1
|
Gonzalez-Hurtado E, Leveau C, Li K, Qu R, Mishra M, Goldberg EL, Sidorov S, Yeung ST, Khairallah C, Gonzalez D, Shepard TM, Camell C, Artyomov MN, Kluger Y, Khanna KM, Dixit VD. Nerve-associated macrophages control adipose homeostasis across lifespan and restrain age-related inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618004. [PMID: 39416197 PMCID: PMC11482937 DOI: 10.1101/2024.10.12.618004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Age-related inflammation or inflammaging is a key mechanism that increases disease burden and may control lifespan. How adipose tissue macrophages (ATMs) control inflammaging is not well understood in part because the molecular identities of niche-specific ATMs are incompletely known. Using intravascular labeling to exclude circulating myeloid cells and subsequent single-cell sequencing with orthogonal validation, we define the diversity and alterations in niche resident ATMs through lifespan. Aging led to depletion of vessel-associated macrophages (VAMs), expansion of lipid-associated macrophages (LAMs), and emergence of a unique subset of CD38+ age-associated macrophages (AAMs) in visceral white adipose tissue (VAT). Interestingly, CD169+CD11c- ATMs are enriched in a subpopulation of nerve-associated macrophages (NAMs) that declines with age. Depletion of CD169+ NAMs in aged mice increases inflammaging and impairs lipolysis suggesting that they are necessary for preventing catecholamine resistance in VAT. These findings reveal specialized ATMs control adipose homeostasis and link inflammation to tissue dysfunction during aging.
Collapse
|
2
|
Edalat SG, Gerber R, Houtman M, Lückgen J, Teixeira RL, Palacios Cisneros MDP, Pfanner T, Kuret T, Ižanc N, Micheroli R, Polido-Pereira J, Saraiva F, Lingam S, Burki K, Burja B, Pauli C, Rotar Ž, Tomšič M, Čučnik S, Fonseca JE, Distler O, Calado Â, Romão VC, Ospelt C, Sodin-Semrl S, Robinson MD, Frank Bertoncelj M. Molecular maps of synovial cells in inflammatory arthritis using an optimized synovial tissue dissociation protocol. iScience 2024; 27:109707. [PMID: 38832018 PMCID: PMC11144743 DOI: 10.1016/j.isci.2024.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/25/2024] [Accepted: 04/06/2024] [Indexed: 06/05/2024] Open
Abstract
In this study, we optimized the dissociation of synovial tissue biopsies for single-cell omics studies and created a single-cell atlas of human synovium in inflammatory arthritis. The optimized protocol allowed consistent isolation of highly viable cells from tiny fresh synovial biopsies, minimizing the synovial biopsy drop-out rate. The synovium scRNA-seq atlas contained over 100,000 unsorted synovial cells from 25 synovial tissues affected by inflammatory arthritis, including 16 structural, 11 lymphoid, and 15 myeloid cell clusters. This synovial cell map expanded the diversity of synovial cell types/states, detected synovial neutrophils, and broadened synovial endothelial cell classification. We revealed tissue-resident macrophage subsets with proposed matrix-sensing (FOLR2+COLEC12high) and iron-recycling (LYVE1+SLC40A1+) activities and identified fibroblast subsets with proposed functions in cartilage breakdown (SOD2highSAA1+SAA2+SDC4+) and extracellular matrix remodeling (SERPINE1+COL5A3+LOXL2+). Our study offers an efficient synovium dissociation method and a reference scRNA-seq resource, that advances the current understanding of synovial cell heterogeneity in inflammatory arthritis.
Collapse
Affiliation(s)
- Sam G. Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Reto Gerber
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Molecular Life Sciences and SIB, Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Miranda Houtman
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | | | - Rui Lourenço Teixeira
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | | | | | - Tadeja Kuret
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Nadja Ižanc
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Raphael Micheroli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Joaquim Polido-Pereira
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Fernando Saraiva
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Swathi Lingam
- Team PTA, BioMed X Institute, 69120 Heidelberg, Germany
| | - Kristina Burki
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Blaž Burja
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Žiga Rotar
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - João Eurico Fonseca
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Ângelo Calado
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vasco C. Romão
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Lisbon Academic Medical Center, 1649-028 Lisbon, Portugal
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
| | - Snežna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Mark D. Robinson
- Department of Molecular Life Sciences and SIB, Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Mojca Frank Bertoncelj
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich and University of Zurich, 8952 Schlieren, Switzerland
- Department of Molecular Life Sciences and SIB, Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Asadie M, Miri A, Badri T, Hosseini Nejad J, Gharechahi J. Dysregulated AEBP1 and COLEC12 Genes in Late-Onset Alzheimer's Disease: Insights from Brain Cortex and Peripheral Blood Analysis. J Mol Neurosci 2024; 74:37. [PMID: 38568322 DOI: 10.1007/s12031-024-02212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment, often accompanied by alterations in mood, confusion, and, ultimately, a state of acute mental disturbance. The cerebral cortex is considered a promising area for investigating the underlying causes of AD by analyzing transcriptional patterns, which could be complemented by investigating blood samples obtained from patients. We analyzed the RNA expression profiles of three distinct areas of the brain cortex, including the frontal cortex (FC), temporal cortex (TC), and entorhinal cortex (EC) in patients with AD. Functional enrichment analysis was performed on the differentially expressed genes (DEGs) across the three regions. The two genes with the most significant expression changes in the EC region were selected for assessing mRNA expression levels in the peripheral blood of late-onset AD patients using quantitative PCR (qPCR). We identified eight shared DEGs in these regions, including AEBP1 and COLEC12, which exhibited prominent changes in expression. Functional enrichment analysis uncovered a significant association of these DEGs with the transforming growth factor-β (TGF-β) signaling pathway and processes related to angiogenesis. Importantly, we established a robust connection between the up-regulation of AEBP1 and COLEC12 in both the brain and peripheral blood. Furthermore, we have demonstrated the potential of AEBP1 and COLEC12 genes as effective diagnostic tools for distinguishing between late-onset AD patients and healthy controls. This study unveils the intricate interplay between AEBP1 and COLEC12 in AD and underscores their potential as markers for disease detection and monitoring.
