1
|
Thomaidis GV, Papadimitriou K, Michos S, Chartampilas E, Tsamardinos I. A characteristic cerebellar biosignature for bipolar disorder, identified with fully automatic machine learning. IBRO Neurosci Rep 2023; 15:77-89. [PMID: 38025660 PMCID: PMC10668096 DOI: 10.1016/j.ibneur.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Transcriptomic profile differences between patients with bipolar disorder and healthy controls can be identified using machine learning and can provide information about the potential role of the cerebellum in the pathogenesis of bipolar disorder.With this aim, user-friendly, fully automated machine learning algorithms can achieve extremely high classification scores and disease-related predictive biosignature identification, in short time frames and scaled down to small datasets. Method A fully automated machine learning platform, based on the most suitable algorithm selection and relevant set of hyper-parameter values, was applied on a preprocessed transcriptomics dataset, in order to produce a model for biosignature selection and to classify subjects into groups of patients and controls. The parent GEO datasets were originally produced from the cerebellar and parietal lobe tissue of deceased bipolar patients and healthy controls, using Affymetrix Human Gene 1.0 ST Array. Results Patients and controls were classified into two separate groups, with no close-to-the-boundary cases, and this classification was based on the cerebellar transcriptomic biosignature of 25 features (genes), with Area Under Curve 0.929 and Average Precision 0.955. The biosignature includes both genes connected before to bipolar disorder, depression, psychosis or epilepsy, as well as genes not linked before with any psychiatric disease. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed participation of 4 identified features in 6 pathways which have also been associated with bipolar disorder. Conclusion Automated machine learning (AutoML) managed to identify accurately 25 genes that can jointly - in a multivariate-fashion - separate bipolar patients from healthy controls with high predictive power. The discovered features lead to new biological insights. Machine Learning (ML) analysis considers the features in combination (in contrast to standard differential expression analysis), removing both irrelevant as well as redundant markers, and thus, focusing to biological interpretation.
Collapse
Affiliation(s)
- Georgios V. Thomaidis
- Greek National Health System, Psychiatric Department, Katerini General Hospital, Katerini, Greece
| | - Konstantinos Papadimitriou
- Greek National Health System, G. Papanikolaou General Hospital, Organizational Unit - Psychiatric Hospital of Thessaloniki, Thessaloniki, Greece
| | | | - Evangelos Chartampilas
- Laboratory of Radiology, AHEPA General Hospital, University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
2
|
Abstract
The genetic basis for the emergence of creativity in modern humans remains a mystery despite sequencing the genomes of chimpanzees and Neanderthals, our closest hominid relatives. Data-driven methods allowed us to uncover networks of genes distinguishing the three major systems of modern human personality and adaptability: emotional reactivity, self-control, and self-awareness. Now we have identified which of these genes are present in chimpanzees and Neanderthals. We replicated our findings in separate analyses of three high-coverage genomes of Neanderthals. We found that Neanderthals had nearly the same genes for emotional reactivity as chimpanzees, and they were intermediate between modern humans and chimpanzees in their numbers of genes for both self-control and self-awareness. 95% of the 267 genes we found only in modern humans were not protein-coding, including many long-non-coding RNAs in the self-awareness network. These genes may have arisen by positive selection for the characteristics of human well-being and behavioral modernity, including creativity, prosocial behavior, and healthy longevity. The genes that cluster in association with those found only in modern humans are over-expressed in brain regions involved in human self-awareness and creativity, including late-myelinating and phylogenetically recent regions of neocortex for autobiographical memory in frontal, parietal, and temporal regions, as well as related components of cortico-thalamo-ponto-cerebellar-cortical and cortico-striato-cortical loops. We conclude that modern humans have more than 200 unique non-protein-coding genes regulating co-expression of many more protein-coding genes in coordinated networks that underlie their capacities for self-awareness, creativity, prosocial behavior, and healthy longevity, which are not found in chimpanzees or Neanderthals.
