1
|
Halliday AR, Vucic SN, Georges B, LaRoche M, Mendoza Pardo MA, Swiggard LO, McDonald K, Olofsson M, Menon SN, Francis SM, Oberman LM, White T, van der Velpen IF. Heterogeneity and convergence across seven neuroimaging modalities: a review of the autism spectrum disorder literature. Front Psychiatry 2024; 15:1474003. [PMID: 39479591 PMCID: PMC11521827 DOI: 10.3389/fpsyt.2024.1474003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Background A growing body of literature classifies autism spectrum disorder (ASD) as a heterogeneous, complex neurodevelopmental disorder that often is identified prior to three years of age. We aim to provide a narrative review of key structural and functional properties that differentiate the neuroimaging profile of autistic youth from their typically developing (TD) peers across different neuroimaging modalities. Methods Relevant studies were identified by searching for key terms in PubMed, with the most recent search conducted on September 1, 2023. Original research papers were included if they applied at least one of seven neuroimaging modalities (structural MRI, functional MRI, DTI, MRS, fNIRS, MEG, EEG) to compare autistic children or those with a family history of ASD to TD youth or those without ASD family history; included only participants <18 years; and were published from 2013 to 2023. Results In total, 172 papers were considered for qualitative synthesis. When comparing ASD to TD groups, structural MRI-based papers (n = 26) indicated larger subcortical gray matter volume in ASD groups. DTI-based papers (n = 14) reported higher mean and radial diffusivity in ASD participants. Functional MRI-based papers (n = 41) reported a substantial number of between-network functional connectivity findings in both directions. MRS-based papers (n = 19) demonstrated higher metabolite markers of excitatory neurotransmission and lower inhibitory markers in ASD groups. fNIRS-based papers (n = 20) reported lower oxygenated hemoglobin signals in ASD. Converging findings in MEG- (n = 20) and EEG-based (n = 32) papers indicated lower event-related potential and field amplitudes in ASD groups. Findings in the anterior cingulate cortex, insula, prefrontal cortex, amygdala, thalamus, cerebellum, corpus callosum, and default mode network appeared numerous times across modalities and provided opportunities for multimodal qualitative analysis. Conclusions Comparing across neuroimaging modalities, we found significant differences between the ASD and TD neuroimaging profile in addition to substantial heterogeneity. Inconsistent results are frequently seen within imaging modalities, comparable study populations and research designs. Still, converging patterns across imaging modalities support various existing theories on ASD.
Collapse
Affiliation(s)
- Amanda R. Halliday
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Samuel N. Vucic
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Brianna Georges
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Madison LaRoche
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - María Alejandra Mendoza Pardo
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Liam O. Swiggard
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Kaylee McDonald
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Michelle Olofsson
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sahit N. Menon
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Sunday M. Francis
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lindsay M. Oberman
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Isabelle F. van der Velpen
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Wilkes BJ, Archer DB, Farmer AL, Bass C, Korah H, Vaillancourt DE, Lewis MH. Cortico-basal ganglia white matter microstructure is linked to restricted repetitive behavior in autism spectrum disorder. Mol Autism 2024; 15:6. [PMID: 38254158 PMCID: PMC10804694 DOI: 10.1186/s13229-023-00581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Restricted repetitive behavior (RRB) is one of two behavioral domains required for the diagnosis of autism spectrum disorder (ASD). Neuroimaging is widely used to study brain alterations associated with ASD and the domain of social and communication deficits, but there has been less work regarding brain alterations linked to RRB. METHODS We utilized neuroimaging data from the National Institute of Mental Health Data Archive to assess basal ganglia and cerebellum structure in a cohort of children and adolescents with ASD compared to typically developing (TD) controls. We evaluated regional gray matter volumes from T1-weighted anatomical scans and assessed diffusion-weighted scans to quantify white matter microstructure with free-water imaging. We also investigated the interaction of biological sex and ASD diagnosis on these measures, and their correlation with clinical scales of RRB. RESULTS Individuals with ASD had significantly lower free-water corrected fractional anisotropy (FAT) and higher free-water (FW) in cortico-basal ganglia white matter tracts. These microstructural differences did not interact with biological sex. Moreover, both FAT and FW in basal ganglia white matter tracts significantly correlated with measures of RRB. In contrast, we found no significant difference in basal ganglia or cerebellar gray matter volumes. LIMITATIONS The basal ganglia and cerebellar regions in this study were selected due to their hypothesized relevance to RRB. Differences between ASD and TD individuals that may occur outside the basal ganglia and cerebellum, and their potential relationship to RRB, were not evaluated. CONCLUSIONS These new findings demonstrate that cortico-basal ganglia white matter microstructure is altered in ASD and linked to RRB. FW in cortico-basal ganglia and intra-basal ganglia white matter was more sensitive to group differences in ASD, whereas cortico-basal ganglia FAT was more closely linked to RRB. In contrast, basal ganglia and cerebellar volumes did not differ in ASD. There was no interaction between ASD diagnosis and sex-related differences in brain structure. Future diffusion imaging investigations in ASD may benefit from free-water estimation and correction in order to better understand how white matter is affected in ASD, and how such measures are linked to RRB.
Collapse
Affiliation(s)
- Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, P.O. Box 118205, Gainesville, FL, 32611, USA.
| | - Derek B Archer
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt School of Medicine, Nashville, TN, USA
- Department of Neurology, Vanderbilt Genetics Institute, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Anna L Farmer
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Carly Bass
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Hannah Korah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, P.O. Box 118205, Gainesville, FL, 32611, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Neurology, Fixel Center for Neurological Diseases, Program in Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Shen L, Zhang J, Fan S, Ping L, Yu H, Xu F, Cheng Y, Xu X, Yang C, Zhou C. Cortical thickness abnormalities in autism spectrum disorder. Eur Child Adolesc Psychiatry 2024; 33:65-77. [PMID: 36542200 DOI: 10.1007/s00787-022-02133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The pathological mechanism of autism spectrum disorder (ASD) remains unclear. Nowadays, surface-based morphometry (SBM) based on structural magnetic resonance imaging (sMRI) techniques have reported cortical thickness (CT) variations in ASD. However, the findings were inconsistent and heterogeneous. This current meta-analysis conducted a whole-brain vertex-wise coordinate-based meta-analysis (CBMA) on CT studies to explore the most noticeable and robust CT changes in ASD individuals by applying the seed-based d mapping (SDM) program. A total of 26 investigations comprised 27 datasets were included, containing 1,635 subjects with ASD and 1470 HC, along with 94 coordinates. Individuals with ASD exhibited significantly altered CT in several regions compared to HC, including four clusters with thicker CT in the right superior temporal gyrus (STG.R), the left middle temporal gyrus (MTG.L), the left anterior cingulate/paracingulate gyri, the right superior frontal gyrus (SFG.R, medial orbital parts), as well as three clusters with cortical thinning including the left parahippocampal gyrus (PHG.L), the right precentral gyrus (PCG.R) and the left middle frontal gyrus (MFG.L). Adults with ASD only demonstrated CT thinning in the right parahippocampal gyrus (PHG.R), revealed by subgroup meta-analyses. Meta-regression analyses found that CT in STG.R was positively correlated with age. Meanwhile, CT in MFG.L and PHG.L had negative correlations with the age of ASD individuals. These results suggested a complicated and atypical cortical development trajectory in ASD, and would provide a deeper understanding of the neural mechanism underlying the cortical morphology in ASD.
Collapse
Affiliation(s)
- Liancheng Shen
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Junqing Zhang
- Department of Pharmacy, Shandong Daizhuang Hospital, Jining, China
| | - Shiran Fan
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Fangfang Xu
- School of Mental Health, Jining Medical University, Jining, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunyan Yang
- School of Rehabilitation Medicine, Jining Medical University, Jining, China.
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China.
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
4
|
Jacokes Z, Jack A, Sullivan CAW, Aylward E, Bookheimer SY, Dapretto M, Bernier RA, Geschwind DH, Sukhodolsky DG, McPartland JC, Webb SJ, Torgerson CM, Eilbott J, Kenworthy L, Pelphrey KA, Van Horn JD. Linear discriminant analysis of phenotypic data for classifying autism spectrum disorder by diagnosis and sex. Front Neurosci 2022; 16:1040085. [DOI: 10.3389/fnins.2022.1040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental condition characterized by social and communication differences. Recent research suggests ASD affects 1-in-44 children in the United States. ASD is diagnosed more commonly in males, though it is unclear whether this diagnostic disparity is a result of a biological predisposition or limitations in diagnostic tools, or both. One hypothesis centers on the ‘female protective effect,’ which is the theory that females are biologically more resistant to the autism phenotype than males. In this examination, phenotypic data were acquired and combined from four leading research institutions and subjected to multivariate linear discriminant analysis. A linear discriminant model was trained on the training set and then deployed on the test set to predict group membership. Multivariate analyses of variance were performed to confirm the significance of the overall analysis, and individual analyses of variance were performed to confirm the significance of each of the resulting linear discriminant axes. Two discriminant dimensions were identified between the groups: a dimension separating groups by the diagnosis of ASD (LD1: 87% of variance explained); and a dimension reflective of a diagnosis-by-sex interaction (LD2: 11% of variance explained). The strongest discriminant coefficients for the first discriminant axis divided the sample in domains with known differences between ASD and comparison groups, such as social difficulties and restricted repetitive behavior. The discriminant coefficients for the second discriminant axis reveal a more nuanced disparity between boys with ASD and girls with ASD, including executive functioning and high-order behavioral domains as the dominant discriminators. These results indicate that phenotypic differences between males and females with and without ASD are identifiable using parent report measures, which could be utilized to provide additional specificity to the diagnosis of ASD in female patients, potentially leading to more targeted clinical strategies and therapeutic interventions. The study helps to isolate a phenotypic basis for future empirical work on the female protective effect using neuroimaging, EEG, and genomic methodologies.