Collapse
Affiliation(s)
- Mohamadreza Asadie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taleb Badri
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Hosseini Nejad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Vanherle S, Guns J, Loix M, Mingneau F, Dierckx T, Wouters F, Kuipers K, Vangansewinkel T, Wolfs E, Lins PP, Bronckaers A, Lambrichts I, Dehairs J, Swinnen JV, Verberk SGS, Haidar M, Hendriks JJA, Bogie JFJ. Extracellular vesicle-associated cholesterol supports the regenerative functions of macrophages in the brain. J Extracell Vesicles 2023; 12:e12394. [PMID: 38124258 PMCID: PMC10733568 DOI: 10.1002/jev2.12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Macrophages play major roles in the pathophysiology of various neurological disorders, being involved in seemingly opposing processes such as lesion progression and resolution. Yet, the molecular mechanisms that drive their harmful and benign effector functions remain poorly understood. Here, we demonstrate that extracellular vesicles (EVs) secreted by repair-associated macrophages (RAMs) enhance remyelination ex vivo and in vivo by promoting the differentiation of oligodendrocyte precursor cells (OPCs). Guided by lipidomic analysis and applying cholesterol depletion and enrichment strategies, we find that EVs released by RAMs show markedly elevated cholesterol levels and that cholesterol abundance controls their reparative impact on OPC maturation and remyelination. Mechanistically, EV-associated cholesterol was found to promote OPC differentiation predominantly through direct membrane fusion. Collectively, our findings highlight that EVs are essential for cholesterol trafficking in the brain and that changes in cholesterol abundance support the reparative impact of EVs released by macrophages in the brain, potentially having broad implications for therapeutic strategies aimed at promoting repair in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sam Vanherle
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Jeroen Guns
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Fleur Mingneau
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Tess Dierckx
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Flore Wouters
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Koen Kuipers
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Tim Vangansewinkel
- Department of Cardio and Organs Systems, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- VIB, Center for Brain & Disease Research, Laboratory of NeurobiologyUniversity of LeuvenLeuvenBelgium
| | - Esther Wolfs
- Department of Cardio and Organs Systems, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
| | - Paula Pincela Lins
- Department of Cardio and Organs Systems, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- Health DepartmentFlemish Institute for Technological ResearchMolBelgium
| | - Annelies Bronckaers
- Department of Cardio and Organs Systems, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
| | - Ivo Lambrichts
- Department of Cardio and Organs Systems, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer InstituteUniversity of LeuvenLeuvenBelgium
| | - Johannes V. Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer InstituteUniversity of LeuvenLeuvenBelgium
| | - Sanne G. S. Verberk
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Jerome J. A. Hendriks
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Jeroen F. J. Bogie
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| |
Collapse
|
5
|
Wu C, Shi L, Ma Y, Pan Y, Wang L, Chen S, Zhang Y, Wang J, Liu M, Guo Y. Construction and optimization of a coculture system of mouse brain microvascular endothelial cells and myelin debris. Neurosci Lett 2023:137345. [PMID: 37308055 DOI: 10.1016/j.neulet.2023.137345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Microvascular endothelial cells are a newly discovered cell type involved in the phagocytosis of myelin debris, which play a key role in the repair of spinal cord injuries. Several methods for the preparation of myelin debris and parameters for constructing a coculture system of microvascular endothelial cells and myelin debris are available, but no systematic studies have yet been conducted, which hinders further exploration of the mechanisms of demyelinating disease repair. Herein, we aimed to develop a standardized method for this process. Myelin debris of different sizes was obtained from the brains of C57BL/6 mice by stripping the brains under aseptic conditions, multiple grinding, gradient centrifugation, etc. Transmission electron microscopy and nanoparticle size analysis were used to characterize myelin debris. Microvascular endothelial cells were cultured on a matrix gel, and myelin debris of different sizes (fluorescently labeled using CFSE) was placed in coculture after forming a vascular-like structure. Subsequently, myelin debris of different concentrations was cocultured in the vascular-like structure, and phagocytosis of myelin debris by microvascular endothelial cells was detected using immunofluorescence staining and flow cytometry. We found that myelin debris could be successfuly obtained from the mouse brain with secondary grinding and other steps and cocultured with microvascular endothelial cells at a concentration of 2 mg/mL, which promoted the phagocytosis of microvascular endothelial cells. In conclusion, we provide a reference for the protocol of a coculture system of microvascular endothelial cells and myelin debris.
Collapse
Affiliation(s)
- Chengjie Wu
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Shi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yalan Pan
- Laboratory of Chinese Medicine Nursing Intervention for Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sixian Chen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Mengmin Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yang Guo
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China.
| |
Collapse
|
6
|
Mackay S, Frazer LC, Bailey GK, Miller CM, Gong Q, Dewitt ON, Singh DK, Good M. Identification of serum biomarkers for necrotizing enterocolitis using aptamer-based proteomics. Front Pediatr 2023; 11:1184940. [PMID: 37325361 PMCID: PMC10264655 DOI: 10.3389/fped.2023.1184940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Necrotizing enterocolitis (NEC) is a potentially fatal intestinal disease primarily affecting preterm infants. Early diagnosis of neonates with NEC is crucial to improving outcomes; however, traditional diagnostic tools remain inadequate. Biomarkers represent an opportunity to improve the speed and accuracy of diagnosis, but they are not routinely used in clinical practice. Methods In this study, we utilized an aptamer-based proteomic discovery assay to identify new serum biomarkers of NEC. We compared levels of serum proteins in neonates with and without NEC and identified ten differentially expressed serum proteins between these groups. Results We detected two proteins, C-C motif chemokine ligand 16 (CCL16) and immunoglobulin heavy constant alpha 1 and 2 heterodimer (IGHA1 IGHA2), that were significantly increased during NEC and eight that were significantly decreased. Generation of receiver operating characteristic (ROC) curves revealed that alpha-fetoprotein (AUC = 0.926), glucagon (AUC = 0.860), and IGHA1 IGHA2 (AUC = 0.826) were the proteins that best differentiated patients with and without NEC. Discussion These findings indicate that further investigation into these serum proteins as a biomarker for NEC is warranted. In the future, laboratory tests incorporating these differentially expressed proteins may improve the ability of clinicians to diagnose infants with NEC rapidly and accurately.