Collapse
|
3
|
Afanasyeva EA, Gartlgruber M, Ryl T, Decaesteker B, Denecker G, Mönke G, Toprak UH, Florez A, Torkov A, Dreidax D, Herrmann C, Okonechnikov K, Ek S, Sharma AK, Sagulenko V, Speleman F, Henrich KO, Westermann F. Kalirin-RAC controls nucleokinetic migration in ADRN-type neuroblastoma. Life Sci Alliance 2021; 4:e201900332. [PMID: 33658318 PMCID: PMC8017594 DOI: 10.26508/lsa.201900332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin-GEF1-suppressed ADRN-type cells are a batch of AU-rich element-containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis-based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.
Collapse
Affiliation(s)
- Elena A Afanasyeva
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Moritz Gartlgruber
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Tatsiana Ryl
- Department of Neurosurgery, University of Duisburg Essen, Essen, Germany
| | - Bieke Decaesteker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Geertrui Denecker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Gregor Mönke
- European Molecular Biology Laboratories, Heidelberg, Germany
| | - Umut H Toprak
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Andres Florez
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
- Center for Systems Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Alica Torkov
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Daniel Dreidax
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Carl Herrmann
- Group of Cancer Regulatory Genomics B086, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Department of Pediatric Neurooncology, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Sara Ek
- Department of Immunotechnology, CREATE Health, Faculty of Engineering, Lund University, Lund, Sweden
| | - Ashwini Kumar Sharma
- Institute for Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vitaliya Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Kai-Oliver Henrich
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Frank Westermann
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| |
Collapse
|
4
|
Chopra N, Wang R, Maloney B, Nho K, Beck JS, Pourshafie N, Niculescu A, Saykin AJ, Rinaldi C, Counts SE, Lahiri DK. MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol Psychiatry 2021; 26:5636-5657. [PMID: 31942037 PMCID: PMC8758483 DOI: 10.1038/s41380-019-0610-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related form of dementia, associated with deposition of intracellular neuronal tangles consisting primarily of hyperphosphorylated microtubule-associated protein tau (p-tau) and extracellular plaques primarily comprising amyloid- β (Aβ) peptide. The p-tau tangle unit is a posttranslational modification of normal tau protein. Aβ is a neurotoxic peptide excised from the amyloid-β precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex. MicroRNAs (miRNAs) are short, single-stranded RNAs that modulate protein expression as part of the RNA-induced silencing complex (RISC). We identified miR-298 as a repressor of APP, BACE1, and the two primary forms of Aβ (Aβ40 and Aβ42) in a primary human cell culture model. Further, we discovered a novel effect of miR-298 on posttranslational levels of two specific tau moieties. Notably, miR-298 significantly reduced levels of ~55 and 50 kDa forms of the tau protein without significant alterations of total tau or other forms. In vivo overexpression of human miR-298 resulted in nonsignificant reduction of APP, BACE1, and tau in mice. Moreover, we identified two miR-298 SNPs associated with higher cerebrospinal fluid (CSF) p-tau and lower CSF Aβ42 levels in a cohort of human AD patients. Finally, levels of miR-298 varied in postmortem human temporal lobe between AD patients and age-matched non-AD controls. Our results suggest that miR-298 may be a suitable target for AD therapy.
