1
|
Ackmann J, Brüge A, Gotina L, Lim S, Jahreis K, Vollbrecht AL, Kim YK, Pae AN, Labus J, Ponimaskin E. Structural determinants for activation of the Tau kinase CDK5 by the serotonin receptor 5-HT7R. Cell Commun Signal 2024; 22:233. [PMID: 38641599 PMCID: PMC11031989 DOI: 10.1186/s12964-024-01612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Multiple neurodegenerative diseases are induced by the formation and deposition of protein aggregates. In particular, the microtubule-associated protein Tau leads to the development of so-called tauopathies characterized by the aggregation of hyperphosphorylated Tau within neurons. We recently showed that the constitutive activity of the serotonin receptor 7 (5-HT7R) is required for Tau hyperphosphorylation and aggregation through activation of the cyclin-dependent kinase 5 (CDK5). We also demonstrated physical interaction between 5-HT7R and CDK5 at the plasma membrane suggesting that the 5-HT7R/CDK5 complex is an integral part of the signaling network involved in Tau-mediated pathology. METHODS Using biochemical, microscopic, molecular biological, computational and AI-based approaches, we investigated structural requirements for the formation of 5-HT7R/CDK5 complex. RESULTS We demonstrated that 5-HT7R domains responsible for coupling to Gs proteins are not involved in receptor interaction with CDK5. We also created a structural model of the 5-HT7R/CDK5 complex and refined the interaction interface. The model predicted two conserved phenylalanine residues, F278 and F281, within the third intracellular loop of 5-HT7R to be potentially important for complex formation. While site-directed mutagenesis of these residues did not influence Gs protein-mediated receptor signaling, replacement of both phenylalanines by alanine residues significantly reduced 5-HT7R/CDK5 interaction and receptor-mediated CDK5 activation, leading to reduced Tau hyperphosphorylation and aggregation. Molecular dynamics simulations of 5-HT7R/CDK5 complex for wild-type and receptor mutants confirmed binding interface stability of the initial model. CONCLUSIONS Our results provide a structural basis for the development of novel drugs targeting the 5-HT7R/CDK5 interaction interface for the selective treatment of Tau-related disorders, including frontotemporal dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Jana Ackmann
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alina Brüge
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Lizaveta Gotina
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sungsu Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Kathrin Jahreis
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anna-Lena Vollbrecht
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Yun Kyung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ae Nim Pae
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Josephine Labus
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Hu B, Zhang W, Zhang C, Li C, Zhang N, Pan K, Ge X, Wan T. CCNI2 promotes pancreatic cancer through PI3K/AKT signaling pathway. BIOMOLECULES & BIOMEDICINE 2024; 24:323-336. [PMID: 37540586 PMCID: PMC10950348 DOI: 10.17305/bb.2023.9337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Globally, pancreatic cancer is recognized as one of the deadliest malignancies that lacks effective targeted therapies. This study aims to explore the role of cyclin I-like protein (CCNI2), a homolog of cyclin I (CCNI), in the progression of pancreatic cancer, thereby providing a theoretical basis for its treatment. Firstly, the expression of CCNI2 in pancreatic cancer tissues was determined through immunohistochemical staining. The biological role of CCNI2 in pancreatic cancer cells was further assessed using both in vitro and in vivo loss/gain-of-function assays. Our data revealed that CCNI2 expression was abnormally elevated in pancreatic cancer, and clinically, increased CCNI2 expression generally correlated with reduced overall survival. Functionally, CCNI2 contributed to the malignant progression of pancreatic cancer by promoting the proliferation and migration of tumor cells. Consistently, in vivo experiments verified that CCNI2 knockdown impaired the tumorigenic ability of pancreatic cancer cells. Moreover, the addition of phosphatidylinositol 3-kinase (PI3K) inhibitors could partially reverse the promoting effect of CCNI2 on the malignant phenotypes of pancreatic cancer cells. CCNI2 promoted pancreatic cancer through PI3K/protein kinase B (AKT) signaling pathway, indicating its potential as a prognostic marker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Bingyang Hu
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Wenzhi Zhang
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Changsheng Zhang
- Department of General Surgery, Kaifeng Central Hospital, Longting District, Kaifeng, Henan Province, China
| | - Chonghui Li
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Ning Zhang
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Ke Pan
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Xinlan Ge
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| | - Tao Wan
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Haidian District, Beijing, China
| |
Collapse
|
3
|
Chowdhury I, Dashi G, Keskitalo S. CMGC Kinases in Health and Cancer. Cancers (Basel) 2023; 15:3838. [PMID: 37568654 PMCID: PMC10417348 DOI: 10.3390/cancers15153838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
CMGC kinases, encompassing cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase kinases (GSKs), and CDC-like kinases (CLKs), play pivotal roles in cellular signaling pathways, including cell cycle regulation, proliferation, differentiation, apoptosis, and gene expression regulation. The dysregulation and aberrant activation of these kinases have been implicated in cancer development and progression, making them attractive therapeutic targets. In recent years, kinase inhibitors targeting CMGC kinases, such as CDK4/6 inhibitors and BRAF/MEK inhibitors, have demonstrated clinical success in treating specific cancer types. However, challenges remain, including resistance to kinase inhibitors, off-target effects, and the need for better patient stratification. This review provides a comprehensive overview of the importance of CMGC kinases in cancer biology, their involvement in cellular signaling pathways, protein-protein interactions, and the current state of kinase inhibitors targeting these kinases. Furthermore, we discuss the challenges and future perspectives in targeting CMGC kinases for cancer therapy, including potential strategies to overcome resistance, the development of more selective inhibitors, and novel therapeutic approaches, such as targeting protein-protein interactions, exploiting synthetic lethality, and the evolution of omics in the study of the human kinome. As our understanding of the molecular mechanisms and protein-protein interactions involving CMGC kinases expands, so too will the opportunities for the development of more selective and effective therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Iftekhar Chowdhury
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Sugahara S, Haga H, Ikeda C, Makino N, Matsuda A, Kakizaki Y, Hoshikawa K, Katsumi T, Ishizawa T, Kobayashi T, Maki K, Suzuki F, Murakami R, Sato H, Ueno Y. Role of Bile-Derived Extracellular Vesicles in Hepatocellular Proliferation after Partial Hepatectomy in Rats. Int J Mol Sci 2023; 24:ijms24119230. [PMID: 37298180 DOI: 10.3390/ijms24119230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Although liver regeneration has been extensively studied, the effects of bile-derived extracellular vesicles (bile EVs) on hepatocytes has not been elucidated. We examined the influence of bile EVs, collected from a rat model of 70% partial hepatectomy (PH), on hepatocytes. We produced bile-duct-cannulated rats. Bile was collected over time through an extracorporeal bile duct cannulation tube. Bile EVs were extracted via size exclusion chromatography. The number of EVs released into the bile per liver weight 12 h after PH significantly increased. Bile EVs collected 12 and 24 h post-PH, and after sham surgery (PH12-EVs, PH24-EVs, sham-EVs) were added to the rat hepatocyte cell line, and 24 h later, RNA was extracted and transcriptome analysis performed. The analysis revealed that more upregulated/downregulated genes were observed in the group with PH24-EVs. Moreover, the gene ontology (GO) analysis focusing on the cell cycle revealed an upregulation of 28 types of genes in the PH-24 group, including genes that promote cell cycle progression, compared to the sham group. PH24-EVs induced hepatocyte proliferation in a dose-dependent manner in vitro, whereas sham-Evs showed no significant difference compared to the controls. This study revealed that post-PH bile Evs promote the proliferation of the hepatocytes, and genes promoting cell cycles are upregulated in hepatocytes.