Collapse
|
5
|
Ribeiro AH, Vidal MC, Sato JR, Fujita A. Granger Causality among Graphs and Application to Functional Brain Connectivity in Autism Spectrum Disorder. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1204. [PMID: 34573829 PMCID: PMC8465687 DOI: 10.3390/e23091204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
Graphs/networks have become a powerful analytical approach for data modeling. Besides, with the advances in sensor technology, dynamic time-evolving data have become more common. In this context, one point of interest is a better understanding of the information flow within and between networks. Thus, we aim to infer Granger causality (G-causality) between networks' time series. In this case, the straightforward application of the well-established vector autoregressive model is not feasible. Consequently, we require a theoretical framework for modeling time-varying graphs. One possibility would be to consider a mathematical graph model with time-varying parameters (assumed to be random variables) that generates the network. Suppose we identify G-causality between the graph models' parameters. In that case, we could use it to define a G-causality between graphs. Here, we show that even if the model is unknown, the spectral radius is a reasonable estimate of some random graph model parameters. We illustrate our proposal's application to study the relationship between brain hemispheres of controls and children diagnosed with Autism Spectrum Disorder (ASD). We show that the G-causality intensity from the brain's right to the left hemisphere is different between ASD and controls.
Collapse
Affiliation(s)
| | - Maciel Calebe Vidal
- Insper Institute of Education and Research, São Paulo 04546-042, SP, Brazil;
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil;
| | - André Fujita
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
6
|
Mo K, Sadoway T, Bonato S, Ameis SH, Anagnostou E, Lerch JP, Taylor MJ, Lai MC. Sex/gender differences in the human autistic brains: A systematic review of 20 years of neuroimaging research. Neuroimage Clin 2021; 32:102811. [PMID: 34509922 PMCID: PMC8436080 DOI: 10.1016/j.nicl.2021.102811] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 06/25/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
Our current understanding of autism is largely based on clinical experiences and research involving male individuals given the male-predominance in prevalence and the under-inclusion of female individuals due to small samples, co-occurring conditions, or simply being missed for diagnosis. There is a significantly biased 'male lens' in this field with autistic females insufficiently understood. We therefore conducted a systematic review to examine how sex and gender modulate brain structure and function in autistic individuals. Findings from the past 20 years are yet to converge on specific brain regions/networks with consistent sex/gender-modulating effects. Despite at least three well-powered studies identifying specific patterns of significant sex/gender-modulation of autism-control differences, many other studies are likely underpowered, suggesting a critical need for future investigation into sex/gender-based heterogeneity with better-powered designs. Future research should also formally investigate the effects of gender, beyond biological sex, which is mostly absent in the current literature. Understanding the roles of sex and gender in the development of autism is an imperative step to extend beyond the 'male lens' in this field.
Collapse
Affiliation(s)
- Kelly Mo
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Tara Sadoway
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| | - Sarah Bonato
- Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Stephanie H Ameis
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada
| | - Margot J Taylor
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada; Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Meng-Chuan Lai
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Canada; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
7
|
de Giambattista C, Ventura P, Trerotoli P, Margari F, Margari L. Sex Differences in Autism Spectrum Disorder: Focus on High Functioning Children and Adolescents. Front Psychiatry 2021; 12:539835. [PMID: 34305658 PMCID: PMC8298903 DOI: 10.3389/fpsyt.2021.539835] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/03/2021] [Indexed: 12/27/2022] Open
Abstract
Autism Spectrum Disorder (ASD) has historically been studied, known, and diagnosed in males. Females tend to remain unidentified, especially those with average intelligence abilities. This sex/gender difference might be partially explained by biological risk factors, but it is probably also bound to methodological issues. The present study aims to examine phenotypic characteristics (cognitive, emotive, socio-communicative, and academic) of a group of 54 females with ASD matched to a group of 55 males with ASD (3-18 years), all without cognitive impairment. Results suggest that there are subtle, yet potentially meaningful, quantitative, and qualitative phenotypic differences between females and males that common screening tests are not always sensitive enough to recognize. Further studies to improve practice and course for the assessment of females, reducing sex/gender-based inequities in ASD care, are required.
Collapse
Affiliation(s)
| | - Patrizia Ventura
- Child Neuropsychiatric Unit, University of Bari Aldo Moro, Bari, Italy
| | - Paolo Trerotoli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Margari
- Psychiatric Emergencies in Adolescence Unit, University of Bari Aldo Moro, Bari, Italy
| | - Lucia Margari
- Child Neuropsychiatric Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Guttentag S, Bishop S, Doggett R, Shalev R, Kaplan M, Dyson M, Cohen M, Lord C, Di Martino A. The utility of parent-report screening tools in differentiating autism versus attention-deficit/hyperactivity disorder in school-age children. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 26:473-487. [PMID: 34219504 DOI: 10.1177/13623613211030071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LAY ABSTRACT We tested the ability of a short, recently developed parent interview and two widely used parent-report questionnaires to discriminate school-age verbal children with autism spectrum disorder from those with attention-deficit/hyperactivity disorder without autism spectrum disorder (ADHDw/oASD). These measures included the Autism Symptom Interview - School-Age, the Social Responsiveness Scale - 2nd Edition, and the Social Communication Questionnaire - Lifetime. The classification accuracy of all three parent screeners fell in the moderate range. Accuracy varied by instrument, and the Social Communication Questionnaire - Lifetime questionniare showed the highest accuracy. Children with autism spectrum disorder who were incorrectly classified by all parent screeners did not differ from those correctly classified in regard to demographics, intellectual abilities, nor in any specific clinical area beyond general parent concerns. These findings showed that there are valid screening options for assessing school-age verbal children with autism spectrum disorder versus ADHDw/oASD. They also underscore the need to assess multiple sources of information for increased accuracy.
Collapse
Affiliation(s)
- Sara Guttentag
- Child Mind Institute, USA.,Ferkauf Graduate School of Psychology, Yeshiva University, USA.,Hassenfeld Children's Hospital at NYU Langone, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Olafson E, Bedford SA, Devenyi GA, Patel R, Tullo S, Park MTM, Parent O, Anagnostou E, Baron-Cohen S, Bullmore ET, Chura LR, Craig MC, Ecker C, Floris DL, Holt RJ, Lenroot R, Lerch JP, Lombardo MV, Murphy DGM, Raznahan A, Ruigrok ANV, Spencer MD, Suckling J, Taylor MJ, Lai MC, Chakravarty MM. Examining the Boundary Sharpness Coefficient as an Index of Cortical Microstructure in Autism Spectrum Disorder. Cereb Cortex 2021; 31:3338-3352. [PMID: 33693614 PMCID: PMC8196259 DOI: 10.1093/cercor/bhab015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/06/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is associated with atypical brain development. However, the phenotype of regionally specific increased cortical thickness observed in ASD may be driven by several independent biological processes that influence the gray/white matter boundary, such as synaptic pruning, myelination, or atypical migration. Here, we propose to use the boundary sharpness coefficient (BSC), a proxy for alterations in microstructure at the cortical gray/white matter boundary, to investigate brain differences in individuals with ASD, including factors that may influence ASD-related heterogeneity (age, sex, and intelligence quotient). Using a vertex-based meta-analysis and a large multicenter structural magnetic resonance imaging (MRI) dataset, with a total of 1136 individuals, 415 with ASD (112 female; 303 male), and 721 controls (283 female; 438 male), we observed that individuals with ASD had significantly greater BSC in the bilateral superior temporal gyrus and left inferior frontal gyrus indicating an abrupt transition (high contrast) between white matter and cortical intensities. Individuals with ASD under 18 had significantly greater BSC in the bilateral superior temporal gyrus and right postcentral gyrus; individuals with ASD over 18 had significantly increased BSC in the bilateral precuneus and superior temporal gyrus. Increases were observed in different brain regions in males and females, with larger effect sizes in females. BSC correlated with ADOS-2 Calibrated Severity Score in individuals with ASD in the right medial temporal pole. Importantly, there was a significant spatial overlap between maps of the effect of diagnosis on BSC when compared with cortical thickness. These results invite studies to use BSC as a possible new measure of cortical development in ASD and to further examine the microstructural underpinnings of BSC-related differences and their impact on measures of cortical morphology.
