1
|
Zanini BM, de Avila BM, Garcia DN, Hense JD, Veiga GB, Barreto MM, Ashiqueali S, Mason JB, Yadav H, Masternak M, Schneider A. Dynamics of serum exosome microRNA profile altered by chemically induced estropause and rescued by estrogen therapy in female mice. GeroScience 2024; 46:5891-5909. [PMID: 38499957 PMCID: PMC11493931 DOI: 10.1007/s11357-024-01129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
The decline in the ovarian reserve leads to menopause and reduced serum estrogens. MicroRNAs are small non-coding RNAs, which can regulate gene expression and be secreted by cells and trafficked in serum via exosomes. Serum miRNAs regulate tissue function and disease development. Therefore, the aim of this study was to identify miRNA profiles in serum exosomes of mice induced to estropause and treated with 17β-estradiol (E2). Female mice were divided into three groups including control (CTL), injected with 4-Vinylcyclohexene diepoxide (VCD), and injected with VCD plus E2 (VCD + E2). Estropause was confirmed by acyclicity and a significant reduction in the number of ovarian follicles (p < 0.05). Body mass gain during estropause was higher in VCD and VCD + E2 compared to CTL females (p = 0.02). Sequencing of miRNAs was performed from exosomes extracted from serum, and 402 miRNAs were detected. Eight miRNAs were differentially regulated between CTL and VCD groups, seven miRNAs regulated between CTL and VCD + E2 groups, and ten miRNAs regulated between VCD and VCD + E2 groups. Only miR-200a-3p and miR-200b-3p were up-regulated in both serum exosomes and ovarian tissue in both VCD groups, suggesting that these exosomal miRNAs could be associated with ovarian activity. In the hepatic tissue, only miR-370-3p (p = 0.02) was up-regulated in the VCD + E2 group, as observed in serum. Our results suggest that VCD-induced estropause and E2 replacement have an impact on the profile of serum exosomal miRNAs. The miR-200 family was increased in serum exosomes and ovarian tissue and may be a candidate biomarker of ovarian function.
Collapse
Affiliation(s)
| | | | | | - Jéssica Damé Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | | | - Sarah Ashiqueali
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Jeffrey B Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, and Department of Neurosurgery and Brain Repair, Microbiomes Institute, University of South Florida, Tampa, FL, USA
| | - Michal Masternak
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
2
|
Khanabdali R, Mandrekar M, Grygiel R, Vo PA, Palma C, Nikseresht S, Barton S, Shojaee M, Bhuiyan S, Asari K, Belzer S, Ansari K, Coward JI, Perrin L, Hooper J, Guanzon D, Lai A, Salomon C, Kershner K, Newton C, Horejsh D, Rice G. High-throughput surface epitope immunoaffinity isolation of extracellular vesicles and downstream analysis. Biol Methods Protoc 2024; 9:bpae032. [PMID: 39070184 PMCID: PMC11272960 DOI: 10.1093/biomethods/bpae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 07/30/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, have significant potential for diagnostic and therapeutic applications. The lack of standardized methods for efficient and high-throughput isolation and analysis of EVs, however, has limited their widespread use in clinical practice. Surface epitope immunoaffinity (SEI) isolation utilizes affinity ligands, including antibodies, aptamers, or lectins, that target specific surface proteins present on EVs. Paramagnetic bead-SEI isolation represents a fit-for-purpose solution for the reproducible, high-throughput isolation of EVs from biofluids and downstream analysis of RNA, protein, and lipid biomarkers that is compatible with clinical laboratory workflows. This study evaluates a new SEI isolation method for enriching subpopulations of EVs. EVs were isolated from human plasma using a bead-based SEI method designed for on-bead and downstream analysis of EV-associated RNA and protein biomarkers. Western blot analysis confirmed the presence of EV markers in the captured nanoparticles. Mass spectrometry analysis of the SEI lysate identified over 1500 proteins, with the top 100 including known EV-associated proteins. microRNA (miRNA) sequencing followed by RT-qPCR analysis identified EV-associated miRNA transcripts. Using SEI, EVs were isolated using automated high-throughput particle moving instruments, demonstrating equal or higher protein and miRNA yield and recovery compared to manual processing. SEI is a rapid, efficient, and high-throughput method for isolating enriched populations of EVs; effectively reducing contamination and enabling the isolation of a specific subpopulation of EVs. In this study, high-throughput EV isolation and RNA extraction have been successfully implemented. This technology holds great promise for advancing the field of EV research and facilitating their application for biomarker discovery and clinical research.
Collapse
Affiliation(s)
| | | | - Rick Grygiel
- Promega Corporation, Madison, WI 53711, United States
| | - Phuoc-An Vo
- Promega Corporation, Madison, WI 53711, United States
| | | | | | | | | | | | | | | | | | - Jermaine I Coward
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
- ICON Cancer Care, South Brisbane, QLD 4101, Australia
| | - Lewis Perrin
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - John Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Dominic Guanzon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | | | | | - Gregory Rice
- INOVIQ Ltd., Notting Hill, VIC 3168, Australia
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Tsamou M, Roggen EL. Sex-associated microRNAs potentially implicated in sporadic Alzheimer's disease (sAD). Brain Res 2024; 1829:148791. [PMID: 38307153 DOI: 10.1016/j.brainres.2024.148791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND The onset and pathology of sporadic Alzheimer's disease (sAD) seem to be affected by both sex and genetic mechanisms. Evidence supports that the high prevalence of sAD in women, worldwide, may be attributed to an interplay among aging, sex, and lifestyle, influenced by genetics, metabolic changes, and hormones. Interestingly, epigenetic mechanisms such as microRNAs (miRNAs), known as master regulators of gene expression, may contribute to this observed sexual dimorphism in sAD. OBJECTIVES To investigate the potential impact of sex-associated miRNAs on processes manifesting sAD pathology, as described by the Tau-driven Adverse Outcome Pathway (AOP) leading to memory loss. METHODS Using publicly available human miRNA datasets, sex-biased miRNAs, defined as differentially expressed by sex in tissues possibly affected by sAD pathology, were collected. In addition, sex hormone-related miRNAs were also retrieved from the literature. The compiled sex-biased and sex hormone-related miRNAs were further plugged into the dysregulated processes of the Tau-driven AOP for memory loss. RESULTS Several miRNAs, previously identified as sex-associated, were implicated in dysregulated processes associated with the manifestation of sAD pathology. Importantly, the described pathology processes were not confined to a particular sex. A mechanistic-based approach utilizing miRNAs was adopted in order to elucidate the link between sex and biological processes potentially involved in the development of memory loss. CONCLUSIONS The identification of sex-associated miRNAs involved in the early processes manifesting memory loss may shed light to the complex molecular mechanisms underlying sAD pathogenesis in a sex-specific manner.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands.
