1
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
2
|
Li S, Yang Z, Xie Y, Hua L, Ying S, Liu Y, Ren Z, Yan S. Modulatory spin-flip of triplet excitons via diversiform electron-donating units for MR-TADF emitters towards solution-processed narrowband OLEDs. Chem Sci 2024:d4sc05516k. [PMID: 39430941 PMCID: PMC11484990 DOI: 10.1039/d4sc05516k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Multiple resonance thermally activated delayed fluorescence (MR-TADF) molecules are emerging as promising candidates for high-resolution organic light-emitting diode (OLED) displays, but MR-TADF emitters always suffer from an unsatisfactory rate constant of reverse intersystem crossing (k RISC) due to inherently low spin orbital coupling strength between excited singlet and triplet states. Herein, we systematically investigate the long-range charge transfer (LRCT) and heavy-atom effects on modulating the excited state natures and energy levels via integrating diversiform electron-donating units with the MR skeleton. Compared with unsubstituted analogues, newly designed MR-TADF emitters exhibit significantly boosted k RISC values and close-to-unity photoluminescence quantum yield especially for tBuCzBN-PXZ (2.5 × 105 s-1) and tBuCzBN-Ph-PSeZ (2.1 × 105 s-1). Leveraging these exceptional properties, the maximum external quantum efficiency values of tBuCzBN-PXZ- and tBuCzBN-Ph-PSeZ-based solution-processed OLEDs can reach 21.3% and 19.4%, which are in the first tier of reported solution-processed MR-TADF binary OLEDs without employing additional sensitizers. This study provides a framework for modulating photoelectrical properties of MR-TADF emitters through fastidiously regulating LRCT and heavy-atom effects.
Collapse
Affiliation(s)
- Shengyu Li
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Zhi Yang
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Yanchao Xie
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Lei Hua
- School of Materials Science & Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Shian Ying
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Yuchao Liu
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Shouke Yan
- Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
3
|
Blazevicius D, Grigalevicius S. A Review of Benzophenone-Based Derivatives for Organic Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:356. [PMID: 38392729 PMCID: PMC10892487 DOI: 10.3390/nano14040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Organic light-emitting diodes (OLEDs) have garnered considerable attention in academic and industrial circles due to their potential applications in flat-panel displays and solid-state lighting technologies, leveraging the advantages offered by organic electroactive derivatives over their inorganic counterparts. The thin and flexible design of OLEDs enables the development of innovative lighting solutions, facilitating the creation of customizable and contoured lighting panels. Among the diverse electroactive components employed in the molecular design of OLED materials, the benzophenone core has attracted much attention as a fragment for the synthesis of organic semiconductors. On the other hand, benzophenone also functions as a classical phosphor with high intersystem crossing efficiency. This characteristic makes it a compelling candidate for effective reverse intersystem crossing, with potential in leading to the development of thermally activated delayed fluorescent (TADF) emitters. These emitting materials witnessed a pronounced interest in recent years due to their incorporation in metal-free electroactive frameworks and the capability to convert triplet excitons into emissive singlet excitons through reverse intersystem crossing (RISC), consequently achieving exceptionally high external quantum efficiencies (EQEs). This review article comprehensively overviews the synthetic pathways, thermal characteristics, electrochemical behaviour, and photophysical properties of derivatives based on benzophenone. Furthermore, we explore their applications in OLED devices, both as host materials and emitters, shedding light on the promising opportunities that benzophenone-based compounds present in advancing OLED technology.
Collapse
Affiliation(s)
- Dovydas Blazevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania
| |
Collapse
|
4
|
Biesen L, Hartmann Y, Müller TJJ. Alkynylated and triazole-linked aroyl-S,N-ketene acetals: one-pot synthesis of solid-state emissive dyes with aggregation-induced enhanced emission characteristics. Sci Rep 2023; 13:14399. [PMID: 37658089 PMCID: PMC10474010 DOI: 10.1038/s41598-023-41146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
Alkynylated aroyl-S,N-ketene acetals are readily synthesized in mostly excellent yields by a Sonogashira reaction resulting in a substance library of more than 20 examples. Upon expansion of the reaction sequence by deprotection and concatenating of the copper-click reaction in a one-pot fashion, a library of 11 triazole-ligated aroyl-S,N-ketene acetals is readily accessible. All derivatives show pronounced solid-state emission and aggregation-induced emission properties depending on the nature of the alkynyl or the triazole substituents.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Yannic Hartmann
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
5
|
Ganesan P, Ganesan P, Zhang Z, Xu J, Rajalingam R, Gao P. Impact of Electron-Donating Groups on Attaining Dual-Emitting Imidazole-Based Donor-Acceptor Materials. J Org Chem 2023; 88:4077-4091. [PMID: 36921215 DOI: 10.1021/acs.joc.2c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Imidazole-based donor-acceptor materials are well known for their polarity-controlled trade-off phenomenon between the localized excitation-based short-wavelength (SW) emission in nonpolar solvents and charge transfer dominated long-wavelength (LW) emission in polar solvents. To attain concurrent SW- and LW-based dual-emission characteristics, a series of imidazole-based donor-acceptor fluorophores (CBImDCN, TPImDCN, PZImDCN) possessing different electron-donating groups such as carbazole, triphenylamine, and phenothiazine linked via the N-position of the imidazole core unit were synthesized and verified by NMR and mass spectroscopic techniques. As a result, the strong donating TPImDCN and PZImDCN exhibited dual emission in different solvents of varying polarity, covering the blue (SW) and green/orange (LW) regions. On the other hand, in contrast, only an SW emission band is observed with the weak donating CBImDCN. Moreover, PZImDCN shows panchromatic emission under 365 nm illumination, while only orange color emission is observed under visible light excitation, revealing two different origins of SW and LW emissions, as also evidenced from DFT calculations. Overall, this work reveals a new approach for attaining concurrent SW and LW emission characteristics from imidazole-based D-A materials and sheds light on the design and development of novel panchromatic emitters with intriguing properties for lighting and display applications.