Collapse
Affiliation(s)
- Nipun Chopra
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Ruizhi Wang
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Bryan Maloney
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
| | - Kwangsik Nho
- grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Departments of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - John S. Beck
- grid.17088.360000 0001 2150 1785Departments of Translational Neuroscience and Family Medicine, Michigan State University, Grand Rapids, MI USA
| | - Naemeh Pourshafie
- grid.94365.3d0000 0001 2297 5165Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Alexander Niculescu
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Andrew J. Saykin
- grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Departments of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| | - Carlo Rinaldi
- grid.4991.50000 0004 1936 8948Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Scott E. Counts
- grid.17088.360000 0001 2150 1785Departments of Translational Neuroscience and Family Medicine, Michigan State University, Grand Rapids, MI USA
| | - Debomoy K. Lahiri
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Indiana Alzheimers Disease Center, Indiana University School of Medicine, Indianapolis, IN USA ,grid.257413.60000 0001 2287 3919Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
5
|
Hanan M, Simchovitz A, Yayon N, Vaknine S, Cohen‐Fultheim R, Karmon M, Madrer N, Rohrlich TM, Maman M, Bennett ER, Greenberg DS, Meshorer E, Levanon EY, Soreq H, Kadener S. A Parkinson's disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress. EMBO Mol Med 2020; 12:e11942. [PMID: 32715657 PMCID: PMC7507321 DOI: 10.15252/emmm.201911942] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are brain-abundant RNAs of mostly unknown functions. To seek their roles in Parkinson's disease (PD), we generated an RNA sequencing resource of several brain region tissues from dozens of PD and control donors. In the healthy substantia nigra (SN), circRNAs accumulate in an age-dependent manner, but in the PD SN this correlation is lost and the total number of circRNAs reduced. In contrast, the levels of circRNAs are increased in the other studied brain regions of PD patients. We also found circSLC8A1 to increase in the SN of PD individuals. CircSLC8A1 carries 7 binding sites for miR-128 and is strongly bound to the microRNA effector protein Ago2. Indeed, RNA targets of miR-128 are also increased in PD individuals, suggesting that circSLC8A1 regulates miR-128 function and/or activity. CircSLC8A1 levels also increased in cultured cells exposed to the oxidative stress-inducing agent paraquat but were decreased in cells treated with the neuroprotective antioxidant regulator drug Simvastatin. Together, our work links circSLC8A1 to oxidative stress-related Parkinsonism and suggests further exploration of its molecular function in PD.
Collapse
Affiliation(s)
- Mor Hanan
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Alon Simchovitz
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Nadav Yayon
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Shani Vaknine
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Roni Cohen‐Fultheim
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Miriam Karmon
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Nimrod Madrer
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Talia Miriam Rohrlich
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Department of GeneticsThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Moria Maman
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Department of GeneticsThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Estelle R Bennett
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - David S Greenberg
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Eran Meshorer
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Department of GeneticsThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Hermona Soreq
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Sebastian Kadener
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Biology DepartmentBrandeis UniversityWalthamMAUSA
| |
Collapse
|
6
|
Madrer N, Soreq H. Cholino-ncRNAs modulate sex-specific- and age-related acetylcholine signals. FEBS Lett 2020; 594:2185-2198. [PMID: 32330292 PMCID: PMC7496432 DOI: 10.1002/1873-3468.13789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Acetylcholine (ACh) signaling orchestrates mammalian movement, mental capacities, and inflammation. Dysregulated ACh signaling associates with many human mental disorders and neurodegeneration in an individual‐, sex‐, and tissue‐related manner. Moreover, aged patients under anticholinergic therapy show increased risk of dementia, but the underlying molecular mechanisms are incompletely understood. Here, we report that certain cholinergic‐targeting noncoding RNAs, named Cholino‐noncoding RNAs (ncRNAs), can modulate ACh signaling, agonistically or antagonistically, via distinct direct and indirect mechanisms and at different timescales. Cholino‐ncRNAs include both small microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). The former may attenuate translation and/or induce destruction of target mRNAs that code for either ACh‐signaling proteins or transcription factors controlling the expression of cholinergic genes. lncRNAs may block miRNAs via ‘sponging’ events or by competitive binding to the cholinergic target mRNAs. Also, single nucleotide polymorphisms in either Cholino‐ncRNAs or in their recognition sites in the ACh‐signaling associated genes may modify ACh signaling‐regulated processes. Taken together, both inherited and acquired changes in the function of Cholino‐ncRNAs impact ACh‐related deficiencies, opening new venues for individual, sex‐related, and age‐specific oriented research, diagnosis, and therapeutics.