Collapse
Affiliation(s)
- Emily Olafson
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Department of Neuroscience, Weill Cornell Graduate School of Medical Sciences, New York City, NY 10021, USA
| | - Saashi A Bedford
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 2B4, Canada
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal H3A 2B4, Canada
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal H3A 2B4, Canada
| | - Stephanie Tullo
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 2B4, Canada
| | - Min Tae M Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, ON, Canada
| | - Olivier Parent
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Departement de Psychologie, Universite de Montreal, Montreal, QC, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto M4G 1R8, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Simon Baron-Cohen
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Lindsay R Chura
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - Michael C Craig
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- National Autism Unit, Bethlem Royal Hospital, London BR3 3BX, UK
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of the Goethe University, Frankfurt am Main 60528, Germany
| | - Dorothea L Floris
- Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen 6525 HR, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen 02.275, The Netherlands
| | - Rosemary J Holt
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - Rhoshel Lenroot
- Department of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jason P Lerch
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Michael V Lombardo
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Declan G M Murphy
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892-9663, USA
| | - Amber N V Ruigrok
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - Michael D Spencer
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - John Suckling
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Margot J Taylor
- Diagnostic Imaging, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Medical Imaging, University of Toronto, Toronto M5G 1X8, Canada
| | | | - Meng-Chuan Lai
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei 100229, Taiwan
- Department of Psychiatry, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 2B4, Canada
- Department of Psychiatry, McGill University, Montreal H3A 2B4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal H3A 2B4, Canada
| |
Collapse
|
10
|
Walsh MJM, Wallace GL, Gallegos SM, Braden BB. Brain-based sex differences in autism spectrum disorder across the lifespan: A systematic review of structural MRI, fMRI, and DTI findings. Neuroimage Clin 2021; 31:102719. [PMID: 34153690 PMCID: PMC8233229 DOI: 10.1016/j.nicl.2021.102719] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
Females with autism spectrum disorder (ASD) have been long overlooked in neuroscience research, but emerging evidence suggests they show distinct phenotypic trajectories and age-related brain differences. Sex-related biological factors (e.g., hormones, genes) may play a role in ASD etiology and have been shown to influence neurodevelopmental trajectories. Thus, a lifespan approach is warranted to understand brain-based sex differences in ASD. This systematic review on MRI-based sex differences in ASD was conducted to elucidate variations across the lifespan and inform biomarker discovery of ASD in females We identified articles through two database searches. Fifty studies met criteria and underwent integrative review. We found that regions expressing replicable sex-by-diagnosis differences across studies overlapped with regions showing sex differences in neurotypical cohorts. Furthermore, studies investigating age-related brain differences across a broad age-span suggest distinct neurodevelopmental patterns in females with ASD. Qualitative comparison across youth and adult studies also supported this hypothesis. However, many studies collapsed across age, which may mask differences. Furthermore, accumulating evidence supports the female protective effect in ASD, although only one study examined brain circuits implicated in "protection." When synthesized with the broader literature, brain-based sex differences in ASD may come from various sources, including genetic and endocrine processes involved in brain "masculinization" and "feminization" across early development, puberty, and other lifespan windows of hormonal transition. Furthermore, sex-related biology may interact with peripheral processes, in particular the stress axis and brain arousal system, to produce distinct neurodevelopmental patterns in males and females with ASD. Future research on neuroimaging-based sex differences in ASD would benefit from a lifespan approach in well-controlled and multivariate studies. Possible relationships between behavior, sex hormones, and brain development in ASD remain largely unexamined.
Collapse
Affiliation(s)
- Melissa J M Walsh
- College of Health Solutions, Arizona State University, 975 S. Myrtle Ave, Tempe, AZ 85281, USA
| | - Gregory L Wallace
- Department of Speech, Language, and Hearing Sciences, The George Washington University, 2115 G St. NW, Washington, DC 20052, USA.
| | - Stephen M Gallegos
- College of Health Solutions, Arizona State University, 975 S. Myrtle Ave, Tempe, AZ 85281, USA
| | - B Blair Braden
- College of Health Solutions, Arizona State University, 975 S. Myrtle Ave, Tempe, AZ 85281, USA.
| |
Collapse
|
11
|
Cauvet É, Van't Westeinde A, Toro R, Kuja-Halkola R, Neufeld J, Mevel K, Bölte S. The social brain in female autism: a structural imaging study of twins. Soc Cogn Affect Neurosci 2021; 15:423-436. [PMID: 32363404 PMCID: PMC7308659 DOI: 10.1093/scan/nsaa064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
A female advantage in social cognition (SoC) might contribute to women's underrepresentation in autism spectrum disorder (ASD). The latter could be underpinned by sex differences in social brain structure. This study investigated the relationship between structural social brain networks and SoC in females and males in relation to ASD and autistic traits in twins. We used a co-twin design in 77 twin pairs (39 female) aged 12.5 to 31.0 years. Twin pairs were discordant or concordant for ASD or autistic traits, discordant or concordant for other neurodevelopmental disorders or concordant for neurotypical development. They underwent structural magnetic resonance imaging and were assessed for SoC using the naturalistic Movie for the Assessment of Social Cognition. Autistic traits predicted reduced SoC capacities predominantly in male twins, despite a comparable extent of autistic traits in each sex, although the association between SoC and autistic traits did not differ significantly between the sexes. Consistently, within-pair associations between SoC and social brain structure revealed that lower SoC ability was associated with increased cortical thickness of several brain regions, particularly in males. Our findings confirm the notion that sex differences in SoC in association with ASD are underpinned by sex differences in brain structure.
Collapse
Affiliation(s)
- Élodie Cauvet
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm 11330, Sweden
| | - Annelies Van't Westeinde
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm 11330, Sweden
| | - Roberto Toro
- Department of Neuroscience, Human Genetics and Cognitive Functions, Institut Pasteur, Paris 75015, France.,CNRS URA 2182 "Genes, synapses and cognition", Pasteur Institute, Paris 75015, France.,Human Genetics and Cognitive Functions, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Janina Neufeld
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm 11330, Sweden
| | - Katell Mevel
- GIP Cyceron, Normandy University, Caen 14074, France
| | - Sven Bölte
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm 11330, Sweden.,Child and Adolescent Psychiatry, Stockholm County Council, Stockholm 11330, Sweden.,School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Western Australia 6102, Australia
| |
Collapse
|
12
|
Carson TB, Valente MJ, Wilkes BJ, Richard L. Brief Report: Prevalence and Severity of Auditory Sensory Over-Responsivity in Autism as Reported by Parents and Caregivers. J Autism Dev Disord 2021; 52:1395-1402. [PMID: 33837888 DOI: 10.1007/s10803-021-04991-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Auditory sensory over-responsivity (aSOR) is a frequently reported sensory feature of autism spectrum disorders (ASD); however, there is little consensus regarding its prevalence and severity. This cross-sectional study uses secondary data from the Autism Diagnostic Interview-Revised (ADI-R; Item 72: undue sensitivity to noise) housed in the US National Institute of Mental Health Data Archives to identify prevalence and severity of aSOR. Of the 4104 subjects with ASD ages 2-54 (M = 9, SD = 5.8) who responded to item 72, 60.1% (n = 1876) had aSOR currently (i.e., point prevalence) and 71.1% (n = 2221) reported having aSOR ever (i.e., lifetime prevalence). aSOR prevalence and severity were affected by age, but there were no associations with sex.
Collapse
Affiliation(s)
- Tana B Carson
- Department of Occupational Therapy, Florida International University, 11200 SW 8th St., AHC3, Miami, FL, 33199, USA.
| | - Matthew J Valente
- Department of Psychology, Center for Children and Families, Florida International University, Miami, FL, USA
| | - Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Lynne Richard
- Department of Occupational Therapy, Florida International University, 11200 SW 8th St., AHC3, Miami, FL, 33199, USA
| |
Collapse
|
13
|
Darki F, Nyström P, McAlonan G, Bölte S, Falck-Ytter T. T1-Weighted/T2-Weighted Ratio Mapping at 5 Months Captures Individual Differences in Behavioral Development and Differentiates Infants at Familial Risk for Autism from Controls. Cereb Cortex 2021; 31:4068-4077. [PMID: 33825851 PMCID: PMC8328213 DOI: 10.1093/cercor/bhab069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Identifying structural measures that capture early brain development and are sensitive to individual differences in behavior is a priority in developmental neuroscience, with potential implications for our understanding of both typical and atypical populations. T1-weighted/T2-weighted (T1w/T2w) ratio mapping, which previously has been linked to myelination, represents an interesting candidate measure in this respect, as an accessible measure from standard magnetic resonance imaging (MRI) sequences. Yet, its value as an early infancy measure remains largely unexplored. Here, we compared T1w/T2w ratio in 5-month-old infants at familial risk (n = 27) for autism spectrum disorder (ASD) to those without elevated autism risk (n = 16). We found lower T1w/T2w ratio in infants at high risk for ASD within widely distributed regions, spanning both white and gray matter. In regions differing between groups, higher T1w/T2w ratio was robustly associated with higher age at scan (range: ~ 4–6.5 months), implying sensitivity to maturation at short developmental timescales. Further, higher T1w/T2w ratio within these regions was associated with higher scores on measures of concurrent developmental level. These findings suggest that T1w/T2w ratio is a developmentally sensitive measure that should be explored further in future studies of both typical and atypical infant populations.
