1
|
Mısır E, Akay GG. Synaptic dysfunction in schizophrenia. Synapse 2023:e22276. [PMID: 37210696 DOI: 10.1002/syn.22276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Schizophrenia is a chronic disease presented with psychotic symptoms, negative symptoms, impairment in the reward system, and widespread neurocognitive deterioration. Disruption of synaptic connections in neural circuits is responsible for the disease's development and progression. Because deterioration in synaptic connections results in the impaired effective processing of information. Although structural impairments of the synapse, such as a decrease in dendritic spine density, have been shown in previous studies, functional impairments have also been revealed with the development of genetic and molecular analysis methods. In addition to abnormalities in protein complexes regulating exocytosis in the presynaptic region and impaired vesicle release, especially, changes in proteins related to postsynaptic signaling have been reported. In particular, impairments in postsynaptic density elements, glutamate receptors, and ion channels have been shown. At the same time, effects on cellular adhesion molecular structures such as neurexin, neuroligin, and cadherin family proteins were detected. Of course, the confusing effect of antipsychotic use in schizophrenia research should also be considered. Although antipsychotics have positive and negative effects on synapses, studies indicate synaptic deterioration in schizophrenia independent of drug use. In this review, the deterioration in synapse structure and function and the effects of antipsychotics on the synapse in schizophrenia will be discussed.
Collapse
Affiliation(s)
- Emre Mısır
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Güvem Gümüş Akay
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
- Faculty of Medicine, Department of Physiology, Ankara University, Ankara, Turkey
- Brain Research Center (AÜBAUM), Ankara University, Ankara, Turkey
- Department of Cellular Neuroscience and Advanced Microscopic Neuroimaging, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| |
Collapse
|
2
|
Arnsten AFT, Woo E, Yang S, Wang M, Datta D. Unusual Molecular Regulation of Dorsolateral Prefrontal Cortex Layer III Synapses Increases Vulnerability to Genetic and Environmental Insults in Schizophrenia. Biol Psychiatry 2022; 92:480-490. [PMID: 35305820 PMCID: PMC9372235 DOI: 10.1016/j.biopsych.2022.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
Schizophrenia is associated with reduced numbers of spines and dendrites from layer III of the dorsolateral prefrontal cortex (dlPFC), the layer that houses the recurrent excitatory microcircuits that subserve working memory and abstract thought. Why are these synapses so vulnerable, while synapses in deeper or more superficial layers are little affected? This review describes the special molecular properties that govern layer III neurotransmission and neuromodulation in the primate dlPFC and how they may render these circuits particularly vulnerable to genetic and environmental insults. These properties include a reliance on NMDA receptor rather than AMPA receptor neurotransmission; cAMP (cyclic adenosine monophosphate) magnification of calcium signaling near the glutamatergic synapse of dendritic spines; and potassium channels opened by cAMP/PKA (protein kinase A) signaling that dynamically alter network strength, with built-in mechanisms to take dlPFC "offline" during stress. A variety of genetic and/or environmental insults can lead to the same phenotype of weakened layer III connectivity, in which mechanisms that normally strengthen connectivity are impaired and those that normally weaken connectivity are intensified. Inflammatory mechanisms, such as increased kynurenic acid and glutamate carboxypeptidase II expression, are especially detrimental to layer III dlPFC neurotransmission and modulation, mimicking genetic insults. The combination of genetic and inflammatory insults may cross the threshold into pathology.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut.
| | - Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Shengtao Yang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Min Wang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| |
Collapse
|
3
|
Arnsten AFT, Datta D, Wang M. The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Mol Psychiatry 2021; 26:3684-3700. [PMID: 33319854 PMCID: PMC8203737 DOI: 10.1038/s41380-020-00973-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer's disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without "bottom-up" sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal cortex (dlPFC) express the molecular machinery for feedforward, cAMP-PKA-calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP-PKA signaling. Excessive levels of cAMP-calcium signaling can have a number of detrimental effects: for example, opening nearby K+ channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium-cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin). Many genetic or inflammatory insults early in life weaken the regulation of calcium-cAMP signaling and are associated with increased risk of schizophrenia (e.g., GRM3). Age-related loss of regulatory proteins which result in elevated calcium-cAMP signaling over a long lifespan can additionally drive tau phosphorylation, amyloid pathology, and neurodegeneration, especially when protective calcium binding proteins are lost from the cytosol. Thus, the "genie" we need for our remarkable cognitive abilities may make us vulnerable to cognitive disorders when we lose essential regulation.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
4
|
Sultana R, Lee CC. Expression of Behavioral Phenotypes in Genetic and Environmental Mouse Models of Schizophrenia. Front Behav Neurosci 2020; 14:29. [PMID: 32184711 PMCID: PMC7058961 DOI: 10.3389/fnbeh.2020.00029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/07/2020] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by multifactorial etiology involving complex interactions among genetic and environmental factors. "Multiple-hit" models of the disorder can explain its variable incidence and prevalence in related individuals. Hence, there is a dire need to understand these interactions in the emergence of schizophrenia. To test these factors in the emergence of schizophrenia-like behaviors, we employed a genetic mouse model of the disorder (harboring the DISC1 mutation) along with various environmental insults, such as early life stress (maternal separation of pups) and/or pharmacological interventions (ketamine injections). When assessed on a battery of behavioral tests, we found that environmental interventions affect the severity of behavioral phenotypes in terms of increased negative behavior, as shown by reduced mobility in the forced swim and tail suspension tests, and changes to positive and cognitive symptoms, such as increased locomotion and disrupted PPI along with reduced working memory, respectively. Among the various interventions, the genetic mutation had the most profound effect on behavioral aberrations, followed by an environmental intervention by ketamine injections and ketamine-injected animals that were maternally separated during early postnatal days. We conclude that although environmental factors increased the prevalence of aberrant behavioral phenotypes, genetic background is still the predominant influence on phenotypic alterations in these mouse models of schizophrenia.