| | - Erwin L Roggen
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands
| |
Collapse
|
4
|
Zhang Y, Tedja R, Millman M, Wong T, Fox A, Chehade H, Gershater M, Adzibolosu N, Gogoi R, Anderson M, Rutherford T, Zhang Z, Chopp M, Mor G, Alvero AB. Adipose-derived exosomal miR-421 targets CBX7 and promotes metastatic potential in ovarian cancer cells. J Ovarian Res 2023; 16:233. [PMID: 38037081 PMCID: PMC10688490 DOI: 10.1186/s13048-023-01312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. RESULTS Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. CONCLUSION In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.
Collapse
Affiliation(s)
- Yi Zhang
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA.
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Michael Millman
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
| | - Terrence Wong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Meyer Gershater
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Zhenggang Zhang
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
| | - Michael Chopp
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Ayesha B Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Zhang Y, Tedja R, Millman M, Wong T, Fox A, Chehade H, Gershater M, Adzibolosu N, Gogoi R, Anderson M, Rutherford T, Zhang Z, Chopp M, Mor G, Alvero AB. Adipose-derived exosomal miR-421 targets CBX7 and promotes metastatic potential in ovarian cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566022. [PMID: 37986971 PMCID: PMC10659572 DOI: 10.1101/2023.11.07.566022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. Results Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. Conclusion In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.
Collapse
Affiliation(s)
- Yi Zhang
- Neurology, Henry Ford Health, Detroit, MI
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | - Terrence Wong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Meyer Gershater
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | | | - Michael Chopp
- Neurology, Henry Ford Health, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
6
|
Karvinen S, Korhonen T, Sievänen T, Karppinen JE, Juppi H, Jakoaho V, Kujala UM, Laukkanen JA, Lehti M, Laakkonen EK. Extracellular vesicles and high-density lipoproteins: Exercise and oestrogen-responsive small RNA carriers. J Extracell Vesicles 2023; 12:e12308. [PMID: 36739598 PMCID: PMC9899444 DOI: 10.1002/jev2.12308] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/22/2022] [Accepted: 01/22/2023] [Indexed: 02/06/2023] Open
Abstract
Decreased systemic oestrogen levels (i.e., menopause) affect metabolic health. However, the detailed mechanisms underlying this process remain unclear. Both oestrogens and exercise have been shown to improve metabolic health, which may be partly mediated by circulating microRNA (c-miR) signalling. In recent years, extracellular vesicles (EV) have increased interest in the field of tissue crosstalk. However, in many studies on EV-carried miRs, the co-isolation of high-density lipoprotein (HDL) particles with EVs has not been considered, potentially affecting the results. Here, we demonstrate that EV and HDL particles have distinct small RNA (sRNA) content, including both host and nonhost sRNAs. Exercise caused an acute increase in relative miR abundancy in EVs, whereas in HDL particles, it caused an increase in transfer RNA-derived sRNA. Furthermore, we demonstrate that oestrogen-based hormonal therapy (HT) allows the acute exercise-induced miR-response to occur in both EV and HDL particles in postmenopausal women, while the response was absent in nonusers.
Collapse
Affiliation(s)
- Sira Karvinen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Tia‐Marje Korhonen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Tero Sievänen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jari E. Karppinen
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Hanna‐Kaarina Juppi
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Veera Jakoaho
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Urho M. Kujala
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jari A. Laukkanen
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland,Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
| | - Maarit Lehti
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Eija K. Laakkonen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
7
|
Chehade H, Tedja R, Ramos H, Bawa TS, Adzibolosu N, Gogoi R, Mor G, Alvero AB. Regulatory Role of the Adipose Microenvironment on Ovarian Cancer Progression. Cancers (Basel) 2022; 14:cancers14092267. [PMID: 35565396 PMCID: PMC9101128 DOI: 10.3390/cancers14092267] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Adipocytes or fat cells are integral part of the ovarian tumor microenvironment. Secreted factors from adipocytes, as well as direct cell-to-cell interaction with ovarian cancer cells have been shown to directly support ovarian tumor progression. Elucidating the molecular pathways involved is crucial in the identification of relevant targets. Abstract The tumor microenvironment of ovarian cancer is the peritoneal cavity wherein adipose tissue is a major component. The role of the adipose tissue in support of ovarian cancer progression has been elucidated in several studies from the past decades. The adipocytes, in particular, are a major source of factors, which regulate all facets of ovarian cancer progression such as acquisition of chemoresistance, enhanced metastatic potential, and metabolic reprogramming. In this review, we summarize the relevant studies, which highlight the role of adipocytes in ovarian cancer progression and offer insights into unanswered questions and possible future directions of research.