Collapse
Affiliation(s)
- Stephen Mackay
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Lauren C. Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Grace K. Bailey
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Qingqing Gong
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Olivia N. Dewitt
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| |
Collapse
|
7
|
Grajchen E, Loix M, Baeten P, Côrte-Real BF, Hamad I, Vanherle S, Haidar M, Dehairs J, Broos JY, Ntambi JM, Zimmermann R, Breinbauer R, Stinissen P, Hellings N, Verberk SGS, Kooij G, Giera M, Swinnen JV, Broux B, Kleinewietfeld M, Hendriks JJA, Bogie JFJ. Fatty acid desaturation by stearoyl-CoA desaturase-1 controls regulatory T cell differentiation and autoimmunity. Cell Mol Immunol 2023; 20:666-679. [PMID: 37041314 DOI: 10.1038/s41423-023-01011-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
The imbalance between pathogenic and protective T cell subsets is a cardinal feature of autoimmune disorders such as multiple sclerosis (MS). Emerging evidence indicates that endogenous and dietary-induced changes in fatty acid metabolism have a major impact on both T cell fate and autoimmunity. To date, however, the molecular mechanisms that underlie the impact of fatty acid metabolism on T cell physiology and autoimmunity remain poorly understood. Here, we report that stearoyl-CoA desaturase-1 (SCD1), an enzyme essential for the desaturation of fatty acids and highly regulated by dietary factors, acts as an endogenous brake on regulatory T-cell (Treg) differentiation and augments autoimmunity in an animal model of MS in a T cell-dependent manner. Guided by RNA sequencing and lipidomics analysis, we found that the absence of Scd1 in T cells promotes the hydrolysis of triglycerides and phosphatidylcholine through adipose triglyceride lipase (ATGL). ATGL-dependent release of docosahexaenoic acid enhanced Treg differentiation by activating the nuclear receptor peroxisome proliferator-activated receptor gamma. Our findings identify fatty acid desaturation by SCD1 as an essential determinant of Treg differentiation and autoimmunity, with potentially broad implications for the development of novel therapeutic strategies and dietary interventions for autoimmune disorders such as MS.
Collapse
Affiliation(s)
- Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Paulien Baeten
- University MS Center Hasselt, Pelt, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Beatriz F Côrte-Real
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium
| | - Ibrahim Hamad
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jelle Y Broos
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - James M Ntambi
- Department of Biochemistry, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, USA
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Rolf Breinbauer
- BioTechMed-Graz, Graz, Austria
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Piet Stinissen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Niels Hellings
- University MS Center Hasselt, Pelt, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sanne G S Verberk
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Bieke Broux
- University MS Center Hasselt, Pelt, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Cardiovascular Research Institute Maastricht, Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands
| | - Markus Kleinewietfeld
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
- University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
8
|
Wang D, Wu C, Chen S, Li Y, Wang L, Zhang Y, Li G. Urinary complement profile in IgA nephropathy and its correlation with the clinical and pathological characteristics. Front Immunol 2023; 14:1117995. [PMID: 37020564 PMCID: PMC10068869 DOI: 10.3389/fimmu.2023.1117995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Background and objectivesThe activated complement profile in IgA nephropathy (IgAN) is still unclear. Our study investigated the profile of urinary complements in IgAN patients and its correlations with clinical and pathological characteristics.MethodsUrinary protein abundance was detected by liquid chromatography-tandem mass spectrometry (LC–MS/MS) in 50 IgAN, 50 membranous nephropathy (MN), and 68 healthy controls (HC). Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify differentially expressed proteins in IgAN patients. The differentially expressed complement proteins were screened in IgAN patients, and their correlations with laboratory or pathological parameters were analyzed. Thereafter, 7 complement components were validated by enzyme-linked immunosorbent assay (ELISA) in the urine samples of 45 IgAN patients.ResultsThere were 786 differentially expressed proteins between IgAN and HC. KEGG analysis showed that differentially expressed urinary proteins in IgAN were enriched with complement. Of these, 67% of urinary complement protein abundance was associated with the estimated glomerular filtration rate. The urinary complement-related protein collectin12 (colec12), complement H factor (CFH), complement H factor-related protein 2 (CFHR2), and complement B factor (CFB) were positively correlated with serum creatinine; colec12, CFHR2, CFB, and C8g were positively correlated with glomerulosclerosis; CFH, CFHR2, C8g, and C9 were positively correlated with tubular atrophy/interstitial fibrosis.ConclusionAbnormally increased components of complement pathways significantly correlate with reduced renal function, proteinuria, and renal histological damage in IgAN. It could provide a potential biomarker panel for monitoring IgAN and provide clues for therapeutic choice targeting complement system of IgAN patients.
Collapse
Affiliation(s)
- Dongqing Wang
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changwei Wu
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Sipei Chen
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Li
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Wang
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Guisen Li, ; Yong Zhang,
| | - Guisen Li
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Guisen Li, ; Yong Zhang,
| |
Collapse
|
9
|
Li C, Xiong W, Wan B, Kong G, Wang S, Wang Y, Fan J. Role of peripheral immune cells in spinal cord injury. Cell Mol Life Sci 2023; 80:2. [PMID: 36478290 PMCID: PMC9729325 DOI: 10.1007/s00018-022-04644-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Secondary spinal cord injury is caused by an inflammatory response cascade, and the process is irreversible. The immune system, as a mediator of inflammation, plays an important role in spinal cord injury. The spinal cord retains its immune privilege in a physiological state. Hence, elucidating the mechanisms by which peripheral immune cells are recruited to the lesion site and function after spinal cord injury is meaningful for the exploration of clinical therapeutic targets. In this review, we provide an overview of the multifaceted roles of peripheral immune cells in spinal cord injury.
Collapse
Affiliation(s)
- Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bowen Wan
- Department of Orthopaedics, Subei People's Hospital of Jiangsu, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Guang Kong
- Nanjing Medical University, Nanjing, 210029, China
| | - Siming Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yingying Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
10
|
Loix M, Wouters E, Vanherle S, Dehairs J, McManaman JL, Kemps H, Swinnen JV, Haidar M, Bogie JFJ, Hendriks JJA. Perilipin-2 limits remyelination by preventing lipid droplet degradation. Cell Mol Life Sci 2022; 79:515. [PMID: 36100764 DOI: 10.1007/s00018-022-04547-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022]
Abstract
Foamy macrophages and microglia containing lipid droplets (LDs) are a pathological hallmark of demyelinating disorders affecting the central nervous system (CNS). We and others showed that excessive accumulation of intracellular lipids drives these phagocytes towards a more inflammatory phenotype, thereby limiting CNS repair. To date, however, the mechanisms underlying LD biogenesis and breakdown in lipid-engorged phagocytes in the CNS, as well as their impact on foamy phagocyte biology and lesion progression, remain poorly understood. Here, we provide evidence that LD-associated protein perilipin-2 (PLIN2) controls LD metabolism in myelin-containing phagocytes. We show that PLIN2 protects LDs from lipolysis-mediated degradation, thereby impairing intracellular processing of myelin-derived lipids in phagocytes. Accordingly, loss of Plin2 stimulates LD turnover in foamy phagocytes, driving them towards a less inflammatory phenotype. Importantly, Plin2-deficiency markedly improves remyelination in the ex vivo brain slice model and in the in vivo cuprizone-induced demyelination model. In summary, we identify PLIN2 as a novel therapeutic target to prevent the pathogenic accumulation of LDs in foamy phagocytes and to stimulate remyelination.
