] [Indexed: 01/02/2023] Open
Abstract
Pluripotent stem cells (PSCs) represent an exciting cell source for tissue engineering and regenerative medicine due to their self-renewal and differentiation capacities. The majority of current PSC protocols rely on 2D cultures and soluble factors to guide differentiation; however, many other environmental signals are beginning to be explored using biomaterial platforms. Biomaterials offer new opportunities to engineer the stem cell niches and 3D environments for exploring biophysical and immobilized signaling cues to further our control over stem cell fate. Here, we review the biomaterial platforms that have been engineered to control PSC fate. We explore how altering immobilized biochemical cues and biophysical cues such as dimensionality, stiffness, and topography can enhance our control over stem cell fates. Finally, we highlight biomaterial culture systems that assist in the translation of PSC technologies for clinical applications.
Collapse
Affiliation(s)
- Taylor B Bertucci
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
34
|
Jung-Klawitter S, Opladen T. Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism. J Inherit Metab Dis 2018; 41:1103-1116. [PMID: 29980968 DOI: 10.1007/s10545-018-0225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the way of modeling human disease. Especially for the modeling of rare human monogenetic diseases with limited numbers of patients available worldwide and limited access to the mostly affected tissues, iPSCs have become an invaluable tool. To study rare diseases affecting neurotransmitter biosynthesis and neurotransmission, stem cell models carrying patient-specific mutations have become highly important as most of the cell types present in the human brain and the central nervous system (CNS), including motoneurons, neurons, oligodendrocytes, astrocytes, and microglia, can be differentiated from iPSCs following distinct developmental programs. Differentiation can be performed using classical 2D differentiation protocols, thereby generating specific subtypes of neurons or glial cells in a dish. On the other side, 3D differentiation into "organoids" opened new ways to study misregulated developmental processes associated with rare neurological and neurometabolic diseases. For the analysis of defects in neurotransmission associated with rare neurometabolic diseases, different types of brain organoids have been made available during the last years including forebrain, midbrain and cerebral organoids. In this review, we illustrate reprogramming of somatic cells to iPSCs, differentiation in 2D and 3D, as well as already available disease-specific iPSC models, and discuss current and future applications of these techniques.
Collapse
Affiliation(s)
- Sabine Jung-Klawitter
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| | - Thomas Opladen
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| |
Collapse
|
35
|
Nierode GJ, Gopal S, Kwon P, Clark DS, Schaffer DV, Dordick JS. High-throughput identification of factors promoting neuronal differentiation of human neural progenitor cells in microscale 3D cell culture. Biotechnol Bioeng 2018; 116:168-180. [PMID: 30229860 DOI: 10.1002/bit.26839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023]
Abstract
Identification of conditions for guided and specific differentiation of human stem cell and progenitor cells is important for continued development and engineering of in vitro cell culture systems for use in regenerative medicine, drug discovery, and human toxicology. Three-dimensional (3D) and organotypic cell culture models have been used increasingly for in vitro cell culture because they may better model endogenous tissue environments. However, detailed studies of stem cell differentiation within 3D cultures remain limited, particularly with respect to high-throughput screening. Herein, we demonstrate the use of a microarray chip-based platform to screen, in high-throughput, individual and paired effects of 12 soluble factors on the neuronal differentiation of a human neural progenitor cell line (ReNcell VM) encapsulated in microscale 3D Matrigel cultures. Dose-response analysis of selected combinations from the initial combinatorial screen revealed that the combined treatment of all-trans retinoic acid (RA) with the glycogen synthase kinase 3 inhibitor CHIR-99021 (CHIR) enhances neurogenesis while simultaneously decreases astrocyte differentiation, whereas the combined treatment of brain-derived neurotrophic factor and the small azide neuropathiazol enhances the differentiation into neurons and astrocytes. Subtype specification analysis of RA- and CHIR-differentiated cultures revealed that enhanced neurogenesis was not biased toward a specific neuronal subtype. Together, these results demonstrate a high-throughput screening platform for rapid evaluation of differentiation conditions in a 3D environment, which will aid the development and application of 3D stem cell culture models.