Collapse
Affiliation(s)
- Shinpei Sugahara
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Chisaki Ikeda
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Naohiko Makino
- Yamagata University Health Administration Center, 1-4-12 Kojirakawa-Machi, Yamagata 990-8560, Japan
| | - Akiko Matsuda
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Yasuharu Kakizaki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Tomohiro Katsumi
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Tetsuya Ishizawa
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Toshikazu Kobayashi
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Keita Maki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Fumiya Suzuki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Ryoko Murakami
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Hidenori Sato
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| |
Collapse
|
5
|
Wong DP, Fritz CE, Feinberg D, Huang AY, Parameswaran R. p35 is a Crucial Player in NK-cell Cytotoxicity and TGFβ-mediated NK-cell Dysfunction. CANCER RESEARCH COMMUNICATIONS 2023; 3:793-806. [PMID: 37377891 PMCID: PMC10162136 DOI: 10.1158/2767-9764.crc-22-0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 06/29/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes with cytotoxic activity. Understanding the factors regulating cytotoxicity is crucial for improving NK-cell adoptive therapies. Here, we studied a previously unknown role of p35 (CDK5R1), a coactivator of cyclin-dependent kinase 5 (CDK5) in NK-cell function. p35 expression was thought to be neuronal-specific and the majority of studies are still focused on neuronal cells. Here, we show that CDK5 and p35 are expressed in NK cells and are kinase-active. NK cells from p35 knockout mice were analyzed and showed significantly increased cytotoxicity against murine cancer cells, while they did not show any differences in cell numbers or maturation stages. We confirmed this using human NK cells transduced with p35 short hairpin RNA (shRNA), showing similar increase in cytotoxicity against human cancer cells. Overexpression of p35 in NK cells resulted in moderate decrease in cytotoxicity, while expressing a kinase-dead mutant of CDK5 displayed increased cytotoxicity. Together, these data suggest that p35 negatively regulates NK-cell cytotoxicity. Surprisingly, we found that TGFβ, a known negative regulator of NK-cell cytotoxicity, induces p35 expression in NK cells. NK cells cultured with TGFβ exhibit reduced cytotoxicity, while NK cells transduced with p35 shRNA or mutant CDK5 expression exhibited partial reversal of this inhibitory effect pointing to an interesting hypothesis that p35 plays an important role in TGFβ-mediated NK-cell exhaustion. Significance This study reports a role for p35 in NK-cell cytotoxicity and this might help to improve NK-cell adoptive therapy.
Collapse
Affiliation(s)
- Derek P. Wong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Claire E. Fritz
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Daniel Feinberg
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Alex Y. Huang
- Pediatric Hematology and Oncology, The Angie Fowler Adolescent & Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Reshmi Parameswaran
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
6
|
Isubakova DS, Litviakov NV, Tsymbal OS, Usova TV, Tsyplenkova MY, Milto IV, Takhauov RM. Search for polymorphic variants of candidate genes contributing to individual radiosensitivity. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-79-87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background. Cytogenetic damage (СD) in lymphocytes induced by low doses (up to 0.1 Sv) of ionizing radiation (IR) is the main cytogenetic sign of individual radiosensitivity of the human body. In addition to DNA repair and cell death, which affect the formation of СD and its elimination, IR effects on the cell can be manifested through changes in proliferation of cells with unrepaired DNA damage. The system of cyclins and cyclin-dependent kinases (CDK), which provide coordination of mitotic events during passage of a cell through the cell cycle, plays a crucial role in regulation of cell proliferation.Aim. To evaluate the relationship of single-nucleotide polymorphisms (SNPs) of cell cycle genes with an increased frequency of СD in workers of a nuclear power plant affected by chronic occupational radiation exposure in the dose range of 100–500 mSv.Materials and methods. The object of the study was blood of 55 conditionally healthy workers of Siberian Chemical Plant (SCP) who were affected by chronic occupational radiation exposure (gamma radiation) in the dose range of 100–500 mSv. A standard cytogenetic analysis of blood lymphocytes was performed for all examined individuals. Genomic DNA was isolated from the blood of the workers using the QIAamp DNA Blood Mini Kit (QIAGEN, Germany). DNA was genotyped using 257 SNPs of cyclin genes and neighboring intergenic regions using DNA microarrays from the high-density CytoScan HD Array (Affymetrix, USA).Results. Taking into account the Bonferroni correction, only statistically significant associations of SNPs with the frequency of dicentric chromosomes were found; all other types of chromosomal aberrations did not show statistical significance. The rs803054 CCNI2 was associated with an increased frequency of dicentric chromosomes arising under the influence of chronic occupational radiation exposure.Conclusion. The discovered SNP (rs803054), whose recessive genotype is associated with an increased frequency of dicentric chromosomes in workers of SCP exposed to radiation at doses of 100–500 mSv over a long time, can be considered as a potential marker of individual radiosensitivity. To confirm the identified associations, further validation studies are needed on an expanded sample of people affected by chronic occupational radiation exposure.