Collapse
Affiliation(s)
- Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Elien Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI-Louvain Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - James L McManaman
- Department of Obstetrics and Gynaecology, School of Medicine, University of Colorado, Denver, USA
| | - Hannelore Kemps
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI-Louvain Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
- University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
11
|
Galoppin M, Kari S, Soldati S, Pal A, Rival M, Engelhardt B, Astier A, Thouvenot E. Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Commun 2022; 4:fcac171. [PMID: 35813882 PMCID: PMC9260308 DOI: 10.1093/braincomms/fcac171] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D deficiency has been associated with the risk of multiple sclerosis, disease activity and progression. Results from in vitro experiments, animal models and analysis of human samples from randomized controlled trials provide comprehensive data illustrating the pleiotropic actions of Vitamin D on the immune system. They globally result in immunomodulation by decreasing differentiation of effector T and B cells while promoting regulatory subsets. Vitamin D also modulates innate immune cells such as macrophages, monocytes and dendritic cells, and acts at the level of the blood–brain barrier reducing immune cell trafficking. Vitamin D exerts additional activity within the central nervous system reducing microglial and astrocytic activation. The immunomodulatory role of Vitamin D detected in animal models of multiple sclerosis has suggested its potential therapeutic use for treating multiple sclerosis. In this review, we focus on recent published data describing the biological effects of Vitamin D in animal models of multiple sclerosis on immune cells, blood–brain barrier function, activation of glial cells and its potential neuroprotective effects. Based on the current knowledge, we also discuss optimization of therapeutic interventions with Vitamin D in patients with multiple sclerosis, as well as new technologies allowing in-depth analysis of immune cell regulations by vitamin D.
Collapse
Affiliation(s)
- Manon Galoppin
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
| | - Saniya Kari
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Arindam Pal
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Manon Rival
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| | | | - Anne Astier
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Eric Thouvenot
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| |
Collapse
|
12
|
Domanska D, Majid U, Karlsen VT, Merok MA, Beitnes ACR, Yaqub S, Bækkevold ES, Jahnsen FL. Single-cell transcriptomic analysis of human colonic macrophages reveals niche-specific subsets. J Exp Med 2022; 219:212998. [PMID: 35139155 PMCID: PMC8932544 DOI: 10.1084/jem.20211846] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Macrophages are a heterogeneous population of cells involved in tissue homeostasis, inflammation, and cancer. Although macrophages are densely distributed throughout the human intestine, our understanding of how gut macrophages maintain tissue homeostasis is limited. Here we show that colonic lamina propria macrophages (LpMs) and muscularis macrophages (MMs) consist of monocyte-like cells that differentiate into multiple transcriptionally distinct subsets. LpMs comprise subsets with proinflammatory properties and subsets with high antigen-presenting and phagocytic capacity. The latter are strategically positioned close to the surface epithelium. Most MMs differentiate along two trajectories: one that upregulates genes associated with immune activation and angiogenesis, and one that upregulates genes associated with neuronal homeostasis. Importantly, MMs are located adjacent to neurons and vessels. Cell–cell interaction and gene network analysis indicated that survival, migration, transcriptional reprogramming, and niche-specific localization of LpMs and MMs are controlled by an extensive interaction with tissue-resident cells and a few key transcription factors.
Collapse
Affiliation(s)
- Diana Domanska
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Umair Majid
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Victoria T Karlsen
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marianne A Merok
- Department of Gastrointestinal Surgery, Akershus University Hospital, Lørenskog, Norway
| | | | - Sheraz Yaqub
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Hepatobiliary Surgery, Oslo University Hospital, Oslo, Norway
| | - Espen S Bækkevold
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Spaas J, Franssen WMA, Keytsman C, Blancquaert L, Vanmierlo T, Bogie J, Broux B, Hellings N, van Horssen J, Posa DK, Hoetker D, Baba SP, Derave W, Eijnde BO. Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation. J Neuroinflammation 2021; 18:255. [PMID: 34740381 PMCID: PMC8571880 DOI: 10.1186/s12974-021-02306-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. Methods The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). Results Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (β-alanyl-l-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. Conclusions Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02306-9.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium. .,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium. .,Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Wouter M A Franssen
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Charly Keytsman
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tim Vanmierlo
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Division of Translational Neuroscience, Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jeroen Bogie
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bieke Broux
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Niels Hellings
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jack van Horssen
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - David Hoetker
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
14
|
Comparative Transcriptome Analysis in Monocyte-Derived Macrophages of Asymptomatic GBA Mutation Carriers and Patients with GBA-Associated Parkinson's Disease. Genes (Basel) 2021; 12:genes12101545. [PMID: 34680941 PMCID: PMC8535749 DOI: 10.3390/genes12101545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
Mutations of the GBA gene, encoding for lysosomal enzyme glucocerebrosidase (GCase), are the greatest genetic risk factor for Parkinson’s disease (PD) with frequency between 5% and 20% across the world. N370S and L444P are the two most common mutations in the GBA gene. PD carriers of severe mutation L444P in the GBA gene is characterized by the earlier age at onset compared to N370S. Not every carrier of GBA mutations develop PD during one’s lifetime. In the current study we aimed to find common gene expression signatures in PD associated with mutation in the GBA gene (GBA-PD) using RNA-seq. We compared transcriptome of monocyte-derived macrophages of 5 patients with GBA-PD (4 L444P/N, 1 N370S/N) and 4 asymptomatic GBA mutation carriers (GBA-carriers) (3 L444P/N, 1 N370S/N) and 4 controls. We also conducted comparative transcriptome analysis for L444P/N only GBA-PD patients and GBA-carriers. Revealed deregulated genes in GBA-PD independently of GBA mutations (L444P or N370S) were involved in immune response, neuronal function. We found upregulated pathway associated with zinc metabolism in L444P/N GBA-PD patients. The potential important role of DUSP1 in the pathogenesis of GBA-PD was suggested.