Collapse
Affiliation(s)
- Prabhu Ganesan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Paramaguru Ganesan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, P. R. China.,Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
| | - Zilong Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, P. R. China.,Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
| | - Jianbin Xu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, P. R. China.,Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
| | | | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, P. R. China.,Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
| |
Collapse
|
6
|
Sun D, Saxena R, Fan X, Athanasopoulos S, Duda E, Zhang M, Bagnich S, Zhang X, Zysman‐Colman E, Köhler A. Regiochemistry of Donor Dendrons Controls the Performance of Thermally Activated Delayed Fluorescence Dendrimer Emitters for High Efficiency Solution-Processed Organic Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201470. [PMID: 35470593 PMCID: PMC9284163 DOI: 10.1002/advs.202201470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The potential of dendrimers exhibiting thermally activated delayed fluorescence (TADF) as emitters in solution-processed organic light-emitting diodes (OLEDs) has to date not yet been realized. This in part is due to a poor understanding of the structure-property relationship in dendrimers where reports of detailed photophysical characterization and mechanism studies are lacking. In this report, using absorption and solvatochromic photoluminescence studies in solution, the origin and character of the lowest excited electronic states in dendrimers with multiple dendritic electron-donating moieties connected to a central electron-withdrawing core via a para- or a meta-phenylene bridge is probed. Characterization of host-free OLEDs reveals the superiority of meta-linked dendrimers as compared to the already reported para-analogue. Comparative temperature-dependent time-resolved solid-state photoluminescence measurements and quantum chemical studies explore the effect of the substitution mode on the TADF properties and the reverse intersystem crossing (RISC) mechanism, respectively. For TADF dendrimers with similarly small ∆EST , it is observed that RISC can be enhanced by the regiochemistry of the donor dendrons due to control of the reorganization energies, which is a heretofore unexploited strategy that is distinct from the involvement of intermediate triplet states through a nonadiabatic (vibronic) coupling with the lowest singlet charge transfer state.
Collapse
Affiliation(s)
- Dianming Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt Andrews KY16 9STUK
| | - Rishabh Saxena
- Soft Matter OptoelectronicsSoft Matter Optoelectronics and Bavarian Polymer Institute (BPI)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Xiaochun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Stavros Athanasopoulos
- Departamento de FísicaUniversidad Carlos III de MadridAvenida Universidad 30, 28911 LeganésMadridSpain
| | - Eimantas Duda
- Soft Matter OptoelectronicsSoft Matter Optoelectronics and Bavarian Polymer Institute (BPI)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Ming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Sergey Bagnich
- Soft Matter OptoelectronicsSoft Matter Optoelectronics and Bavarian Polymer Institute (BPI)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt Andrews KY16 9STUK
| | - Anna Köhler
- Soft Matter OptoelectronicsSoft Matter Optoelectronics and Bavarian Polymer Institute (BPI)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
- Bayreuth Institute of Macromolecular Research (BIMF)University of BayreuthUniversitätstraße 3095447BayreuthGermany
| |
Collapse
|
7
|
Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle. Nat Commun 2022; 13:2850. [PMID: 35606365 PMCID: PMC9126912 DOI: 10.1038/s41467-022-30121-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/18/2022] [Indexed: 12/29/2022] Open
Abstract
We presented an effective and universal strategy for the improvement of luminophore’s solid-state emission, i.e., macrocyclization-induced emission enhancement (MIEE), by linking luminophores through C(sp3) bridges to give a macrocycle. Benzothiadiazole-based macrocycle (BT-LC) has been synthesized by a one-step condensation of the monomer 4,7-bis(2,4-dimethoxyphenyl)−2,1,3-benzothiadiazole (BT-M) with paraformaldehyde, catalyzed by Lewis acid. In comparison with the monomer, macrocycle BT-LC produces much more intense fluorescence in the solid state (ΦPL = 99%) and exhibits better device performance in the application of OLEDs. Single-crystal analysis and theoretical simulations reveal that the monomer can return to the ground state through a minimum energy crossing point (MECPS1/S0), resulting in the decrease of fluorescence efficiency. For the macrocycle, its inherent structural rigidity prohibits this non-radiative relaxation process and promotes the radiative relaxation, therefore emitting intense fluorescence. More significantly, MIEE strategy has good universality that several macrocycles with different luminophores also display emission improvement. Organic luminescent materials attract attention due to their wide application range, but many organic luminogens suffer from severe quenching effect in the aggregate state. Here, the authors demonstrate a macrocyclization induced emission enhancement by linking luminophores through methylene bridges to give a macrocycle.
Collapse
|
8
|
Chen L, Chang Y, Shi S, Wang S, Wang L. Solution-processed white OLEDs with power efficiency over 90 lm W -1 by triplet exciton management with a high triplet energy level interfacial exciplex host and a high reverse intersystem crossing rate blue TADF emitter. MATERIALS HORIZONS 2022; 9:1299-1308. [PMID: 35195631 DOI: 10.1039/d1mh02060a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solution-processed white organic light-emitting diodes (WOLEDs) have shown much lower device efficiency than their vacuum-deposited counterparts, due to the lack of triplet exciton management in a single-emissive-layer device structure, which will induce triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA). Here, two kinds of solution-processed WOLEDs, including thermally activated delayed fluorescence (TADF)/phosphorescence hybrid WOLEDs and all-TADF WOLEDs, with high power efficiency are developed by using a high triplet energy level (T1) interfacial exciplex as a host and a high reverse intersystem crossing (RISC) rate TADF emitter as a blue dopant for triplet exciton management. The interfacial exciplex host with high T1 can ensure that triplet excitons transfer from the host to the blue emitter, and the blue TADF emitter with high RISC rate (1.15 × 107 s-1) can rapidly upconvert triplet excitons to singlet ones to avoid TTA and TPA. The solution-processed TADF/phosphorescence hybrid and all-TADF WOLEDs exhibit maximum external quantum efficiencies of 31.1% and 27.3%, together with maximum power efficiencies of 93.5 and 70.4 lm W-1, respectively, which are the record efficiencies for solution-processed WOLEDs, and quite comparable to those of most vacuum-deposited counterparts.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yufei Chang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Song Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
9
|
Shi YZ, Wu H, Wang K, Yu J, Ou XM, Zhang XH. Recent progress in thermally activated delayed fluorescence emitters for nondoped organic light-emitting diodes. Chem Sci 2022; 13:3625-3651. [PMID: 35432901 PMCID: PMC8966661 DOI: 10.1039/d1sc07180g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Nondoped organic light-emitting diodes (OLEDs) have drawn immense attention due to their merits of process simplicity, reduced fabrication cost, etc. To realize high-performance nondoped OLEDs, all electrogenerated excitons should be fully utilized. The thermally activated delayed fluorescence (TADF) mechanism can theoretically realize 100% internal quantum efficiency (IQE) through an effective upconversion process from nonradiative triplet excitons to radiative singlet ones. Nevertheless, exciton quenching, especially related to triplet excitons, is generally very serious in TADF-based nondoped OLEDs, significantly hindering the pace of development. Enormous efforts have been devoted to alleviating the annoying exciton quenching process, and a number of TADF materials for highly efficient nondoped devices have been reported. In this review, we mainly discuss the mechanism, exciton leaking channels, and reported molecular design strategies of TADF emitters for nondoped devices. We further classify their molecular structures depending on the functional A groups and offer an outlook on their future prospects. It is anticipated that this review can entice researchers to recognize the importance of TADF-based nondoped OLEDs and provide a possible guide for their future development.