Collapse
Affiliation(s)
- Razia Sultana
- Neural Systems Laboratory, Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
5
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
6
|
Hikida T, Morita M, Kuroiwa M, Macpherson T, Shuto T, Sotogaku N, Niwa M, Sawa A, Nishi A. Adolescent psychosocial stress enhances sensitization to cocaine exposure in genetically vulnerable mice. Neurosci Res 2019; 151:38-45. [PMID: 30831136 DOI: 10.1016/j.neures.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 11/29/2022]
Abstract
Development of drug addictive behaviors is modulated by both genetic and environmental risk factors. However, the molecular mechanisms remain unknown. To address the role of adolescent stress in the development of drug addiction, we combined a transgenic mouse model in which a putative dominant-negative form of DISC1 under expressional control of the prion protein promoter is used as a genetic risk factor and adolescent social isolation stress as a gene-environmental interaction (GXE). Repeated cocaine exposure induced greater locomotion in the GXE group than in the other groups. In a conditioned place preference (CPP) test, GXE mice exhibited a significant place preference to the cocaine-conditioned area compared with the other groups. In the nucleus accumbens (NAc) of GXE mice, we found increased enzyme activity of phosphodiesterase-4 (PDE4), predominantly located in NAc D2-receptor-expressing neurons, and enhanced effects of the PDE4 inhibitor rolipram, but not the D1 agonist SKF81297, on the phosphorylation of DARPP-32 and GluA1 at PKA sites. Rolipram injection before cocaine exposure completely inhibited cocaine-induced hyperlocomotion and CPP in the GXE group. These results indicate that GXE enhances sensitivity to repeated cocaine exposure via an increase in PDE4 activity in NAc D2-recptor-expressing neurons, leading to the development of cocaine addictive behaviors.
Collapse
Affiliation(s)
- Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Japan; Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan.
| | - Makiko Morita
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Japan; Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Japan; Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | - Takahide Shuto
- Department of Pharmacology, Kurume University School of Medicine, Japan
| | - Naoki Sotogaku
- Department of Pharmacology, Kurume University School of Medicine, Japan
| | - Minae Niwa
- Department of Psychiatry, Johns Hopkins University School of Medicine, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Japan
| |
Collapse
|
7
|
Datta D, Arnsten AF. Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci 2018; 9:2127-2145. [PMID: 29470055 DOI: 10.1021/acschemneuro.7b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Amy F.T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
8
|
Kay LJ, Sangal V, Black GW, Soundararajan M. Proteomics and bioinformatics analyses identify novel cellular roles outside mitochondrial function for human miro GTPases. Mol Cell Biochem 2018; 451:21-35. [PMID: 29943371 PMCID: PMC6342832 DOI: 10.1007/s11010-018-3389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/16/2018] [Indexed: 12/03/2022]
Abstract
The human Miro GTPases (hMiros) have recently emerged as important mediators of mitochondrial transport and may significantly contribute to the development of disorders such as Alzheimer’s and schizophrenia. The hMiros represent two highly atypical members of the Ras superfamily, and exhibit several unique features: the presence of a GTPase domain at both the N-terminus and C-terminus, the presence of two calcium-binding EF-hand domains and localisation to the mitochondrial outer membrane. Here, elucidation of Miro GTPase signalling pathway components was achieved through the use of molecular biology, cell culture techniques and proteomics. An investigation of this kind has not been performed previously; we hoped, through these techniques, to enable the profiling and identification of pathways regulated by the human Miro GTPases. The results indicate several novel putative interaction partners for hMiro1 and hMiro2, including numerous proteins previously implicated in neurodegenerative pathways and the development of schizophrenia. Furthermore, we show that the N-terminal GTPase domain appears to fine-tune hMiro signalling, with GTP-bound versions of this domain associated with a diverse range of interaction partners in comparison to corresponding GDP-bound versions. Recent evidences suggest that human Miros participate in host–pathogen interactions with Vibrio Cholerae type III secretion proteins. We have undertaken a bioinformatics investigation to identify novel pathogenic effectors that might interact with Miros.