Collapse
|
15
|
Phloretin suppresses neuroinflammation by autophagy-mediated Nrf2 activation in macrophages. J Neuroinflammation 2021; 18:148. [PMID: 34218792 PMCID: PMC8254976 DOI: 10.1186/s12974-021-02194-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background Macrophages play a dual role in neuroinflammatory disorders such as multiple sclerosis (MS). They are involved in lesion onset and progression but can also promote the resolution of inflammation and repair of damaged tissue. In this study, we investigate if and how phloretin, a flavonoid abundantly present in apples and strawberries, lowers the inflammatory phenotype of macrophages and suppresses neuroinflammation. Methods Transcriptional changes in mouse bone marrow-derived macrophages upon phloretin exposure were assessed by bulk RNA sequencing. Underlying pathways related to inflammation, oxidative stress response and autophagy were validated by quantitative PCR, fluorescent and absorbance assays, nuclear factor erythroid 2–related factor 2 (Nrf2) knockout mice, western blot, and immunofluorescence. The experimental autoimmune encephalomyelitis (EAE) model was used to study the impact of phloretin on neuroinflammation in vivo and confirm underlying mechanisms. Results We show that phloretin reduces the inflammatory phenotype of macrophages and markedly suppresses neuroinflammation in EAE. Phloretin mediates its effect by activating the Nrf2 signaling pathway. Nrf2 activation was attributed to 5′ AMP-activated protein kinase (AMPK)-dependent activation of autophagy and subsequent kelch-like ECH-associated protein 1 (Keap1) degradation. Conclusions This study opens future perspectives for phloretin as a therapeutic strategy for neuroinflammatory disorders such as MS. Trial registration Not applicable. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02194-z.
Collapse
|
16
|
Bogie JFJ, Grajchen E, Wouters E, Corrales AG, Dierckx T, Vanherle S, Mailleux J, Gervois P, Wolfs E, Dehairs J, Van Broeckhoven J, Bowman AP, Lambrichts I, Gustafsson JÅ, Remaley AT, Mulder M, Swinnen JV, Haidar M, Ellis SR, Ntambi JM, Zelcer N, Hendriks JJA. Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain. J Exp Med 2020; 217:133840. [PMID: 32097464 PMCID: PMC7201924 DOI: 10.1084/jem.20191660] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/12/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Failure of remyelination underlies the progressive nature of demyelinating diseases such as multiple sclerosis. Macrophages and microglia are crucially involved in the formation and repair of demyelinated lesions. Here we show that myelin uptake temporarily skewed these phagocytes toward a disease-resolving phenotype, while sustained intracellular accumulation of myelin induced a lesion-promoting phenotype. This phenotypic shift was controlled by stearoyl-CoA desaturase-1 (SCD1), an enzyme responsible for the desaturation of saturated fatty acids. Monounsaturated fatty acids generated by SCD1 reduced the surface abundance of the cholesterol efflux transporter ABCA1, which in turn promoted lipid accumulation and induced an inflammatory phagocyte phenotype. Pharmacological inhibition or phagocyte-specific deficiency of Scd1 accelerated remyelination ex vivo and in vivo. These findings identify SCD1 as a novel therapeutic target to promote remyelination.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Elien Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Aida Garcia Corrales
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tess Dierckx
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jo Mailleux
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, University of Leuven, Leuven, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Andrew P Bowman
- The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Ivo Lambrichts
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Monique Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, University of Leuven, Leuven, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Shane R Ellis
- The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - James M Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI.,Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Noam Zelcer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
17
|
Wouters E, Grajchen E, Jorissen W, Dierckx T, Wetzels S, Loix M, Tulleners MP, Staels B, Stinissen P, Haidar M, Bogie JF, Hendriks JJ. Altered PPARγ Expression Promotes Myelin-Induced Foam Cell Formation in Macrophages in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21239329. [PMID: 33297574 PMCID: PMC7731422 DOI: 10.3390/ijms21239329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 01/24/2023] Open
Abstract
Macrophages play a crucial role during the pathogenesis of multiple sclerosis (MS), a neuroinflammatory autoimmune disorder of the central nervous system. Important regulators of the metabolic and inflammatory phenotype of macrophages are liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs). Previously, it has been reported that PPARγ expression is decreased in peripheral blood mononuclear cells of MS patients. The goal of the present study was to determine to what extent PPARγ, as well as the closely related nuclear receptors PPARα and β and LXRα and β, are differentially expressed in monocytes from MS patients and how this change in expression affects the function of monocyte-derived macrophages. We demonstrate that monocytes of relapsing-remitting MS patients display a marked decrease in PPARγ expression, while the expression of PPARα and LXRα/β is not altered. Interestingly, exposure of monocyte-derived macrophages from healthy donors to MS-associated proinflammatory cytokines mimicked this reduction in PPARγ expression. While a reduced PPARγ expression did not affect the inflammatory and phagocytic properties of myelin-loaded macrophages, it did impact myelin processing by increasing the intracellular cholesterol load of myelin-phagocytosing macrophages. Collectively, our findings indicate that an inflammation-induced reduction in PPARγ expression promotes myelin-induced foam cell formation in macrophages in MS.
Collapse
Affiliation(s)
- Elien Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (E.G.); (W.J.); (T.D.); (M.L.); (M.P.T.); (P.S.); (M.H.); (J.F.J.B.)
| | - Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (E.G.); (W.J.); (T.D.); (M.L.); (M.P.T.); (P.S.); (M.H.); (J.F.J.B.)
| | - Winde Jorissen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (E.G.); (W.J.); (T.D.); (M.L.); (M.P.T.); (P.S.); (M.H.); (J.F.J.B.)
| | - Tess Dierckx
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (E.G.); (W.J.); (T.D.); (M.L.); (M.P.T.); (P.S.); (M.H.); (J.F.J.B.)
| | - Suzan Wetzels
- Department of Pathology, CARIM, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (E.G.); (W.J.); (T.D.); (M.L.); (M.P.T.); (P.S.); (M.H.); (J.F.J.B.)
| | - Marie Paule Tulleners
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (E.G.); (W.J.); (T.D.); (M.L.); (M.P.T.); (P.S.); (M.H.); (J.F.J.B.)