Collapse
Affiliation(s)
- Yi-Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Xue-Mei Ou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| |
Collapse
|
10
|
Duda E, Hall D, Bagnich S, Carpenter-Warren CL, Saxena R, Wong MY, Cordes DB, Slawin AMZ, Beljonne D, Olivier Y, Zysman-Colman E, Köhler A. Enhancing Thermally Activated Delayed Fluorescence by Fine-Tuning the Dendron Donor Strength. J Phys Chem B 2022; 126:552-562. [PMID: 34995068 DOI: 10.1021/acs.jpcb.1c05749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermally activated delayed fluorescence (TADF) relies on a small energy gap between the emissive singlet and the nonemissive triplet state, obtained by reducing the wave function overlap between donor and acceptor moieties. Efficient emission, however, requires maintaining a good oscillator strength, which is itself based on sufficient overlap of the wave functions between donor and acceptor moieties. We demonstrate an approach to subtly fine-tune the required wave function overlap by employing donor dendrons of changing functionality. We use a carbazolyl-phthalonitrile based donor-acceptor core (2CzPN) as a reference emitter and progressively localize the hole density through substitution at the 3,6-positions of the carbazole donors (Cz) with further carbazole, (4-tert-butylphenyl)amine (tBuDPA), and phenoxazine (PXZ). Using detailed photoluminescence studies, complemented with density functional theory (DFT) calculations, we show that this approach permits a gradual decrease of the singlet-triplet gap, ΔEST, from 300 to around 10 meV in toluene, yet we also demonstrate why a small ΔEST alone is not enough. While sufficient oscillator strength is maintained with the Cz- and tBuDPA-based donor dendrons, this is not the case for the PXZ-based donor dendron, where the wave function overlap is reduced too strongly. Overall, we find the donor dendron extension approach allows successful fine-tuning of the emitter photoluminescence properties.
Collapse
Affiliation(s)
- Eimantas Duda
- Soft Matter Optoelectronics, BIMF & BPI, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST.,Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Sergey Bagnich
- Soft Matter Optoelectronics, BIMF & BPI, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Cameron L Carpenter-Warren
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
| | - Rishabh Saxena
- Soft Matter Optoelectronics, BIMF & BPI, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Michael Y Wong
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
| | - David B Cordes
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
| | - Alexandra M Z Slawin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Yoann Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
| | - Anna Köhler
- Soft Matter Optoelectronics, BIMF & BPI, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
11
|
Albrecht K, Hisamura E, Furukori M, Nakayama Y, Hosokai T, Nakao K, Ikebe H, Nakayama A. Thermally Activated Delayed Fluorescence of Carbazole-Benzophenone Dendrimer with Bulky Substituents. Polym Chem 2022. [DOI: 10.1039/d2py00255h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbazole dendrimers with benzophenone core and bulky terminal substituents were synthesized, and thermally-activated delayed fluorescence (TADF) property was investigated. The adamantane (Ad) substituted dendrimer showed green TADF emission with PLQY...
Collapse
|
12
|
Triphenylamine-carbazole alternating copolymers bearing thermally activated delayed fluorescent emitting and host pendant groups for solution-processable OLEDs. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Dong X, Wang H, Huo J, Liu S, Shi H, Cheng F, Tang BZ. Synthesis, crystal structure, aggregation-induced emission enhancement and electroluminescence properties of a novel compound containing carbazole and triarylborane groups. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Sánchez-Ruiz A, Sousa-Herves A, Tolosa J, Navarro A, García-Martínez JC. Aggregation-Induced Emission Properties in Fully π-Conjugated Polymers, Dendrimers, and Oligomers. Polymers (Basel) 2021; 13:E213. [PMID: 33435293 PMCID: PMC7826689 DOI: 10.3390/polym13020213] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Aggregation-Induced Emission (AIE) in organic molecules has recently attracted the attention of the scientific community because of their potential applications in different fields. Compared to small molecules, little attention has been paid to polymers and oligomers that exhibit AIE, despite having excellent properties such as high emission efficiency in aggregate and solid states, signal amplification effect, good processability and the availability of multiple functionalization sites. In addition to these features, if the molecular structure is fully conjugated, intramolecular electronic interactions between the composing chromophores may appear, thus giving rise to a wealth of new photophysical properties. In this review, we focus on selected fully conjugated oligomers, dendrimers and polymers, and briefly summarize their synthetic routes, fluorescence properties and potential applications. An exhaustive comparison between spectroscopic results in solution and aggregates or in solid state has been collected in almost all examples, and an opinion on the future direction of the field is briefly stated.
Collapse
Affiliation(s)
- Antonio Sánchez-Ruiz
- Facultad de Farmacia, Departamento de Química Inorgánica Orgánica y Bioquímica, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (A.S.-R.); (A.S.-H.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Ana Sousa-Herves
- Facultad de Farmacia, Departamento de Química Inorgánica Orgánica y Bioquímica, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (A.S.-R.); (A.S.-H.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Juan Tolosa
- Facultad de Farmacia, Departamento de Química Inorgánica Orgánica y Bioquímica, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (A.S.-R.); (A.S.-H.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Amparo Navarro
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain;
| | - Joaquín C. García-Martínez
- Facultad de Farmacia, Departamento de Química Inorgánica Orgánica y Bioquímica, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (A.S.-R.); (A.S.-H.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| |
Collapse
|
15
|
Liu D, Wei JY, Tian WW, Jiang W, Sun YM, Zhao Z, Tang BZ. Endowing TADF luminophors with AIE properties through adjusting flexible dendrons for highly efficient solution-processed nondoped OLEDs. Chem Sci 2020; 11:7194-7203. [PMID: 33033608 PMCID: PMC7499814 DOI: 10.1039/d0sc02194f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
The amalgamation of thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) properties, termed AIE-TADF, is a promising strategy to design novel robust luminescent materials. Herein, we transform 2,3,4,5,6-penta(9H-carbazol-9-yl)benzonitrile (5CzBN) from an ACQ molecule into an AIEgen by simply decorating the 5CzBN core with alkyl chain-linked spirobifluorene dendrons. By increasing the number of flexible dendrons, these materials can not only show obvious AIE-TADF characteristics and uniform film morphology, but can also exhibit better resistance to isopropyl alcohol, which are beneficial to fully solution-processed OLEDs. Notably, 5CzBN-PSP shows great device efficiency with an external quantum efficiency (EQE), current efficiency and power efficiency of 20.1%, 58.7 cd A-1 and 46.2 lm W-1, respectively and achieved record-breaking efficiency in solution-processed nondoped OLEDs based on AIE emitters. This work demonstrates a general approach to explore new efficient emitters by the marriage of AIE and TADF which could potentially improve their performance in various areas.