Collapse
Affiliation(s)
- Laura J Kay
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| | - Vartul Sangal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| | - Gary W Black
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
| | - Meera Soundararajan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK.
| |
Collapse
|
9
|
Proteostasis and Mitochondrial Role on Psychiatric and Neurodegenerative Disorders: Current Perspectives. Neural Plast 2018; 2018:6798712. [PMID: 30050571 PMCID: PMC6040257 DOI: 10.1155/2018/6798712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
Proteostasis involves processes that are fundamental for neural viability. Thus, protein misfolding and the formation of toxic aggregates at neural level, secondary to dysregulation of the conservative mechanisms of proteostasis, are associated with several neuropsychiatric conditions. It has been observed that impaired mitochondrial function due to a dysregulated proteostasis control system, that is, ubiquitin-proteasome system and chaperones, could also have effects on neurodegenerative disorders. We aimed to critically analyze the available findings regarding the neurobiological implications of proteostasis on the development of neurodegenerative and psychiatric diseases, considering the mitochondrial role. Proteostasis alterations in the prefrontal cortex implicate proteome instability and accumulation of misfolded proteins. Altered mitochondrial dynamics, especially in proteostasis processes, could impede the normal compensatory mechanisms against cell damage. Thereby, altered mitochondrial functions on regulatory modulation of dendritic development, neuroinflammation, and respiratory function may underlie the development of some psychiatric conditions, such as schizophrenia, being influenced by a genetic background. It is expected that with the increasing evidence about proteostasis in neuropsychiatric disorders, new therapeutic alternatives will emerge.
Collapse
|
10
|
Abbott PW, Gumusoglu SB, Bittle J, Beversdorf DQ, Stevens HE. Prenatal stress and genetic risk: How prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology 2018; 90:9-21. [PMID: 29407514 DOI: 10.1016/j.psyneuen.2018.01.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Risk for neuropsychiatric disorders is complex and includes an individual's internal genetic endowment and their environmental experiences and exposures. Embryonic development captures a particularly complex period, in which genetic and environmental factors can interact to contribute to risk. These environmental factors are incorporated differently into the embryonic brain than postnatal one. Here, we comprehensively review the human and animal model literature for studies that assess the interaction between genetic risks and one particular environmental exposure with strong and complex associations with neuropsychiatric outcomes-prenatal maternal stress. Gene-environment interaction has been demonstrated for stress occurring during childhood, adolescence, and adulthood. Additional work demonstrates that prenatal stress risk may be similarly complex. Animal model studies have begun to address some underlying mechanisms, including particular maternal or fetal genetic susceptibilities that interact with stress exposure and those that do not. More specifically, the genetic underpinnings of serotonin and dopamine signaling and stress physiology mechanisms have been shown to be particularly relevant to social, attentional, and internalizing behavioral changes, while other genetic factors have not, including some growth factor and hormone-related genes. Interactions have reflected both the diathesis-stress and differential susceptibility models. Maternal genetic factors have received less attention than those in offspring, but strongly modulate impacts of prenatal stress. Priorities for future research are investigating maternal response to distinct forms of stress and developing whole-genome methods to examine the contributions of genetic variants of both mothers and offspring, particularly including genes involved in neurodevelopment. This is a burgeoning field of research that will ultimately contribute not only to a broad understanding of psychiatric pathophysiology but also to efforts for personalized medicine.
Collapse
Affiliation(s)
- Parker W Abbott
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| | - Serena B Gumusoglu
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - Jada Bittle
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - David Q Beversdorf
- Interdisciplinary Neuroscience Program, Interdisciplinary Intercampus Research Program, Thompson Center for Autism and Neurodevelopment Disorders, Departments of Radiology, Neurology and Psychological Sciences, University of Missouri, Columbia, MO, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 2312 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| |
Collapse
|
11
|
Jin LE, Wang M, Yang ST, Yang Y, Galvin VC, Lightbourne TC, Ottenheimer D, Zhong Q, Stein J, Raja A, Paspalas CD, Arnsten AFT. mGluR2/3 mechanisms in primate dorsolateral prefrontal cortex: evidence for both presynaptic and postsynaptic actions. Mol Psychiatry 2017; 22:1615-1625. [PMID: 27502475 PMCID: PMC5298940 DOI: 10.1038/mp.2016.129] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/04/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023]
Abstract
Cognitive deficits in psychiatric and age-related disorders generally involve dysfunction of the dorsolateral prefrontal cortex (dlPFC), but there are few treatments for these debilitating symptoms. Group II metabotropic glutamate receptors (mGluR2/3), which couple to Gi/Go, have been a focus of therapeutics based on rodent research, where mGluR2/3 have been shown to reduce axonal glutamate release and increase glial glutamate uptake. However, this strategy has had mixed results in patients, and understanding mGluR2/3 mechanisms in primates will help guide therapeutic interventions. The current study examined mGluR2/3 localization and actions in the primate dlPFC layer III circuits underlying working memory, where the persistent firing of 'Delay cells' is mediated by N-methyl-d-aspartate receptors and weakened by cAMP-PKA-potassium channel signaling in dendritic spines. Immunoelectron microscopy identified postsynaptic mGluR2/3 in the spines, in addition to the traditional presynaptic and astrocytic locations. In vivo iontophoretic application of the mGluR2/3 agonists (2R, 4R)-APDC or LY379268 onto dlPFC Delay cells produced an inverted-U effect on working memory representation, with enhanced neuronal firing following low doses of mGluR2/3 agonists. The enhancing effects were reversed by an mGluR2/3 antagonist or by activating cAMP signaling, consistent with mGluR2/3 inhibiting postsynaptic cAMP signaling in spines. Systemic administration of these agonists to monkeys performing a working memory task also produced an inverted-U dose-response, where low doses improved performance but higher doses, similar to clinical trials, had mixed effects. Our data suggest that low doses of mGluR2/3 stimulation may have therapeutic effects through unexpected postsynaptic actions in dlPFC, strengthening synaptic connections and improving cognitive function.