Collapse
Affiliation(s)
- Fahimeh Darki
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, SE-11330 Stockholm, Sweden.,Department of Psychology, Uppsala University, SE 75142 Uppsala, Sweden
| | - Pär Nyström
- Department of Psychology, Uppsala University, SE 75142 Uppsala, Sweden
| | - Grainne McAlonan
- The Sackler Institute and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, South London and Maudsley NHS Foundation Trust, WC2R 2LS UK
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, SE-11330 Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, WA 6102 Perth, Western Australia
| | - Terje Falck-Ytter
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, SE-11330 Stockholm, Sweden.,Department of Psychology, Uppsala University, SE 75142 Uppsala, Sweden.,The Swedish Collegium for Advanced Study (SCAS), SE-752 38 Uppsala, Sweden
| |
Collapse
|
14
|
Hammill C, Lerch JP, Taylor MJ, Ameis SH, Chakravarty MM, Szatmari P, Anagnostou E, Lai MC. Quantitative and Qualitative Sex Modulations in the Brain Anatomy of Autism. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:898-909. [PMID: 33713843 DOI: 10.1016/j.bpsc.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Sex-based neurobiological heterogeneity in autism is poorly understood. Research is disproportionately biased to males, leading to an unwarranted presumption that autism neurobiology is the same across sexes. Previous neuroimaging studies using amalgamated multicenter datasets to increase autistic female samples are characterized by large statistical noise. METHODS We used a better-powered dataset of 1183 scans of 839 individuals-299 (467 scans) autistic males, 74 (102 scans) autistic females, 240 (334 scans) control males, and 226 (280 scans) control females-to test two whole-brain models of overall/global sex modulations on autism neuroanatomy, by summary measures computed across the brain: the local magnitude model, in which the same brain regions/circuitries are involved across sexes but effect sizes are larger in females, indicating quantitative sex modulation; and spatial dissimilarity model, in which the neuroanatomy differs spatially between sexes, indicating qualitative sex modulation. The male and female autism groups were matched on age, IQ, and autism symptoms. Autism brain features were defined by comparisons with same-sex control individuals. RESULTS Across five metrics (cortical thickness, surface area, volume, mean absolute curvature, and subcortical volume), we found no evidence supporting the local magnitude model. We found indicators supporting the spatial dissimilarity model on cortical mean absolute curvature and subcortical volume, but not on other metrics. CONCLUSIONS The overall/global autism neuroanatomy in females and males does not simply differ quantitatively in the same brain regions/circuitries. They may differ qualitatively in spatial involvement in cortical curvature and subcortical volume. The neuroanatomy of autism may be partly sex specific. Sex stratification to inform autism preclinical/clinical research is needed to identify sex-informed neurodevelopmental targets.
Collapse
Affiliation(s)
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada
| | - Stephanie H Ameis
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada; Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Peter Szatmari
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada; Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital and Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada; Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
15
|
Floris DL, Filho JOA, Lai MC, Giavasis S, Oldehinkel M, Mennes M, Charman T, Tillmann J, Dumas G, Ecker C, Dell'Acqua F, Banaschewski T, Moessnang C, Baron-Cohen S, Durston S, Loth E, Murphy DGM, Buitelaar JK, Beckmann CF, Milham MP, Di Martino A. Towards robust and replicable sex differences in the intrinsic brain function of autism. Mol Autism 2021; 12:19. [PMID: 33648569 PMCID: PMC7923310 DOI: 10.1186/s13229-021-00415-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Marked sex differences in autism prevalence accentuate the need to understand the role of biological sex-related factors in autism. Efforts to unravel sex differences in the brain organization of autism have, however, been challenged by the limited availability of female data. METHODS We addressed this gap by using a large sample of males and females with autism and neurotypical (NT) control individuals (ABIDE; Autism: 362 males, 82 females; NT: 409 males, 166 females; 7-18 years). Discovery analyses examined main effects of diagnosis, sex and their interaction across five resting-state fMRI (R-fMRI) metrics (voxel-level Z > 3.1, cluster-level P < 0.01, gaussian random field corrected). Secondary analyses assessed the robustness of the results to different pre-processing approaches and their replicability in two independent samples: the EU-AIMS Longitudinal European Autism Project (LEAP) and the Gender Explorations of Neurogenetics and Development to Advance Autism Research. RESULTS Discovery analyses in ABIDE revealed significant main effects of diagnosis and sex across the intrinsic functional connectivity of the posterior cingulate cortex, regional homogeneity and voxel-mirrored homotopic connectivity (VMHC) in several cortical regions, largely converging in the default network midline. Sex-by-diagnosis interactions were confined to the dorsolateral occipital cortex, with reduced VMHC in females with autism. All findings were robust to different pre-processing steps. Replicability in independent samples varied by R-fMRI measures and effects with the targeted sex-by-diagnosis interaction being replicated in the larger of the two replication samples-EU-AIMS LEAP. LIMITATIONS Given the lack of a priori harmonization among the discovery and replication datasets available to date, sample-related variation remained and may have affected replicability. CONCLUSIONS Atypical cross-hemispheric interactions are neurobiologically relevant to autism. They likely result from the combination of sex-dependent and sex-independent factors with a differential effect across functional cortical networks. Systematic assessments of the factors contributing to replicability are needed and necessitate coordinated large-scale data collection across studies.
Collapse
Affiliation(s)
- Dorothea L Floris
- Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - José O A Filho
- Autism Center, The Child Mind Institute, 101 E 56 Street, New York City, New York, 10026, USA
| | - Meng-Chuan Lai
- The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Azrieli Adult Neurodevelopmental Centre, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry and Autism Research Unit, The Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Steve Giavasis
- Autism Center, The Child Mind Institute, 101 E 56 Street, New York City, New York, 10026, USA
| | - Marianne Oldehinkel
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Maarten Mennes
- Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Julian Tillmann
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Applied Psychology: Health, Development, Enhancement, and Intervention, University of Vienna, Vienna, Austria
| | - Guillaume Dumas
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
- CHU Sainte-Justine Research Center, Department of Psychiatry, Université de Montréal, Montreal, QC, Canada
| | - Christine Ecker
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany
| | - Flavio Dell'Acqua
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sarah Durston
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eva Loth
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Declan G M Murphy
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Jan K Buitelaar
- Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| | - Christian F Beckmann
- Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Michael P Milham
- Autism Center, The Child Mind Institute, 101 E 56 Street, New York City, New York, 10026, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Adriana Di Martino
- Autism Center, The Child Mind Institute, 101 E 56 Street, New York City, New York, 10026, USA.
| |
Collapse
|
16
|
Aykan S, Gürses E, Tokgöz-Yılmaz S, Kalaycıoğlu C. Auditory Processing Differences Correlate With Autistic Traits in Males. Front Hum Neurosci 2020; 14:584704. [PMID: 33192419 PMCID: PMC7588834 DOI: 10.3389/fnhum.2020.584704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022] Open
Abstract
Autism spectrum disorder (ASD) has high prevalence among males compared to females but mechanisms underlying the differences between sexes are poorly investigated. Moreover, autistic symptoms show a continuity in the general population and are referred to as autistic traits in people without an ASD diagnosis. One of the symptoms of ASD is sensory processing differences both in sensitivity and perception. To investigate sensory processing differences in autistic traits, we examined auditory and visual processing in a healthy population. We recruited 75 individuals (39 females and 36 males, mean age = 23.01 years, SD = 3.23 years) and assessed autistic traits using the Autism Spectrum Quotient, and sensory sensitivity using the Sensory Sensitivity Scales. Sensory processing in the visual domain was examined with the radial motion stimulus and the auditory domain was assessed with the 1,000 Hz pure tone stimulus with electroencephalography-evoked potentials. The results showed that the auditory sensitivity scores of the males (raud (34) = 0.396, paud = 0.017) and the visual sensitivity scores of females were correlated with autistic traits (rvis (37) = 0.420, pvis = 0.008). Moreover, the P2 latency for the auditory stimulus was prolonged in the participants with a higher level of autistic traits (rs (61) = 0.411, p = 0.008), and this correlation was only observed in males (rs (31) = 0.542, p = 0.001). We propose that auditory processing differences are related to autistic traits in neurotypicals, particularly in males. Our findings emphasize the importance of considering sex differences in autistic traits and ASD.