Collapse
Affiliation(s)
- Dan Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Jing Yi Wei
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Wen Wen Tian
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Wei Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Yue Ming Sun
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Zheng Zhao
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| | - Ben Zhong Tang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| |
Collapse
|
16
|
Ban X, Chen F, Pan J, Liu Y, Zhu A, Jiang W, Sun Y. Exciplex Formation and Electromer Blocking for Highly Efficient Blue Thermally Activated Delayed Fluorescence OLEDs with All-Solution-Processed Organic Layers. Chemistry 2020; 26:3090-3102. [PMID: 31837285 DOI: 10.1002/chem.201904415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/01/2019] [Indexed: 11/08/2022]
Abstract
Highly efficient solution-processable emitters are greatly desired to develop low-cost organic light-emitting diodes (OLEDs). The recently developed thermally activated delayed fluorescence (TADF) materials are promising candidates, but blue TADF materials compatible with the all-solution-process have still not been achieved. Here, a series of TADF materials, named X-4CzCN, are developed by introducing the bulky units through an unconjugated linker, which realizes high molecular weight to enhance the solvent resistance ability without disturbing the blue TADF feature. Meanwhile, the peripheral wrapping groups efficiently inhibit the triplet-triplet and triplet-polaron quenching by isolating the energy-transfer and charge-transporting channels. The photophysical measurements indicate that a small variation in peripheral unit will have a noticeable effect on the luminescence efficiency. The enlarged volume of peripheral units will make the electroluminescent spectra blueshift, while enhancing the energy transfer of exciplex and blocking the energy leakage of electromer can facilitate the exciton utilization. As a result, the fully solution-processed blue OLED achieves a CIE of (0.16, 0.27), a low turn on voltage of 2.9 eV, and a high external quantum efficiency of 20.6 %. As far as we known, this is the first report of all-solution-processed TADF OLEDs with blue emission, which exhibits a high efficiency even comparable to the vacuum-deposited devices.
Collapse
Affiliation(s)
- Xinxin Ban
- Jiangsu Key Laboratory of Function Control Technology for, Advanced Materials, School of Chemical Engineering, Jiangsu Ocean University, Jiangsu, 222005, P. R. China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Feng Chen
- Jiangsu Key Laboratory of Function Control Technology for, Advanced Materials, School of Chemical Engineering, Jiangsu Ocean University, Jiangsu, 222005, P. R. China
| | - Jie Pan
- Jiangsu Key Laboratory of Function Control Technology for, Advanced Materials, School of Chemical Engineering, Jiangsu Ocean University, Jiangsu, 222005, P. R. China
| | - Yan Liu
- Jiangsu Key Laboratory of Function Control Technology for, Advanced Materials, School of Chemical Engineering, Jiangsu Ocean University, Jiangsu, 222005, P. R. China
| | - Aiyun Zhu
- Jiangsu Key Laboratory of Function Control Technology for, Advanced Materials, School of Chemical Engineering, Jiangsu Ocean University, Jiangsu, 222005, P. R. China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
17
|
Yi CL, Ko CL, Yeh TC, Chen CY, Chen YS, Chen DG, Chou PT, Hung WY, Wong KT. Harnessing a New Co-Host System and Low Concentration of New TADF Emitters Equipped with Trifluoromethyl- and Cyano-Substituted Benzene as Core for High-Efficiency Blue OLEDs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2724-2732. [PMID: 31846297 DOI: 10.1021/acsami.9b18272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A strategic approach combining a new co-host system and low concentration of new thermally activated delayed fluorescence (TADF) emitters to make efficient blue TADF organic light-emitting diode (OLED) was developed. The benchmark TADF molecule, 4CzIPN, was adopted as a probe to examine the feasibility of a co-host composing of a hole transporter SimCP and an electron transporter oCF3-T2T. As a result, a sky blue device with 1 wt % 4CzIPN doped in SimCP:oCF3-T2T co-host exhibited 100% energy transfer and achieved a high external quantum efficiency (EQE) up to 26.1%. Importantly, this device showed a limited efficiency rolloff with an EQE of 24% at 1000 cd m-2. To further shift the emission toward blue, three new TADF molecules, 4CzIPN-CF3, 3CzIPN-H-CF3, and 3CzIPN-CF3, modified either by lowering the electron-withdrawing ability of the acceptor group or by reducing the number of carbazole donors of 4CzIPN, have been synthesized and characterized. Among them, 4CzIPN-CF3 and 3CzIPN-H-CF3 display hypsochromic shift emissions compared to that of 4CzIPN. These new compounds were then explored for their potential applications as TADF emitters. Blue TADF OLEDs with 1 wt % of 4CzIPN-CF3 and 3CzIPN-H-CF3 dispersed in SimCP:oCF3-T2T co-host achieved EQEs of 23.1 and 16.5% and retained high EQEs of 20.9 and 14.7% at 1000 cd m-2, respectively.
