1
|
Sun S, Weng Y, Han Y, Zhang C. Plasticization mechanism of biobased plasticizers comprising polyethylene glycol diglycidyl ether-butyl citrate with both long and short chains on poly(lactic acid). Int J Biol Macromol 2024; 276:133948. [PMID: 39025184 DOI: 10.1016/j.ijbiomac.2024.133948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Polylactic acid (PLA), a biodegradable polymer with low flexibility, is commonly plasticized with small molecules like tributyl citrate (TBC) for film production. However, these plasticizers, which lack chemical bonds or strong intermolecular interactions with the matrix, tend to migrate to the film surface over time. Their inclusion often compromises material strength for flexibility, increasing elongation at break but reducing tensile strength. In this research, by combining citric acid with n-butanol (B) and poly(ethylene glycol) diglycidyl ether (E), we synthesized three plasticizers, namely TE3, TE2B1, and TE1B2, to enhance the flexibility of PLA. TE2B1 and TE1B2 are equipped with butyl ester groups that offer effective plasticizing effects. Additionally, the incorporation of long-chain alkyl featuring epoxy groups can boost the interaction with PLA. The results showed that the epoxy groups of the long-chain alkyl plasticizers can improve the elongation at break without compromising tensile strength significantly. The migration of plasticizer from PLA matrix can be reduced by strong interactions like chemical bonds, entanglements, and hydrogen bonding with PLA. TE1B2 demonstrated the best plasticizing effect. Adding 15 portions of TE1B2 and TBC separately increased PLA's elongation at break to 304 % and 242 %, with tensile strengths of 36.1 MPa and 22.3 MPa, respectively.
Collapse
Affiliation(s)
- Shiyan Sun
- Department of Materials Science and Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Yunxuan Weng
- Department of Materials Science and Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Yu Han
- Department of Materials Science and Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Caili Zhang
- Department of Materials Science and Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Ye G, Zhang X, Bi H. Construction of high-performance and sustainable polylactic acid composites for 3D printing applications with plasticizer. Int J Biol Macromol 2024; 269:132162. [PMID: 38723825 DOI: 10.1016/j.ijbiomac.2024.132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Polylactic acid (PLA) attains much attention because of its biodegradability, biocompatibility, and high strength, but its further application was remarkably hindered by its brittleness. In order to improve the toughness of PLA, a biodegradable composite was prepared by blending ductile polycaprolactone (PCL), stiff microcrystalline cellulose (MCC), and green plasticizer tributyl citrate (TBC) with PLA by melting extrusion. The physicochemical properties and microstructure of PLA composites were thoroughly investigated using FTIR, TGA, DSC, XRD, melting rheology, optical transmittance, 3d printing, tensile tests, and SEM. The tensile tests results show that introduction of TBC exhibited a remarkable improvement effect in the elongation at break of PLA/PCL/MCC (PPM) composite, increasing from 2.9 % of PPM to up to 30 % of PPM/6TBC and PPM/8TBC. Noticeably, the strength of PPM/TBC composites (at least 33.1 MPa) was enhanced compared with that of PPM (28.2 MPa). The plasticization of TBC, enhancing the compatibility of composites, and reinforcing effect of MCC were identified as pivotal factors in toughening and reinforcing PLA. Furthermore, it is observed that the incorporation of TBC contributed to enhanced thermal stability, crystallinity, and rheology property of composites. This research supplies a novel approach to bolstering the toughness of PLA and broaden its potential applications.
Collapse
Affiliation(s)
- Gaoyuan Ye
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaochun Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| | - Hongjie Bi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Kaveh M, Yeganehzad S, Hesarinejad MA, Kiumarsi M, Abdollahi Moghaddam MR. Polylactic Acid/Saqqez Gum Blends for Chewing Gum Applications: Impact of Plasticizers on Thermo-Mechanical and Morphological Properties. Polymers (Basel) 2024; 16:1469. [PMID: 38891416 PMCID: PMC11174524 DOI: 10.3390/polym16111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
This study investigated a blend of poly (lactic acid) (PLA) and Saqqez gum, with a weight ratio of 70:30, respectively, along with two plasticizers, acetyl tributyl citrate (ATBC) and polyethylene glycol (PEG), at three different concentrations (14%, 16% and 18% by weight of the PLA). The blend was analyzed using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile tests, water-absorption behavior (coefficients of water absorption, sorption, diffusion and permeability of the samples during 240 h) and chemical resistance (exposure to 1 mol/L HCl and 1 mol/L NaOH for 240 h). The desired elastomer blend was then used to prepare natural chewing gum, which was subsequently subjected to texture profile analyzer (TPA) tests and sensory evaluation. The results showed that the addition of both plasticizers increased the tensile properties of the blend. Compared to neat PLA, all the blends exhibited an increase in elongation at break and a decrease in yield strength, with the maximum elongation at break (130.6%) and the minimum yield strength (12.2 MPa) observed in the blend containing 16% ATBC. Additionally, all the thermal attributes studied, including Tg, Tc and Tm, were lower than those of neat PLA, and the Tg values deviated from the values predicted via Fox's equation. SEM images of the blends confirmed that plasticization improved the homogeneity and distribution of the components in the blend structure. PEG 18% and ATBC 16% exhibit the highest and lowest water-absorption behavior, respectively. Regarding chemical resistance, all blends showed weight gain when exposed to HCl, while no weight loss was observed for resistance to NaOH. The chewing gum sample obtained similar values for the mentioned tests compared to the commercial control sample. Overall, the results indicate that plasticization enhances the structure and performance of the PLA/Saqqez gum blend and further investigation is warranted.