Collapse
Affiliation(s)
| | - N. V. Litviakov
- Seversk Biophysical Research Center;
Cancer Research Institute of Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | | | | | | | - I. V. Milto
- Seversk Biophysical Research Center;
Siberian State Medical University
| | - R. M. Takhauov
- Seversk Biophysical Research Center;
Siberian State Medical University
| |
Collapse
|
7
|
Cyclin-dependent kinases as potential targets for colorectal cancer: past, present and future. Future Med Chem 2022; 14:1087-1105. [PMID: 35703127 DOI: 10.4155/fmc-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer in the world and its prevalence is increasing in developing countries. Deregulated cell cycle traverse is a hallmark of malignant transformation and is often observed in CRC as a result of imprecise activity of cell cycle regulatory components, viz. cyclins and cyclin-dependent kinases (CDKs). Apart from cell cycle regulation, some CDKs also regulate processes such as transcription and have also been shown to be involved in colorectal carcinogenesis. This article aims to review cyclin-dependent kinases as potential targets for CRC. Furthermore, therapeutic candidates to target CDKs are also discussed.
Collapse
|
8
|
Sciolino N, Liu A, Breindel L, Burz DS, Sulchek T, Shekhtman A. Microfluidics delivery of DARPP-32 into HeLa cells maintains viability for in-cell NMR spectroscopy. Commun Biol 2022; 5:451. [PMID: 35551287 PMCID: PMC9098904 DOI: 10.1038/s42003-022-03412-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
High-resolution structural studies of proteins and protein complexes in a native eukaryotic environment present a challenge to structural biology. In-cell NMR can characterize atomic resolution structures but requires high concentrations of labeled proteins in intact cells. Most exogenous delivery techniques are limited to specific cell types or are too destructive to preserve cellular physiology. The feasibility of microfluidics transfection or volume exchange for convective transfer, VECT, as a means to deliver labeled target proteins to HeLa cells for in-cell NMR experiments is demonstrated. VECT delivery does not require optimization or impede cell viability; cells are immediately available for long-term eukaryotic in-cell NMR experiments. In-cell NMR-based drug screening using VECT was demonstrated by collecting spectra of the sensor molecule DARPP32, in response to exogenous administration of Forskolin.
Collapse
Affiliation(s)
- Nicholas Sciolino
- University at Albany, Department of Chemistry, Albany, NY, 12222, USA
| | - Anna Liu
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | - Leonard Breindel
- University at Albany, Department of Chemistry, Albany, NY, 12222, USA
| | - David S Burz
- University at Albany, Department of Chemistry, Albany, NY, 12222, USA
| | - Todd Sulchek
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | | |
Collapse
|
9
|
Chen W, Zhou Y, Wu G, Sun P. CCNI2 promotes the progression of human gastric cancer through HDGF. Cancer Cell Int 2021; 21:661. [PMID: 34895232 PMCID: PMC8665640 DOI: 10.1186/s12935-021-02352-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric cancer is a highly aggressive malignant tumor with heterogeneity and is still a global health problem. The present study aimed to investigate the role of Cyclin I-like (CCNI2) in the regulation of phenotype and tumorigenesis, as well as its underlying mechanisms. METHOD The expression profile of CCNI2 in gastric cancer was determined based on The Cancer Genome Atlas (TCGA) database and immunohistochemical staining. The effects of altered CCNI2 expression on the biological phenotypes such as proliferation, clone formation, apoptosis and migration of gastric cancer cell lines BGC-823 and SGC-7901 were investigated. Mice xenograft models were established to reveal the role of CCNI2 knockdown on tumorigenesis. The potential mechanism of CCNI2 regulating gastric cancer was preliminarily determined by RNA sequencing. RESULT CCNI2 was abundantly expressed in gastric cancer and was positively correlated with pathological stage. Knockdown of CCNI2 slowed down the malignant progression of gastric cancer by inhibiting tumor cell proliferation, increasing the susceptibility to apoptosis and suppressing migration. Moreover, downregulation of CCNI2 attenuated the ability of gastric cancer cells to form tumors in mice. Additionally, there was an interaction between CCNI2 and transcription factor hepatoma-derived growth factor (HDGF) in SGC-7901 cells. Knockdown of CCNI2 alleviated the promoting effects of HDGF overexpression in gastric cancer cells. CONCLUSIONS CCNI2 promoted the progression of human gastric cancer through HDGF, which drew further interest regarding its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yang Zhou
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
10
|
Sui R, Shi W, Han S, Fan X, Zhang X, Wang N, Zhang H, Xu A, Liu C. MiR-142-5p directly targets cyclin-dependent kinase 5-mediated upregulation of the inflammatory process in acquired middle ear cholesteatoma. Mol Immunol 2021; 141:236-245. [PMID: 34875451 DOI: 10.1016/j.molimm.2021.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of cell proliferation, differentiation, apoptosis, and inflammatory responses. MiR-142-5p is an important inflammation-associated miRNA, whose abnormal expression has been associated with a variety of inflammation-related diseases. However, the role and signaling pathways targeted by miR-142-5p in acquired middle ear cholesteatoma (AMEC) have not been fully elucidated. Cyclin-dependent kinase 5 (CDK5), a special member of the CDK family compared with classic cyclins that plays a critical role in the inflammatory response. In this study, we investigated the roles of miR-142-5p and CDK5 in inflammatory responses in AMEC. Our results revealed that the expression of miR-142-5p was significantly reduced in AMEC, and was negatively correlated with the expression of CDK5 (r=-0.5451). We also found that miR-142-5p can inhibit CDK5 expression by directly target 3' untranslated region (UTR) of CDK5. Additionally, our findings indicated that the increased expression of CDK5 induces the secretion of inflammatory cytokines. In order to further confirm the involvement of miR-142-5p in the regulation of the inflammatory response in AMEC through its inhibitory effect on CDK5 expression, we studied the inflammatory response in HaCaT cells transfected with small interfering RNA against CDK5 (si-CDK5) and a miR-142-5p inhibitor. The results confirmed that miR-142-5p regulates the inflammatory response in AMEC by downregulating CDK5. In summary, miR-142-5p directly inhibits the CDK5-mediated upregulation of inflammatory cytokines in AMEC, which makes it a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Rongcui Sui
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Wei Shi
- Department of Otolaryngology, Zhoucun District People's Hospital, 72 Mianhua Shi Road, Zibo, Shandong, China
| | - Shuhui Han
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Xintai Fan
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Xianzhao Zhang
- Department of Otolaryngology, The First People's Hospital of Jining, 6 Health Road, Jining, Shandong, China
| | - Na Wang
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Hao Zhang
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Anting Xu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China.