Collapse
Affiliation(s)
- Nimrod Madrer
- The Life Sciences Institute and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel
| | - Hermona Soreq
- The Life Sciences Institute and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
7
|
Simchovitz A, Hanan M, Yayon N, Lee S, Bennett ER, Greenberg DS, Kadener S, Soreq H. A lncRNA survey finds increases in neuroprotective LINC-PINT in Parkinson's disease substantia nigra. Aging Cell 2020; 19:e13115. [PMID: 32080970 PMCID: PMC7059180 DOI: 10.1111/acel.13115] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/10/2019] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
Recent reports highlight regulatory functions of long noncoding RNAs (lncRNAs) in neurodegeneration and aging, but biomedical implications remain limited. Here, we report an rRNA‐depletion‐based long RNA‐Sequencing Resource of 65 substantia nigra, amygdala, and medial temporal gyrus samples from Parkinson's disease (PD) and matched control brains. Using a lncRNA‐focused analysis approach to identify functionally important transcripts, we discovered and prioritized many lncRNAs dysregulated in PD. Those included pronounced elevation of the P53‐induced noncoding transcript LINC‐PINT in the substantia nigra of PD patients, as well as in additional models of oxidative stress and PD. Intriguingly, we found that LINC‐PINT is a primarily neuronal transcript which showed conspicuous increases in maturing primary culture neurons. LINC‐PINT also accumulated in several brain regions of Alzheimer's and Huntington's disease patients and decreased with healthy brain aging, suggesting a general role in aging and neurodegeneration for this lncRNA. RNAi‐mediated depletion of LINC‐PINT exacerbated the death of cultured N2A and SH‐SY5Y cells exposed to oxidative stress, highlighting a previously undiscovered neuroprotective role for this tumor‐inducible lncRNA in the brains of patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Alon Simchovitz
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Mor Hanan
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Nadav Yayon
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Songhua Lee
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Estelle R. Bennett
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - David S. Greenberg
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | | | - Hermona Soreq
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
8
|
Cloninger CR, Cloninger KM, Zwir I, Keltikangas-Järvinen L. The complex genetics and biology of human temperament: a review of traditional concepts in relation to new molecular findings. Transl Psychiatry 2019; 9:290. [PMID: 31712636 PMCID: PMC6848211 DOI: 10.1038/s41398-019-0621-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have shown that temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term learning and memory. The results were replicated in three independent samples despite variable cultures and environments. The identified genes were enriched in pathways activated by behavioral conditioning in animals, including the two major molecular pathways for response to extracellular stimuli, the Ras-MEK-ERK and the PI3K-AKT-mTOR cascades. These pathways are activated by a wide variety of physiological and psychosocial stimuli that vary in positive and negative valence and in consequences for health and survival. Changes in these pathways are orchestrated to maintain cellular homeostasis despite changing conditions by modulating temperament and its circadian and seasonal rhythms. In this review we first consider traditional concepts of temperament in relation to the new genetic findings by examining the partial overlap of alternative measures of temperament. Then we propose a definition of temperament as the disposition of a person to learn how to behave, react emotionally, and form attachments automatically by associative conditioning. This definition provides necessary and sufficient criteria to distinguish temperament from other aspects of personality that become integrated with it across the life span. We describe the effects of specific stimuli on the molecular processes underlying temperament from functional, developmental, and evolutionary perspectives. Our new knowledge can improve communication among investigators, increase the power and efficacy of clinical trials, and improve the effectiveness of treatment of personality and its disorders.
Collapse
Affiliation(s)
- C Robert Cloninger
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- School of Arts and Sciences, Department of Psychological and Brain Sciences, and School of Medicine, Department of Genetics, Washington University, St. Louis, MO, USA.
- Anthropedia Foundation, St. Louis, MO, USA.
| | | | - Igor Zwir
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Computer Science, University of Granada, Granada, Spain
| | | |
Collapse
|
9
|
Sarkar SN, Russell AE, Engler-Chiurazzi EB, Porter KN, Simpkins JW. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma. Aging Dis 2019; 10:329-352. [PMID: 31011481 PMCID: PMC6457055 DOI: 10.14336/ad.2018.0409] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex and integrated gradual deterioration of cellular activities in specific organs of the body, which is associated with increased mortality. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, neurovascular disorders, and neurodegenerative diseases. There are nine tentative hallmarks of aging. In addition, several of these hallmarks are increasingly being associated with acute brain injury conditions. In this review, we consider the genes and their functional pathways involved in brain aging as a means of developing new strategies for therapies targeted to the neuropathological processes themselves, but also as targets for many age-related brain diseases. A single microRNA (miR), which is a short, non-coding RNA species, has the potential for targeting many genes simultaneously and, like practically all other cellular processes, genes associated with many features of brain aging and injury are regulated by miRs. We highlight how certain miRs can mediate deregulation of genes involved in neuroinflammation, acute neuronal injury and chronic neurodegenerative diseases. Finally, we review the recent progress in the development of effective strategies to block specific miR functions and discuss future approaches with the prediction that anti-miR drugs may soon be used in the clinic.