Collapse
Affiliation(s)
- Mona Kaveh
- Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157.356, Iran; (M.K.); (M.R.A.M.)
| | - Samira Yeganehzad
- Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157.356, Iran; (M.K.); (M.R.A.M.)
| | - Mohammad Ali Hesarinejad
- Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157.356, Iran; (M.K.); (M.R.A.M.)
| | - Maryam Kiumarsi
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraβe 14, A-1090 Vienna, Austria;
| | | |
Collapse
|
4
|
Cheng X, Li T, Yan L, Jiao Y, Zhang Y, Wang K, Cheng Z, Ma J, Shao L. Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation. SCIENCE ADVANCES 2023; 9:eadh8195. [PMID: 37611103 PMCID: PMC10446487 DOI: 10.1126/sciadv.adh8195] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Although membrane technology has attracted considerable attention for oily wastewater treatment, the plastic waste generated from discarded membranes presents an immediate challenge for achieving eco-friendly separation. We designed on-demand biodegradable superhydrophilic membranes composed of polylactic acid nanofibers in conjunction with polyethylene oxide hydrogels using electrospinning technology for ultrafast purification of oily water. Our results showed that the use of the polyethylene oxide hydrogels increased the number of hydrogen bonds formed between the membrane surface and water molecules by 357.6%. This converted hydrophobic membranes into superhydrophilic ones, which prevented membrane fouling and accelerated emulsion penetration through the membranes. The oil-in-water emulsion permeance of our newly designed nanofiber membranes increased by 61.9 times (2.1 × 104 liters per square meter per hour per bar) with separation efficiency >99.6%, which was superior to state-of-the-art membranes. Moreover, the formation of hydrogen bonds was found to accelerate polylactic acid biodegradation into lactic acid by over 30%, offering a promising approach for waste membrane treatment.
Collapse
Affiliation(s)
- Xiquan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
- Shandong Sino-European Membrane Technology Research Institute Co. Ltd., Weihai Key Laboratory of Water Treatment and Membrane Technology, Weihai 264209, P.R. China
| | - Tongyu Li
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Linlin Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Yang Jiao
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Yingjie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
- Shandong Sino-European Membrane Technology Research Institute Co. Ltd., Weihai Key Laboratory of Water Treatment and Membrane Technology, Weihai 264209, P.R. China
| | - Kai Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
| | - Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150001, P.R. China
| |
Collapse
|
5
|
Aziz T, Haq F, Farid A, Kiran M, Faisal S, Ullah A, Ullah N, Bokhari A, Mubashir M, Chuah LF, Show PL. Challenges associated with cellulose composite material: Facet engineering and prospective. ENVIRONMENTAL RESEARCH 2023; 223:115429. [PMID: 36746207 DOI: 10.1016/j.envres.2023.115429] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Cellulose is the most abundant polysaccharide on earth. It has a large number of desirable properties. Its low toxicity makes it more useful for a variety of applications. Nowadays, its composites are used in most engineering fields. Composite consists of a polymer matrix and use as a reinforcing material. By reducing the cost of traditional fibers, it has an increasing demand for environment-friendly purposes. The use of these types of composites is inherent in moisture absorption with hindered natural fibers. This determines the reduction of polymer composite material. By appropriate chemical surface treatment of cellulose composite materials, the effect could be diminished. The most modern and advanced techniques and methods for the preparation of cellulose and polymer composites are discussed here. Cellulosic composites show a reinforcing effect on the polymer matrix as pointed out by mechanical characterization. Researchers tried their hard work to study different ways of converting various agricultural by-products into useful eco-friendly polymer composites for sustainable production. Cellulose plays building blocks, that are critical for polymer products and their engineering applications. The most common method used to prepare composites is in-situ polymerization. This help to increase the yields of cellulosic composites with a significant enhancement in thermal stability and mechanical properties. Recently, cellulose composites used as enhancing the incorporation of inorganic materials in multi-functional properties. Furthermore, we have summarized in this review the potential applications of cellulose composites in different fields like packaging, aerogels, hydrogels, and fibers.
Collapse
Affiliation(s)
- Tariq Aziz
- Westlake University, School of Engineering, Hangzhou, China
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan.
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, 29050, Pakistan
| | - Mehwish Kiran
- Department of Horticulture, Faculty of Agriculture, Gomal University, D. I. Khan, 29050, Pakistan
| | - Shah Faisal
- Chemistry Department, University of Science and Technology Bannu, Pakistan
| | - Asmat Ullah
- Zhejiang Provincial Key Laboratory of Cancer, Life Science Institute, Zhejiang University, Hangzhou, 310058, China
| | - Naveed Ullah
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Muhammad Mubashir
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
6
|
Injorhor P, Trongsatitkul T, Wittayakun J, Ruksakulpiwat C, Ruksakulpiwat Y. Biodegradable Polylactic Acid-Polyhydroxyalkanoate-Based Nanocomposites with Bio-Hydroxyapatite: Preparation and Characterization. Polymers (Basel) 2023; 15:polym15051261. [PMID: 36904502 PMCID: PMC10007227 DOI: 10.3390/polym15051261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Biodegradable polymers play a significant role in medical applications, especially internal devices because they can be broken down and absorbed into the body without producing harmful degradation products. In this study, biodegradable polylactic acid (PLA)-polyhydroxyalkanoate (PHA)-based nanocomposites with various PHA and nano-hydroxyapatite (nHAp) contents were prepared using solution casting method. Mechanical properties, microstructure, thermal stability, thermal properties, and in vitro degradation of the PLA-PHA-based composites were investigated. PLA-20PHA/5nHAp was shown to give the desired properties so it was selected to investigate electrospinnability at different applied high voltages. PLA-20PHA/5nHAp composite shows the highest improvement of tensile strength at 36.6 ± 0.7 MPa, while PLA-20PHA/10nHAp composite shows the highest thermal stability and in vitro degradation at 7.55% of weight loss after 56 days of immersion in PBS solution. The addition of PHA in PLA-PHA-based nanocomposites improved elongation at break, compared to the composite without PHA. PLA-20PHA/5nHAp solution was successfully fabricated into fibers by electrospinning. All obtained fibers showed smooth and continuous fibers without beads with diameters of 3.7 ± 0.9, 3.5 ± 1.2, and 2.1 ± 0.7 µm at applied high voltages of 15, 20, and 25 kV, respectively.
Collapse
Affiliation(s)
- Preeyaporn Injorhor
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Tatiya Trongsatitkul
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Jatuporn Wittayakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: (C.R.); (Y.R.); Tel.: +66-44-22-4430 (C.R.); +66-44-22-3033 (Y.R.)