Collapse
Affiliation(s)
- Gregory J Nierode
- Department of Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Sneha Gopal
- Department of Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Paul Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
36
|
Automatic microscopic detection of mycobacteria in sputum: a proof-of-concept. Sci Rep 2018; 8:11308. [PMID: 30054578 PMCID: PMC6063956 DOI: 10.1038/s41598-018-29660-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/11/2018] [Indexed: 11/09/2022] Open
Abstract
The laboratory diagnosis of lung mycobacterioses including tuberculosis comprises the microscopic examination of sputum smear after appropriate staining such as Ziehl-Neelsen staining to observe acid-fast bacilli. This standard procedure is operator-dependant and its sensitivity depends on the duration of observation. We developed and evaluated an operator-independent microscopic examination of sputum smears for the automated detection and enumeration of acid-fast bacilli using a ZEISS Axio Scan.Z1 microscope. The sensitivity, specificity, positive predictive value, negative predictive values and accuracy were calculated using standard formulations by comparison with standard microscopic examination. After in-house parameterization of the automatic microscope and counting software, the limit of detection evaluated by seeding negative sputa with Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv (100–105 bacilli/mL) was of 102 bacilli/mL of sputum with a 100% positivity rate. Then, the evaluation of 93 sputum specimens including 34 smear-positive and 59 smear-negative specimens yielded a sensitivity of 97.06% [84.67–99.93%], a specificity of 86.44% [73.01–92.78%]. Up to 100 smear slides could be stocked for reading in the microscope magazine and results are exportable into the laboratory information system. Based on these preliminary results, we are implanting this automatic protocol in the routine workflow so that only smears detected positive by automatic microscopy are confirmed by standard microscopic examination.
Collapse
|
37
|
Ekerdt BL, Fuentes CM, Lei Y, Adil MM, Ramasubramanian A, Segalman RA, Schaffer DV. Thermoreversible Hyaluronic Acid-PNIPAAm Hydrogel Systems for 3D Stem Cell Culture. Adv Healthc Mater 2018; 7:e1800225. [PMID: 29717823 PMCID: PMC6289514 DOI: 10.1002/adhm.201800225] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cells (hPSCs) offer considerable potential for biomedical applications including drug screening and cell replacement therapies. Clinical translation of hPSCs requires large quantities of high quality cells, so scalable methods for cell culture are needed. However, current methods are limited by scalability, the use of animal-derived components, and/or low expansion rates. A thermoresponsive 3D hydrogel for scalable hPSC expansion and differentiation into several defined lineages is recently reported. This system would benefit from increased control over material properties to further tune hPSC behavior, and here a scalable 3D biomaterial with the capacity to tune both the chemical and the mechanical properties is demonstrated to promote hPSC expansion under defined conditions. This 3D biomaterial, comprised of hyaluronic acid and poly(N-isopropolyacrylamide), has thermoresponsive properties that readily enable mixing with cells at low temperatures, physical encapsulation within the hydrogel upon elevation at 37 °C, and cell recovery upon cooling and reliquefaction. After optimization, the resulting biomaterial supports hPSC expansion over long cell culture periods while maintaining cell pluripotency. The capacity to modulate the mechanical and chemical properties of the hydrogel provides a new avenue to expand hPSCs for future therapeutic application.