Collapse
Affiliation(s)
- Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Harry Ramos
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Tejeshwar Singh Bawa
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
8
|
Archer A, Kutter C, Williams C. Expression Profiles of Estrogen-Regulated MicroRNAs in Cancer Cells. Methods Mol Biol 2022; 2418:313-343. [PMID: 35119673 DOI: 10.1007/978-1-0716-1920-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MicroRNAs play critical roles through their impact on posttranscriptional gene regulation. In cancer, they can act as oncogenes or tumor suppressors and can also function as biomarkers. Here, we describe a method for robust characterization of estrogen-regulated microRNA profiles. The activity of estrogen is mediated by two nuclear receptors, estrogen receptor alpha and estrogen receptor beta, and a transmembrane G-protein coupled estrogen receptor 1. This chapter details how to prepare cells for optimal estrogen response, directions for estrogen treatment, RNA extraction, different microRNA profiling approaches, and subsequent confirmations.
Collapse
Affiliation(s)
- Amena Archer
- SciLifeLab, Department of Protein Science, KTH-Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Claudia Kutter
- SciLifeLab, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH-Royal Institute of Technology, Solna, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
9
|
Masi LN, Lotufo PA, Ferreira FM, Rodrigues AC, Serdan TDA, Souza‐Siqueira T, Braga AA, Saldarriaga MEG, Alba‐Loureiro TC, Borges FT, Cury DP, Hirata MH, Gorjão R, Pithon‐Curi TC, Lottenberg SA, Fedeli LMG, Nakaya HTI, Bensenor IJM, Curi R, Hirabara SM. Profiling plasma-extracellular vesicle proteins and microRNAs in diabetes onset in middle-aged male participants in the ELSA-Brasil study. Physiol Rep 2021; 9:e14731. [PMID: 33587339 PMCID: PMC7883809 DOI: 10.14814/phy2.14731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
We measured plasma-derived extracellular vesicle (EV) proteins and their microRNA (miRNA) cargos in normoglycemic (NG), glucose intolerant (GI), and newly diagnosed diabetes mellitus (DM) in middle-aged male participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brazil). Mass spectrometry revealed decreased IGHG-1 and increased ITIH2 protein levels in the GI group compared with that in the NG group and higher serotransferrin in EVs in the DM group than in those in the NG and GI groups. The GI group also showed increased serum ferritin levels, as evaluated by biochemical analysis, compared with those in both groups. Seventeen miRNAs were differentially expressed (DEMiRs) in the plasma EVs of the three groups. DM patients showed upregulation of miR-141-3p and downregulation of miR-324-5p and -376c-3p compared with the NG and GI groups. The DM and GI groups showed increased miR-26b-5p expression compared with that in the NG group. The DM group showed decreased miR-374b-5p levels compared with those in the GI group and higher concentrations than those in the NG group. Thus, three EV proteins and five DEMiR cargos have potential prognostic importance for diabetic complications mainly associated with the immune function and iron status of GI and DM patients.
Collapse
Affiliation(s)
- Laureane N. Masi
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Paulo A. Lotufo
- Center for Clinical and Epidemiologic ResearchUniversity of Sao PauloSao PauloBrazil
| | | | - Alice C. Rodrigues
- Department of PharmacologyInstitute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Tamires D. A. Serdan
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Talita Souza‐Siqueira
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Aécio A. Braga
- Faculty of Pharmaceutical SciencesUniversity of São PauloSao PauloBrazil
| | | | - Tatiana C. Alba‐Loureiro
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Fernanda T. Borges
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Diego P. Cury
- Department of AnatomyInstitute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Mario H. Hirata
- Faculty of Pharmaceutical SciencesUniversity of São PauloSao PauloBrazil
| | - Renata Gorjão
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Tania C. Pithon‐Curi
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| | - Simão A. Lottenberg
- Faculty of MedicineUniversity of Sao PauloHospital das ClínicasSao PauloBrazil
| | - Ligia M. G. Fedeli
- Center for Clinical and Epidemiologic ResearchUniversity of Sao PauloSao PauloBrazil
| | - Helder T. I. Nakaya
- Department of PharmacologyInstitute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | | | - Rui Curi
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
- Butantan InstituteSão PauloBrazil
| | - Sandro M. Hirabara
- Interdisciplinary Post‐graduate Program in Health SciencesCruzeiro do Sul UniversitySao PauloBrazil
| |
Collapse
|
10
|
Ishii M, Senju A, Oguro A, Shimono M, Araki S, Kusuhara K, Itoh K, Tsuji M, Ishihara Y. Measurement of the Estradiol Concentration in Cerebrospinal Fluid from Infants and Its Correlation with Serum Estradiol and Exosomal MicroRNA-126-5p. Biol Pharm Bull 2020; 43:1966-1968. [PMID: 33268717 DOI: 10.1248/bpb.b20-00549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estradiol has an important role in the brain, such as in neuronal development and protection, but estradiol levels in the human brain have not been well investigated. In this study, we measured the estradiol concentration in the cerebrospinal fluid (CSF) of infants to reveal the relationships between the estradiol concentrations in the serum and the CSF and further determined exosomal microRNAs in serum. Estradiol in the CSF was strongly correlated with serum estradiol and moderately correlated with miR-126-5p in the serum exosomes. This report is the first to determine the estradiol concentration in CSF from infants and showed that the levels of miR-126-5p as well as serum estradiol can be candidates to predict brain estrogen status.