| | - Chengcheng Liu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Jinan, Shandong, China.
| |
Collapse
|
11
|
Liu C, Du H, Wang Y, Gong N, Qi W, Zhou X, Shi L. S100A11 regulates nasal epithelial cell remodeling and inflammation in CRSwNPs via the RAGE-mediated AMPK-STAT3 pathway. Mol Immunol 2021; 140:35-46. [PMID: 34653793 DOI: 10.1016/j.molimm.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Abnormal remodeling of the nasal mucosal epithelium and persistent chronic inflammation are important pathological features of chronic sinusitis with nasal polyps (CRSwNPs). In order to explore the molecular regulation mechanism of CRSwNPs, we performed iTRAQ protein profile analysis on 18 clinical samples collected (9 patients with nasal polyps and 9 healthy patients) and found that S100A11, a Ca2+-binding protein, was significantly higher in CRSwNPs. Subsequently, we demonstrated that S100A11 was mainly located in nasal mucosal epithelial cells and is up-regulated in human nasal epithelial stem/progenitor cells (hNESPCs) from CRSwNPs patients and CRSwNPs epithelial cell model established with S. aureus. To determine the functional role of S100A11 and the signal pathways in epithelial cells, we constructed S100A11 overexpression vector, small interfering RNA, recombinant protein-S100A11 (rh-S100A11) and RAGE inhibitor (sRAGE). Results showed that upregulation of S100A11 inhibited epithelial cell viability and promoted apoptosis and inflammation, in addition, S100A11 can regulate the signal homeostasis of AMPK-STAT3 via RAGE mediation in epithelial cells. Our findings suggest that S100A11 is involved in CRSwNPs epithelial tissue remodeling and inflammatory response regulation and may be a useful target for CRSwNPs therapy.
Collapse
Affiliation(s)
- Chengcheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Jinan, Shandong, China
| | - Hongjie Du
- Qilu Pharmaceutical Co.Ltd, 8888, Lvyou Rd Jinan, Shandong Province, China
| | - Yajie Wang
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Jinan, Shandong, China
| | - Ningyue Gong
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Jinan, Shandong, China
| | - Wenwen Qi
- Department of Otolaryngology, The Second Hospital of Shandong University, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Xiangmin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, China
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, China.
| |
Collapse
|
12
|
Lai DM, Bi JJ, Chen YH, Wu YD, Huang QW, Li HJ, Zhang S, Fu Z, Tong YX. CCNI2 plays a promoting role in the progression of colorectal cancer. Cancer Med 2021; 10:1913-1924. [PMID: 33620152 PMCID: PMC7957193 DOI: 10.1002/cam4.3504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and most of the patients diagnosed with advanced CRC have unsatisfactory treatment effect and poor prognosis. The purpose of this study was to investigate the effect of CCNI2 on the development of CRC. In this sutdy, immunohistochemical staining was used to detect CCNI2 expression levels in clinical samples, meanwhile, the Kaplan‐Meier survival analysis was conducted. Celigo cell counting assay was used for screening shCCNI2s. QPCR and WB were performed to verify knockdown efficiency of CCNI2. Cell proliferation, colony formation, cell cycle, apoptosis, and mechanism investigation of CCNI2 knockdown were investigated by MTT assay, colony formation assay, fluorescence‐activated cell sorting, and human apoptosis antibody array, respectively. Otherwise, the mouse model of CCNI2 knockdown was also constructed. The results of immunohistochemical staining and qPCR indicated that CCNI2 had a high expression level in the CRC tissues and cell lines. Kaplan‐Meier survival analysis manifested that the high expression of CCNI2 suggested poor prognosis. The expression of CCNI2 was significantly reduced by CCNI2‐siRNAs, and the downregulated expression level of CCNI2 inhibited CRC cell proliferation and colony formation, arrested cell cycle in G2 phase, as well as promoted cell apoptosis. The various indexes of solid tumor in mice models indicated that CCNI2 knockdown could suppress the growth of CRC tumor. Based on the comprehensive analysis of the above results, CCNI2 was contributed to the progression of CRC and could serve as a prognostic marker for CRC.