Collapse
Affiliation(s)
- L E Jin
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - M Wang
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - S-T Yang
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Y Yang
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - V C Galvin
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - T C Lightbourne
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - D Ottenheimer
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Q Zhong
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - J Stein
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - A Raja
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - C D Paspalas
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA,Department of Neuroscience, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA. E-mail: or
| | - A F T Arnsten
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA,Department of Neuroscience, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA. E-mail: or
| |
Collapse
|
12
|
Deng D, Jian C, Lei L, Zhou Y, McSweeney C, Dong F, Shen Y, Zou D, Wang Y, Wu Y, Zhang L, Mao Y. A prenatal interruption of DISC1 function in the brain exhibits a lasting impact on adult behaviors, brain metabolism, and interneuron development. Oncotarget 2017; 8:84798-84817. [PMID: 29156684 PMCID: PMC5689574 DOI: 10.18632/oncotarget.21381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/03/2017] [Indexed: 02/03/2023] Open
Abstract
Mental illnesses like schizophrenia (SCZ) and major depression disorder (MDD) are devastating brain disorders. The SCZ risk gene, disrupted in schizophrenia 1 (DISC1), has been associated with neuropsychiatric conditions. However, little is known regarding the long-lasting impacts on brain metabolism and behavioral outcomes from genetic insults on fetal NPCs during early life. We have established a new mouse model that specifically interrupts DISC1 functions in NPCs in vivo by a dominant-negative DISC1 (DN-DISC1) with a precise temporal and spatial regulation. Interestingly, prenatal interruption of mouse Disc1 function in NPCs leads to abnormal depression-like deficit in adult mice. Here we took a novel unbiased metabonomics approach to identify brain-specific metabolites that are significantly changed in DN-DISC1 mice. Surprisingly, the inhibitory neurotransmitter, GABA, is augmented. Consistently, parvalbumin (PV) interneurons are increased in the cingulate cortex, retrosplenial granular cortex, and motor cortex. Interestingly, somatostatin (SST) positive and neuropeptide Y (NPY) interneurons are decreased in some brain regions, suggesting that DN-DISC1 expression affects the localization of interneuron subtypes. To further explore the cellular mechanisms that cause this change, DN-DISC1 suppresses proliferation and promotes the cell cycle exit of progenitors in the medial ganglionic eminence (MGE), whereas it stimulates ectopic proliferation of neighboring cells through cell non-autonomous effect. Mechanistically, it modulates GSK3 activity and interrupts Dlx2 activity in the Wnt activation. In sum, our results provide evidence that specific genetic insults on NSCs at a short period of time could lead to prolonged changes of brain metabolism and development, eventually behavioral defects.
Collapse
Affiliation(s)
- Dazhi Deng
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.,Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Chongdong Jian
- Department of Biology, Pennsylvania State University, University Park, PA, USA.,Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Lei
- Department of Biology, Pennsylvania State University, University Park, PA, USA.,Health Examination Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Colleen McSweeney
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Yilun Shen
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Donghua Zou
- Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi, China
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yuan Wu
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
13
|
|
14
|
Shin JG, Kim JH, Park CS, Kim BJ, Kim JW, Choi IG, Hwang J, Shin HD, Woo SI. Gender-Specific Associations between CHGB Genetic Variants and Schizophrenia in a Korean Population. Yonsei Med J 2017; 58:619-625. [PMID: 28332369 PMCID: PMC5368149 DOI: 10.3349/ymj.2017.58.3.619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Schizophrenia is a devastating mental disorder and is known to be affected by genetic factors. The chromogranin B (CHGB), a member of the chromogranin gene family, has been proposed as a candidate gene associated with the risk of schizophrenia. The secretory pathway for peptide hormones and neuropeptides in the brain is regulated by chromogranin proteins. The aim of this study was to investigate the potential associations between genetic variants of CHGB and schizophrenia susceptibility. MATERIALS AND METHODS In the current study, 15 single nucleotide polymorphisms of CHGB were genotyped in 310 schizophrenia patients and 604 healthy controls. RESULTS Statistical analysis revealed that two genetic variants (non-synonymous rs910122; rs2821 in 3'-untranslated region) were associated with schizophrenia [minimum p=0.002; odds ratio (OR)=0.72], even after correction for multiple testing (p(corr)=0.02). Since schizophrenia is known to be differentially expressed between sexes, additional analysis for sex was performed. As a result, these two genetic variants (rs910122 and rs2821) and a haplotype (ht3) showed significant associations with schizophrenia in male subjects (p(corr)=0.02; OR=0.64), whereas the significance disappeared in female subjects (p>0.05). CONCLUSION Although this study has limitations including a small number of samples and lack of functional study, our results suggest that genetic variants of CHGB may have sex-specific effects on the risk of schizophrenia and provide useful preliminary information for further study.