Collapse
Affiliation(s)
- Simge Aykan
- Department of Physiology, School of Medicine, Ankara University, Ankara, Turkey
| | - Emre Gürses
- Department of Audiology, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Suna Tokgöz-Yılmaz
- Department of Audiology, Faculty of Health Sciences, Ankara University, Ankara, Turkey.,Audiology, Speech and Balance Diagnosis and Rehabilitation Center, School of Medicine, Ankara University, Ankara, Turkey
| | - Canan Kalaycıoğlu
- Department of Physiology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
17
|
Bletsch A, Schäfer T, Mann C, Andrews DS, Daly E, Gudbrandsen M, Ruigrok ANV, Dallyn R, Romero-Garcia R, Lai MC, Lombardo MV, Craig MC, Suckling J, Bullmore ET, Baron-Cohen S, Murphy DGM, Dell'Acqua F, Ecker C. Atypical measures of diffusion at the gray-white matter boundary in autism spectrum disorder in adulthood. Hum Brain Mapp 2020; 42:467-484. [PMID: 33094897 PMCID: PMC7775996 DOI: 10.1002/hbm.25237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly complex neurodevelopmental condition that is accompanied by neuroanatomical differences on the macroscopic and microscopic level. Findings from histological, genetic, and more recently in vivo neuroimaging studies converge in suggesting that neuroanatomical abnormalities, specifically around the gray‐white matter (GWM) boundary, represent a crucial feature of ASD. However, no research has yet characterized the GWM boundary in ASD based on measures of diffusion. Here, we registered diffusion tensor imaging data to the structural T1‐weighted images of 92 adults with ASD and 92 matched neurotypical controls in order to examine between‐group differences and group‐by‐sex interactions in fractional anisotropy and mean diffusivity sampled at the GWM boundary, and at different sampling depths within the superficial white and into the gray matter. As hypothesized, we observed atypical diffusion at and around the GWM boundary in ASD, with between‐group differences and group‐by‐sex interactions depending on tissue class and sampling depth. Furthermore, we identified that altered diffusion at the GWM boundary partially (i.e., ~50%) overlapped with atypical gray‐white matter tissue contrast in ASD. Our study thus replicates and extends previous work highlighting the GWM boundary as a crucial target of neuropathology in ASD, and guides future work elucidating etiological mechanisms.
Collapse
Affiliation(s)
- Anke Bletsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Tim Schäfer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Caroline Mann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Derek S Andrews
- Department of Psychiatry and Behavioral Sciences at the M.I.N.D. Institute, University of California, Davis, California, USA
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Maria Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Amber N V Ruigrok
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Robert Dallyn
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Rafael Romero-Garcia
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.,Centre for Addiction and Mental Health and The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Michael V Lombardo
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.,Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Michael C Craig
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.,National Autism Unit, Bethlem Royal Hospital, London, UK
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany.,Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| |
Collapse
|
18
|
Giannopulu I, Etournaud A, Terada K, Velonaki M, Watanabe T. Ordered interpersonal synchronisation in ASD children via robots. Sci Rep 2020; 10:17380. [PMID: 33060720 PMCID: PMC7567844 DOI: 10.1038/s41598-020-74438-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022] Open
Abstract
Children with autistic spectrum disorders (ASD) experience persistent disrupted coordination in interpersonal synchronisation that is thought to be associated with deficits in neural connectivity. Robotic interventions have been explored for use with ASD children worldwide revealing that robots encourage one-to-one social and emotional interactions. However, associations between interpersonal synchronisation and emotional empathy have not yet been directly explored in French and Japanese ASD children when they interact with a human or a robot under analogous experimental conditions. Using the paradigm of actor-perceiver, where the child was the actor and the robot or the human the perceiver, we recorded the autonomic heart rate activation and reported emotional feelings of ASD children in both countries. Japanese and French ASD children showed different interpersonal synchronisation when they interacted with the human perceiver, even though the human was the same in both countries. However, they exhibited similar interpersonal synchronisation when the perceiver was the robot. The findings suggest that the mechanism combining interpersonal synchronisation and emotional empathy might be weakened but not absent in ASD children and that both French and Japanese ASD children do spontaneously and unconsciously discern non verbal actions of non human partners through a direct matching process that occurs via automatic mapping.
Collapse
Affiliation(s)
- Irini Giannopulu
- Interdisciplinary Centre for the Artificial Mind (iCAM), FSD, Bond University, 14, University Drive, Robina, Gold Coast, QLD, 4229, Australia.
| | - Aude Etournaud
- Interdisciplinary Centre for the Artificial Mind (iCAM), FSD, Bond University, 14, University Drive, Robina, Gold Coast, QLD, 4229, Australia
| | - Kazunori Terada
- Department of Electrical, Electronic and Computer Engineering, Gifu University, Gifu, 501-1193, Japan
| | - Mari Velonaki
- Creative Robotics Lab, G Block, University of New South Wales, Greens Rd, Paddington, Sydney, NSW, 2021, Australia
| | - Tomio Watanabe
- Department of Systems Engineering, Prefectural Okayama University, Okayama, 719-1197, Japan
| |
Collapse
|
19
|
Dryburgh E, McKenna S, Rekik I. Predicting full-scale and verbal intelligence scores from functional Connectomic data in individuals with autism Spectrum disorder. Brain Imaging Behav 2020; 14:1769-1778. [PMID: 31055763 PMCID: PMC7572331 DOI: 10.1007/s11682-019-00111-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Decoding how intelligence is engrained in the human brain construct is vital in the understanding of particular neurological disorders. While the majority of existing studies focus on characterizing intelligence in neurotypical (NT) brains, investigating how neural correlates of intelligence scores are altered by atypical neurodevelopmental disorders, such as Autism Spectrum Disorders (ASD), is almost absent. To help fill this gap, we use a connectome-based predictive model (CPM) to predict intelligence scores from functional connectome data, derived from resting-state functional magnetic resonance imaging (rsfMRI). The utilized model learns how to select the most significant positive and negative brain connections, independently, to predict the target intelligence scores in NT and ASD populations, respectively. In the first step, using leave-one-out cross-validation we train a linear regressor robust to outliers to identify functional brain connections that best predict the target intelligence score (p - value < 0.01). Next, for each training subject, positive (respectively negative) connections are summed to produce single-subject positive (respectively negative) summary values. These are then paired with the target training scores to train two linear regressors: (a) a positive model which maps each positive summary value to the subject score, and (b) a negative model which maps each negative summary value to the target score. In the testing stage, by selecting the same connections for the left-out testing subject, we compute their positive and negative summary values, which are then fed to the trained negative and positive models for predicting the target score. This framework was applied to NT and ASD populations independently to identify significant functional connections coding for full-scale and verbal intelligence quotients in the brain.
Collapse
Affiliation(s)
- Elizabeth Dryburgh
- BASIRA Lab, CVIP Group, Computing, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Stephen McKenna
- CVIP Group, Computing, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Islem Rekik
- BASIRA Lab, CVIP Group, Computing, School of Science and Engineering, University of Dundee, Dundee, UK.
- Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
20
|
Li Y, Qiu S, Shi J, Guo Y, Li Z, Cheng Y, Liu Y. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatr 2020; 20:449. [PMID: 32972375 PMCID: PMC7517654 DOI: 10.1186/s12887-020-02330-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/03/2020] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is becoming increasingly prevalent of late. Methylenetetrahydrofolate reductase (MTHFR) has a significant role in folate metabolism. Owing to the inconsistencies and inconclusiveness on the association between MTHFR single nucleotide polymorphism (SNP) and ASD susceptibilities, a meta-analysis was conducted to settle the inconsistencies. METHODS For this meta-analysis, a total of 15 manuscripts published up to January 26, 2020, were selected from PubMed, Google Scholar, Medline, WangFang, and CNKI databases using search terms "MTHFR" OR "methylenetetrahydrofolate reductase" AND "ASD" OR "Autism Spectrum Disorders" OR "Autism" AND "polymorphism" OR "susceptibility" OR "C677T" OR "A1298C". RESULTS The findings of the meta-analysis indicated that MTHFR C677T polymorphism is remarkably associated with ASD in the five genetic models, viz., allelic, dominant, recessive, heterozygote, and homozygote. However, the MTHFR A1298C polymorphism was not found to be significantly related to ASD in the five genetic models. Subgroup analyses revealed significant associations of ASD with the MTHFR (C677T and A1298C) polymorphism. Sensitivity analysis showed that this meta-analysis was stable and reliable. No publication bias was identified in the associations between MTHFRC677T polymorphisms and ASD in the five genetic models, except for the one with regard to the associations between MTHFRA1298C polymorphisms and ASD in the five genetic models. CONCLUSION This meta-analysis showed that MTHFR C677T polymorphism is a susceptibility factor for ASD, and MTHFR A1298C polymorphism is not associated with ASD susceptibility.
Collapse
Affiliation(s)
- Yan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Shuang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Zhijun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yi Cheng
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
21
|
Association of self-regulation with white matter correlates in boys with and without autism spectrum disorder. Sci Rep 2020; 10:13811. [PMID: 32796900 PMCID: PMC7429820 DOI: 10.1038/s41598-020-70836-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 07/24/2020] [Indexed: 12/27/2022] Open
Abstract
Previous studies demonstrated distinct neural correlates underpinning impaired self-regulation (dysregulation) between individuals with autism spectrum disorder (ASD) and typically developing controls (TDC). However, the impacts of dysregulation on white matter (WM) microstructural property in ASD and TDC remain unclear. Diffusion spectrum imaging was acquired in 59 ASD and 62 TDC boys. We investigated the relationship between participants’ dysregulation levels and microstructural property of 76 WM tracts in a multivariate analysis (canonical correlation analysis), across diagnostic groups. A single mode of brain-behavior co-variation was identified: participants were spread along a single axis linking diagnosis, dysregulation, diagnosis-by-dysregulation interaction, and intelligence to a specific WM property pattern. This mode corresponds to diagnosis-distinct correlates underpinning dysregulation, which showed higher generalized fractional anisotropy (GFA) associated with less dysregulation in ASD but greater dysregulation in TDC, in the tracts connecting limbic and emotion regulation systems. Moreover, higher GFA of the tracts implicated in memory, attention, sensorimotor processing, and perception associated with less dysregulation in TDC but worse dysregulation in ASD. No shared WM correlates of dysregulation between ASD and TDC were identified. Corresponding to previous studies, we demonstrated that ASD and TDC have broad distinct white matter microstructural property underpinning self-regulation.