Collapse
Affiliation(s)
- Dong-Ming Lai
- Department of Gastrointestinal Surgery, Sun Yat-sen memorial hospital affiliated Sen Yat-sen University, Guangzhou, China
| | - Jiang-Jiang Bi
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong-Hui Chen
- Department of GI Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Di Wu
- Department of GI Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing-Wen Huang
- Department of GI Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai-Jie Li
- Department of GI Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Zhang
- Department of GI Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Yi-Xin Tong
- Department of GI Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Tatum NJ, Endicott JA. Chatterboxes: the structural and functional diversity of cyclins. Semin Cell Dev Biol 2020; 107:4-20. [PMID: 32414682 DOI: 10.1016/j.semcdb.2020.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Proteins of the cyclin family have divergent sequences and execute diverse roles within the cell while sharing a common fold: the cyclin box domain. Structural studies of cyclins have played a key role in our characterization and understanding of cellular processes that they control, though to date only ten of the 29 CDK-activating cyclins have been structurally characterized by X-ray crystallography or cryo-electron microscopy with or without their cognate kinases. In this review, we survey the available structures of human cyclins, highlighting their molecular features in the context of their cellular roles. We pay particular attention to how cyclin activity is regulated through fine control of degradation motif recognition and ubiquitination. Finally, we discuss the emergent roles of cyclins independent of their roles as cyclin-dependent protein kinase activators, demonstrating the cyclin box domain to be a versatile and generalized scaffolding domain for protein-protein interactions across the cellular machinery.
Collapse
Affiliation(s)
- Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jane A Endicott
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
14
|
Chotiner JY, Wolgemuth DJ, Wang PJ. Functions of cyclins and CDKs in mammalian gametogenesis†. Biol Reprod 2020; 101:591-601. [PMID: 31078132 DOI: 10.1093/biolre/ioz070] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Cyclins and cyclin-dependent kinases (CDKs) are key regulators of the cell cycle. Most of our understanding of their functions has been obtained from studies in single-cell organisms and mitotically proliferating cultured cells. In mammals, there are more than 20 cyclins and 20 CDKs. Although genetic ablation studies in mice have shown that most of these factors are dispensable for viability and fertility, uncovering their functional redundancy, CCNA2, CCNB1, and CDK1 are essential for embryonic development. Cyclin/CDK complexes are known to regulate both mitotic and meiotic cell cycles. While some mechanisms are common to both types of cell divisions, meiosis has unique characteristics and requirements. During meiosis, DNA replication is followed by two successive rounds of cell division. In addition, mammalian germ cells experience a prolonged prophase I in males or a long period of arrest in prophase I in females. Therefore, cyclins and CDKs may have functions in meiosis distinct from their mitotic functions and indeed, meiosis-specific cyclins, CCNA1 and CCNB3, have been identified. Here, we describe recent advances in the field of cyclins and CDKs with a focus on meiosis and early embryogenesis.
Collapse
Affiliation(s)
- Jessica Y Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Quan Q, Li X, Feng J, Hou J, Li M, Zhang B. Ginsenoside Rg1 reduces β‑amyloid levels by inhibiting CDΚ5‑induced PPARγ phosphorylation in a neuron model of Alzheimer's disease. Mol Med Rep 2020; 22:3277-3288. [PMID: 32945455 PMCID: PMC7453505 DOI: 10.3892/mmr.2020.11424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
The accumulation of β-amyloid peptides (Aβ) in the brain is a hallmark of Alzheimer's disease (AD). Studies have indicated that ginsenoside Rg1, a primary component of ginseng (Panax ginseng), reduces brain Aβ levels in an AD model through peroxisome proliferator-activated receptor γ (PPARγ), thereby regulating the expression of insulin-degrading enzyme (Ide) and β-amyloid cleavage enzyme 1 (Bace1), which are PPARγ target genes. However, the effects of ginsenoside Rg1 on PPARγ remain unclear. Since cyclin-dependent kinase 5 (CDK5) mediates PPARγ phosphorylation in adipose tissue, this study aimed to investigate whether ginsenoside Rg1 regulates PPARγ target genes and reduces Aβ levels by inhibiting PPARγ phosphorylation through the CDK5 pathway. In the present study, a model of AD was established by treating primary cultured rat hippocampal neurons with Aβ1-42. The cells were pretreatment with ginsenoside Rg1 and roscovitine, a CDK5-inhibitor, prior to the treatment with Aβ1-42. Neuronal apoptosis was detected using TUNEL staining. PPARγ phosphorylation and protein expression levels of PPARγ, CDK5, IDE, BACE1, amyloid precursor protein (APP) and Aβ1-42 were measured by western blotting. The mRNA expression levels of PPARγ, CDK5, IDE, BACE1 and APP were assessed using reverse transcription-quantitative PCR. The results of the present study demonstrated that in an AD model induced by Aβ1-42, ginsenoside Rg1 significantly decreased CDK5 expression, inhibited PPARγ phosphorylation at serine 273, elevated IDE expression, downregulated BACE1 and APP expression, decreased Aβ1-42 levels and attenuated neuronal apoptosis. The CDK5 inhibitor, roscovitine, demonstrated similar effects. These results suggest that ginsenoside Rg1 has neuroprotective properties and has potential for use in the treatment of AD.
Collapse
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianjun Feng
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jixing Hou
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi 710061, P.R. China
| | - Ming Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Bingwei Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
16
|
Quandt E, Ribeiro MPC, Clotet J. Atypical cyclins in cancer: New kids on the block? Semin Cell Dev Biol 2020; 107:46-53. [PMID: 32417219 DOI: 10.1016/j.semcdb.2020.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Atypical cyclins have recently emerged as a new subfamily of cyclins characterized by common structural features and interactor pattern. Interestingly, atypical cyclins are phylogenetically close to canonical cyclins, which have well-established roles in cell cycle regulation and cancer. Therefore, although the function of atypical cyclins is still poorly characterized, it seems likely that they are involved in cancer pathogenesis as well. Here, we coupled gene expression and prognostic significance analysis to bibliographic search in order to provide new insights into the role of atypical cyclins in cancer. The information gathered suggests that atypical cyclins intervene in critical processes to sustain cancer growth and have potential to become novel prognostic markers and drug targets in cancer.