Collapse
Affiliation(s)
- Masahiro Ishii
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Ayako Senju
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Masayuki Shimono
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Shunsuke Araki
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Koichi Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
| | - Mayumi Tsuji
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University
| |
Collapse
|
11
|
The Physiological MicroRNA Landscape in Nipple Aspirate Fluid: Differences and Similarities with Breast Tissue, Breast Milk, Plasma and Serum. Int J Mol Sci 2020; 21:ijms21228466. [PMID: 33187146 PMCID: PMC7696615 DOI: 10.3390/ijms21228466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs (miRNAs) target 60% of human messenger RNAs and can be detected in tissues and biofluids without loss of stability during sample processing, making them highly appraised upcoming biomarkers for evaluation of disease. However, reporting of the abundantly expressed miRNAs in healthy samples is often surpassed. Here, we characterized for the first time the physiological miRNA landscape in a biofluid of the healthy breast: nipple aspirate fluid (NAF), and compared NAF miRNA expression patterns with publically available miRNA expression profiles of healthy breast tissue, breast milk, plasma and serum. Methods: MiRNA RT-qPCR profiling of NAF (n = 41) and serum (n = 23) samples from two healthy female cohorts was performed using the TaqMan OpenArray Human Advanced MicroRNA 754-Panel. MiRNA quantification data based on non-targeted or multi-targeted profiling techniques for breast tissue, breast milk, plasma and serum were retrieved from the literature by means of a systematic search. MiRNAs from each individual study were orderly ranked between 1 and 50, combined into an overall ranking per sample type and compared. Results: NAF expressed 11 unique miRNAs and shared 21/50 miRNAs with breast tissue. Seven miRNAs were shared between the five sample types. Overlap between sample types varied between 42% and 62%. Highly ranked NAF miRNAs have established roles in breast carcinogenesis. Conclusion: This is the first study to characterize and compare the unique physiological NAF-derived miRNA landscape with the physiological expression pattern in breast tissue, breast milk, plasma and serum. Breast-specific sources did not mutually overlap more than with systemic sources. Given their established role in carcinogenesis, NAF miRNA assessment could be a valuable tool in breast tumor diagnostics.
Collapse
|
12
|
Ozkul Y, Taheri S, Bayram KK, Sener EF, Mehmetbeyoglu E, Öztop DB, Aybuga F, Tufan E, Bayram A, Dolu N, Zararsiz G, Kianmehr L, Beyaz F, Doganyigit Z, Cuzin F, Rassoulzadegan M. A heritable profile of six miRNAs in autistic patients and mouse models. Sci Rep 2020; 10:9011. [PMID: 32514154 PMCID: PMC7280218 DOI: 10.1038/s41598-020-65847-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/11/2020] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of developmental pathologies that impair social communication and cause repetitive behaviors. The suggested roles of noncoding RNAs in pathology led us to perform a comparative analysis of the microRNAs expressed in the serum of human ASD patients. The analysis of a cohort of 45 children with ASD revealed that six microRNAs (miR-19a-3p, miR-361-5p, miR-3613-3p, miR-150-5p, miR-126-3p, and miR-499a-5p) were expressed at low to very low levels compared to those in healthy controls. A similar but less pronounced decrease was registered in the clinically unaffected parents of the sick children and in their siblings but never in any genetically unrelated control. Results consistent with these observations were obtained in the blood, hypothalamus and sperm of two of the established mouse models of ASD: valproic acid-treated animals and Cc2d1a+/- heterozygotes. In both instances, the same characteristic miRNA profile was evidenced in the affected individuals and inherited together with disease symptoms in the progeny of crosses with healthy animals. The consistent association of these genetic regulatory changes with the disease provides a starting point for evaluating the changes in the activity of the target genes and, thus, the underlying mechanism(s). From the applied societal and medical perspectives, once properly confirmed in large cohorts, these observations provide tools for the very early identification of affected children and progenitors.
Collapse
Affiliation(s)
- Yusuf Ozkul
- Erciyes University Medical Faculty, Medical Genetics Department, Kayseri, Turkey. .,Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.
| | - Serpil Taheri
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.,Erciyes University Medical Faculty, Medical Biology Department, Kayseri, Turkey
| | - Kezban Korkmaz Bayram
- Erciyes University Medical Faculty, Medical Genetics Department, Kayseri, Turkey.,Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Elif Funda Sener
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.,Erciyes University Medical Faculty, Medical Biology Department, Kayseri, Turkey
| | - Ecmel Mehmetbeyoglu
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Didem Behice Öztop
- Ankara University, Medical Faculty, Child and Adolescent Psychiatry Department, Ankara, Turkey
| | - Fatma Aybuga
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Esra Tufan
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Arslan Bayram
- Erciyes University Medical Faculty, Medical Genetics Department, Kayseri, Turkey
| | - Nazan Dolu
- Baskent University, Medical Faculty, Physiology Department, Ankara, Turkey
| | - Gokmen Zararsiz
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | | | - Feyzullah Beyaz
- Erciyes University Veterinary Faculty, Histology and Embryology Department, Kayseri, Turkey
| | - Züleyha Doganyigit
- Bozok University, Medical Faculty, Histology and Embryology Department, Yozgat, Turkey
| | | | - Minoo Rassoulzadegan
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey. .,Université Côte d'Azur, CNRS, Inserm, France.