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France;
| | - Piet Stinissen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (E.G.); (W.J.); (T.D.); (M.L.); (M.P.T.); (P.S.); (M.H.); (J.F.J.B.)
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (E.G.); (W.J.); (T.D.); (M.L.); (M.P.T.); (P.S.); (M.H.); (J.F.J.B.)
| | - Jeroen F.J. Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (E.G.); (W.J.); (T.D.); (M.L.); (M.P.T.); (P.S.); (M.H.); (J.F.J.B.)
| | - Jerome J.A. Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (E.G.); (W.J.); (T.D.); (M.L.); (M.P.T.); (P.S.); (M.H.); (J.F.J.B.)
- Correspondence:
| |
Collapse
|
18
|
Zhang J, Song L, Pedersen DV, Li A, Lambris JD, Andersen GR, Mollnes TE, Ma YJ, Garred P. Soluble collectin-12 mediates C3-independent docking of properdin that activates the alternative pathway of complement. eLife 2020; 9:60908. [PMID: 32909942 PMCID: PMC7511233 DOI: 10.7554/elife.60908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 01/11/2023] Open
Abstract
Properdin stabilizes the alternative C3 convertase (C3bBb), whereas its role as pattern-recognition molecule mediating complement activation is disputed for decades. Previously, we have found that soluble collectin-12 (sCL-12) synergizes complement alternative pathway (AP) activation. However, whether this observation is C3 dependent is unknown. By application of the C3-inhibitor Cp40, we found that properdin in normal human serum bound to Aspergillus fumigatus solely in a C3b-dependent manner. Cp40 also prevented properdin binding when properdin-depleted serum reconstituted with purified properdin was applied, in analogy with the findings achieved by C3-depleted serum. However, when opsonized with sCL-12, properdin bound in a C3-independent manner exclusively via its tetrameric structure and directed in situ C3bBb assembly. In conclusion, a prerequisite for properdin binding and in situ C3bBb assembly was the initial docking of sCL-12. This implies a new important function of properdin in host defense bridging pattern recognition and specific AP activation.
Collapse
Affiliation(s)
- Jie Zhang
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lihong Song
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dennis V Pedersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Anna Li
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, and University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, K. G. Jebsen TREC, University of Tromsø, Bodø, Norway.,Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ying Jie Ma
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Grajchen E, Wouters E, van de Haterd B, Haidar M, Hardonnière K, Dierckx T, Van Broeckhoven J, Erens C, Hendrix S, Kerdine-Römer S, Hendriks JJA, Bogie JFJ. CD36-mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation. J Neuroinflammation 2020; 17:224. [PMID: 32718316 PMCID: PMC7384221 DOI: 10.1186/s12974-020-01899-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background The presence of foamy macrophages and microglia containing intracellular myelin remnants is a pathological hallmark of neurodegenerative disorders such as multiple sclerosis (MS). Despite the importance of myelin internalization in affecting both central nervous system repair and neuroinflammation, the receptors involved in myelin clearance and their impact on the phagocyte phenotype and lesion progression remain to be clarified. Methods Flow cytometry, quantitative PCR, and immunohistochemistry were used to define the mRNA and protein abundance of CD36 in myelin-containing phagocytes. The impact of CD36 and nuclear factor erythroid 2–related factor 2 (NRF2) on the phagocytic and inflammatory features of macrophages and microglia was assessed using a pharmacological CD36 inhibitor (sulfo-N-succinimidyl oleate) and Nrf2−/− bone marrow-derived macrophages. Finally, the experimental autoimmune encephalomyelitis (EAE) model was used to establish the impact of CD36 inhibition on neuroinflammation and myelin phagocytosis in vivo. Results Here, we show that the fatty acid translocase CD36 is required for the uptake of myelin debris by macrophages and microglia, and that myelin internalization increased CD36 expression through NRF2. Pharmacological inhibition of CD36 promoted the inflammatory properties of myelin-containing macrophages and microglia in vitro, which was paralleled by a reduced activity of the anti-inflammatory lipid-sensing liver X receptors and peroxisome proliferator-activated receptors. By using the EAE model, we provide evidence that CD36 is essential for myelin debris clearance in vivo. Importantly, CD36 inhibition markedly increased the neuroinflammatory burden and disease severity in the EAE model. Conclusion Altogether, we show for the first time that CD36 is crucial for clearing myelin debris and suppressing neuroinflammation in demyelinating disorders such as MS.
Collapse
Affiliation(s)
- Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Elien Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Britt van de Haterd
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Kévin Hardonnière
- Inflammation, Microbiome and Immunosurveillance, INSERM UMR99, Université Paris-Saclay, Châtenay-Malabry, France
| | - Tess Dierckx
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Celine Erens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Saadia Kerdine-Römer
- Inflammation, Microbiome and Immunosurveillance, INSERM UMR99, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
20
|
Bowman AP, Bogie JFJ, Hendriks JJA, Haidar M, Belov M, Heeren RMA, Ellis SR. Evaluation of lipid coverage and high spatial resolution MALDI-imaging capabilities of oversampling combined with laser post-ionisation. Anal Bioanal Chem 2019; 412:2277-2289. [PMID: 31879798 PMCID: PMC7118047 DOI: 10.1007/s00216-019-02290-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 01/28/2023]
Abstract
Matrix-assisted laser desorption/ionisation-mass spectrometry imaging (MALDI-MSI) is a powerful technique for visualising the spatial locations of lipids in biological tissues. However, a major challenge in interpreting the biological significance of local lipid compositions and distributions detected using MALDI-MSI is the difficulty in associating spectra with cellular lipid metabolism within the tissue. By-and-large this is due to the typically limited spatial resolution of MALDI-MSI (30–100 μm) meaning individual spectra represent the average spectrum acquired from multiple adjacent cells, each potentially possessing a unique lipid composition and biological function. The use of oversampling is one promising approach to decrease the sampling area and improve the spatial resolution in MALDI-MSI, but it can suffer from a dramatically decreased sensitivity. In this work we overcome these challenges through the coupling of oversampling MALDI-MSI with laser post-ionisation (MALDI-2). We demonstrate the ability to acquire rich lipid spectra from pixels as small as 6 μm, equivalent to or smaller than the size of typical mammalian cells. Coupled with an approach for automated lipid identification, it is shown that MALDI-2 combined with oversampling at 6 μm pixel size can detect up to three times more lipids and many more lipid classes than even conventional MALDI at 20 μm resolution in the positive-ion mode. Applying this to mouse kidney and human brain tissue containing active multiple sclerosis lesions, where 74 and 147 unique lipids are identified, respectively, the localisation of lipid signals to individual tubuli within the kidney and lipid droplets with lesion-specific macrophages is demonstrated. Graphical abstract ![]()
Collapse
Affiliation(s)
- Andrew P Bowman
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6629, ER, Maastricht, The Netherlands
| | - Jeroen F J Bogie
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Mansour Haidar
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | | | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6629, ER, Maastricht, The Netherlands
| | - Shane R Ellis
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6629, ER, Maastricht, The Netherlands.