Collapse
Affiliation(s)
- Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain.
| |
Collapse
|
17
|
Quandt E, Ribeiro MPC, Clotet J. Atypical cyclins: the extended family portrait. Cell Mol Life Sci 2020; 77:231-242. [PMID: 31420702 PMCID: PMC6971155 DOI: 10.1007/s00018-019-03262-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Regulation of cell division is orchestrated by cyclins, which bind and activate their catalytic workmates, the cyclin-dependent kinases (CDKs). Cyclins have been traditionally defined by an oscillating (cyclic) pattern of expression and by the presence of a characteristic "cyclin box" that determines binding to the CDKs. Noteworthy, the Human Genome Sequence Project unveiled the existence of several other proteins containing the "cyclin box" domain. These potential "cyclins" have been named new, orphan or atypical, creating a conundrum in cyclins nomenclature. Moreover, although many years have passed after their discovery, the scarcity of information regarding these possible members of the family has hampered the establishment of criteria for systematization. Here, we discuss the criteria that define cyclins and we propose a classification and nomenclature update based on structural features, interactors, and phylogenetic information. The application of these criteria allows to systematically define, for the first time, the subfamily of atypical cyclins and enables the use of a common nomenclature for this extended family.
Collapse
Affiliation(s)
- Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| |
Collapse
|
18
|
Shen X, Xu X, Xie C, Liu H, Yang D, Zhang J, Wu Q, Feng W, Wang L, Du L, Xuan L, Meng C, Zhang H, Wang W, Wang Y, Xie T, Huang Z. YAP promotes the proliferation of neuroblastoma cells through decreasing the nuclear location of p27 Kip1 mediated by Akt. Cell Prolif 2019; 53:e12734. [PMID: 31863533 PMCID: PMC7046475 DOI: 10.1111/cpr.12734] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Objective We aimed to investigate the roles and underlying mechanisms of YAP in the proliferation of neuroblastoma cells. Methods The expression level of YAP was evaluated by Western blotting and immunocytochemistry. Cell viability, cell proliferation and growth were detected by CCK‐8, PH3 and Ki67 immunostaining, and the real‐time cell analyser system. The nuclear and cytoplasmic proteins of p27Kip1 were dissociated by the nuclear‐cytosol extraction kit and were detected by Western blotting and immunocytochemistry. mRNA levels of Akt, CDK5 and CRM1 were determined by qRT‐PCR. Results YAP was enriched in SH‐SY5Y cells (a human neuroblastoma cell line). Knock‐down of YAP in SH‐SY5Y cells or SK‐N‐SH cell line (another human neuroblastoma cell line) significantly decreased cell viability, inhibited cell proliferation and growth. Mechanistically, knock‐down of YAP increased the nuclear location of p27Kip1, whereas serum‐induced YAP activation decreased the nuclear location of p27Kip1 and was required for cell proliferation. Meanwhile, overexpression of YAP in these serum‐starved SH‐SY5Y cells decreased the nuclear location of p27Kip1, promoted cell proliferation and overexpression of p27Kip1 in YAP‐activated cells inhibited cell proliferation. Furthermore, knock‐down of YAP reduced Akt mRNA and protein levels. Overexpression of Akt in YAP‐downregulated cells decreased the nuclear location of p27Kip1 and accelerated the proliferation of SH‐SY5Y cells. Conclusions Our studies suggest that YAP promotes the proliferation of neuroblastoma cells through negatively controlling the nuclear location of p27Kip1 mediated by Akt.
Collapse
Affiliation(s)
- Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Changnan Xie
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huitao Liu
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danlu Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,School of Mental Health, Wenzhou Medical University, Zhejiang, China
| | - Wenjin Feng
- Zhejiang Sinogen Medical Equipment Co., Ltd. Wenzhou, Zhejiang, China
| | - Ling Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Leilei Du
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lina Xuan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chaobo Meng
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haitao Zhang
- MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Zhejiang, China
| | - Ying Wang
- Department of Transfusion Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Tian Xie
- Key Laboratory of Elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Zhihui Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
19
|
Cortés N, Guzmán-Martínez L, Andrade V, González A, Maccioni RB. CDK5: A Unique CDK and Its Multiple Roles in the Nervous System. J Alzheimers Dis 2019; 68:843-855. [DOI: 10.3233/jad-180792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nicole Cortés
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Leonardo Guzmán-Martínez
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Víctor Andrade
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Andrea González
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
- Department of Neurological Sciences, Faculty of Medicine, East Campus, University of Chile, Santiago, Chile
| |
Collapse
|
20
|
Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT, Phan M, Mohamed N, Ravandi A, Stanton E, Slutsky AS, Dos Santos CC, Romaschin A, Marshall JC, Addison C, Malone S, Heyland D, Scheltens P, Killestein J, Teunissen CE, Diamandis EP, Michael Siu KW, Marshall JG. The plasma peptides of ovarian cancer. Clin Proteomics 2018; 15:41. [PMID: 30598658 PMCID: PMC6302491 DOI: 10.1186/s12014-018-9215-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Background It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma by using liquid chromatography and tandem mass spectrometry to identify, quantify and compare the peptides cleaved ex vivo from different clinical populations. The endogenous tryptic peptides of ovarian cancer plasma were compared to breast cancer and female cancer normal controls, other diseases with their matched or normal controls, plus ice cold plasma to control for pre-analytical variation. Methods The endogenous tryptic peptides or tryptic phospho peptides (i.e. without exogenous digestion) were analyzed from 200 μl of EDTA plasma. The plasma peptides were extracted by a step gradient of organic/water with differential centrifugation, dried, and collected over C18 for analytical HPLC nano electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) with a linear quadrupole ion trap. The endogenous peptides of ovarian cancer were compared to multiple disease and normal samples from different institutions alongside ice cold controls. Peptides were randomly and independently sampled by LC–ESI–MS/MS. Precursor ions from peptides > E4 counts were identified by the SEQUEST and X!TANDEM algorithms, filtered in SQL Server, before testing of frequency counts by Chi Square (χ2), for analysis with the STRING algorithm, and comparison of precursor intensity by ANOVA in the R statistical system with the Tukey-Kramer Honestly Significant Difference (HSD) test. Results Peptides and/or phosphopeptides of common plasma proteins such as HPR, HP, HPX, and SERPINA1 showed increased observation frequency and/or precursor intensity in ovarian cancer. Many cellular proteins showed large changes in frequency by Chi Square (χ2 > 60, p < 0.0001) in the ovarian cancer samples such as ZNF91, ZNF254, F13A1, LOC102723511, ZNF253, QSER1, P4HA1, GPC6, LMNB2, PYGB, NBR1, CCNI2, LOC101930455, TRPM5, IGSF1, ITGB1, CHD6, SIRT1, NEFM, SKOR2, SUPT20HL1, PLCE1, CCDC148, CPSF3, MORN3, NMI, XTP11, LOC101927572, SMC5, SEMA6B, LOXL3, SEZ6L2, and DHCR24. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. Analysis of the frequently observed proteins by ANOVA confirmed increases in mean precursor intensity in ZFN91, TRPM5, SIRT1, CHD6, RIMS1, LOC101930455 (XP_005275896), CCDC37 and GIMAP4 between ovarian cancer versus normal female and other diseases or controls by the Tukey–Kramer HSD test. Conclusion Here we show that separation of endogenous peptides with a step gradient of organic/water and differential centrifugation followed by random and independent sampling by LC–ESI–MS/MS with analysis of peptide frequency and intensity by SQL Server and R revealed significant difference in the ex vivo cleavage of peptides between ovarian cancer and other clinical treatments. There was striking agreement between the proteins discovered from cancer plasma versus previous biomarkers discovered in tumors by genetic or biochemical methods. The results indicate that variation in plasma proteins from ovarian cancer may be directly discovered by LC–ESI–MS/MS that will be a powerful tool for clinical research. Electronic supplementary material The online version of this article (10.1186/s12014-018-9215-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaimie Dufresne
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Pete Bowden
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Thanusi Thavarajah
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | | | - Zhuo Zhen Chen
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Monika Tucholska
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Tenzin Norzin
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Margaret Truc Ho
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Morla Phan
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Nargiz Mohamed
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Amir Ravandi
- 2Institute of Cardiovascular Sciences, St Boniface Hospital Research Center, University of Manitoba, Winnipeg, Canada
| | - Eric Stanton
- 3Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Arthur S Slutsky
- 4Keenan Chair in Medicine, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Claudia C Dos Santos
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Alexander Romaschin
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - John C Marshall
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Christina Addison
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shawn Malone
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Daren Heyland
- 7Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Canada
| | - Philip Scheltens
- 8Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Joep Killestein
- 9MS Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- 10Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | - John G Marshall
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada.,13International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (formerly CRP Sante Luxembourg), Strassen, Luxembourg.,14Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| |
Collapse
|
21
|
Zhai X, Liu C, Zhao B, Wang Y, Xu Z. Inactivation of Cyclin-Dependent Kinase 5 in Hair Cells Causes Hearing Loss in Mice. Front Mol Neurosci 2018; 11:461. [PMID: 30618612 PMCID: PMC6297389 DOI: 10.3389/fnmol.2018.00461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is abundantly expressed in post-mitotic cells including neurons. It is involved in multiple cellular events, such as cytoskeletal dynamics, signaling cascades, gene expression, and cell survival, et al. Dysfunction of CDK5 has been associated with a number of neurological disorders. Here we show that CDK5 is expressed in mouse cochlear hair cells, and CDK5 inactivation in hair cells causes hearing loss in mice. CDK5 inactivation has no effect on stereocilia development in the cochlear hair cells. However, it affects stereocilia maintenance, resulting in stereocilia disorganization and eventually stereocilia loss. Consistently, hair cell loss was significantly elevated by CDK5 inactivation. Despite that CDK5 has been shown to play important roles in synapse development and/or function, CDK5 inactivation does not affect the formation of ribbon synapses of cochlear hair cells. Further investigation showed that CDK5 inactivation causes reduced phosphorylation of ERM (ezrin, radixin, and moesin) proteins, which might contribute to the stereocilia deficits. Taken together, our data suggest that CDK5 plays pivotal roles in auditory hair cells, and CDK5 inactivation causes hearing loss in mice.
Collapse
Affiliation(s)
- Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Chengcheng Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Bin Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shenzhen Research Institute of Shandong University, Shenzhen, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
22
|
Identification of Binding Partners of Deafness-Related Protein PDZD7. Neural Plast 2018; 2018:2062346. [PMID: 29796015 PMCID: PMC5896214 DOI: 10.1155/2018/2062346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/24/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
PDZD7 is an important deafness gene, whose mutations are associated with syndromic and nonsyndromic hearing loss. PDZD7 contains multiple PDZ domains that are essential for organizing various proteins into protein complex. Several PDZD7-binding proteins have been identified, including usherin, ADGRV1, whirlin, harmonin, SANS, and MYO7A, all belonging to USH proteins. Here, we report the identification of novel PDZD7-binding partners through yeast two-hybrid screening using the first two PDZ domains of PDZD7 as bait. Eleven proteins were identified, most of which have not been reported as PDZD7-binding partners before. Among the identified proteins, ADGRV1, gelsolin, and β-catenin have been shown to play important roles in hearing, whereas the functions of other proteins in the inner ear remain elusive. We confirmed the expression of one candidate PDZD7-binding protein, CADM1, in the mouse inner ear and evaluated the auditory function of Cadm1 knockout mice by performing auditory brainstem response (ABR) measurement. Unexpectedly, Cadm1 knockout mice show normal hearing threshold, which might be explained by the possible compensation by its homologs that are also expressed in the inner ear. Taken together, our work identified several novel PDZD7-binding proteins, which will help us to further understand the role of PDZD7 in hearing transduction.