Collapse
Affiliation(s)
- Chih-Lun Yi
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | | | - Tzu-Chin Yeh
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | | | - Yi-Sheng Chen
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Deng-Gao Chen
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Pi-Tai Chou
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | | | - Ken-Tsung Wong
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
- Institute of Atomic and Molecular Science , Academia Sinica , Taipei 10617 , Taiwan
| |
Collapse
|
18
|
Espinar-Barranco L, Meazza M, Linares-Perez A, Rios R, Paredes JM, Crovetto L. Synthesis, Photophysics, and Solvatochromic Studies of an Aggregated-Induced-Emission Luminogen Useful in Bioimaging. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4932. [PMID: 31726748 PMCID: PMC6891498 DOI: 10.3390/s19224932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
Biological samples are a complex and heterogeneous matrix where different macromolecules with different physicochemical parameters cohabit in reduced spaces. The introduction of fluorophores into these samples, such as in the interior of cells, can produce changes in the fluorescence emission properties of these dyes, caused by the specific physicochemical properties of cells. This effect can be especially intense with solvatofluorochromic dyes, where changes in the polarity environment surrounding the dye can drastically change the fluorescence emission. In this article, we studied the photophysical behavior of a new dye and confirmed the aggregation-induced emission (AIE) phenomenon with different approaches, such as by using different solvent proportions, increasing the viscosity, forming micelles, and adding bovine serum albumin (BSA), through analysis of the absorption and steady-state and time-resolved fluorescence. Our results show the preferences of the dye for nonpolar media, exhibiting AIE under specific conditions through immobilization. Additionally, this approach offers the possibility of easily determining the critical micelle concentration (CMC). Finally, we studied the rate of spontaneous incorporation of the dye into cells by fluorescence lifetime imaging and observed the intracellular pattern produced by the AIE. Interestingly, different intracellular compartments present strong differences in fluorescence intensity and fluorescence lifetime. We used this difference to isolate different intracellular regions to selectively study these regions. Interestingly, the fluorescence lifetime shows a strong difference in different intracellular compartments, facilitating selective isolation for a detailed study of specific organelles.
Collapse
Affiliation(s)
- Laura Espinar-Barranco
- Department of Physical Chemistry, University of Granada, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Cartuja Campus, 18071 Granada, Spain;
| | - Marta Meazza
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; (M.M.); (R.R.)
| | - Azahara Linares-Perez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071 Granada, Spain;
| | - Ramon Rios
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; (M.M.); (R.R.)
| | - Jose Manuel Paredes
- Department of Physical Chemistry, University of Granada, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Cartuja Campus, 18071 Granada, Spain;
| | - Luis Crovetto
- Department of Physical Chemistry, University of Granada, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Cartuja Campus, 18071 Granada, Spain;
| |
Collapse
|
19
|
Yang H, Li M, Li C, Luo Q, Zhu M, Tian H, Zhu W. Unraveling Dual Aggregation‐Induced Emission Behavior in Steric‐Hindrance Photochromic System for Super Resolution Imaging. Angew Chem Int Ed Engl 2019; 59:8560-8570. [DOI: 10.1002/anie.201909830] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Mengqi Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chong Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
- Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Qianfu Luo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Ming‐Qiang Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
- Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Wei‐Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
20
|
Yang H, Li M, Li C, Luo Q, Zhu M, Tian H, Zhu W. Unraveling Dual Aggregation‐Induced Emission Behavior in Steric‐Hindrance Photochromic System for Super Resolution Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909830] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hong Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Mengqi Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chong Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
- Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Qianfu Luo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Ming‐Qiang Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
- Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Wei‐Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Shanghai Key Laboratory of Functional Materials Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
21
|
Matsumoto S, Fuchi Y, Usui K, Hirai G, Karasawa S. Development of Turn-On Probes for Acids Triggered by Aromaticity Enhancement Using Tricyclic Amidine Derivatives. J Org Chem 2019; 84:6612-6622. [DOI: 10.1021/acs.joc.9b00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
22
|
Data P, Takeda Y. Recent Advancements in and the Future of Organic Emitters: TADF- and RTP-Active Multifunctional Organic Materials. Chem Asian J 2019; 14:1613-1636. [PMID: 30609306 PMCID: PMC6590235 DOI: 10.1002/asia.201801791] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Indexed: 12/15/2022]
Abstract
Organic emitting compounds that are based on π-conjugated skeletons have emerged as promising next-generation materials for application in optoelectronic devices. In this Minireview, recent advances in the development of organic emitters that irradiate room-temperature phosphorescence and/or thermally activated delayed fluorescence with extraordinary luminescence properties, such as aggregation-induced emission, mechanochromic luminescence, and circularly polarized luminescence, are discussed.
Collapse
Affiliation(s)
- Przemyslaw Data
- Faculty of ChemistrySilesian University of TechnologyM. Strzody 944-100GliwicePoland
- Center of Polymer and Carbon MaterialsPolish Academy of SciencesM. Curie-Sklodowskiej 3441-819ZabrzePoland
| | - Youhei Takeda
- Department of Applied ChemistryGraduate School of EngineeringOsaka UniversityYamadaoka 2-1SuitaOsaka5650871Japan
| |
Collapse
|
23
|
Liu D, Tian W, Feng Y, Zhang X, Ban X, Jiang W, Sun Y. Achieving 20% External Quantum Efficiency for Fully Solution-Processed Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Dendrimers with Flexible Chains. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16737-16748. [PMID: 30986027 DOI: 10.1021/acsami.8b22662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Actualizing high-efficiency thermally activated delayed fluorescent (TADF) organic light-emitting diodes (OLEDs) with fully wet processes is of great significance to the development of purely organic electroluminescence and the application of large-area OLED displays. Herein, new strategies are proposed to develop the TADF dendrimers with tunable colors by adjusting the way of linking branches to the core and the numbers of peripheral branches. Due to an energy gradient and efficient exciton utilization in the core-dendron system, the solution-processed OLEDs with the four dendrimers 5CzBN-O-Cz, 5CzBN-O-2Cz, 5CzBN-Cz, and 5CzBN-2Cz all give rise to low turn-on voltages and great device efficiency. Notably, 5CzBN-2Cz affords record-high fully solution-processed TADF OLEDs with external quantum efficiency of above 20%, which is significantly comparable to the efficiency of TADF OLEDs based on vacuum deposition. The work offers a guideline for designing solution-processable materials, paving the way toward practical applications of large-area fully solution-processed OLEDs.