| |
Collapse
|
13
|
Klinge CM. Estrogenic control of mitochondrial function. Redox Biol 2020; 31:101435. [PMID: 32001259 PMCID: PMC7212490 DOI: 10.1016/j.redox.2020.101435] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Sex-based differences in human disease are caused in part by the levels of endogenous sex steroid hormones which regulate mitochondrial metabolism. This review updates a previous review on how estrogens regulate metabolism and mitochondrial function that was published in 2017. Estrogens are produced by ovaries and adrenals, and in lesser amounts by adipose, breast stromal, and brain tissues. At the cellular level, the mechanisms by which estrogens regulate diverse cellular functions including reproduction and behavior is by binding to estrogen receptors α, β (ERα and ERβ) and G-protein coupled ER (GPER1). ERα and ERβ are transcription factors that bind genomic and mitochondrial DNA to regulate gene transcription. A small proportion of ERα and ERβ interact with plasma membrane-associated signaling proteins to activate intracellular signaling cascades that ultimately alter transcriptional responses, including mitochondrial morphology and function. Although the mechanisms and targets by which estrogens act directly and indirectly to regulate mitochondrial function are not fully elucidated, it is clear that estradiol regulates mitochondrial metabolism and morphology via nuclear and mitochondrial-mediated events, including stimulation of nuclear respiratory factor-1 (NRF-1) transcription that will be reviewed here. NRF-1 is a transcription factor that interacts with coactivators including peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) to regulate nuclear-encoded mitochondrial genes. One NRF-1 target is TFAM that binds mtDNA to regulate its transcription. Nuclear-encoded miRNA and lncRNA regulate mtDNA-encoded and nuclear-encoded transcripts that regulate mitochondrial function, thus acting as anterograde signals. Other estrogen-regulated mitochondrial activities including bioenergetics, oxygen consumption rate (OCR), and extracellular acidification (ECAR), are reviewed.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, 40292, KY, USA.
| |
Collapse
|
14
|
Nik Mohamed Kamal NNSB, Shahidan WNS. Non-Exosomal and Exosomal Circulatory MicroRNAs: Which Are More Valid as Biomarkers? Front Pharmacol 2020; 10:1500. [PMID: 32038230 PMCID: PMC6984169 DOI: 10.3389/fphar.2019.01500] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs with approximately 19–25 nucleotides that are involved in regulating a range of developmental and physiological processes. Non-exosomal circulating and exosomal miRNAs have also been proposed to be useful in diagnostics as biomarkers for diseases and different types of cancer. In this review, the quantity of miRNAs and of reliable experimental data analyses of miRNAs that come from exosomal and non-exosomal sources are discussed from the perspective of their use as biomarkers for cancer and other diseases, including viral infections, nervous system disorders, cardiovascular disorders, and diabetes. We summarize other research findings regarding the use of miRNA from these two sources as biomarkers in diagnostics and clinical use. The challenges in using miRNA from these two sources in cancer and disease diagnostics are evaluated and discussed. Validation of specific miRNA signatures as biomarkers is a critical milestone in diagnostics.
Collapse
Affiliation(s)
| | - Wan Nazatul Shima Shahidan
- Craniofacial Science Laboratory, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Extracellular vesicles (EV), which include exosomes and microvesicles, are membrane-bound particles shed by most cell types and are important mediators of cell-cell communication by delivering their cargo of proteins, miRNA, and mRNA to target cells and altering their function. Here, we provide an overview of what is currently known about EV composition and function in bone and muscle cells and discuss their role in mediating crosstalk between these two tissues as well as their role in musculoskeletal aging. RECENT FINDINGS Recent studies have shown that muscle and bone cells produce EV, whose protein, mRNA, and miRNA cargo reflects the differentiated state of the parental cells. These EV have functional effects within their respective tissues, but evidence is accumulating that they are also shed into the circulation and can have effects on distant tissues. Bone- and muscle-derived EV can alter the differentiation and function of bone and muscle cells. Many of these effects are mediated via small microRNAs that regulate target genes in recipient cells. EV-mediated signaling in muscle and bone is an exciting and emerging field. While considerable progress has been made, much is still to be discovered about the mechanisms regulating EV composition, release, uptake, and function in muscle and bone. A key challenge is to understand more precisely how exosomes function in truly physiological settings.
Collapse
Affiliation(s)
- Weiping Qin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, 650 E. 25th Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
16
|
De Luca M, Vecchie’ D, Athmanathan B, Gopalkrishna S, Valcin JA, Swain TM, Sertie R, Wekesa K, Rowe GC, Bailey SM, Nagareddy PR. Genetic Deletion of Syndecan-4 Alters Body Composition, Metabolic Phenotypes, and the Function of Metabolic Tissues in Female Mice Fed A High-Fat Diet. Nutrients 2019; 11:nu11112810. [PMID: 31752080 PMCID: PMC6893658 DOI: 10.3390/nu11112810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022] Open
Abstract
Syndecans are transmembrane proteoglycans that, like integrins, bind to components of the extracellular matrix. Previously, we showed significant associations of genetic variants in the Syndecan-4 (SDC4) gene with intra-abdominal fat, fasting plasma glucose levels, and insulin sensitivity index in children, and with fasting serum triglyceride levels in healthy elderly subjects. An independent study also reported a correlation between SDC4 and the risk of coronary artery disease in middle-aged patients. Here, we investigated whether deletion of Sdc4 promotes metabolic derangements associated with diet-induced obesity by feeding homozygous male and female Sdc4-deficient (Sdc4-/-) mice and their age-matched wild-type (WT) mice a high-fat diet (HFD). We found that WT and Sdc4-/- mice gained similar weight. However, while no differences were observed in males, HFD-fed female Sdc4-/- mice exhibited a higher percentage of body fat mass than controls and displayed increased levels of plasma total cholesterol, triglyceride, and glucose, as well as reduced whole-body insulin sensitivity. Additionally, they had an increased adipocyte size and macrophage infiltration in the visceral adipose tissue, and higher triglyceride and fatty acid synthase levels in the liver. Together with our previous human genetic findings, these results provide evidence of an evolutionarily conserved role of SDC4 in adiposity and its complications.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
- Correspondence: ; Tel.: +1-205-934-7033
| | - Denise Vecchie’
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Baskaran Athmanathan
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| | - Sreejit Gopalkrishna
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| | - Jennifer A. Valcin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Telisha M. Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Rogerio Sertie
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
| | - Kennedy Wekesa
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Glenn C. Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shannon M. Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Prabhakara R. Nagareddy
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| |
Collapse
|
17
|
Abstract
The older Finnish Twin Cohort (FTC) was established in 1974. The baseline survey was in 1975, with two follow-up health surveys in 1981 and 1990. The fourth wave of assessments was done in three parts, with a questionnaire study of twins born during 1945-1957 in 2011-2012, while older twins were interviewed and screened for dementia in two time periods, between 1999 and 2007 for twins born before 1938 and between 2013 and 2017 for twins born in 1938-1944. The content of these wave 4 assessments is described and some initial results are described. In addition, we have invited twin-pairs, based on response to the cohortwide surveys, to participate in detailed in-person studies; these are described briefly together with key results. We also review other projects based on the older FTC and provide information on the biobanking of biosamples and related phenotypes.