Collapse
Affiliation(s)
- Joong Gon Shin
- Department of Life Science, Sogang University, Seoul, Korea
- Research Institute for Basic Science, Sogang University, Seoul, Korea
| | - Jeong Hyun Kim
- Research Institute for Basic Science, Sogang University, Seoul, Korea
| | - Chul Soo Park
- Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Bong Jo Kim
- Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Jae Won Kim
- Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Ihn Geun Choi
- Department of Neuropsychiatry, Hallym University Hangang Sacred Heart Hospital, Seoul, Korea
| | - Jaeuk Hwang
- Department of Neuropsychiatry, Soonchunhyang University Hospital, Seoul, Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul, Korea
- Research Institute for Basic Science, Sogang University, Seoul, Korea
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Korea.
| | - Sung Il Woo
- Department of Neuropsychiatry, Soonchunhyang University Hospital, Seoul, Korea.
| |
Collapse
|
15
|
Kassan A, Egawa J, Zhang Z, Almenar-Queralt A, Nguyen QM, Lajevardi Y, Kim K, Posadas E, Jeste DV, Roth DM, Patel PM, Patel HH, Head BP. Caveolin-1 regulation of disrupted-in-schizophrenia-1 as a potential therapeutic target for schizophrenia. J Neurophysiol 2017; 117:436-444. [PMID: 27832597 PMCID: PMC5253400 DOI: 10.1152/jn.00481.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is a debilitating psychiatric disorder manifested in early adulthood. Disrupted-in-schizophrenia-1 (DISC1) is a susceptible gene for schizophrenia (Hodgkinson et al. 2004; Millar et al. 2000; St Clair et al. 1990) implicated in neuronal development, brain maturation, and neuroplasticity (Brandon and Sawa 2011; Chubb et al. 2008). Therefore, DISC1 is a promising candidate gene for schizophrenia, but the molecular mechanisms underlying its role in the pathogenesis of the disease are still poorly understood. Interestingly, caveolin-1 (Cav-1), a cholesterol binding and scaffolding protein, regulates neuronal signal transduction and promotes neuroplasticity. In this study we examined the role of Cav-1 in mediating DISC1 expression in neurons in vitro and the hippocampus in vivo. Overexpressing Cav-1 specifically in neurons using a neuron-specific synapsin promoter (SynCav1) increased expression of DISC1 and proteins involved in synaptic plasticity (PSD95, synaptobrevin, synaptophysin, neurexin, and syntaxin 1). Similarly, SynCav1-transfected differentiated human neurons derived from induced pluripotent stem cells (hiPSCs) exhibited increased expression of DISC1 and markers of synaptic plasticity. Conversely, hippocampi from Cav-1 knockout (KO) exhibited decreased expression of DISC1 and proteins involved in synaptic plasticity. Finally, SynCav1 delivery to the hippocampus of Cav-1 KO mice and Cav-1 KO neurons in culture restored expression of DISC1 and markers of synaptic plasticity. Furthermore, we found that Cav-1 coimmunoprecipitated with DISC1 in brain tissue. These findings suggest an important role by which neuron-targeted Cav-1 regulates DISC1 neurobiology with implications for synaptic plasticity. Therefore, SynCav1 might be a potential therapeutic target for restoring neuronal function in schizophrenia. NEW & NOTEWORTHY The present study is the first to demonstrate that caveolin-1 can regulate DISC1 expression in neuronal models. Furthermore, the findings are consistent across three separate neuronal models that include rodent neurons (in vitro and in vivo) and human differentiated neurons derived from induced pluripotent stem cells. These findings justify further investigation regarding the modulatory role by caveolin on synaptic function and as a potential therapeutic target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Adam Kassan
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry and the Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, California
| | - Junji Egawa
- VA San Diego Healthcare System, San Diego, California
| | - Zheng Zhang
- VA San Diego Healthcare System, San Diego, California
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California; and
| | | | | | - Kaitlyn Kim
- VA San Diego Healthcare System, San Diego, California
| | | | - Dilip V Jeste
- Department of Psychiatry and the Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, California
| | - David M Roth
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Piyush M Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Hemal H Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California
- VA San Diego Healthcare System, San Diego, California
| | - Brian P Head
- Department of Anesthesiology, University of California San Diego, La Jolla, California;
- VA San Diego Healthcare System, San Diego, California
- Sanford Consortium for Regenerative Medicine, La Jolla, California
| |
Collapse
|
16
|
Snyder GL, Vanover KE. PDE Inhibitors for the Treatment of Schizophrenia. ADVANCES IN NEUROBIOLOGY 2017; 17:385-409. [DOI: 10.1007/978-3-319-58811-7_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Howes OD, McCutcheon R, Owen MJ, Murray RM. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol Psychiatry 2017; 81:9-20. [PMID: 27720198 PMCID: PMC5675052 DOI: 10.1016/j.biopsych.2016.07.014] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 02/06/2023]
Abstract
The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychosis Studies, King's College London, London, United Kingdom; MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital, London, United Kingdom.