Collapse
Affiliation(s)
- Dan Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Wenwen Tian
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Yingli Feng
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Xusheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Xinxin Ban
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Chemical Engineering , Huaihai Institute of Technology , Lianyungang , Jiangsu 222005 , China
| | - Wei Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Yueming Sun
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
24
|
Matsuoka K, Albrecht K, Nakayama A, Yamamoto K, Fujita K. Highly Efficient Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes with Fully Solution-Processed Organic Multilayered Architecture: Impact of Terminal Substitution on Carbazole-Benzophenone Dendrimer and Interfacial Engineering. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33343-33352. [PMID: 30187748 DOI: 10.1021/acsami.8b09451] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of second-generation carbazole-benzophenone dendrimer substituted by several functional groups at terminal positions (subG2B) was investigated toward a thermally activated delayed fluorescence (TADF) emitter for nondoped emissive layer (EML) application in a solution-processed organic light-emitting diode (OLED). Substitution was found to dramatically alter the photophysical properties of the dendritic TADF emitters. The introduction of tert-butyl and phenyl group endows the subG2Bs with aggregation-induced emission enhancement character by suppression of internal conversion in singlet excited states. In the meantime, the introduction of a methoxy group resulted in aggregation-caused quenching character. The device performance of the OLED, where subG2B neat films were incorporated as nondoped EMLs, was found to be highly enhanced by adopting fully solution-processed organic multilayer architecture in comparison to the devices with a vacuum-deposited electron transporting layer (ETL), achieving a maximum external quantum efficiency of 17.0%. Such improvement was attributable to the improved carrier balance via intermixing at solution-processed EML/ETL interfaces. It was also found that the post-thermal annealing of the OLED at appropriate temperatures could be beneficial to enhance OLED performance by promoting the intermixing EML/ETL interface to some extent. Our findings emphasize the potential utility of dendritic TADF emitters in the solution-processed TADF-OLED and increase the importance to manipulate dendrimer/small molecule interfaces.
Collapse
Affiliation(s)
- Kenichi Matsuoka
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga koen , Kasuga, Fukuoka 816-8580 , Japan
| | | | - Akira Nakayama
- Institute for Catalysis , Hokkaido University , Sapporo 001-0021 , Japan
| | | | - Katsuhiko Fujita
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga koen , Kasuga, Fukuoka 816-8580 , Japan
| |
Collapse
|
25
|
Wei Q, Ge Z, Voit B. Thermally Activated Delayed Fluorescent Polymers: Structures, Properties, and Applications in OLED Devices. Macromol Rapid Commun 2018; 40:e1800570. [DOI: 10.1002/marc.201800570] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Qiang Wei
- Ningbo Institute of Materials Technology & Engineering; Chinese Academy of Sciences; Ningbo 315201 P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology & Engineering; Chinese Academy of Sciences; Ningbo 315201 P. R. China
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V.; Hohe Straße 6, 01069 Dresden
- Organic Chemistry of Polymers and Center for Advancing Electronics Dresden; Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
26
|
Tani K, Yashima T, Miyanaga K, Hori K, Goto K, Tani F, Habuka Y, Suzuki K, Shizu K, Kaji H. Carbazole and Benzophenone Based Twisted Donor–Acceptor Systems as Solution Processable Green Thermally Activated Delayed Fluorescence Organic Light Emitters. CHEM LETT 2018. [DOI: 10.1246/cl.180438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keita Tani
- Division of Natural Science, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan
| | - Toru Yashima
- Division of Natural Science, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan
| | - Kanae Miyanaga
- Division of Natural Science, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan
| | - Kazushige Hori
- Division of Natural Science, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan
| | - Kenta Goto
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yume Habuka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Katsuaki Suzuki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Katsuyuki Shizu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
27
|
Ma L, Dai S, Zhan X, Liu X, Li Y. Convenient fabrication of conjugated polymer semiconductor nanotubes and their application in organic electronics. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180868. [PMID: 30225076 PMCID: PMC6124030 DOI: 10.1098/rsos.180868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Organic heterojunction is indispensable in organic electronic devices, such as organic solar cells, organic light-emitting diodes and so on. Fabrication of core-shell nanostructure provides a feasible and novel way to prepare organic heterojunction, which is beneficial for miniaturization and integration of organic electronic devices. Fabrication of nanotubes which constitute the core-shell structure in large quantity is the key for the realization of application. In this work, a simple and convenient method to prepare nanotubes using conjugated copolymer of perylene diimide and dithienothiophene (P(PDI-DTT)) was demonstrated. The relationship between preparation conditions (solvent atmosphere, solution concentration and pore diameter of templates) and morphology of nanostructure was studied systematically. P(PDI-DTT) nanotubes could be fabricated in regular shape and large quantity by preparing the solution with appropriate concentration and placing anodic aluminium oxide template with nanopore diameter of 200 nm in the solvent atmosphere. The tubular structure was confirmed by scanning electron microscopy. P(PDI-DTT) nanotubes exhibited electron mobility of 0.02 cm2 V-1 s-1 in field-effect transistors under ambient condition. Light-emitting nanostructures were successfully fabricated by incorporating tetraphenylethylene into polymer nanotubes.
Collapse
Affiliation(s)
- Lanchao Ma
- College of Materials Science and Engineering, Beijing Key Laboratory of Special Elastomer Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, People's Republic of China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Shuixing Dai
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xiaowei Zhan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xinyang Liu
- College of Materials Science and Engineering, Beijing Key Laboratory of Special Elastomer Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, People's Republic of China
| | - Yu Li
- College of Materials Science and Engineering, Beijing Key Laboratory of Special Elastomer Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, People's Republic of China
| |
Collapse
|
28
|
Affiliation(s)
- Fabio Rizzo
- Institute of Molecular Science and Technologies (ISTM); National Research Council (CNR); via Golgi 19 20133 Milano Italy
| | - Fabio Cucinotta
- School of Natural and Environmental Sciences; Newcastle University; Bedson Building 3.45 NE1 7RU Newcastle upon Tyne United Kingdom
| |
Collapse
|
29
|
Pagidi S, Kalluvettukuzhy NK, Thilagar P. Tunable Self-Assembly and Aggregation-Induced Emission Characteristics of Triarylboron-Decorated Naphthalimides. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sudhakar Pagidi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Neena K. Kalluvettukuzhy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
30
|
Park SY, Choi S, Park GE, Kim HJ, Lee C, Moon JS, Kim SW, Park S, Kwon JH, Cho MJ, Choi DH. Unconventional Three-Armed Luminogens Exhibiting Both Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence Resulting in High-Performing Solution-Processed Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14966-14977. [PMID: 29630336 DOI: 10.1021/acsami.7b19681] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, three-armed luminogens IAcTr-out and IAcTr-in were synthesized and used as emitters bearing triazine and indenoacridine moieties in thermally activated delayed fluorescence organic light-emitting diodes (OLEDs). These molecules could form a uniform thin film via the solution process and also allowed the subsequent deposition of an electron transporting layer either by vacuum deposition or by an all-solution coating method. Intriguingly, the new luminogens displayed aggregation-induced emission (AIE), which is a unique photophysical phenomenon. As a nondoped emitting layer (EML), IAcTr-in showed external quantum efficiencies (EQEs) of 11.8% for the hybrid-solution processed OLED and 10.9% for the all-solution processed OLED with a low efficiency roll-off. This was evident by the higher photoluminescence quantum yield and higher rate constant of reverse intersystem crossing of IAcTr-in, as compared to IAcTr-out. These AIE luminogens were used as dopants and mixed with the well-known host material 1,3-bis( N-carbazolyl)benzene (mCP) to produce a high-efficiency OLED with a two-component EML. The maximum EQE of 17.5% was obtained when using EML with IAcTr-out doping (25 wt %) into mCP, and the OLED with EML bearing IAcTr-in and mCP showed a higher maximum EQE of 18.4% as in the case of the nondoped EML-based device.