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: (C.R.); (Y.R.); Tel.: +66-44-22-4430 (C.R.); +66-44-22-3033 (Y.R.)
| |
Collapse
|
7
|
Fadle Aziz MR, Wlodarek L, Alibhai F, Wu J, Li S, Sun Y, Santerre JP, Li RK. A Polypyrrole-Polycarbonate Polyurethane Elastomer Alleviates Cardiac Arrhythmias via Improving Bio-Conductivity. Adv Healthc Mater 2023:e2203168. [PMID: 36849128 DOI: 10.1002/adhm.202203168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Indexed: 03/01/2023]
Abstract
Myocardial fibrosis, resulting from myocardial infarction (MI), significantly alters cardiac electrophysiological properties. As fibrotic scar tissue forms, its resistance to incoming action potentials increases, leading to cardiac arrhythmia, and eventually sudden cardiac death or heart failure. Biomaterials are gaining increasing attention as an approach for addressing post-MI arrhythmias. The current study investigates the hypothesis that a bio-conductive epicardial patch can electrically synchronize isolated cardiomyocytes in vitro and rescue arrhythmic hearts in vivo. A new conceived biocompatible, conductive, and elastic polyurethane composite bio-membrane, referred to as polypyrrole-polycarbonate polyurethane (PPy-PCNU), is developed, in which solid-state conductive PPy nanoparticles are distributed throughout an electrospun aliphatic PCNU nanofiber patch in a controlled manner. Compared to PCNU alone, the resulting biocompatible patch demonstrates up to six times less impedance, with no conductivity loss over time, as well as being able to influence cellular alignment. Furthermore, PPy-PCNU promotes synchronous contraction of isolated neonatal rat cardiomyocytes and alleviates atrial fibrillation in rat hearts upon epicardial implantation. Taken together, epicardially-implanted PPy-PCNU could potentially serve as a novel alternative approach for the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Monir Riasad Fadle Aziz
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,Faculty of Dentistry, Translational Biology and Engineering Program at the Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Lukasz Wlodarek
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Faisal Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Shuhong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Yu Sun
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,Faculty of Dentistry, Translational Biology and Engineering Program at the Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 1L7, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.,Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, M5G 2C4, Canada
| |
Collapse
|
8
|
Tuancharoensri N, Ross GM, Kongprayoon A, Mahasaranon S, Pratumshat S, Viyoch J, Petrot N, Ruanthong W, Punyodom W, Topham PD, Tighe BJ, Ross S. In Situ Compatibilized Blends of PLA/PCL/CAB Melt-Blown Films with High Elongation: Investigation of Miscibility, Morphology, Crystallinity and Modelling. Polymers (Basel) 2023; 15:polym15020303. [PMID: 36679184 PMCID: PMC9864367 DOI: 10.3390/polym15020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Ternary-blended, melt-blown films of polylactide (PLA), polycaprolactone (PCL) and cellulose acetate butyrate (CAB) were prepared from preliminary miscibility data using a rapid screening method and optical ternary phase diagram (presented as clear, translucent, and opaque regions) as a guide for the composition selection. The compositions that provided optically clear regions were selected for melt blending. The ternary (PLA/PCL/CAB) blends were first melt-extruded and then melt-blown to form films and characterized for their tensile properties, tensile fractured-surface morphology, miscibility, crystallinity, molecular weight and chemical structure. The results showed that the tensile elongation at the break (%elongation) of the ternary-blended, melt-blown films (85/5/10, 75/10/15, 60/15/25 of PLA/PCL/CAB) was substantially higher (>350%) than pure PLA (ca. 20%). The range of compositions in which a significant increase in %elongation was observed at 55−85% w/w PLA, 5−20% w/w PCL and 10−25% w/w CAB. Films with high %elongation all showed good interfacial interactions between the dispersed phase (PCL and CAB) and matrix (PLA) in FE-SEM and showed improvements in miscibility (higher intermolecular interaction and mixing) and a decrease in the glass transition temperature, when compared to the low %elongation films. The decrease in Mw and Mn and the formation of the new NMR peaks (1H NMR at 3.68−3.73 ppm and 13C NMR at 58.54 ppm) were observed in only the high %elongation films. These are expected to be in situ compatibilizers that are generated during the melt processing, mostly by chain scission. In addition, mathematical modelling was used to study the optimal ratio and cost-effectiveness of blends with optimised mechanical properties. These ternary-blended, melt-blown films have the potential for use in both packaging and medical devices with excellent mechanical performance as well as inherent economic and environmental capabilities.
Collapse
Affiliation(s)
- Nantaprapa Tuancharoensri
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth M. Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Arisa Kongprayoon
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sararat Mahasaranon
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Supatra Pratumshat
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Narin Petrot
- Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wuttipong Ruanthong
- Center of Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Department of Computer Science and Information Technology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Paul D. Topham
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| | - Brian J. Tighe
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-55-963-445; Fax: +66-55-963-402
| |
Collapse
|
9
|
Lin L, Mahdi AA, Li C, Al-Ansi W, Al-Maqtari QA, Hashim SB, Cui H. Enhancing the properties of Litsea cubeba essential oil/peach gum/polyethylene oxide nanofibers packaging by ultrasonication. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Naseem R, Montalbano G, German MJ, Ferreira AM, Gentile P, Dalgarno K. Influence of PCL and PHBV on PLLA Thermal and Mechanical Properties in Binary and Ternary Polymer Blends. Molecules 2022; 27:7633. [PMID: 36364463 PMCID: PMC9657691 DOI: 10.3390/molecules27217633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2024] Open
Abstract
PLLA, PCL and PHBV are aliphatic polyesters which have been researched and used in a wide range of medical devices, and all three have advantages and disadvantages for specific applications. Blending of these materials is an attractive way to make a material which overcomes the limitations of the individual polymers. Both PCL and PHBV have been evaluated in polymer blends with PLLA in order to provide enhanced properties for specific applications. This paper explores the use of PCL and PHBV together with PLLA in ternary blends with assessment of the thermal, mechanical and processing properties of the resultant polymer blends, with the aim of producing new biomaterials for orthopaedic applications. DSC characterisation is used to demonstrate that the materials can be effectively blended. Blending PCL and PHBV in concentrations of 5-10% with PLLA produces materials with average modulus improved by up to 25%, average strength improved by up to 50% and average elongation at break improved by 4000%, depending on the concentrations of each polymer used. PHBV impacts most on the modulus and strength of the blends, whilst PCL has a greater impact on creep behaviour and viscosity. Blending PCL and PHBV with PLLA offers an effective approach to the development of new polyester-based biomaterials with combinations of mechanical properties which cannot be provided by any of the materials individually.