| | - Robert McCutcheon
- Psychosis Studies, King's College London, London, United Kingdom; MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital, London, United Kingdom
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, and Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, United Kingdom
| | - Robin M Murray
- Psychosis Studies, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Lee SA, Huang KC. Epigenetic profiling of human brain differential DNA methylation networks in schizophrenia. BMC Med Genomics 2016; 9:68. [PMID: 28117656 PMCID: PMC5260790 DOI: 10.1186/s12920-016-0229-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Epigenetics of schizophrenia provides important information on how the environmental factors affect the genetic architecture of the disease. DNA methylation plays a pivotal role in etiology for schizophrenia. Previous studies have focused mostly on the discovery of schizophrenia-associated SNPs or genetic variants. As postmortem brain samples became available, more and more recent studies surveyed transcriptomics of the diseases. In this study, we constructed protein-protein interaction (PPI) network using the disease associated SNP (or genetic variants), differentially expressed disease genes and differentially methylated disease genes (or promoters). By combining the different datasets and topological analyses of the PPI network, we established a more comprehensive understanding of the development and genetics of this devastating mental illness. Results We analyzed the previously published DNA methylation profiles of prefrontal cortex from 335 healthy controls and 191 schizophrenic patients. These datasets revealed 2014 CpGs identified as GWAS risk loci with the differential methylation profile in schizophrenia, and 1689 schizophrenic differential methylated genes (SDMGs) identified with predominant hypomethylation. These SDMGs, combined with the PPIs of these genes, were constructed into the schizophrenic differential methylation network (SDMN). On the SDMN, there are 10 hypermethylated SDMGs, including GNA13, CAPNS1, GABPB2, GIT2, LEFTY1, NDUFA10, MIOS, MPHOSPH6, PRDM14 and RFWD2. The hypermethylation to differential expression network (HyDEN) were constructed to determine how the hypermethylated promoters regulate gene expression. The enrichment analyses of biochemical pathways in HyDEN, including TNF alpha, PDGFR-beta signaling, TGF beta Receptor, VEGFR1 and VEGFR2 signaling, regulation of telomerase, hepatocyte growth factor receptor signaling, ErbB1 downstream signaling and mTOR signaling pathway, suggested that the malfunctioning of these pathways contribute to the symptoms of schizophrenia. Conclusions The epigenetic profiles of DNA differential methylation from schizophrenic brain samples were investigated to understand the regulatory roles of SDMGs. The SDMGs interplays with SCZCGs in a coordinated fashion in the disease mechanism of schizophrenia. The protein complexes and pathways involved in SDMN may be responsible for the etiology and potential treatment targets. The SDMG promoters are predominantly hypomethylated. Increasing methylation on these promoters is proposed as a novel therapeutic approach for schizophrenia. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0229-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng-An Lee
- Department of Information Management, Kainan University, Taoyuan, Taiwan
| | - Kuo-Chuan Huang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan.
| |
Collapse
|
19
|
Wang M, Arnsten AFT. Physiological approaches to understanding molecular actions on dorsolateral prefrontal cortical neurons underlying higher cognitive processing. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2016; 36:314-8. [PMID: 26646567 DOI: 10.13918/j.issn.2095-8137.2015.6.314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Revealing how molecular mechanisms influence higher brain circuits in primates will be essential for understanding how genetic insults lead to increased risk of cognitive disorders. Traditionally, modulatory influences on higher cortical circuits have been examined using lesion techniques, where a brain region is depleted of a particular transmitter to determine how its loss impacts cognitive function. For example, depletion of catecholamines or acetylcholine from the dorsolateral prefrontal cortex produces striking deficits in working memory abilities. More directed techniques have utilized direct infusions of drug into a specific cortical site to try to circumvent compensatory changes that are common following transmitter depletion. The effects of drug on neuronal firing patterns are often studied using iontophoresis, where a minute amount of drug is moved into the brain using a tiny electrical current, thus minimizing the fluid flow that generally disrupts neuronal recordings. All of these approaches can be compared to systemic drug administration, which remains a key arena for the development of effective therapeutics for human cognitive disorders. Most recently, viral techniques are being developed to be able to manipulate proteins for which there is no developed pharmacology, and to allow optogenetic manipulations in primate cortex. As the association cortices greatly expand in brain evolution, research in nonhuman primates is particularly important for understanding the modulatory regulation of our highest order cognitive operations.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurobiology, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Amy F T Arnsten
- Department of Neurobiology, School of Medicine, Yale University, New Haven, CT, 06510,
| |
Collapse
|
20
|
Uncovering the function of Disrupted in Schizophrenia 1 through interactions with the cAMP phosphodiesterase PDE4: Contributions of the Houslay lab to molecular psychiatry. Cell Signal 2015; 28:749-52. [PMID: 26432168 DOI: 10.1016/j.cellsig.2015.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022]
Abstract
Nearly 10years ago the laboratory of Miles Houslay was part of a collaboration which identified and characterized the interaction between Disrupted in Schizophrenia 1 and phosphodiesterase type 4. This work has had significant impact on our thinking of psychiatric illness causation and the potential for therapeutics.
Collapse
|
21
|
Arnsten AFT. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat Neurosci 2015; 18:1376-85. [PMID: 26404712 DOI: 10.1038/nn.4087] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022]
Abstract
A variety of cognitive disorders are worsened by stress exposure and involve dysfunction of the newly evolved prefrontal cortex (PFC). Exposure to acute, uncontrollable stress increases catecholamine release in PFC, reducing neuronal firing and impairing cognitive abilities. High levels of noradrenergic α1-adrenoceptor and dopaminergic D1 receptor stimulation activate feedforward calcium-protein kinase C and cyclic AMP-protein kinase A signaling, which open potassium channels to weaken synaptic efficacy in spines. In contrast, high levels of catecholamines strengthen the primary sensory cortices, amygdala and striatum, rapidly flipping the brain from reflective to reflexive control of behavior. These mechanisms are exaggerated by chronic stress exposure, where architectural changes lead to persistent loss of PFC function. Understanding these mechanisms has led to the successful translation of prazosin and guanfacine for treating stress-related disorders. Dysregulation of stress signaling pathways by genetic insults likely contributes to PFC deficits in schizophrenia, while age-related insults initiate interacting vicious cycles that increase vulnerability to Alzheimer's degeneration.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Abstract
Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a "buffer" between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.