Collapse
Affiliation(s)
- Seo Yeon Park
- Department of Chemistry, Research Institute for Natural Sciences , Korea University , 5 Anam-dong , Seongbuk-gu, Seoul 136-701 , Korea
| | - Suna Choi
- Department of Chemistry, Research Institute for Natural Sciences , Korea University , 5 Anam-dong , Seongbuk-gu, Seoul 136-701 , Korea
| | - Gi Eun Park
- Department of Chemistry, Research Institute for Natural Sciences , Korea University , 5 Anam-dong , Seongbuk-gu, Seoul 136-701 , Korea
- Photo-electronic Hybrids Research Center , Korea Institute of Science and Technology , Seoul 02792 , Korea
| | - Hyung Jong Kim
- Department of Chemistry, Research Institute for Natural Sciences , Korea University , 5 Anam-dong , Seongbuk-gu, Seoul 136-701 , Korea
| | - Chiho Lee
- Department of Chemistry, Research Institute for Natural Sciences , Korea University , 5 Anam-dong , Seongbuk-gu, Seoul 136-701 , Korea
| | - Ji Su Moon
- Department of Information Display , Kyung Hee University , 26, Kyungheedae-ro , Dongdaemun-gu, Seoul 02447 , Korea
| | - Si Woo Kim
- Department of Information Display , Kyung Hee University , 26, Kyungheedae-ro , Dongdaemun-gu, Seoul 02447 , Korea
| | - Sungnam Park
- Department of Chemistry, Research Institute for Natural Sciences , Korea University , 5 Anam-dong , Seongbuk-gu, Seoul 136-701 , Korea
| | - Jang Hyuk Kwon
- Department of Information Display , Kyung Hee University , 26, Kyungheedae-ro , Dongdaemun-gu, Seoul 02447 , Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences , Korea University , 5 Anam-dong , Seongbuk-gu, Seoul 136-701 , Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences , Korea University , 5 Anam-dong , Seongbuk-gu, Seoul 136-701 , Korea
| |
Collapse
|
31
|
Wada Y, Kubo S, Kaji H. Adamantyl Substitution Strategy for Realizing Solution-Processable Thermally Stable Deep-Blue Thermally Activated Delayed Fluorescence Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705641. [PMID: 29315888 DOI: 10.1002/adma.201705641] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/11/2017] [Indexed: 06/07/2023]
Abstract
Highly efficient solution-processable emitters, especially deep-blue emitters, are greatly desired to develop low-cost and low-energy-consumption organic light-emitting diodes (OLEDs). A recently developed class of potentially metal-free emitters, thermally activated delayed fluorescence (TADF) materials, are promising candidates, but solution-processable TADF materials with efficient blue emissions are not well investigated. In this study, first the requirements for the design of efficient deep-blue TADF materials are clarified, on the basis of which, adamantyl-substituted TADF molecules are developed. The substitution not only endows high solubility and excellent thermal stability but also has a critical impact on the molecular orbitals, by pushing up the lowest unoccupied molecular orbital energy and triplet energy of the molecules. In the application to OLEDs, an external quantum efficiency (EQE) of 22.1% with blue emission having Commission Internationale de l'Eclairage (CIE) coordinates of (0.15, 0.19) is realized. A much deeper blue emission with CIE (0.15, 0.13) is also achieved, with an EQE of 11.2%. These efficiencies are the best yet among solution-processed TADF OLEDs of CIE y < 0.20 and y < 0.15, as far as known. This work demonstrates the validity of adamantyl substitution and paves a pathway for straightforward realization of solution-processable efficient deep-blue TADF emitters.
Collapse
Affiliation(s)
- Yoshimasa Wada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shosei Kubo
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
32
|
Yen HJ, Chang CW, Wong HQ, Liou GS. Cyanotriphenylamine-based polyimidothioethers as multifunctional materials for ambipolar electrochromic and electrofluorochromic devices, and fluorescent electrospun fibers. Polym Chem 2018. [DOI: 10.1039/c7py01858d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New luminescent and electrochromic polyimidothioethers were synthesized and fabricated as ambipolar electrochromic and electrofluorochromic devices, and fluorescent electrospun fibers.