Collapse
Affiliation(s)
- Raasti Naseem
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Matthew J. German
- School of Dental Sciences, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ana M. Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kenneth Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
11
|
Pei M, Zhu D, Yang J, Yang K, Yang H, Gu S, Li W, Xu W, Xiao P, Zhou Y. Multi-crosslinked Flexible Nanocomposite Hydrogel Fibers with Excellent Strength and Knittability. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
12
|
Alzate-Arbelaez AF, Cortés FB, Rojano BA. Antioxidants from Hyeronima macrocarpa Berries Loaded on Nanocellulose: Thermal and Antioxidant Stability. Molecules 2022; 27:molecules27196661. [PMID: 36235198 PMCID: PMC9571521 DOI: 10.3390/molecules27196661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of different storage temperatures (35-55 °C) on the bioactive substances and antioxidant properties of Hyeronima macrocarpa berries loaded on nanocellulose. NC was extracted from banana pseudo-stems and presented an interesting surface and porosity properties. The acidified ethanol extract showed better anthocyanin extraction (1317 mg C3G eq./100 g FW) and was used for the preparation of the powdered product, which presented an intense and uniform magenta color, with CIELAB parameters of L* = 59.16, a* = 35.61, and b* = 7.08. The powder exhibited significant stability at storage temperatures of 35 and 45 °C, in which there was no significant loss of anthocyanins or a decrease in antioxidant capacity. In addition, the color was stable for up to 4 months without adding any preservative agent. The anthocyanin-rich extract of H. macrocarpa reached an estimated shelf-life of 315 days (stored at 35 °C), as a result of the impregnation process between the extract and NC, with the ability to protect the bioactives from degradation, due to NC surface properties.
Collapse
Affiliation(s)
- Andrés Felipe Alzate-Arbelaez
- Laboratorio Ciencia de los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Carrera 65 # 59A-110, Medellín 050034, Colombia
| | - Farid B. Cortés
- Grupo de Fenómenos de Superficie, Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Cra. 80 # 65-223, Medellín 050034, Colombia
| | - Benjamín A. Rojano
- Laboratorio Ciencia de los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Carrera 65 # 59A-110, Medellín 050034, Colombia
- Correspondence:
| |
Collapse
|
13
|
Sambudi NS, Lin WY, Harun NY, Mutiari D. Modification of Poly(lactic acid) with Orange Peel Powder as Biodegradable Composite. Polymers (Basel) 2022; 14:polym14194126. [PMID: 36236074 PMCID: PMC9570532 DOI: 10.3390/polym14194126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional fossil-based plastic usage and disposal has been one of the largest environmental concerns due to its non-biodegradable nature and high energy consumption during the manufacturing process. Poly(lactic acid) (PLA) as a renewable polymer derived from natural sources with properties comparable to classical plastics and low environmental cost has gained much attention as a safer alternative. Abundantly generated orange peel waste is rich in valuable components and there is still limited study on the potential uses of orange peel waste in reinforcing the PLA matrix. In this study, orange peel fine powder (OPP) synthesized from dried orange peel waste was added into PLA solution. PLA/OPP solutions at different OPP loadings, i.e., 0, 10, 20, 40, and 60 wt% were then casted out as thin films through solution casting method. Fourier-transform infrared spectroscopy (FTIR) analysis has shown that the OPP is incorporated into the PLA matrix, with OH groups and C=C stretching from OPP can be observed in the spectra. Tensile test results have reviewed that the addition of OPP has decreased the tensile strength and Young's modulus of PLA, but significantly improve the elongation at break by 49 to 737%. Water contact angle analysis shows that hydrophilic OPP has modified the surface hydrophobicity of PLA with a contact angle ranging from 70.12° to 88.18°, but higher loadings lead to decrease of surface energy. It is proven that addition of OPP improves the biodegradability of PLA, where PLA/60 wt% OPP composite shows the best biodegradation performance after 28 days with 60.43% weight loss. Lastly, all PLA/OPP composites have better absorption in alkaline solution.
Collapse
Affiliation(s)
- Nonni Soraya Sambudi
- Department of Chemical Engineering, Universitas Pertamina, Simprug, Jakarta 12220, Indonesia
- Correspondence: (N.S.S.); (N.Y.H.)
| | - Wai Yi Lin
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Noorfidza Yub Harun
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Correspondence: (N.S.S.); (N.Y.H.)
| | - Dhani Mutiari
- Department of Architecture, Universitas Muhammadiyah Surakarta, Jl. A Yani, Mendungan, Kartasura 57169, Indonesia
| |
Collapse
|
14
|
Polyhydroxyalkanoates Composites and Blends: Improved Properties and New Applications. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6070206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Composites of Polyhydroxyalkanoates (PHAs) have been proven to have enhanced properties in comparison to the pure form of these polyesters. Depending on what polymer or material is added to PHAs, the enhancement of different properties is observed. Since PHAs are explored for usage in diverse fields, understanding what blends affect what properties would guide further investigations towards application. This article reviews works that have been carried out with composite variation for application in several fields. Some properties of PHAs are highlighted and composite variation for their modulations are explored.
Collapse
|
15
|
Hybrid nanocomposite packaging films from cellulose nanocrystals, zinc sulfide quantum dots reinforced polylactic acid with fluorescent and antibacterial properties. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Briassoulis D, Athanasoulia IG, Tserotas P. PHB/PLA plasticized by olive oil and carvacrol solvent-cast films with optimised ductility and physical ageing stability. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Gómez-Gast N, López Cuellar MDR, Vergara-Porras B, Vieyra H. Biopackaging Potential Alternatives: Bioplastic Composites of Polyhydroxyalkanoates and Vegetal Fibers. Polymers (Basel) 2022; 14:1114. [PMID: 35335445 PMCID: PMC8950292 DOI: 10.3390/polym14061114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Initiatives to reduce plastic waste are currently under development worldwide. As a part of it, the European Union and private and public organizations in several countries are designing and implementing regulations for single-use plastics. For example, by 2030, plastic packaging and food containers must be reusable or recyclable. In another approach, researchers are developing biopolymers using biodegradable thermoplastics, such as polyhydroxyalkanoates (PHAs), to replace fossil derivatives. However, their production capacity, high production costs, and poor mechanical properties hinder the usability of these biopolymers. To overcome these limitations, biomaterials reinforced with natural fibers are acquiring more relevance as the world of bioplastics production is increasing. This review presents an overview of PHA-vegetal fiber composites, the effects of the fiber type, and the production method's impact on the mechanical, thermal, barrier properties, and biodegradability, all relevant for biopackaging. To acknowledge the behaviors and trends of the biomaterials reinforcement field, we searched for granted patents focusing on bio-packaging applications and gained insight into current industry developments and contributions.