Collapse
|
22
|
Kirkovski M, Fuelscher I, Hyde C, Donaldson PH, Ford TC, Rossell SL, Fitzgerald PB, Enticott PG. Fixel Based Analysis Reveals Atypical White Matter Micro- and Macrostructure in Adults With Autism Spectrum Disorder: An Investigation of the Role of Biological Sex. Front Integr Neurosci 2020; 14:40. [PMID: 32903660 PMCID: PMC7438780 DOI: 10.3389/fnint.2020.00040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Atypical white matter (WM) microstructure is commonly implicated in the neuropathophysiology of autism spectrum disorder (ASD). Fixel based analysis (FBA), at the cutting-edge of diffusion-weighted imaging, can account for crossing WM fibers and can provide indices of both WM micro- and macrostructure. We applied FBA to investigate WM structure between 25 (12 males, 13 females) adults with ASD and 24 (12 males, 12 females) matched controls. As the role of biological sex on the neuropathophysiology of ASD is of increasing interest, this was also explored. There were no significant differences in WM micro- or macrostructure between adults with ASD and matched healthy controls. When data were stratified by sex, females with ASD had reduced fiber density and cross-section (FDC), a combined metric comprised of micro- and macrostructural measures, in the corpus callosum, a finding not detected between the male sub-groups. We conclude that micro- and macrostructural WM aberrations are present in ASD, and may be influenced by biological sex.
Collapse
Affiliation(s)
- Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University, Melbourne, VIC, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia.,Epworth Centre for Innovation in Mental Health, Epworth Health Care and Central Clinical School Monash University, Melbourne, VIC, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Hong SJ, Vogelstein JT, Gozzi A, Bernhardt BC, Yeo BTT, Milham MP, Di Martino A. Toward Neurosubtypes in Autism. Biol Psychiatry 2020; 88:111-128. [PMID: 32553193 DOI: 10.1016/j.biopsych.2020.03.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/22/2022]
Abstract
There is a consensus that substantial heterogeneity underlies the neurobiology of autism spectrum disorder (ASD). As such, it has become increasingly clear that a dissection of variation at the molecular, cellular, and brain network domains is a prerequisite for identifying biomarkers. Neuroimaging has been widely used to characterize atypical brain patterns in ASD, although findings have varied across studies. This is due, at least in part, to a failure to account for neurobiological heterogeneity. Here, we summarize emerging data-driven efforts to delineate more homogeneous ASD subgroups at the level of brain structure and function-that is, neurosubtyping. We break this pursuit into key methodological steps: the selection of diagnostic samples, neuroimaging features, algorithms, and validation approaches. Although preliminary and methodologically diverse, current studies generally agree that at least 2 to 4 distinct ASD neurosubtypes may exist. Their identification improved symptom prediction and diagnostic label accuracy above and beyond group average comparisons. Yet, this nascent literature has shed light onto challenges and gaps. These include 1) the need for wider and more deeply transdiagnostic samples collected while minimizing artifacts (e.g., head motion), 2) quantitative and unbiased methods for feature selection and multimodal fusion, 3) greater emphasis on algorithms' ability to capture hybrid dimensional and categorical models of ASD, and 4) systematic independent replications and validations that integrate different units of analyses across multiple scales. Solutions aimed to address these challenges and gaps are discussed for future avenues leading toward a comprehensive understanding of the mechanisms underlying ASD heterogeneity.
Collapse
Affiliation(s)
- Seok-Jun Hong
- Center for the Developing Brain, Child Mind Institute, New York
| | - Joshua T Vogelstein
- Department of Biomedical Engineering Institute for Computational Medicine, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - B T Thomas Yeo
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Department of Electrical and Computer Engineering, Center for Sleep and Cognition, Clinical Imaging Research Centre, N.1 Institute for Health, National University of Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore; Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, New York
| | | |
Collapse
|
24
|
Tang S, Sun N, Floris DL, Zhang X, Di Martino A, Yeo BTT. Reconciling Dimensional and Categorical Models of Autism Heterogeneity: A Brain Connectomics and Behavioral Study. Biol Psychiatry 2020; 87:1071-1082. [PMID: 31955916 DOI: 10.1016/j.biopsych.2019.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Heterogeneity in autism spectrum disorder (ASD) has hindered the development of biomarkers, thus motivating subtyping efforts. Most subtyping studies divide individuals with ASD into nonoverlapping (categorical) subgroups. However, continuous interindividual variation in ASD suggests that there is a need for a dimensional approach. METHODS A Bayesian model was employed to decompose resting-state functional connectivity (RSFC) of individuals with ASD into multiple abnormal RSFC patterns, i.e., categorical subtypes, henceforth referred to as "factors." Importantly, the model allowed each individual to express one or more factors to varying degrees (dimensional subtyping). The model was applied to 306 individuals with ASD (5.2-57 years of age) from two multisite repositories. Post hoc analyses associated factors with symptoms and demographics. RESULTS Analyses yielded three factors with dissociable whole-brain hypo- and hyper-RSFC patterns. Most participants expressed multiple (categorical) factors, suggestive of a mosaic of subtypes within individuals. All factors shared abnormal RSFC involving the default mode network, but the directionality (hypo- or hyper-RSFC) differed across factors. Factor 1 was associated with core ASD symptoms. Factors 1 and 2 were associated with distinct comorbid symptoms. Older male participants preferentially expressed factor 3. Factors were robust across control analyses and were not associated with IQ or head motion. CONCLUSIONS There exist at least three ASD factors with dissociable whole-brain RSFC patterns, behaviors, and demographics. Heterogeneous default mode network hypo- and hyper-RSFC across the factors might explain previously reported inconsistencies. The factors differentiated between core ASD and comorbid symptoms-a less appreciated domain of heterogeneity in ASD. These factors are coexpressed in individuals with ASD with different degrees, thus reconciling categorical and dimensional perspectives of ASD heterogeneity.
Collapse
Affiliation(s)
- Siyi Tang
- Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, Clinical Imaging Research Centre, N.1 Institute for Health, National University of Singapore, Singapore, Republic of Singapore; Department of Electrical Engineering, Stanford University, Stanford, California
| | - Nanbo Sun
- Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, Clinical Imaging Research Centre, N.1 Institute for Health, National University of Singapore, Singapore, Republic of Singapore
| | - Dorothea L Floris
- Donders Center for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Xiuming Zhang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Adriana Di Martino
- Autism and Social Cognition Center, Child Mind Institute, New York, New York
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, Clinical Imaging Research Centre, N.1 Institute for Health, National University of Singapore, Singapore, Republic of Singapore; Centre for Cognitive Neuroscience, Duke-National University of Singapore Medical School, Singapore, Republic of Singapore; National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore, Republic of Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.
| |
Collapse
|
25
|
Meoded A, Goldenberg NA, Huisman TAGM. Structural Connectomics: State of the Art and Applications in Pediatric Neurodevelopmental Disorders, Neuro-Oncology, and Arterial Ischemic Stroke. J Pediatr 2020; 221S:S37-S42. [PMID: 32482233 DOI: 10.1016/j.jpeds.2020.01.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Avner Meoded
- Edward B. Singleton Department of Radiology, Section of Pediatric Neuroradiology, Texas Children's Hospital, Houston, TX.
| | - Neil A Goldenberg
- Department of Pediatrics and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Stroke Program, Johns Hopkins Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Thierry A G M Huisman
- Edward B. Singleton Department of Radiology, Section of Pediatric Neuroradiology, Texas Children's Hospital, Houston, TX
| |
Collapse
|
26
|
Ruigrok ANV, Lai MC. Sex/gender differences in neurology and psychiatry: Autism. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:283-297. [PMID: 33008532 DOI: 10.1016/b978-0-444-64123-6.00020-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Autism is a heterogenous set of early-onset neurodevelopmental conditions that are more prevalent in males than in females. Due to the high phenotypic, neurobiological, developmental, and etiological heterogeneity in the autism spectrum, recent research programs are increasingly exploring whether sex- and gender-related factors could be helpful markers to clarify the heterogeneity in autism and work toward a personalized approach to intervention and support. In this chapter, we summarize recent clinical and neuroscientific research addressing sex/gender influences in autism and explore how sex/gender-based investigations shed light on similar or different underlying neurodevelopmental mechanisms of autism by sex/gender. We review evidence that may help to explain some of the underlying sex-related biological mechanisms associated with autism, including genetics and the effects of sex steroid hormones in the prenatal environment. We conclude that current research points toward coexisting quantitative and, perhaps more evidently, qualitative sex/gender-modulation effects in autism across multiple neurobiological aspects. However, converging findings of specific neurobiological presentations and sex/gender-informed mechanisms cutting across the many subgroups within the autism spectrum are still lacking. Future research should use big data approaches and new stratification methods to decompose sex/gender-related heterogeneity in autism and work toward personalized, sex/gender-informed intervention and support for autistic people.