| |
Collapse
|
21
|
Rapid and Efficient Purification of Functional Collectin-12 and Its Opsonic Activity against Fungal Pathogens. J Immunol Res 2019; 2019:9164202. [PMID: 31482100 PMCID: PMC6701420 DOI: 10.1155/2019/9164202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Collectin-12 (collectin placenta 1, CL-P1, or CL-12) is a newly identified pattern recognition molecule of the innate immune system. Recent evidences show that CL-12 plays important roles not only in innate immune protection against certain clinically important pathogens but also in scavenging of host molecules, leukocyte recruitment, and cancer metastasis. Furthermore, CL-12 has been shown to be associated with the pathogenesis of human diseases such as Alzheimer's disease and multiple sclerosis lesion development. Therefore, the functional consequence of CL-12 remains intriguing and awaits further elucidation. However, available protocols for the purification of recombinant CL-12 with high purity are laborious and inefficient and hamper further functional studies. Here, we report a simple, rapid, and efficient solution to obtain biologically active CL-12 with high purity. We established stable transfected Flp-In™-CHO cells expressing the recombinant CL-12 extracellular domain in high amounts. Recombinant CL-12 was purified from cell culture supernatants using a 3-step rapid purification procedure utilizing disposable affinity and ion exchange minicolumns. Purified recombinant CL-12 adopted an oligomeric structure with monomers, dimers, and trimers and retained its binding capacity towards the A. fumigatus strain that has been described before. Furthermore, we demonstrated the opsonic properties towards eight clinical isolates of A. fumigatus strains and diverse clinically important fungal pathogens. Purified recombinant CL-12 revealed a differential binding capacity towards selected fungal pathogens in vitro. In conclusion, we demonstrate a rapid and efficient purification solution for further biochemical and functional characterization of CL-12 and reveal opsonic properties of CL-12 towards diverse fungal pathogens.
Collapse
|
22
|
Foulquier S, Caolo V, Swennen G, Milanova I, Reinhold S, Recarti C, Alenina N, Bader M, Steckelings UM, Vanmierlo T, Post MJ, Jones EA, van Oostenbrugge RJ, Unger T. The role of receptor MAS in microglia-driven retinal vascular development. Angiogenesis 2019; 22:481-489. [PMID: 31240418 PMCID: PMC6863789 DOI: 10.1007/s10456-019-09671-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/14/2019] [Indexed: 01/24/2023]
Abstract
Objective The receptor MAS, encoded by Mas1, is expressed in microglia and its activation has been linked to anti-inflammatory actions. However, microglia are involved in several different processes in the central nervous system, including the promotion of angiogenesis. We therefore hypothesized that the receptor MAS also plays a role in angiogenesis via microglia. Approach and results To assess the role of MAS on vascular network development, flat-mounted retinas from 3-day-old wild-type (WT) and Mas1−/− mice were subjected to Isolectin B4 staining. The progression of the vascular front was reduced (− 24%, p < 0.0001) and vascular density decreased (− 38%, p < 0.001) in Mas1−/− compared to WT mice with no change in the junction density. The number of filopodia and filopodia bursts were decreased in Mas1−/− mice at the vascular front (− 21%, p < 0.05; − 29%, p < 0.0001, respectively). This was associated with a decreased number of vascular loops and decreased microglial density at the vascular front in Mas1−/− mice (-32%, p < 0.001; − 26%, p < 0.05, respectively). As the front of the developing vasculature is characterized by reduced oxygen levels, we determined the expression of Mas1 following hypoxia in primary microglia from 3-day-old WT mice. Hypoxia induced a 14-fold increase of Mas1 mRNA expression (p < 0.01). Moreover, stimulation of primary microglia with a MAS agonist induced expression of Notch1 (+ 57%, p < 0.05), Dll4 (+ 220%, p < 0.001) and Jag1 (+ 137%, p < 0.001), genes previously described to mediate microglia/endothelial cell interaction during angiogenesis. Conclusions Our study demonstrates that the activation of MAS is important for microglia recruitment and vascular growth in the developing retina. Electronic supplementary material The online version of this article (10.1007/s10456-019-09671-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Foulquier
- Department of Pharmacology-Toxicology, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands. .,Cardiovascular Research Institute Maastricht, CARIM, Maastricht, The Netherlands. .,MH&NS, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - V Caolo
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - G Swennen
- Department of Physiology, Maastricht University, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht, CARIM, Maastricht, The Netherlands
| | - I Milanova
- Department of Pharmacology-Toxicology, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht, CARIM, Maastricht, The Netherlands
| | - S Reinhold
- Department of Pharmacology-Toxicology, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht, CARIM, Maastricht, The Netherlands
| | - C Recarti
- Department of Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands
| | - N Alenina
- Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Partner Site Berlin, DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - M Bader
- Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Partner Site Berlin, DZHK (German Center for Cardiovascular Research), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Charité - University Medicine, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| | - U M Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular & Renal Research, University of Southern Denmark, Odense, Denmark
| | - T Vanmierlo
- Department of Immunology and Biochemistry, Biomed, Hasselt University, Diepenbeek, Belgium.,MH&NS, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - M J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht, CARIM, Maastricht, The Netherlands
| | - E A Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - R J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht, CARIM, Maastricht, The Netherlands.,MH&NS, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - T Unger
- Cardiovascular Research Institute Maastricht, CARIM, Maastricht, The Netherlands
| |
Collapse
|
23
|
Milich LM, Ryan CB, Lee JK. The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathol 2019; 137:785-797. [PMID: 30929040 PMCID: PMC6510275 DOI: 10.1007/s00401-019-01992-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
Virtually all phases of spinal cord injury pathogenesis, including inflammation, cell proliferation and differentiation, as well as tissue remodeling, are mediated in part by infiltrating monocyte-derived macrophages. It is now clear that these infiltrating macrophages have distinct functions from resident microglia and are capable of mediating both harmful and beneficial effects after injury. These divergent effects have been largely attributed to environmental cues, such as specific cytokines, that influence the macrophage polarization state. In this review, we also consider the possibility that different macrophage origins, including the spleen, bone marrow, and local self-renewal, may also affect macrophage fate, and ultimately their function that contribute to the complex pathobiology of spinal cord injury.