Collapse
Affiliation(s)
- Natalia Gómez-Gast
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza 52926, Mexico; (N.G.-G.); (B.V.-P.)
| | - Ma Del Rocío López Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria (CABA), Institute of Food and Agricultural Sciences (ICAp), Autonomous University of Hidalgo State (UAEH), Av. Universidad Km. 1, Ex-Hda. De Aquetzalpa AP 32, Tulancingo de Bravo 43600, Mexico;
| | - Berenice Vergara-Porras
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza 52926, Mexico; (N.G.-G.); (B.V.-P.)
| | - Horacio Vieyra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eduardo Monroy Cardenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| |
Collapse
|
18
|
3D printing of toughened enantiomeric PLA/PBAT/PMMA quaternary system with complete stereo-complexation: Compatibilizer architecture effects. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Wang Y, Zhao W, Han L, Tam KC. Superhydrophobic surfaces from sustainable colloidal systems. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Ediyilyam S, Lalitha MM, George B, Shankar SS, Wacławek S, Černík M, Padil VVT. Synthesis, Characterization and Physicochemical Properties of Biogenic Silver Nanoparticle-Encapsulated Chitosan Bionanocomposites. Polymers (Basel) 2022; 14:463. [PMID: 35160453 PMCID: PMC8840532 DOI: 10.3390/polym14030463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Green bionanocomposites have garnered considerable attention and applications in the pharmaceutical and packaging industries because of their intrinsic features, such as biocompatibility and biodegradability. The work presents a novel approach towards the combined effect of glycerol, tween 80 and silver nanoparticles (AgNPs) on the physicochemical properties of lyophilized chitosan (CH) scaffolds produced via a green synthesis method.The produced bionanocomposites were characterized with the help of Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The swelling behavior, water vapor transmission rate, moisture retention capability, degradation in Hanks solution, biodegradability in soil, mechanical strength and electrochemical performance of the composites were evaluated. The addition of additives to the CH matrix alters the physicochemical and biological functioning of the matrix. Plasticized scaffolds showed an increase in swelling degree, water vapor transmission rate and degradability in Hank's balanced solution compared to the blank chitosan scaffolds. The addition of tween 80 made the scaffolds more porous, and changes in physicochemical properties were observed. Green-synthesized AgNPs showed intensified antioxidant and antibacterial properties. Incorporating biogenic nanoparticles into the CH matrix enhances the polymer composites' biochemical properties and increases the demand in the medical and biological sectors. These freeze-dried chitosan-AgNPs composite scaffolds had tremendous applications, especially in biomedical fields like wound dressing, tissue engineering, bone regeneration, etc.
Collapse
Affiliation(s)
- Sreelekha Ediyilyam
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671316, India; (S.E.); (M.M.L.)
| | - Mahesh M. Lalitha
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671316, India; (S.E.); (M.M.L.)
| | - Bini George
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671316, India; (S.E.); (M.M.L.)
| | - Sarojini Sharath Shankar
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, India
- Department of Medicine, Thomas Jefferson University, Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic;
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic;
| | - Vinod Vellora Thekkae Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic;
| |
Collapse
|
21
|
Kim EK, Jung J, Cho K, Yun GJ, Lee JC. Synthesis of polybenzimidazoles having improved processability by introducing two and three ether groups in a repeating unit. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Orientation of Polylactic Acid-Chitin Nanocomposite Films via Combined Calendering and Uniaxial Drawing: Effect on Structure, Mechanical, and Thermal Properties. NANOMATERIALS 2021; 11:nano11123308. [PMID: 34947658 PMCID: PMC8706151 DOI: 10.3390/nano11123308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
The orientation of polymer composites is one way to increase the mechanical properties of the material in a desired direction. In this study, the aim was to orient chitin nanocrystal (ChNC)-reinforced poly(lactic acid) (PLA) nanocomposites by combining two techniques: calendering and solid-state drawing. The effect of orientation on thermal properties, crystallinity, degree of orientation, mechanical properties and microstructure was studied. The orientation affected the thermal and structural behavior of the nanocomposites. The degree of crystallinity increased from 8% for the isotropic compression-molded films to 53% for the nanocomposites drawn with the highest draw ratio. The wide-angle X-ray scattering results confirmed an orientation factor of 0.9 for the solid-state drawn nanocomposites. The mechanical properties of the oriented nanocomposite films were significantly improved by the orientation, and the pre-orientation achieved by film calendering showed very positive effects on solid-state drawn nanocomposites: The highest mechanical properties were achieved for pre-oriented nanocomposites. The stiffness increased from 2.3 to 4 GPa, the strength from 37 to 170 MPa, the elongation at break from 3 to 75%, and the work of fracture from 1 to 96 MJ/m3. This study demonstrates that the pre-orientation has positive effect on the orientation of the nanocomposites structure and that it is an extremely efficient means to produce films with high strength and toughness.
Collapse
|
23
|
Preparation of effective ultraviolet shielding poly (lactic acid)/poly (butylene adipate-co-terephthalate) degradable composite film using co-precipitation and hot-pressing method. Int J Biol Macromol 2021; 191:540-547. [PMID: 34571121 DOI: 10.1016/j.ijbiomac.2021.09.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022]
Abstract
Biodegradable poly (lactide) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) composite films were made by a co-precipitation and hot-pressing method. The property of composite films like the chemical interaction, phase morphology, mechanical properties, and thermal properties were studied. The Fourier transform infrared spectroscopy (FTIR) test manifested that there was a small amount of the transesterifications between the PBAT and PLA during hot pressing, which could improve the compatibility of the two phases. The tensile strength of the film only reduced by 7.4%, while the elongation at break was increased by 119.1% compared with PLA after adding 4%wt PBAT. The composite films showed a high Ultraviolet-visible (UV) light barrier property. The UV blocking rate of the composite after adding 4%wt PBAT was 6.95 times higher than that of pure PLA at 380 nm. The PLA/PBAT composite films with excellent thermal stability, satisfactory mechanical properties and UV-light barrier have high a possibility for an UV screening packaging application.