Collapse
|
23
|
Spurrier J, Shukla AK, McLinden K, Johnson K, Giniger E. Altered expression of the Cdk5 activator-like protein, Cdk5α, causes neurodegeneration, in part by accelerating the rate of aging. Dis Model Mech 2018; 11:dmm031161. [PMID: 29469033 PMCID: PMC5897722 DOI: 10.1242/dmm.031161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Aging is the greatest risk factor for neurodegeneration, but the connection between the two processes remains opaque. This is in part for want of a rigorous way to define physiological age, as opposed to chronological age. Here, we develop a comprehensive metric for physiological age in Drosophila, based on genome-wide expression profiling. We applied this metric to a model of adult-onset neurodegeneration, increased or decreased expression of the activating subunit of the Cdk5 protein kinase, encoded by the gene Cdk5α, the ortholog of mammalian p35. Cdk5α-mediated degeneration was associated with a 27-150% acceleration of the intrinsic rate of aging, depending on the tissue and genetic manipulation. Gene ontology analysis and direct experimental tests revealed that affected age-associated processes included numerous core phenotypes of neurodegeneration, including enhanced oxidative stress and impaired proteostasis. Taken together, our results suggest that Cdk5α-mediated neurodegeneration results from accelerated aging, in combination with cell-autonomous neuronal insults. These data fundamentally recast our picture of the relationship between neurodegeneration and its most prominent risk factor, natural aging.
Collapse
Affiliation(s)
- Joshua Spurrier
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
- The Johns Hopkins University/National Institutes of Health Graduate Partnership Program, National Institutes of Health, Bethesda, MD 02892, USA
| | - Arvind Kumar Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| | - Kristina McLinden
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| | - Kory Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| |
Collapse
|
24
|
Wilkaniec A, Gąssowska-Dobrowolska M, Strawski M, Adamczyk A, Czapski GA. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity. J Neuroinflammation 2018; 15:1. [PMID: 29301548 PMCID: PMC5753486 DOI: 10.1186/s12974-017-1027-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 5 (Cdk5) belongs to the family of proline-directed serine/threonine kinases and plays a critical role in neuronal differentiation, migration, synaptogenesis, plasticity, neurotransmission and apoptosis. The deregulation of Cdk5 activity was observed in post mortem analysis of brain tissue of Alzheimer's disease (AD) patients, suggesting the involvement of Cdk5 in the pathomechanism of this neurodegenerative disease. However, our recent study demonstrated the important function of Cdk5 in regulating inflammatory reaction. METHODS Since the role of Cdk5 in regulation of inflammatory signalling in AD is unknown, we investigated the involvement of Cdk5 in neuroinflammation induced by single intracerebroventricular (icv) injection of amyloid beta protein (Aβ) oligomers in mouse. The brain tissue was analysed up to 35 days post injection. Roscovitine (intraperitoneal administration) was used as a potent Cdk5 inhibitor. The experiments were also performed on human neuroblastoma SH-SY5Y as well as mouse BV2 cell lines treated with exogenous oligomeric Aβ. RESULTS Our results demonstrated that single injection of Aβ oligomers induces long-lasting activation of microglia and astrocytes in the hippocampus. We observed also profound, early inflammatory response in the mice hippocampus, leading to the significant elevation of pro-inflammatory cytokines expression (e.g. TNF-α, IL-1β, IL-6). Moreover, Aβ oligomers elevated the formation of truncated protein p25 in mouse hippocampus and induced overactivation of Cdk5 in neuronal cells. Importantly, administration of roscovitine reduced the inflammatory processes evoked by Aβ in the hippocampus, leading to the significant decrease of cytokines level. CONCLUSIONS These studies clearly show the involvement of Cdk5 in modulation of brain inflammatory response induced by Aβ and may indicate this kinase as a novel target for pharmacological intervention in AD.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Marcin Strawski
- Laboratory of Electrochemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
25
|
Shao M, Wang M, Liu YY, Ge YW, Zhang YJ, Shi DL. Vegetally localised Vrtn functions as a novel repressor to modulate bmp2b transcription during dorsoventral patterning in zebrafish. Development 2017; 144:3361-3374. [PMID: 28928283 DOI: 10.1242/dev.152553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/15/2017] [Indexed: 02/03/2023]
Abstract
The vegetal pole cytoplasm represents a crucial source of maternal dorsal determinants for patterning the dorsoventral axis of the early embryo. Removal of the vegetal yolk in the zebrafish fertilised egg before the completion of the first cleavage results in embryonic ventralisation, but removal of this part at the two-cell stage leads to embryonic dorsalisation. How this is achieved remains unknown. Here, we report a novel mode of maternal regulation of BMP signalling during dorsoventral patterning in zebrafish. We identify Vrtn as a novel vegetally localised maternal factor with dorsalising activity and rapid transport towards the animal pole region after fertilisation. Co-injection of vrtn mRNA with vegetal RNAs from different cleavage stages suggests the presence of putative vegetally localised Vrtn antagonists with slower animal pole transport. Thus, vegetal ablation at the two-cell stage could remove most of the Vrtn antagonists, and allows Vrtn to produce the dorsalising effect. Mechanistically, Vrtn binds a bmp2b regulatory sequence and acts as a repressor to inhibit its zygotic transcription. Analysis of maternal-zygotic vrtn mutants further shows that Vrtn is required to constrain excessive bmp2b expression in the margin. Our work unveils a novel maternal mechanism regulating zygotic BMP gradient in dorsoventral patterning.
Collapse
Affiliation(s)
- Ming Shao
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Min Wang
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Yuan-Yuan Liu
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Yi-Wen Ge
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - Yan-Jun Zhang
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China
| | - De-Li Shi
- School of Life Science, Shandong University, 27 Shanda Nan road, Jinan 250100, China .,Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France
| |
Collapse
|