Collapse
Affiliation(s)
- Amber N V Ruigrok
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Centre for Addiction and Mental Health & The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Sex differences in brain structure: a twin study on restricted and repetitive behaviors in twin pairs with and without autism. Mol Autism 2019; 11:1. [PMID: 31893022 PMCID: PMC6937723 DOI: 10.1186/s13229-019-0309-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
Background Females with autism spectrum disorder have been reported to exhibit fewer and less severe restricted and repetitive behaviors and interests compared to males. This difference might indicate sex-specific alterations of brain networks involved in autism symptom domains, especially within cortico-striatal and sensory integration networks. This study used a well-controlled twin design to examine sex differences in brain anatomy in relation to repetitive behaviors. Methods In 75 twin pairs (n = 150, 62 females, 88 males) enriched for autism spectrum disorder (n = 32), and other neurodevelopmental disorders (n = 32), we explored the association of restricted and repetitive behaviors and interests—operationalized by the Autism Diagnostic Interview-Revised (C domain) and the Social Responsiveness Scale-2 (Restricted Interests and Repetitive Behavior subscale)—with cortical volume, surface area and thickness of neocortical, sub-cortical, and cerebellar networks. Results Co-twin control analyses revealed within-pair associations between RRBI symptoms and increased thickness of the right intraparietal sulcus and reduced volume of the right orbital gyrus in females only, even though the mean number of RRBIs did not differ between the sexes. In a sub-sample of ASD-discordant pairs, increased thickness in association with RRBIs was found exclusively in females in the orbitofrontal regions, superior frontal gyrus, and intraparietal sulcus, while in males RRBIs tended to be associated with increased volume of the bilateral pallidum. Limitations However, due to a small sample size and the small difference in RRBI symptoms within pairs, the results of this exploratory study need to be interpreted with caution. Conclusions Our findings suggest that structural alterations of fronto-parietal networks in association with RRBIs are found mostly in females, while striatal networks are more affected in males. These results endorse the importance of investigating sex differences in the neurobiology of autism symptoms, and indicate different etiological pathways underlying restricted and repetitive behaviors and interests in females and males.
Collapse
|
28
|
Andrews DS, Lee JK, Solomon M, Rogers SJ, Amaral DG, Nordahl CW. A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. J Neurodev Disord 2019; 11:32. [PMID: 31839001 PMCID: PMC6913008 DOI: 10.1186/s11689-019-9291-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The core symptoms of autism spectrum disorder (ASD) are widely theorized to result from altered brain connectivity. Diffusion-weighted magnetic resonance imaging (DWI) has been a versatile method for investigating underlying microstructural properties of white matter (WM) in ASD. Despite phenotypic and etiological heterogeneity, DWI studies in majority male samples of older children, adolescents, and adults with ASD have largely reported findings of decreased fractional anisotropy (FA) across several commissural, projection, and association fiber tracts. However, studies in preschool-aged children (i.e., < 30-40 months) suggest individuals with ASD have increased measures of WM FA earlier in development. METHODS We analyzed 127 individuals with ASD (85♂, 42♀) and 54 typically developing (TD) controls (42♂, 26♀), aged 25.1-49.6 months. Voxel-wise effects of ASD diagnosis, sex, age, and their interaction on DWI measures of FA, mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were investigated using tract-based spatial statistics (TBSS) while controlling mean absolute and relative motion. RESULTS Compared to TD controls, males and females with ASD had significantly increased measures of FA in eight clusters (threshold-free cluster enhancement p < 0.05) that incorporated several WM tracts including regions of the genu, body, and splenium of the corpus callosum, inferior frontal-occipital fasciculi, inferior and superior longitudinal fasciculi, middle and superior cerebellar peduncles, and corticospinal tract. A diagnosis by sex interaction was observed in measures of AD across six significant clusters incorporating areas of the body, genu, and splenium of the corpus collosum. In these tracts, females with ASD showed increased AD compared to TD females, while males with ASD showed decreased AD compared to TD males. CONCLUSIONS The current findings support growing evidence that preschool-aged children with ASD have atypical measures of WM microstructure that appear to differ in directionality from alterations observed in older individuals with the condition. To our knowledge, this study represents the largest sample of preschool-aged females with ASD to be evaluated using DWI. Microstructural differences associated with ASD largely overlapped between sexes. However, differential relationships of AD measures indicate that sex likely modulates ASD neuroanatomical phenotypes. Further longitudinal study is needed to confirm and quantify the developmental relationship of WM structure in ASD.
Collapse
Affiliation(s)
- Derek Sayre Andrews
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Joshua K. Lee
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Marjorie Solomon
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Sally J. Rogers
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - David G. Amaral
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Christine Wu Nordahl
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| |
Collapse
|
29
|
Multivariate graph learning for detecting aberrant connectivity of dynamic brain networks in autism. Med Image Anal 2019; 56:11-25. [DOI: 10.1016/j.media.2019.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 04/01/2019] [Accepted: 05/24/2019] [Indexed: 01/24/2023]
|
30
|
Lei J, Lecarie E, Jurayj J, Boland S, Sukhodolsky DG, Ventola P, Pelphrey KA, Jou RJ. Altered Neural Connectivity in Females, But Not Males with Autism: Preliminary Evidence for the Female Protective Effect from a Quality-Controlled Diffusion Tensor Imaging Study. Autism Res 2019; 12:1472-1483. [PMID: 31347307 PMCID: PMC6851962 DOI: 10.1002/aur.2180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/02/2022]
Abstract
Previous studies using diffusion tensor imaging (DTI) to investigate white matter (WM) structural connectivity have suggested widespread, although inconsistent WM alterations in autism spectrum disorder (ASD), such as greater reductions in fractional anisotropy (FA). However, findings may lack generalizability because: (a) most have focused solely on the ASD male brain phenotype, and not sex‐differences in WM integrity; (b) many lack stringent and transparent data quality control such as controlling for head motion in analysis. This study addressed both issues by using Tract‐Based Spatial Statistics (TBSS) to separately compare WM differences in 81 ASD (56 male, 25 female; 4–21 years old) and 39 typically developing (TD; 23 males, 16 females; 5–18 years old) children and young people, carefully group‐matched on sex, age, cognitive abilities, and head motion. ASD males and females were also matched on autism symptom severity. Two independent‐raters completed a multistep scan quality assurance to remove images that were significantly distorted by motion artifacts before analysis. ASD females exhibited significant widespread reductions in FA compared to TD females, suggesting altered WM integrity. In contrast, no significant localized or widespread WM differences were found between ASD and TD males. This study highlights the importance of data quality control in DTI, and outlines important sex‐differences in WM alterations in ASD females. Future studies can explore the extent to which neural structural differences might underlie sex‐differences in ASD behavioral phenotype, and guide clinical interventions to be tailored toward the unique needs of ASD females and males. Autism Res 2019, 12: 1472–1483. © 2019 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc. Lay Summary Previous Diffusion Tensor Imaging (DTI) studies have found atypical brain structural connectivity in males with autism, although findings are inconclusive in females with autism. To investigate potential sex‐differences, we studied males and females with and without autism who showed a similar level of head movement during their brain scan. We found that females with autism had widespread atypical neural connectivity than females without autism, although not in males, highlighting sex‐differences.
Collapse
Affiliation(s)
- Jiedi Lei
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut.,Centre for Applied Autism Research, Psychology Department, University of Bath, Bath, UK
| | - Emma Lecarie
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychology, Arizona State University, Tempe, Arizona
| | - Jane Jurayj
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Sarah Boland
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Denis G Sukhodolsky
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Pamela Ventola
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Kevin A Pelphrey
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut.,School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Roger J Jou
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
31
|
Simões M, Monteiro R, Andrade J, Mouga S, França F, Oliveira G, Carvalho P, Castelo-Branco M. A Novel Biomarker of Compensatory Recruitment of Face Emotional Imagery Networks in Autism Spectrum Disorder. Front Neurosci 2018; 12:791. [PMID: 30443204 PMCID: PMC6221955 DOI: 10.3389/fnins.2018.00791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/12/2018] [Indexed: 11/25/2022] Open
Abstract
Imagery of facial expressions in Autism Spectrum Disorder (ASD) is likely impaired but has been very difficult to capture at a neurophysiological level. We developed an approach that allowed to directly link observation of emotional expressions and imagery in ASD, and to derive biomarkers that are able to classify abnormal imagery in ASD. To provide a handle between perception and action imagery cycles it is important to use visual stimuli exploring the dynamical nature of emotion representation. We conducted a case-control study providing a link between both visualization and mental imagery of dynamic facial expressions and investigated source responses to pure face-expression contrasts. We were able to replicate the same highly group discriminative neural signatures during action observation (dynamical face expressions) and imagery, in the precuneus. Larger activation in regions involved in imagery for the ASD group suggests that this effect is compensatory. We conducted a machine learning procedure to automatically identify these group differences, based on the EEG activity during mental imagery of facial expressions. We compared two classifiers and achieved an accuracy of 81% using 15 features (both linear and non-linear) of the signal from theta, high-beta and gamma bands extracted from right-parietal locations (matching the precuneus region), further confirming the findings regarding standard statistical analysis. This robust classification of signals resulting from imagery of dynamical expressions in ASD is surprising because it far and significantly exceeds the good classification already achieved with observation of neutral face expressions (74%). This novel neural correlate of emotional imagery in autism could potentially serve as a clinical interventional target for studies designed to improve facial expression recognition, or at least as an intervention biomarker.