Collapse
|
24
|
Golan O, Shalom H, Kaplan-Ashiri I, Cohen SR, Feldman Y, Pinkas I, Ofek Almog R, Zak A, Tenne R. Poly(L-lactic acid) Reinforced with Hydroxyapatite and Tungsten Disulfide Nanotubes. Polymers (Basel) 2021; 13:3851. [PMID: 34771407 PMCID: PMC8587543 DOI: 10.3390/polym13213851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Poly(L-lactic acid) (PLLA) is a biocompatible, biodegradable, and semi-crystalline polymer with numerous applications including food packaging, medical implants, stents, tissue engineering scaffolds, etc. Hydroxyapatite (HA) is the major component of natural bone. Conceptually, combining PLLA and HA could produce a bioceramic suitable for implants and bone repair. However, this nanocomposite suffers from poor mechanical behavior under tensile strain. In this study, films of PLLA and HA were prepared with small amounts of nontoxic WS2 nanotubes (INT-WS2). The structural aspects of the films were investigated via electron microscopy, X-ray diffraction, Raman microscopy, and infrared absorption spectroscopy. The mechanical properties were evaluated via tensile measurements, micro-hardness tests, and nanoindentation. The thermal properties were investigated via differential scanning calorimetry. The composite films exhibited improved mechanical and thermal properties compared to the films prepared from the PLLA and HA alone, which is advantageous for medical applications.
Collapse
Affiliation(s)
- Ofek Golan
- Department of Materials Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel; (O.G.); (R.O.A.)
- Department of Molecular Chemistry and Materials Science, Weizmann Institute, Rehovot 76100, Israel;
| | - Hila Shalom
- Department of Molecular Chemistry and Materials Science, Weizmann Institute, Rehovot 76100, Israel;
| | - Ifat Kaplan-Ashiri
- Chemical Research Support Department, Weizmann Institute, Rehovot 76100, Israel; (I.K.-A.); (S.R.C.); (Y.F.); (I.P.)
| | - Sidney R. Cohen
- Chemical Research Support Department, Weizmann Institute, Rehovot 76100, Israel; (I.K.-A.); (S.R.C.); (Y.F.); (I.P.)
| | - Yishay Feldman
- Chemical Research Support Department, Weizmann Institute, Rehovot 76100, Israel; (I.K.-A.); (S.R.C.); (Y.F.); (I.P.)
| | - Iddo Pinkas
- Chemical Research Support Department, Weizmann Institute, Rehovot 76100, Israel; (I.K.-A.); (S.R.C.); (Y.F.); (I.P.)
| | - Rakefet Ofek Almog
- Department of Materials Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel; (O.G.); (R.O.A.)
| | - Alla Zak
- Department of Sciences, Holon Institute of Technology, Holon 58102, Israel;
| | - Reshef Tenne
- Department of Molecular Chemistry and Materials Science, Weizmann Institute, Rehovot 76100, Israel;
| |
Collapse
|
25
|
Santos Andrade L, Silva NGS, Ornellas Cortat LIC, Mulinari DR.
Approach in
Macadamia integrifolia
residue based
low‐density polyethylene
composites on mechanical and thermal performance. J Appl Polym Sci 2021. [DOI: 10.1002/app.50613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Laert Santos Andrade
- Department of Engineering Volta Redonda University Center (UNIFOA) Volta Redonda Brazil
| | - Nycolle Gonçalves Souza Silva
- Department of Chemistry and Environment, Technology College (FAT) State University of Rio de Janeiro (UERJ) Rod. Pres. Dutra, km 298 Resende Rio de Janeiro Brazil
| | | | - Daniella Regina Mulinari
- Department of Mechanical and Energy, Technology College (FAT) State University of Rio de Janeiro (UERJ) Resende Brazil
| |
Collapse
|
26
|
Zielińska D, Szentner K, Waśkiewicz A, Borysiak S. Production of Nanocellulose by Enzymatic Treatment for Application in Polymer Composites. MATERIALS 2021; 14:ma14092124. [PMID: 33922118 PMCID: PMC8122419 DOI: 10.3390/ma14092124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022]
Abstract
In the last few years, the scientific community around the world has devoted a lot of attention to the search for the best methods of obtaining nanocellulose. In this work, nanocellulose was obtained in enzymatic reactions with strictly defined dispersion and structural parameters in order to use it as a filler for polymers. The controlled enzymatic hydrolysis of the polysaccharide was carried out in the presence of cellulolytic enzymes from microscopic fungi-Trichoderma reesei and Aspergillus sp. It has been shown that the efficiency of bioconversion of cellulose material depends on the type of enzymes used. The use of a complex of cellulases obtained from a fungus of the genus Trichoderma turned out to be an effective method of obtaining cellulose of nanometric dimensions with a very low polydispersity. The effect of cellulose enzymatic reactions was assessed using the technique of high-performance liquid chromatography coupled with a refractometric detector, X-ray diffraction, dynamic light scattering and Fourier transform infrared spectroscopy. In the second stage, polypropylene composites with nanometric cellulose were obtained by extrusion and injection. It was found by means of X-ray diffraction, hot stage optical microscopy and differential scanning calorimetry that nanocellulose had a significant effect on the supermolecular structure, nucleation activity and the course of phase transitions of the obtained polymer nanocomposites. Moreover, the obtained nanocomposites are characterized by very good strength properties. This paper describes for the first time that the obtained cellulose nanofillers with defined parameters can be used for the production of polymer composites with a strictly defined polymorphic structure, which in turn may influence future decision making about obtaining materials with controllable properties, e.g., high flexibility, enabling the thermoforming process of packaging.
Collapse
Affiliation(s)
- Daria Zielińska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland;
| | - Kinga Szentner
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznan, Poland; (K.S.); (A.W.)