Collapse
|
18
|
Morenikeji OB, Hawkes ME, Hudson AO, Thomas BN. Computational Network Analysis Identifies Evolutionarily Conserved miRNA Gene Interactions Potentially Regulating Immune Response in Bovine Trypanosomosis. Front Microbiol 2019; 10:2010. [PMID: 31555241 PMCID: PMC6722470 DOI: 10.3389/fmicb.2019.02010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022] Open
Abstract
Bovine trypanosomosis is a devastating disease that causes huge economic loss to the global cattle industry on a yearly basis. Selection of accurate biomarkers are important in early disease diagnosis and treatment. Of late, micro-RNAs (miRNAs) are becoming the most useful biomarkers for both infectious and non-infectious diseases in humans, but this is not the case in animals. miRNAs are non-coding RNAs that regulate gene expression through binding to the 3'-, 5'-untranslated regions (UTR) or coding sequence (CDS) region of one or more target genes. The molecular identification of miRNAs that regulates the expression of immune genes responding to bovine trypanosomosis is poorly defined, as is the possibility that these miRNAs could serve as potential biomarkers for disease diagnosis and treatment currently unknown. To this end, we utilized in silico tools to elucidate conserved miRNAs regulating immune response genes during infection, in addition to cataloging significant genes. Based on the p value of 1.77E-32, we selected 25 significantly expressed immune genes. Using prediction analysis, we identified a total of 4,251 bovine miRNAs targeting these selected genes across the 3'UTR, 5'UTR and CDS regions. Thereafter, we identified candidate miRNAs based on the number of gene targets and their abundance at the three regions. In all, we found the top 13 miRNAs that are significantly conserved targeting 7 innate immune response genes, including bta-mir-2460, bta-mir-193a, bta-mir-2316, and bta-mir-2456. Our gene ontology analysis suggests that these miRNAs are involved in gene silencing, cellular protein modification process, RNA-induced silencing complex, regulation of humoral immune response mediated by circulating immunoglobulin and negative regulation of chronic inflammatory response, among others. In conclusion, this study identifies specific miRNAs that may be involved in the regulation of gene expression during bovine trypanosomosis. These miRNAs have the potential to be used as biomarkers in the animal and veterinary research community to facilitate the development of tools for early disease diagnosis/detection, drug targeting, and the rational design of drugs to facilitate disease treatment.
Collapse
Affiliation(s)
- Olanrewaju B. Morenikeji
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Megan E. Hawkes
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
19
|
Fulzele S, Mendhe B, Khayrullin A, Johnson M, Kaiser H, Liu Y, Isales CM, Hamrick MW. Muscle-derived miR-34a increases with age in circulating extracellular vesicles and induces senescence of bone marrow stem cells. Aging (Albany NY) 2019; 11:1791-1803. [PMID: 30910993 PMCID: PMC6461183 DOI: 10.18632/aging.101874] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are known to play important roles in cell-cell communication. Here we investigated the role of muscle-derived EVs and their microRNAs in the loss of bone stem cell populations with age. Aging in male and female C57BL6 mice was associated with a significant increase in expression of the senescence-associated microRNA miR-34a-5p (miR-34a) in skeletal muscle and in serum -derived EVs. Muscle-derived, alpha-sarcoglycan positive, EVs isolated from serum samples also showed a significant increase in miR-34a with age. EVs were isolated from conditioned medium of C2C12 mouse myoblasts and primary human myotubes after cells were treated with hydrogen peroxide to simulate oxidative stress. These EVs were shown to have elevated levels of miR-34a, and these EVs decreased viability of bone marrow mesenchymal (stromal) cells (BMSCs) and increased BMSC senescence. A lentiviral vector system was used to overexpress miR-34a in C2C12 cells, and EVs isolated from these transfected cells were observed to home to bone in vivo and to induce senescence and decrease Sirt1 expression of primary bone marrow cells ex vivo. These findings suggest that aged skeletal muscle is a potential source of circulating, senescence-associated EVs that may directly impact stem cell populations in tissues such as bone via their microRNA cargo.
Collapse
Affiliation(s)
- Sadanand Fulzele
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bharati Mendhe
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Andrew Khayrullin
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Maribeth Johnson
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Helen Kaiser
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutao Liu
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Carlos M. Isales
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
20
|
Immunometabolic Links between Estrogen, Adipose Tissue and Female Reproductive Metabolism. BIOLOGY 2019; 8:biology8010008. [PMID: 30736459 PMCID: PMC6466614 DOI: 10.3390/biology8010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 12/25/2022]
Abstract
The current knowledge of sex-dependent differences in adipose tissue biology remains in its infancy and is motivated in part by the desire to understand why menopause is linked to an increased risk of metabolic disease. However, the development and characterization of targeted genetically-modified rodent models are shedding new light on the physiological actions of sex hormones in healthy reproductive metabolism. In this review we consider the need for differentially regulating metabolic flexibility, energy balance, and immunity in a sex-dependent manner. We discuss the recent advances in our understanding of physiological roles of systemic estrogen in regulating sex-dependent adipose tissue distribution, form and function; and in sex-dependent healthy immune function. We also review the decline in protective properties of estrogen signaling in pathophysiological settings such as obesity-related metaflammation and metabolic disease. It is clear that the many physiological actions of estrogen on energy balance, immunity, and immunometabolism together with its dynamic regulation in females make it an excellent candidate for regulating metabolic flexibility in the context of reproductive metabolism.