Collapse
Affiliation(s)
- Vidar Gundersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Linda Hildegard Bergersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Xu Y, Cao W, Zhou M, Li C, Luo Y, Wang H, Zhao R, Jiang S, Yang J, Liu Y, Wang X, Li X, Xiong W, Ma J, Peng S, Zeng Z, Li X, Tan M, Li G. Inactivation of BRD7 results in impaired cognitive behavior and reduced synaptic plasticity of the medial prefrontal cortex. Behav Brain Res 2015; 286:1-10. [PMID: 25721744 DOI: 10.1016/j.bbr.2015.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
BRD7 is a bromodomain-containing protein (BCP), and recent evidence implicates the role of BCPs in the initiation and development of neurodevelopmental disorders. However, few studies have investigated the biological functions of BRD7 in the central nervous system. In our study, BRD7 was found to be widely expressed in various regions of the mouse brain, including the medial prefrontal cortex (mPFC), caudate putamen (CPu), hippocampus (Hip), midbrain (Mb), cerebellum (Cb), and mainly co-localized with neuron but not with glia. Using a BRD7 knockout mouse model and a battery of behavioral tests, we report that disruption of BRD7 results in impaired cognitive behavior leaving the emotional behavior unaffected. Moreover, a series of proteins involved in synaptic plasticity were decreased in the medial prefrontal cortex and there was a concomitant decrease in neuronal spine density and dendritic branching in the medial prefrontal cortex. However, no significant difference was found in the hippocampus compared to the wild-type mice. Thus, BRD7 might play a critical role in the regulation of synaptic plasticity and affect cognitive behavior.
Collapse
Affiliation(s)
- Yang Xu
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Wenyu Cao
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Tongzipo Road 172, Changsha, Hunan Province 410013, People's Republic of China
| | - Ming Zhou
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China.
| | - Changqi Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Tongzipo Road 172, Changsha, Hunan Province 410013, People's Republic of China
| | - Yanwei Luo
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Heran Wang
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Ran Zhao
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Shihe Jiang
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Jing Yang
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Yukun Liu
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Xinye Wang
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Xiayu Li
- The Third Xiang-Ya Hospital, Central South University, Tongzipo Road 237, Changsha, Hunan Province 410013, People's Republic of China
| | - Wei Xiong
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Jian Ma
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Shuping Peng
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Zhaoyang Zeng
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Xiaoling Li
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Guiyuan Li
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China.
| |
Collapse
|
24
|
Schmidt MJ, Mirnics K. Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 2015; 40:190-206. [PMID: 24759129 PMCID: PMC4262918 DOI: 10.1038/npp.2014.95] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023]
Abstract
The origins of schizophrenia have eluded clinicians and researchers since Kraepelin and Bleuler began documenting their findings. However, large clinical research efforts in recent decades have identified numerous genetic and environmental risk factors for schizophrenia. The combined data strongly support the neurodevelopmental hypothesis of schizophrenia and underscore the importance of the common converging effects of diverse insults. In this review, we discuss the evidence that genetic and environmental risk factors that predispose to schizophrenia disrupt the development and normal functioning of the GABAergic system.
Collapse
Affiliation(s)
- Martin J Schmidt
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Norlelawati AT, Kartini A, Norsidah K, Ramli M, Tariq AR, Wan Rohani WT. Disrupted-in-Schizophrenia-1 SNPs and Susceptibility to Schizophrenia: Evidence from Malaysia. Psychiatry Investig 2015; 12:103-11. [PMID: 25670952 PMCID: PMC4310907 DOI: 10.4306/pi.2015.12.1.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/28/2014] [Accepted: 02/20/2014] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Even though the role of the DICS1 gene as a risk factor for schizophrenia is still unclear, there is substantial evidence from functional and cell biology studies that supports the connection of the gene with schizophrenia. The studies associating the DISC1 gene with schizophrenia in Asian populations are limited to East-Asian populations. Our study examined several DISC1 markers of schizophrenia that were identified in the Caucasian and East-Asian populations in Malaysia and assessed the role of rs2509382, which is located at 11q14.3, the mutual translocation region of the famous DISC1 translocation [t (1; 11) (p42.1; q14.3)]. METHODS We genotyped eleven single-neucleotide polymorphism (SNPs) within or related to DISC1 (rs821597, rs821616, rs4658971, rs1538979, rs843979, rs2812385, rs1407599, rs4658890, and rs2509382) using the PCR-RFLP methods. RESULTS In all, there were 575 participants (225 schizophrenic patients and 350 healthy controls) of either Malay or Chinese ethnicity. The case-control analyses found two SNPs that were associated with schizophrenia [rs4658971 (p=0.030; OR=1.43 (1.35-1.99) and rs1538979-(p=0.036; OR=1.35 (1.02-1.80)] and rs2509382-susceptibility among the males schizophrenics [p=0.0082; OR=2.16 (1.22-3.81)]. This is similar to the meta-analysis findings for the Caucasian populations. CONCLUSION The study supports the notion that the DISC1 gene is a marker of schizophrenia susceptibility and that rs2509382 in the mutual DISC1 translocation region is a susceptibility marker for schizophrenia among males in Malaysia. However, the finding of the study is limited due to possible genetic stratification and the small sample size.