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznan, Poland; (K.S.); (A.W.)
| | - Sławomir Borysiak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland;
- Correspondence: ; Tel.: +48-616-653-549
| |
Collapse
|
27
|
Rasheed M, Jawaid M, Parveez B. Bamboo Fiber Based Cellulose Nanocrystals/Poly(Lactic Acid)/Poly(Butylene Succinate) Nanocomposites: Morphological, Mechanical and Thermal Properties. Polymers (Basel) 2021; 13:1076. [PMID: 33805433 PMCID: PMC8038013 DOI: 10.3390/polym13071076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/05/2022] Open
Abstract
The purpose of this work was to investigate the effect of cellulose nanocrystals (CNC) from bamboo fiber on the properties of poly (lactic acid) (PLA)/poly (butylene succinate) (PBS) composites fabricated by melt mixing at 175 °C and then hot pressing at 180 °C. PBS and CNC (0.5, 0.75, 1, 1.5 wt.%) were added to improvise the properties of PLA. The morphological, physiochemical and crystallinity properties of nanocomposites were analysed by field emission scanning electron microscope (FESEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD), respectively. The thermal and tensile properties were analysed by thermogravimetic analysis (TGA), Differential scanning calorimetry (DSC) and Universal testing machine (UTM). PLA-PBS blend shows homogeneous morphology while the composite shows rod-like CNC particles, which are embedded in the polymer matrix. The uniform distribution of CNC particles in the nanocomposites improves their thermal stability, tensile strength and tensile modulus up to 1 wt.%; however, their elongation at break decreases. Thus, CNC addition in PLA-PBS matrix improves structural and thermal properties of the composite. The composite, thus developed, using CNC (a natural fiber) and PLA-PBS (biodegradable polymers) could be of immense importance as they could allow complete degradation in soil, making it a potential alternative material to existing packaging materials in the market that could be environment friendly.
Collapse
Affiliation(s)
- Masrat Rasheed
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohammad Jawaid
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Bisma Parveez
- Kulliyan of Engineering (KOE), Islamic International University Malaysia, Gombak 53100, Kuala Lumpur, Malaysia;
| |
Collapse
|
28
|
Mathe S, Dimonie D, Cristea M. Thermal analysis and polarized light microscopy as methods to study the increasing of the durability of PLA designed for 3D printing. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1880111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Silvia Mathe
- Doctoral School of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest, Romania
| | - Doina Dimonie
- National Institute of Research and Development in Chemistry and Petrochemistry, Bucharest, Romania
| | - Mariana Cristea
- Institute of Macromolecular Chemistry “Petru Poni”, Iasi, Romania
| |
Collapse
|
29
|
Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers (Basel) 2021; 13:polym13020231. [PMID: 33440879 PMCID: PMC7827473 DOI: 10.3390/polym13020231] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/28/2022] Open
Abstract
The high demand for plastic and polymeric materials which keeps rising every year makes them important industries, for which sustainability is a crucial aspect to be taken into account. Therefore, it becomes a requirement to makes it a clean and eco-friendly industry. Cellulose creates an excellent opportunity to minimize the effect of non-degradable materials by using it as a filler for either a synthesis matrix or a natural starch matrix. It is the primary substance in the walls of plant cells, helping plants to remain stiff and upright, and can be found in plant sources, agriculture waste, animals, and bacterial pellicle. In this review, we discussed the recent research development and studies in the field of biocomposites that focused on the techniques of extracting micro- and nanocellulose, treatment and modification of cellulose, classification, and applications of cellulose. In addition, this review paper looked inward on how the reinforcement of micro- and nanocellulose can yield a material with improved performance. This article featured the performances, limitations, and possible areas of improvement to fit into the broader range of engineering applications.
Collapse
|
30
|
Simon-Stőger L, Varga C. PE-contaminated industrial waste ground tire rubber: How to transform a handicapped resource to a valuable one. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:111-121. [PMID: 33065334 DOI: 10.1016/j.wasman.2020.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Sustainability and enhancement of recycling differing polymer waste has become a leading driver for industries associated with this type of waste. However, polymer waste streams that have not seen as 'typical' have existed in smaller but not insignificant amounts. This study has focused on the recycling of such a waste resource that is not classified as a typical one in developed countries but appears in other locations globally where opportunities for careful waste pretreatment are hindered, therefore creating a challenge for waste handling and the application of modern techniques. Compatibilizing is a strategy employed to recycle ground tire rubber (GTR) by blending with waste high density polyethylene (w-HDPE). Such processing methods and measurement techniques have been chosen to allow easy access without extra costs. For enhanced incorporation of the filler into the matrix olefin-maleic-anhydride copolymer based additives have been synthesized and have succeeded in creating a more homogenous blend with samples having a good surface appearance and mechanical properties. Outstanding Charpy impact strength at room temperature (10.1 kJ/m2) has been achieved in compatibilized 70/30 w-HDPE/GTR (containing 20% PE-contaminant), while elongation at break and tensile strength have been 10.3% and 14.9 MPa. Morphological structure of rubber resources and blends have been assessed by SEM while analytical properties and other features of experimental compatibilizing additives have been studied by e.g. FT-IR.
Collapse
Affiliation(s)
- L Simon-Stőger
- Institutional Department of MOL Hydrocarbon and Coal Processing, Institute of Chemical and Process Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary.