Collapse
|
21
|
Role of miRNA in the Regulatory Mechanisms of Estrogens in Cardiovascular Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6082387. [PMID: 30671171 PMCID: PMC6317101 DOI: 10.1155/2018/6082387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
Abstract
Cardiovascular diseases are a worldwide health problem and are the leading cause of mortality in developed countries. Together with experimental data, the lower incidence of cardiovascular diseases in women than in men of reproductive age points to the influence of sex hormones at the cardiovascular level and suggests that estrogens play a protective role against cardiovascular disease and that this role is also modified by ageing. Estrogens affect cardiovascular function via their specific estrogen receptors to trigger gene expression changes at the transcriptional level. In addition, emerging studies have proposed a role for microRNAs in the vascular effects mediated by estrogens. miRNAs regulate gene expression by repressing translational processes and have been estimated to be involved in the regulation of approximately 30% of all protein-coding genes in mammals. In this review, we highlight the current knowledge of the role of estrogen-sensitive miRNAs, and their influence in regulating vascular ageing.
Collapse
|
22
|
Mäkitie RE, Hackl M, Niinimäki R, Kakko S, Grillari J, Mäkitie O. Altered MicroRNA Profile in Osteoporosis Caused by Impaired WNT Signaling. J Clin Endocrinol Metab 2018; 103:1985-1996. [PMID: 29506076 DOI: 10.1210/jc.2017-02585] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 12/16/2022]
Abstract
CONTEXT WNT signaling is fundamental to bone health, and its aberrant activation leads to skeletal pathologies. The heterozygous missense mutation p.C218G in WNT1, a key WNT pathway ligand, leads to severe early-onset and progressive osteoporosis with multiple peripheral and spinal fractures. Despite the severe skeletal manifestations, conventional bone turnover markers are normal in mutation-positive patients. OBJECTIVE This study sought to explore the circulating microRNA (miRNA) pattern in patients with impaired WNT signaling. DESIGN AND SETTING A cross-sectional cohort study at a university hospital. PARTICIPANTS Altogether, 12 mutation-positive (MP) subjects (median age, 39 years; range, 11 to 76 years) and 12 mutation-negative (MN) subjects (35 years; range, 9 to 59 years) from two Finnish families with WNT1 osteoporosis due to the heterozygous p.C218G WNT1 mutation. METHODS AND MAIN OUTCOME MEASURE Serum samples were screened for 192 miRNAs using quantitative polymerase chain reaction. Findings were compared between WNT1 MP and MN subjects. RESULTS The pattern of circulating miRNAs was significantly different in the MP subjects compared with the MN subjects, with two upregulated (miR-18a-3p and miR-223-3p) and six downregulated miRNAs (miR-22-3p, miR-31-5p, miR-34a-5p, miR-143-5p, miR-423-5p, and miR-423-3p). Three of these (miR-22-3p, miR-34a-5p, and miR-31-5p) are known inhibitors of WNT signaling: miR-22-3p and miR-34a-5p target WNT1 messenger RNA, and miR-31-5p is predicted to bind to WNT1 3'UTR. CONCLUSIONS The circulating miRNA pattern reflects WNT1 mutation status. The findings suggest that the WNT1 mutation disrupts feedback regulation between these miRNAs and WNT1, providing insights into the pathogenesis of WNT-related bone disorders. These miRNAs may have potential in the diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Riikka E Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
| | | | - Riitta Niinimäki
- Department of Children and Adolescents, Oulu University Hospital, and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Sakari Kakko
- Internal Medicine and Clinical Research Center, University of Oulu, Oulu, Finland
| | - Johannes Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Wilczynski M, Danielska J, Domanska-Senderowska D, Dzieniecka M, Szymanska B, Malinowski A. Association of microRNA-200c expression levels with clinicopathological factors and prognosis in endometrioid endometrial cancer. Acta Obstet Gynecol Scand 2018; 97:560-569. [PMID: 29355888 DOI: 10.1111/aogs.13306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 01/13/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are regulators of gene expression, which play an important role in many critical cellular processes including apoptosis, proliferation and cell differentiation. Aberrant miRNA expression has been reported in a variety of human malignancies. Therefore, miRNAs may be potentially used as cancer biomarkers. miRNA-200c, which is a member of the miRNA-200 family, might play an essential role in tumor progression. The purpose of this study was to evaluate the prognostic and clinical significance of miRNA-200c in women with endometrioid endometrial cancer. MATERIAL AND METHODS Total RNA extraction from 90 archival formalin-fixed paraffin-embedded tissue samples of endometri-oid endometrial cancer and 10 normal endometrium samples was performed. After cDNA synthesis, real-time polymerase chain reaction was conducted and relative expression of miRNA-200c was assessed. Then, miRNA-200c expression levels were evaluated with regard to clinicopathological characteristics. RESULTS The expression levels of miRNA-200c were significantly increased in endometrioid endometrial cancer samples. Expression of miRNA-200c maintained at significantly higher levels in the early stage endometrioid endometrial cancer compared with more advanced stages. In the Kaplan-Meier analysis, lower levels of miRNA-200c expression were associated with inferior survival. CONCLUSIONS Expression levels of miRNA-200c might be associated with clinicopathological factors and survival in endometrioid endometrial cancer.