Collapse
Affiliation(s)
- A. Talib Norlelawati
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Abdullah Kartini
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Kuzaifah Norsidah
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Musa Ramli
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Abdul Razak Tariq
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Wan Taib Wan Rohani
- Faculty of Medicine, University of Sultan Zainal Abidin, Terengganu, Malaysia
| |
Collapse
|
26
|
El-Hassar L, Simen AA, Duque A, Patel KD, Kaczmarek LK, Arnsten AF, Yeckel MF. Disrupted in schizophrenia 1 modulates medial prefrontal cortex pyramidal neuron activity through cAMP regulation of transient receptor potential C and small-conductance K+ channels. Biol Psychiatry 2014; 76:476-85. [PMID: 24560582 PMCID: PMC4104266 DOI: 10.1016/j.biopsych.2013.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 12/22/2013] [Accepted: 12/30/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disrupted in schizophrenia 1 (DISC1) is a protein implicated in schizophrenia, bipolar disorder, major depressive disorder, and autism. To date, most of research examining DISC1 function has focused on its role in neurodevelopment, despite its presence throughout life. DISC1 also regulates cyclic adenosine monophosphate (cAMP) signaling by increasing type 4 phosphodiesterase catabolism of cAMP when cAMP concentrations are high. In this study, we tested the hypothesis that DISC1, through its regulation of cAMP, modulates I-SK and I-TRPC channel-mediated ionic currents that we have shown previously to regulate the activity of mature prefrontal cortical pyramidal neurons. METHODS We used patch-clamp recordings in prefrontal cortical slices from adult rats in which DISC1 function was reduced in vivo by short hairpin RNA viral knockdown or in vitro by dialysis of DISC1 antibodies. RESULTS We found that DISC1 disruption resulted in an increase of metabotropic glutamate receptor-induced intracellular calcium (Ca2+) waves, small-conductance K+ (SK)-mediated hyperpolarization and a decrease of transient receptor potential C (TRPC)-mediated sustained depolarization. Consistent with a role for DISC1 in regulation of cAMP signaling, forskolin-induced cAMP production also increased intracellular Ca2+ waves, I-SK and decreased I-TRPC. Lastly, inhibiting cAMP generation with guanfacine, an α2A-noradrenergic agonist, normalized the function of SK and TRPC channels. CONCLUSIONS Based on our findings, we propose that diminished DISC1 function, such as occurs in some mental disorders, can lead to the disruption of normal patterns of prefrontal cortex activity through the loss of cAMP regulation of metabotropic glutamate receptor-mediated intracellular Ca2+ waves, SK and TRPC channel activity.
Collapse
Affiliation(s)
- Lynda El-Hassar
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut.
| | - Arthur A. Simen
- Department of Psychiatry, Yale University School of Medicine
| | - Alvaro Duque
- Department of Neurobiology, Yale University School of Medicine
| | - Kiran D. Patel
- Department of Psychiatry, Yale University School of Medicine
| | | | - Amy F.T. Arnsten
- Department of Neurobiology, Yale University School of Medicine,The Kavli Institute for Neuroscience, Yale University School of Medicine
| | - Mark F. Yeckel
- Department of Neurobiology, Yale University School of Medicine,The Kavli Institute for Neuroscience, Yale University School of Medicine
| |
Collapse
|
27
|
Arnsten AFT, Jin LE. Molecular influences on working memory circuits in dorsolateral prefrontal cortex. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:211-31. [PMID: 24484703 DOI: 10.1016/b978-0-12-420170-5.00008-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The working memory circuits of the primate dorsolateral prefrontal cortex (dlPFC) are modulated in a unique manner, often opposite to the molecular mechanisms needed for long-term memory consolidation. Working memory, our "mental sketch pad" is an ephemeral process, whereby transient, mental representations form the foundation for abstract thought. The microcircuits that generate mental representations are found in deep layer III of the dlPFC, where pyramidal cells excite each other to keep information "in mind" through NMDA receptor synapses on spines. The catecholaminergic and cholinergic arousal systems have rapid and flexible influences on the strength of these connections, thus allowing coordination between arousal and cognitive states. These modulators can rapidly weaken connectivity, for example, as occurs during uncontrollable stress, via feedforward calcium-cAMP signaling opening potassium (K(+)) channels near synapses on spines. Lower levels of calcium-cAMP-K(+) channel signaling provide negative feedback within recurrent excitatory circuits, and help to gate inputs to shape the contents of working memory. There are also explicit mechanisms to inhibit calcium-cAMP signaling and strengthen connectivity, for example, postsynaptic α2A-adrenoceptors on spines. This work has led to the development of the α2A agonist, guanfacine, for the treatment of a variety of dlPFC disorders. In mental illness, there are a variety of genetic insults to the molecules that normally serve to inhibit calcium-cAMP signaling in spines, thus explaining why so many genetic insults can lead to the same phenotype of impaired dlPFC cognitive function. Thus, the molecular mechanisms that provide mental flexibility may also confer vulnerability when dysregulated in cognitive disorders.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lu E Jin
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|