| | - Cs Varga
- Institutional Department of MOL Hydrocarbon and Coal Processing, Institute of Chemical and Process Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| |
Collapse
|
31
|
Rabbi MA, Rahman MM, Minami H, Habib MR, Ahmad H. Ag impregnated sub-micrometer crystalline jute cellulose particles: Catalytic and antibacterial properties. Carbohydr Polym 2020; 233:115842. [DOI: 10.1016/j.carbpol.2020.115842] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 01/29/2023]
|
32
|
Surendhiran D, Li C, Cui H, Lin L. Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2019.100439] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Surendhiran D, Cui H, Lin L. Encapsulation of Phlorotannin in Alginate/PEO blended nanofibers to preserve chicken meat from Salmonella contaminations. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100346] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Zhao LS, Cai YH, Liu HL. Physical properties of Poly(L-lactic acid) fabricated using salicylic hydrazide derivative with tetraamide structure. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1625386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Li-Sha Zhao
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| | - Yan-Hua Cai
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| | - Hui-Li Liu
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, P.R. China
| |
Collapse
|
35
|
Lima EMB, Lima AM, Minguita APS, Rojas dos Santos NR, Pereira ICS, Neves TTM, da Costa Gonçalves LF, Moreira APD, Middea A, Neumann R, Tavares MIB, Oliveira RN. Poly(lactic acid) biocomposites with mango waste and organo-montmorillonite for packaging. J Appl Polym Sci 2019. [DOI: 10.1002/app.47512] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Aline Muniz Lima
- Brazilian Agricultural Research Corporation; EMBRAPA Food Technology; Brazil
| | | | | | | | | | | | - Ana Paula Duarte Moreira
- Materials and Metallurgy Engineering Program/COPPE; Federal University of Rio de Janeiro; Brazil
| | | | | | | | - Renata Nunes Oliveira
- Postgraduate Program of Chemical Engineering/DEQ; Federal Rural University of Rio de Janeiro; Brazil
| |
Collapse
|
36
|
Mohamed El-Hadi A, Alamri HR. The New Generation from Biomembrane with Green Technologies for Wastewater Treatment. Polymers (Basel) 2018; 10:E1174. [PMID: 30961099 PMCID: PMC6403578 DOI: 10.3390/polym10101174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022] Open
Abstract
A biopolymer of polylactic acid (PLLA)/polypropylene carbonate (PPC)/poly (3-hydroxybutrate) (PHB)/triethyl citrate (TEC) blends was prepared by the solution-casting method at different proportions. The thermal characteristics were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). PHB and TEC were added to improve the interfacial adhesion, crystallization behavior, and mechanical properties of the immiscible blend from PLLA and PPC (20%). The addition of more than 20% of PPC as an amorphous part hindered the crystallization of PLLA. PPC, PHB, and TEC also interacted with the PLLA matrix, which reduced the glass transition temperature (Tg), the cold crystallization temperature (Tcc), and the melting point (Tm) to about 53, 57 and 15 °C, respectively. The Tg shifted from 60 to 7 °C; therefore, the elongation at break improved from 6% (pure PLLA) to 285% (PLLA blends). In this article, biomembranes of PLLA with additives were developed and made by an electrospinning process. The new generation from biopolymer membranes can be used to absorb suspended pollutants in the water, which helps in the purification of drinking water in the household.
Collapse
Affiliation(s)
- Ahmed Mohamed El-Hadi
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, Al-Abidiyya, P.O. Box 13174, Makkah 21955, Saudi Arabia.
- Department of Basic Science, Higher Institute of Engineering and Technology, El Arish, North Sinai 9004, Egypt.
| | - Hatem Rashad Alamri
- Physics Department, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| |
Collapse
|
37
|
Ai X, Li X, Yu Y, Pan H, Yang J, Wang D, Yang H, Zhang H, Dong L. The Mechanical, Thermal, Rheological and Morphological Properties of PLA/PBAT Blown Films by Using Bis(tert-butyl dioxy isopropyl) Benzene as Crosslinking Agent. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24927] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xue Ai
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao People's Republic of China
- Key Laboratory of Polymer Ecomaterials; Chinese Academy of Sciences, Changchun Institute of Applied Chemistry; Changchun People's Republic of China
- University of Science and Technology of China; Hefei People's Republic of China
| | - Xin Li
- Key Laboratory of Polymer Ecomaterials; Chinese Academy of Sciences, Changchun Institute of Applied Chemistry; Changchun People's Republic of China
- University of Science and Technology of China; Hefei People's Republic of China
| | - Yinlei Yu
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao People's Republic of China
- Key Laboratory of Polymer Ecomaterials; Chinese Academy of Sciences, Changchun Institute of Applied Chemistry; Changchun People's Republic of China
- University of Science and Technology of China; Hefei People's Republic of China
| | - Hongwei Pan
- Key Laboratory of Polymer Ecomaterials; Chinese Academy of Sciences, Changchun Institute of Applied Chemistry; Changchun People's Republic of China
- University of Science and Technology of China; Hefei People's Republic of China
| | - Jia Yang
- Key Laboratory of Polymer Ecomaterials; Chinese Academy of Sciences, Changchun Institute of Applied Chemistry; Changchun People's Republic of China
- University of Science and Technology of China; Hefei People's Republic of China
| | - Dongmei Wang
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao People's Republic of China
| | - Huili Yang
- Key Laboratory of Polymer Ecomaterials; Chinese Academy of Sciences, Changchun Institute of Applied Chemistry; Changchun People's Republic of China
| | - Huiliang Zhang
- Key Laboratory of Polymer Ecomaterials; Chinese Academy of Sciences, Changchun Institute of Applied Chemistry; Changchun People's Republic of China
| | - Lisong Dong
- Key Laboratory of Polymer Ecomaterials; Chinese Academy of Sciences, Changchun Institute of Applied Chemistry; Changchun People's Republic of China
| |
Collapse
|
38
|
El-Hadi AM. Miscibility of Crystalline/Amorphous/Crystalline Biopolymer Blends from PLLA/PDLLA/PHB with Additives. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1455863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Ahmed M. El-Hadi
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Basic Science, Higher Institute of Engineering and Technology, El Arish, North Sinai, Egypt
| |
Collapse
|
39
|
Wang Y, Wei Z, Li Y. Toughening polylactide with epoxidized styrene-butadiene impact resin: Mechanical, morphological, and rheological characterization. J Appl Polym Sci 2018. [DOI: 10.1002/app.46058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanshai Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Polymer Science and Engineering of Liaoning Province, Liaoning Engineering Laboratory of Advanced Polymer Materials, Department of Polymer Science and Engineering, Faculty of Chemical, Environmental and Biological Science and Technology; Dalian University of Technology; Dalian 116024 China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Key Laboratory of Polymer Science and Engineering of Liaoning Province, Liaoning Engineering Laboratory of Advanced Polymer Materials, Department of Polymer Science and Engineering, Faculty of Chemical, Environmental and Biological Science and Technology; Dalian University of Technology; Dalian 116024 China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Polymer Science and Engineering of Liaoning Province, Liaoning Engineering Laboratory of Advanced Polymer Materials, Department of Polymer Science and Engineering, Faculty of Chemical, Environmental and Biological Science and Technology; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|