Collapse
Affiliation(s)
- Barbara L. Ekerdt
- Department of Chemical and Biolomolecular Engineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Christina M. Fuentes
- Department of Bioengineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, 207 Othmer, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Maroof M. Adil
- Department of Chemical and Biolomolecular Engineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Anusuya Ramasubramanian
- Department of Bioengineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| | - Rachel A. Segalman
- Department of Chemical Engineering, 3333 Engineering IIUniversity of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - David V. Schaffer
- Department of Chemical and Biolomolecular Engineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
- Department of Bioengineering, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
- Department of Molecular and Cell Biology, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
- The Helen Wills Neuroscience Institute, 274 Stanley Hall University of California, Berkeley, Berkeley, CA, USA,
| |
Collapse
|
38
|
hPSC-Derived Striatal Cells Generated Using a Scalable 3D Hydrogel Promote Recovery in a Huntington Disease Mouse Model. Stem Cell Reports 2018; 10:1481-1491. [PMID: 29628395 PMCID: PMC5995679 DOI: 10.1016/j.stemcr.2018.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/05/2023] Open
Abstract
Huntington disease (HD) is an inherited, progressive neurological disorder characterized by degenerating striatal medium spiny neurons (MSNs). One promising approach for treating HD is cell replacement therapy, where lost cells are replaced by MSN progenitors derived from human pluripotent stem cells (hPSCs). While there has been remarkable progress in generating hPSC-derived MSNs, current production methods rely on two-dimensional culture systems that can include poorly defined components, limit scalability, and yield differing preclinical results. To facilitate clinical translation, here, we generated striatal progenitors from hPSCs within a fully defined and scalable PNIPAAm-PEG three-dimensional (3D) hydrogel. Transplantation of 3D-derived striatal progenitors into a transgenic mouse model of HD slowed disease progression, improved motor coordination, and increased survival. In addition, the transplanted cells developed an MSN-like phenotype and formed synaptic connections with host cells. Our results illustrate the potential of scalable 3D biomaterials for generating striatal progenitors for HD cell therapy. 3D-generated striatal cells rapidly achieve functional maturity Transplanted cells delayed disease onset and alleviated symptoms in HD mice Transplanted striatal cells increased lifespan in HD mice HTT aggregates were observed in striatal cells transplanted into HD mice
Collapse
|
39
|
LaMarca EA, Powell SK, Akbarian S, Brennand KJ. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells. Front Pediatr 2018; 6:82. [PMID: 29666786 PMCID: PMC5891587 DOI: 10.3389/fped.2018.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.
Collapse
Affiliation(s)
- Elizabeth A. LaMarca
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samuel K. Powell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristen J. Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
40
|
Schwamborn JC. Is Parkinson's Disease a Neurodevelopmental Disorder and Will Brain Organoids Help Us to Understand It? Stem Cells Dev 2018; 27:968-975. [PMID: 29415619 DOI: 10.1089/scd.2017.0289] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. The incidence of PD cases increases with age, accordingly classically PD is considered to be an age-associated neurodegenerative disease. In this review, the hypothesis that PD is actually a neurodevelopmental disorder that is compensated for a long time will be discussed. However, patients who suffer from PD typically do not show symptoms early in their lives. This implies that, if the hypothesis that PD has a significant neurodevelopmental component is correct, the developmental defects are compensated for a long time. Furthermore, these developmental defects might not causally lead to the disease but increase the susceptibility for disease onset after a "second hit." In this logic, deregulated developmental processes might represent the "first hit." Even a minor developmental defect could lead to a reduced compensatory capacity or reduced fault tolerance of the entire system. In such a case of an already imbalanced system one or more additional hits could perturb the entire system sufficiently to bring it out of balance and lead to the pathology and symptoms which we classify as PD. However, if the developmental hypothesis and the "multiple hit" hypothesis are correct, an early diagnosis of these developmental defects might allow the start of a therapy for at-risk individuals before disease pathology becomes severe and before symptoms occur. Modern stem cell technologies, including the generation of personalized brain organoids, might play an important role in these strategies.
Collapse
Affiliation(s)
- Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, Developmental and Cellular Biology, University of Luxembourg , Belvaux, Luxembourg
| |
Collapse
|
41
|
Adil MM, Schaffer DV. hPSC‐derived Midbrain Dopaminergic Neurons Generated in a Scalable 3‐D Biomaterial. ACTA ACUST UNITED AC 2018; 44:2D.21.1-2D.21.17. [DOI: 10.1002/cpsc.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maroof M. Adil
- Departments of Chemical and Biomolecular Engineering, Molecular and Cell Biology, Bioengineering, and Helen Wills Neuroscience Institute, University of California Berkeley California
| | - David V. Schaffer
- Departments of Chemical and Biomolecular Engineering, Molecular and Cell Biology, Bioengineering, and Helen Wills Neuroscience Institute, University of California Berkeley California