Collapse
Affiliation(s)
- Milosz Wilczynski
- Endoscopy and Gynecologic Oncology, Department of Operative Gynecology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | | | - Monika Dzieniecka
- Department of Pathology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | - Andrzej Malinowski
- Department of Surgical and Endoscopic Gynecology, Medical University in Lodz, Lodz, Poland
| |
Collapse
|
24
|
Pérez-Cremades D, Mompeón A, Vidal-Gómez X, Hermenegildo C, Novella S. miRNA as a New Regulatory Mechanism of Estrogen Vascular Action. Int J Mol Sci 2018; 19:ijms19020473. [PMID: 29415433 PMCID: PMC5855695 DOI: 10.3390/ijms19020473] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
The beneficial effects of estrogen on the cardiovascular system have been reported extensively. In fact, the incidence of cardiovascular diseases in women is lower than in age-matched men during their fertile stage of life, a benefit that disappears after menopause. These sex-related differences point to sexual hormones, mainly estrogen, as possible cardiovascular protective factors. The regulation of vascular function by estrogen is mainly related to the maintenance of normal endothelial function and is mediated by both direct and indirect gene transcription through the activity of specific estrogen receptors. Some of these mechanisms are known, but many remain to be elucidated. In recent years, microRNAs have been established as non-coding RNAs that regulate the expression of a high percentage of protein-coding genes in mammals and are related to the correct function of human physiology. Moreover, within the cardiovascular system, miRNAs have been related to physiological and pathological conditions. In this review, we address what is known about the role of estrogen-regulated miRNAs and their emerging involvement in vascular biology.
Collapse
Affiliation(s)
- Daniel Pérez-Cremades
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Ana Mompeón
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Xavier Vidal-Gómez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Carlos Hermenegildo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| |
Collapse
|
25
|
Kangas R, Morsiani C, Pizza G, Lanzarini C, Aukee P, Kaprio J, Sipilä S, Franceschi C, Kovanen V, Laakkonen EK, Capri M. Menopause and adipose tissue: miR-19a-3p is sensitive to hormonal replacement. Oncotarget 2018; 9:2279-2294. [PMID: 29416771 PMCID: PMC5788639 DOI: 10.18632/oncotarget.23406] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Tissue-specific effects of 17β-estradiol are delivered via both estrogen receptors and microRNAs (miRs). Menopause is known to affect the whole-body fat distribution in women. This investigation aimed at identifying menopause- and hormone replacement therapy (HRT)-associated miR profiles and miR targets in subcutaneous abdominal adipose tissue and serum from the same women. A discovery phase using array technology was performed in 13 women, including monozygotic twin pairs discordant for HRT and premenopausal young controls. Seven miRs, expressed in both adipose tissue and serum, were selected for validation phase in 34 women from a different cohort. An age/menopause-related increase of miRs-16-5p, -451a, -223-3p, -18a-5p, -19a-3p,-486-5p and -363-3p was found in the adipose tissue, but not in serum. MiR-19a-3p, involved in adipocyte development and estrogen signaling, resulted to be higher in HRT users in comparison with non-users. Among the identified targets, AKT1, BCL-2 and BRAF proteins showed lower expression in both HRT and No HRT users in comparison with premenopausal women. Unexpectedly, ESR1 protein expression was not modified although its mRNA was lower in No HRT users compared to premenopausal women and HRT users. Thus, both HRT and menopause appear to affect adipose tissue homeostasis via miR-mediated mechanism.
Collapse
Affiliation(s)
- Reeta Kangas
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Cristina Morsiani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Grazia Pizza
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Epigenetics Program, Babraham Institute, Cambridge, United Kingdom
| | - Catia Lanzarini
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pauliina Aukee
- Department of Obstetrics and Gynecology, Pelvic Floor Research and Therapy Unit, Central Finland Central Hospital, Jyväskylä, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM) and Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Sarianna Sipilä
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Claudio Franceschi
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Vuokko Kovanen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eija K. Laakkonen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Miriam Capri
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- CIG- Interdepartmental Centre “Galvani”, Via Petronio Vecchi, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Chen YJ, Chang WA, Huang MS, Chen CH, Wang KY, Hsu YL, Kuo PL. Identification of novel genes in aging osteoblasts using next-generation sequencing and bioinformatics. Oncotarget 2017; 8:113598-113613. [PMID: 29371932 PMCID: PMC5768349 DOI: 10.18632/oncotarget.22748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023] Open
Abstract
During the aging process, impaired osteoblastic function is one key factor of imbalanced bone formation and age-related bone loss. The aim of this study is to explore the differentially expressed genes in normal and aged osteoblasts and to identify genes potentially involved in age-related alteration in bone physiology. Based on next generation sequencing and bioinformatics analysis, 12 differentially expressed microRNAs and 22 differentially expressed genes were identified. Up-regulation of miR-204-5p was validated in an array of osteoporotic hip fracture in the Gene Expression Omnibus database (GSE74209). The putative targets for miR-204-5p were Kruppel-like factor 7 (KLF7) and SRY-box 11 (SOX11). Ingenuity Pathway Analysis identified SOX11, involved in osteoarthritis pathway and differentiation of osteoblasts, together with miR-204-5p, a potential upstream regulator, suggesting the critical role of miR-204-5p-SOX11 regulation in the aging process of human bones. In addition, as semaphorin 3A (SEMA3A) and ephrin type-A receptor 5 (EPHA5) were involved in nervous system related biological functions, we postulated a potential linkage between SEMA3A, EPHA5 and development of neurogenic heterotopic ossification. Our findings implicate new candidate genes in the diagnosis of geriatric musculoskeletal disorders, and provide novel insights that may contribute to the elaboration of new biomarkers for neurogenic heterotopic ossification.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Yuan Wang
- Division of Geriatrics and Gerontology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|