Collapse
Affiliation(s)
- Lindsay M Milich
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Christine B Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
24
|
Gabandé‐Rodríguez E, Keane L, Capasso M. Microglial phagocytosis in aging and Alzheimer's disease. J Neurosci Res 2019; 98:284-298. [DOI: 10.1002/jnr.24419] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Enrique Gabandé‐Rodríguez
- Department of Molecular Neuropathology Centro de Biología Molecular “Severo Ochoa” (CSIC‐UAM) Madrid Spain
| | - Lily Keane
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| | - Melania Capasso
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| |
Collapse
|
25
|
Wang J, Wang J, Wang J, Yang B, Weng Q, He Q. Targeting Microglia and Macrophages: A Potential Treatment Strategy for Multiple Sclerosis. Front Pharmacol 2019; 10:286. [PMID: 30967783 PMCID: PMC6438858 DOI: 10.3389/fphar.2019.00286] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system (CNS). The early stage is characterized by relapses and the later stage, by progressive disability. Results from experimental and clinical investigations have demonstrated that microglia and macrophages play a key part in the disease course. These cells actively initiate immune infiltration and the demyelination cascade during the early phase of the disease; however, they promote remyelination and alleviate disease in later stages. This review aims to provide a comprehensive overview of the existing knowledge regarding the neuromodulatory function of macrophages and microglia in the healthy and injured CNS, and it discusses the feasibility of harnessing microglia and macrophage physiology to treat MS. The review encourages further investigations into macrophage-targeted therapy, as well as macrophage-based drug delivery, for realizing efficient treatment strategies for MS.
Collapse
Affiliation(s)
- Jiaying Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Grajchen E, Hendriks JJA, Bogie JFJ. The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol Commun 2018; 6:124. [PMID: 30454040 PMCID: PMC6240956 DOI: 10.1186/s40478-018-0628-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system characterized by massive infiltration of immune cells, demyelination, and axonal loss. Active MS lesions mainly consist of macrophages and microglia containing abundant intracellular myelin remnants. Initial studies showed that these foamy phagocytes primarily promote MS disease progression by internalizing myelin debris, presenting brain-derived autoantigens, and adopting an inflammatory phenotype. However, more recent studies indicate that phagocytes can also adopt a beneficial phenotype upon myelin internalization. In this review, we summarize and discuss the current knowledge on the spatiotemporal physiology of foamy phagocytes in MS lesions, and elaborate on extrinsic and intrinsic factors regulating their behavior. In addition, we discuss and link the physiology of myelin-containing phagocytes to that of foamy macrophages in other disorders such atherosclerosis.
Collapse
Affiliation(s)
- Elien Grajchen
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium.
| |
Collapse
|
27
|
O'Loughlin E, Madore C, Lassmann H, Butovsky O. Microglial Phenotypes and Functions in Multiple Sclerosis. Cold Spring Harb Perspect Med 2018; 8:8/2/a028993. [PMID: 29419406 DOI: 10.1101/cshperspect.a028993] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microglia are the resident immune cells that constantly survey the central nervous system. They can adapt to their environment and respond to injury or insult by altering their morphology, phenotype, and functions. It has long been debated whether microglial activation is detrimental or beneficial in multiple sclerosis (MS). Recently, the two opposing yet connected roles of microglial activation have been described with the aid of novel microglial markers, RNA profiling, and in vivo models. In this review, microglial phenotypes and functions in the context of MS will be discussed with evidence from both human pathological studies, in vitro and in vivo models. Microglial functional diversity-phagocytosis, antigen presentation, immunomodulation, support, and repair-will also be examined in detail. In addition, this review discusses the emerging evidence for microglia-related targets as biomarkers and therapeutic targets for MS.
Collapse
Affiliation(s)
- Elaine O'Loughlin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Charlotte Madore
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
28
|
Mailleux J, Timmermans S, Nelissen K, Vanmol J, Vanmierlo T, van Horssen J, Bogie JFJ, Hendriks JJA. Low-Density Lipoprotein Receptor Deficiency Attenuates Neuroinflammation through the Induction of Apolipoprotein E. Front Immunol 2017; 8:1701. [PMID: 29276512 PMCID: PMC5727422 DOI: 10.3389/fimmu.2017.01701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Objective We aimed to determine the role of the low-density lipoprotein receptor (LDLr) in neuroinflammation by inducing experimental autoimmune encephalomyelitis (EAE) in ldlr knock out mice. Methods MOG35-55 induced EAE in male and female ldlr-/- mice was assessed clinically and histopathologically. Expression of inflammatory mediators and apolipoprotein E (apoE) was investigated by qPCR. Changes in protein levels of apoE and tumor necrosis factor alpha (TNFα) were validated by western blot and ELISA, respectively. Results Ldlr-/--attenuated EAE disease severity in female, but not in male, EAE mice marked by a reduced proinflammatory cytokine production in the central nervous system of female ldlr-/- mice. Macrophages from female ldlr-/- mice showed a similar decrease in proinflammatory mediators, an impaired capacity to phagocytose myelin and enhanced secretion of the anti-inflammatory apoE. Interestingly, apoE/ldlr double knock out abrogated the beneficial effect of ldlr depletion in EAE. Conclusion Collectively, we show that ldlr-/- reduces EAE disease severity in female but not in male EAE mice, and that this can be explained by increased levels of apoE in female ldlr-/- mice. Although the reason for the observed sexual dimorphism remains unclear, our findings show that LDLr and associated apoE levels are involved in neuroinflammatory processes.
Collapse
Affiliation(s)
- Jo Mailleux
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Silke Timmermans
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Jasmine Vanmol
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jack van Horssen
- Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | |
Collapse
|