Collapse
Affiliation(s)
- Marco Simões
- Coimbra Institute for Biomedical Imaging and Translational Research, Instituto de Ciências Nucleares Aplicadas à Saúde, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Informatics and Systems, University of Coimbra, Coimbra, Portugal
| | - Raquel Monteiro
- Coimbra Institute for Biomedical Imaging and Translational Research, Instituto de Ciências Nucleares Aplicadas à Saúde, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Andrade
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Susana Mouga
- Coimbra Institute for Biomedical Imaging and Translational Research, Instituto de Ciências Nucleares Aplicadas à Saúde, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Neurodevelopmental and Autism Unit from Child Developmental Center, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Felipe França
- PESC-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guiomar Oliveira
- Coimbra Institute for Biomedical Imaging and Translational Research, Instituto de Ciências Nucleares Aplicadas à Saúde, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Neurodevelopmental and Autism Unit from Child Developmental Center, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University Clinic of Pediatrics, Faculty of Medicine of the University of Coimbra, Coimbra, Portugal.,Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Paulo Carvalho
- Center for Informatics and Systems, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research, Instituto de Ciências Nucleares Aplicadas à Saúde, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Korzeniewski SJ, Allred EN, O'Shea TM, Leviton A, Kuban KCK. Elevated protein concentrations in newborn blood and the risks of autism spectrum disorder, and of social impairment, at age 10 years among infants born before the 28th week of gestation. Transl Psychiatry 2018; 8:115. [PMID: 29884819 PMCID: PMC5993745 DOI: 10.1038/s41398-018-0156-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/01/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
Among the 1 of 10 children who are born preterm annually in the United States, 6% are born before the third trimester. Among children who survive birth before the 28th week of gestation, the risks of autism spectrum disorder (ASD) and non-autistic social impairment are severalfold higher than in the general population. We examined the relationship between top quartile inflammation-related protein concentrations among children born extremely preterm and ASD or, separately, a high score on the Social Responsiveness Scale (SRS total score ≥65) among those who did not meet ASD criteria, using information only from the subset of children whose DAS-II verbal or non-verbal IQ was ≥70, who were assessed for ASD, and who had proteins measured in blood collected on ≥2 days (N = 763). ASD (N = 36) assessed at age 10 years is associated with recurrent top quartile concentrations of inflammation-related proteins during the first post-natal month (e.g., SAA odds ratio (OR); 95% confidence interval (CI): 2.5; 1.2-5.3) and IL-6 (OR; 95% CI: 2.6; 1.03-6.4)). Top quartile concentrations of neurotrophic proteins appear to moderate the increased risk of ASD associated with repeated top quartile concentrations of inflammation-related proteins. High (top quartile) concentrations of SAA are associated with elevated risk of ASD (2.8; 1.2-6.7) when Ang-1 concentrations are below the top quartile, but not when Ang-1 concentrations are high (1.3; 0.3-5.8). Similarly, high concentrations of TNF-α are associated with heightened risk of SRS-defined social impairment (N = 130) (2.0; 1.1-3.8) when ANG-1 concentrations are not high, but not when ANG-1 concentrations are elevated (0.5; 0.1-4.2).
Collapse
Affiliation(s)
- Steven J Korzeniewski
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Elizabeth N Allred
- Departments of Neurology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - T Michael O'Shea
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Alan Leviton
- Departments of Neurology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Karl C K Kuban
- Departments of Pediatrics, Boston Medical Center and Boston University, Boston, MA, USA
| |
Collapse
|
33
|
The neural circuitry of restricted repetitive behavior: Magnetic resonance imaging in neurodevelopmental disorders and animal models. Neurosci Biobehav Rev 2018; 92:152-171. [PMID: 29802854 DOI: 10.1016/j.neubiorev.2018.05.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/18/2018] [Accepted: 05/20/2018] [Indexed: 11/23/2022]
Abstract
Restricted, repetitive behaviors (RRBs) are patterns of behavior that exhibit little variation in form and have no obvious function. RRBs although transdiagonstic are a particularly prominent feature of certain neurodevelopmental disorders, yet relatively little is known about the neural circuitry of RRBs. Past work in this area has focused on isolated brain regions and neurotransmitter systems, but implementing a neural circuit approach has the potential to greatly improve understanding of RRBs. Magnetic resonance imaging (MRI) is well-suited to studying the structural and functional connectivity of the nervous system, and is a highly translational research tool. In this review, we synthesize MRI research from both neurodevelopmental disorders and relevant animal models that informs the neural circuitry of RRB. Together, these studies implicate distributed neural circuits between the cortex, basal ganglia, and cerebellum. Despite progress in neuroimaging of RRB, there are many opportunities for conceptual and methodological improvement. We conclude by suggesting future directions for MRI research in RRB, and how such studies can benefit from complementary approaches in neuroscience.
Collapse
|
34
|
Lenz KM, Nelson LH. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function. Front Immunol 2018; 9:698. [PMID: 29706957 PMCID: PMC5908908 DOI: 10.3389/fimmu.2018.00698] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Lars H Nelson
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Neurodevelopmental disorders disproportionately affect males. The mechanisms underlying male vulnerability or female protection are not known and remain understudied. Determining the processes involved is crucial to understanding the etiology and advancing treatment of neurodevelopmental disorders. Here, we review current findings and theories that contribute to male preponderance of neurodevelopmental disorders, with a focus on autism. RECENT FINDINGS Recent work on the biological basis of the male preponderance of autism and other neurodevelopmental disorders includes discussion of a higher genetic burden in females and sex-specific gene mutations or epigenetic changes that differentially confer risk to males or protection to females. Other mechanisms discussed are sex chromosome and sex hormone involvement. Specifically, fetal testosterone is involved in many aspects of development and may interact with neurotransmitter, neuropeptide, or immune pathways to contribute to male vulnerability. Finally, the possibilities of female underdiagnosis and a multi-hit hypothesis are discussed. This review highlights current theories of male bias in developmental disorders. Topics include environmental, genetic, and epigenetic mechanisms; theories of sex chromosomes, hormones, neuroendocrine, and immune function; underdiagnosis of females; and a multi-hit hypothesis.
Collapse
Affiliation(s)
- Sarah L. Ferri
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA 52242 USA
| | - Ted Abel
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA 52242 USA
| | - Edward S. Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2202, Philadelphia, PA 19104-3403 USA
| |
Collapse
|
36
|
Kfoury N, Sun T, Yu K, Rockwell N, Tinkum KL, Qi Z, Warrington NM, McDonald P, Roy A, Weir SJ, Mohila CA, Deneen B, Rubin JB. Cooperative p16 and p21 action protects female astrocytes from transformation. Acta Neuropathol Commun 2018; 6:12. [PMID: 29458417 PMCID: PMC5819173 DOI: 10.1186/s40478-018-0513-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
Mechanisms underlying sex differences in cancer incidence are not defined but likely involve dimorphism (s) in tumor suppressor function at the cellular and organismal levels. As an example, sexual dimorphism in retinoblastoma protein (Rb) activity was shown to block transformation of female, but not male, murine astrocytes in which neurofibromin and p53 function was abrogated (GBM astrocytes). Correlated sex differences in gene expression in the murine GBM astrocytes were found to be highly concordant with sex differences in gene expression in male and female GBM patients, including in the expression of components of the Rb and p53 pathways. To define the basis of this phenomenon, we examined the functions of the cyclin dependent kinase (CDK) inhibitors, p16, p21 and p27 in murine GBM astrocytes under conditions that promote Rb-dependent growth arrest. We found that upon serum deprivation or etoposide-induced DNA damage, female, but not male GBM astrocytes, respond with increased p16 and p21 activity, and cell cycle arrest. In contrast, male GBM astrocytes continue to proliferate, accumulate chromosomal aberrations, exhibit enhanced clonogenic cell activity and in vivo tumorigenesis; all manifestations of broad sex differences in cell cycle regulation and DNA repair. Differences in tumorigenesis disappeared when female GBM astrocytes are also rendered null for p16 and p21. These data elucidate mechanisms underlying sex differences in cancer incidence and demonstrate sex-specific effects of cytotoxic and targeted therapeutics. This has critical implications for lab and clinical research.
Collapse
|
37
|
Giannopulu I, Terada K, Watanabe T. Communication using robots: a Perception-action scenario in moderate ASD. J EXP THEOR ARTIF IN 2018. [DOI: 10.1080/0952813x.2018.1430865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Irini Giannopulu
- Interdisciplinary Centre for the Artificial Mind (iCAM), FSD, Bond University, Gold Coast, Australia
| | - Kazunori Terada
- Department of Electrical, Electronic and Computer Engineering, Gifu University, Gifu, Japan
| | - Tomio Watanabe
- Department of Systems Engineering, Okayama Prefectural University, Okayama, Japan
| |
Collapse
|