Collapse
Affiliation(s)
- Hung-Ju Yen
- Institute of Chemistry
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Cha-Wen Chang
- Department of Interface Chemistry
- Division of Applied Chemistry
- Material and Chemical Research Laboratories
- Industrial Technology Research Institute
- Hsinchu 30011
| | - Hui Qi Wong
- Institute of Chemistry
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Guey-Sheng Liou
- Functional Polymeric Materials Laboratory
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|
33
|
Kim S, Zhou Y, Tohnai N, Nakatsuji H, Matsusaki M, Fujitsuka M, Miyata M, Majima T. Aggregation-Induced Singlet Oxygen Generation: Functional Fluorophore and Anthrylphenylene Dyad Self-Assemblies. Chemistry 2017; 24:636-645. [DOI: 10.1002/chem.201703686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Sooyeon Kim
- The Institute of Scientific and Industrial Research (SANKEN); Osaka University; Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
| | - Yang Zhou
- The Institute of Scientific and Industrial Research (SANKEN); Osaka University; Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
| | - Norimitsu Tohnai
- Department of Material and Life Science; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Hirotaka Nakatsuji
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN); Osaka University; Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
| | - Mikiji Miyata
- The Institute of Scientific and Industrial Research (SANKEN); Osaka University; Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN); Osaka University; Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
| |
Collapse
|
34
|
Wu JL, Lee YT, Chen CT, Chen CT. Solution-processed Small Molecular Materials: Bulk Heterojunction Organic Photovoltaic Materials, Host Materials for Phosphorescence Organic Light-emitting Diodes, and Nondopant Thermally Activated Delayed Fluorescence Materials. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jhao-Lin Wu
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Yi-Ting Lee
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Chin-Ti Chen
- Institute of Chemistry; Academia Sinica; Taipei 11529 Taiwan
| | - Chao-Tsen Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| |
Collapse
|
35
|
Kumar S, Singh M, Gaur P, Jou JH, Ghosh S. Role of Voluminous Substituents in Controlling the Optical Properties of Disc/Planar-Like Small Organic Molecules: Toward Molecular Emission in Solid State. ACS OMEGA 2017; 2:5348-5356. [PMID: 31457803 PMCID: PMC6644483 DOI: 10.1021/acsomega.7b00832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/16/2017] [Indexed: 05/13/2023]
Abstract
Inspired by the role of coadsorbents in dye-sensitized solar cells, a pathway to disfavor aggregation in disclike luminophores was studied to enhance solid-state emission. By restricting the intense π-π stacking using a multicyclic aliphatic ring system, we brought the lithocholic ring system as bulky side substitution into the fluorophore design. Compared to the small-size cyclohexyl substitution in BC-CY6, which exhibited a bathochromic shift in solid-state emission owing to the intermolecular interactions, lithocholic-substituted BC-LTH had reduced intense intermolecular interactions. This very bulky/voluminous side substitution (lithocholic unit) helped us extract intermolecular interaction-free molecular emission in solid state. The cyclohexyl substitution provided solid-state emission, and the broad and high Stokes shift provided an insight into stacking interactions. Face-to-face stacking-originated dimerlike species was observed in the crystal packing, which was studied by theoretical geometry optimization. The dimer species exhibited an intermolecular distance of 3.5 Å. The molecular sizes of the developed chromophores were estimated by geometry optimization, and it was concluded that the dimeric interactions in BC-LTH may not be formed owing to the voluminous nature of the side substitution present. Hence, we have been able to successfully establish through molecular level understanding the role of lithocholic functionality in tuning the optoelectronic properties of various emissive materials for different applications.
Collapse
Affiliation(s)
- Sunil Kumar
- School
of Basic Sciences, Indian Institute of Technology
Mandi, Mandi, Himachal
Pradesh 175001, India
| | - Meenu Singh
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Pankaj Gaur
- School
of Basic Sciences, Indian Institute of Technology
Mandi, Mandi, Himachal
Pradesh 175001, India
| | - Jwo-Huei Jou
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
- E-mail: (J.-H.J.)
| | - Subrata Ghosh
- School
of Basic Sciences, Indian Institute of Technology
Mandi, Mandi, Himachal
Pradesh 175001, India
- E-mail: (S.G.)
| |
Collapse
|
36
|
Li G, Nobuyasu RS, Zhang B, Geng Y, Yao B, Xie Z, Zhu D, Shan G, Che W, Yan L, Su Z, Dias FB, Bryce MR. Thermally Activated Delayed Fluorescence in Cu I Complexes Originating from Restricted Molecular Vibrations. Chemistry 2017; 23:11761-11766. [PMID: 28737275 PMCID: PMC5724495 DOI: 10.1002/chem.201701862] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 11/23/2022]
Abstract
The mechanism of thermally activated delayed fluorescence (TADF) in molecules in aggregated or condensed solid states has been rarely studied and is not well understood. Nevertheless, many applications of TADF emitters are strongly affected by their luminescence properties in the aggregated state. In this study, two new isomeric tetradentate CuI complexes which simultaneously show aggregation induced emission (AIE) and TADF characteristics are reported for the first time. We provide direct evidence that effectively restricting the vibrations of individual molecules is a key requisite for TADF in these two CuI complexes through in‐depth photophysical measurements combined with kinetic methods, single crystal analysis and theoretical calculations. These findings should stimulate new molecular engineering endeavours in the design of AIE–TADF active materials with highly emissive aggregated states.
Collapse
Affiliation(s)
- Guangfu Li
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun, 130024, P. R. China
| | | | - Baohua Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun, 130024, P. R. China
| | - Bing Yao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Dongxia Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun, 130024, P. R. China
| | - Guogang Shan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun, 130024, P. R. China
| | - Weilong Che
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun, 130024, P. R. China
| | - Likai Yan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun, 130024, P. R. China
| | - Zhongmin Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun, 130024, P. R. China
| | | | - Martin R Bryce
- Chemistry Department, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
37
|
Long Z, Mao L, Liu M, Wan Q, Wan Y, Zhang X, Wei Y. Marrying multicomponent reactions and aggregation-induced emission (AIE): new directions for fluorescent nanoprobes. Polym Chem 2017. [DOI: 10.1039/c7py00979h] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent development and progress for fabrication and applications of aggregation-induced emission polymers through multicomponent reactions have been summarized in this review.
Collapse
Affiliation(s)
- Zi Long
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Liucheng Mao
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Meiying Liu
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Qing Wan
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yiqun Wan
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Xiaoyong Zhang
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yen Wei
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
| |
Collapse
|
38
|
Albrecht K, Matsuoka K, Yokoyama D, Sakai Y, Nakayama A, Fujita K, Yamamoto K. Thermally activated delayed fluorescence OLEDs with fully solution processed organic layers exhibiting nearly 10% external quantum efficiency. Chem Commun (Camb) 2017; 53:2439-2442. [DOI: 10.1039/c6cc09275f] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An OLED device with fully solution processed organic layers with new laminatable TADF dendrimers, which exhibits 9.5% external quantum efficiency, is reported.
Collapse
Affiliation(s)
- Ken Albrecht
- Laboratory for Chemistry and Life Science
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Kenichi Matsuoka
- Institute of Materials Chemistry and Engineering
- Kyushu University
- Kasuga
- Japan
| | - Daisuke Yokoyama
- Department of Organic Materials Science
- Yamagata University
- Yonezawa
- Japan
| | - Yoshiya Sakai
- Department of Organic Materials Science
- Yamagata University
- Yonezawa
- Japan
| | - Akira Nakayama
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Katsuhiko Fujita
- Institute of Materials Chemistry and Engineering
- Kyushu University
- Kasuga
- Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|