| |
Collapse
|
42
|
J Siney E, Kurbatskaya K, Chatterjee S, Prasannan P, Mudher A, Willaime-Morawek S. Modelling neurodegenerative diseases in vitro: Recent advances in 3D iPSC technologies. ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Serio A, Patani R. Concise Review: The Cellular Conspiracy of Amyotrophic Lateral Sclerosis. Stem Cells 2017; 36:293-303. [DOI: 10.1002/stem.2758] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Andrea Serio
- Tissue Engineering and Biophotonics Division; Dental Institute, Kings College London; London United Kingdom
| | - Rickie Patani
- Department of Molecular Neuroscience; Institute of Neurology, University College London; London United Kingdom
- The Francis Crick Institute; London United Kingdom
| |
Collapse
|
44
|
Rodrigues GMC, Gaj T, Adil MM, Wahba J, Rao AT, Lorbeer FK, Kulkarni RU, Diogo MM, Cabral JMS, Miller EW, Hockemeyer D, Schaffer DV. Defined and Scalable Differentiation of Human Oligodendrocyte Precursors from Pluripotent Stem Cells in a 3D Culture System. Stem Cell Reports 2017; 8:1770-1783. [PMID: 28552605 PMCID: PMC5470111 DOI: 10.1016/j.stemcr.2017.04.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) offer considerable potential for the treatment of demyelinating diseases and injuries of the CNS. However, generating large quantities of high-quality OPCs remains a substantial challenge that impedes their therapeutic application. Here, we show that OPCs can be generated from human pluripotent stem cells (hPSCs) in a three-dimensional (3D), scalable, and fully defined thermoresponsive biomaterial system. We used CRISPR/Cas9 to create a NKX2.2-EGFP human embryonic stem cell reporter line that enabled fine-tuning of early OPC specification and identification of conditions that markedly increased the number of OLIG2+ and NKX2.2+ cells generated from hPSCs. Transplantation of 50-day-old OPCs into the brains of NOD/SCID mice revealed that progenitors generated in 3D without cell selection or purification subsequently engrafted, migrated, and matured into myelinating oligodendrocytes in vivo. These results demonstrate the potential of harnessing lineage reporter lines to develop 3D platforms for rapid and large-scale production of OPCs. A defined and scalable 3D system accelerates the differentiation of OPCs from hPSCs A NKX2.2-EGFP hESC reporter line enables optimization of OPC differentiation 3D-derived OPCs engraft, migrate, and mature after implantation into NOD/SCID mice
Collapse
Affiliation(s)
- Gonçalo M C Rodrigues
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA; Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Thomas Gaj
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA
| | - Maroof M Adil
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1462, USA
| | - Joyce Wahba
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1462, USA
| | - Antara T Rao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1462, USA
| | - Franziska K Lorbeer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Rishi U Kulkarni
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1462, USA
| | - Maria Margarida Diogo
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Evan W Miller
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1462, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3370, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-3370, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1462, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3370, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-3370, USA.
| |
Collapse
|
45
|
Adil MM, Vazin T, Ananthanarayanan B, Rodrigues GMC, Rao AT, Kulkarni RU, Miller EW, Kumar S, Schaffer DV. Engineered hydrogels increase the post-transplantation survival of encapsulated hESC-derived midbrain dopaminergic neurons. Biomaterials 2017; 136:1-11. [PMID: 28505596 DOI: 10.1016/j.biomaterials.2017.05.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 01/21/2023]
Abstract
Cell replacement therapies have broad biomedical potential; however, low cell survival and poor functional integration post-transplantation are major hurdles that hamper clinical benefit. For example, following striatal transplantation of midbrain dopaminergic (mDA) neurons for the treatment of Parkinson's disease (PD), only 1-5% of the neurons typically survive in preclinical models and in clinical trials. In general, resource-intensive generation and implantation of larger numbers of cells are used to compensate for the low post-transplantation cell-survival. Poor graft survival is often attributed to adverse biochemical, mechanical, and/or immunological stress that cells experience during and after implantation. To address these challenges, we developed a functionalized hyaluronic acid (HA)-based hydrogel for in vitro maturation and central nervous system (CNS) transplantation of human pluripotent stem cell (hPSC)-derived neural progenitors. Specifically, we functionalized the HA hydrogel with RGD and heparin (hep) via click-chemistry and tailored its stiffness to encourage neuronal maturation, survival, and long-term maintenance of the desired mDA phenotype. Importantly, ∼5 times more hydrogel-encapsulated mDA neurons survived after transplantation in the rat striatum, compared to unencapsulated neurons harvested from commonly used 2D surfaces. This engineered biomaterial may therefore increase the therapeutic potential and reduce the manufacturing burden for successful neuronal implantation.
Collapse
Affiliation(s)
- Maroof M Adil
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Tandis Vazin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Gonçalo M C Rodrigues
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Antara T Rao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|