Collapse
Affiliation(s)
- Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Keyana N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
10
|
Bodea GO, McKelvey EGZ, Faulkner GJ. Retrotransposon-induced mosaicism in the neural genome. Open Biol 2019; 8:rsob.180074. [PMID: 30021882 PMCID: PMC6070720 DOI: 10.1098/rsob.180074] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, major discoveries in retrotransposon biology have depicted the neural genome as a dynamic structure during life. In particular, the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobilized in the brain. Retrotransposition in the developing brain, as well as during adult neurogenesis, provides a milieu in which neural diversity can arise. Dysregulation of retrotransposon activity may also contribute to neurological disease. Here, we review recent reports of retrotransposon activity in the brain, and discuss the temporal nature of retrotransposition and its regulation in neural cells in response to stimuli. We also put forward hypotheses regarding the significance of retrotransposons for brain development and neurological function, and consider the potential implications of this phenomenon for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Eleanor G Z McKelvey
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Cortini F, Roma F, Villa C. Emerging roles of long non-coding RNAs in the pathogenesis of Alzheimer's disease. Ageing Res Rev 2019; 50:19-26. [PMID: 30610928 DOI: 10.1016/j.arr.2019.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 01/01/2019] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder and represents the most common form of senile dementia. The pathogenesis of AD is not yet completely understood and no curative treatment is currently available. With the recent advancement in transcriptome-wide profiling approach, several non-coding RNAs (ncRNAs) have been identified. Among them, long non-coding RNAs (lncRNAs), which are long transcripts without apparent protein-coding capacity, have received increasing interest for their involvement in a wide range of biological processes as regulatory molecules. Recent studies have suggested that lncRNAs play a role in AD pathogenesis, although their specific influences in the disorder remain to be largely unknown. Herein, we will summarize the biology and mechanisms of action of the best characterized dysregulated lncRNAs in AD, focusing the attention on their potential role in the disease pathogenesis. A deeper understanding of the molecular mechanisms and the complex network of interactions in which they are implicated should open the doors to new research considering lncRNAs as novel therapeutic targets and prognostic/diagnostic biomarkers.
Collapse
Affiliation(s)
- Francesca Cortini
- Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation, Milan, Italy; UOC Occupational Medicine, Department of Medicine Preventive Services, IRCCS Ca Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Roma
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
12
|
Ma F, Fuqua BK, Hasin Y, Yukhtman C, Vulpe CD, Lusis AJ, Pellegrini M. A comparison between whole transcript and 3' RNA sequencing methods using Kapa and Lexogen library preparation methods. BMC Genomics 2019; 20:9. [PMID: 30616562 PMCID: PMC6323698 DOI: 10.1186/s12864-018-5393-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/18/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND 3' RNA sequencing provides an alternative to whole transcript analysis. However, we do not know a priori the relative advantage of each method. Thus, a comprehensive comparison between the whole transcript and the 3' method is needed to determine their relative merits. To this end, we used two commercially available library preparation kits, the KAPA Stranded mRNA-Seq kit (traditional method) and the Lexogen QuantSeq 3' mRNA-Seq kit (3' method), to prepare libraries from mouse liver RNA. We then sequenced and analyzed the libraries to determine the advantages and disadvantages of these two approaches. RESULTS We found that the traditional whole transcript method and the 3' RNA-Seq method had similar levels of reproducibility. As expected, the whole transcript method assigned more reads to longer transcripts, while the 3' method assigned roughly equal numbers of reads to transcripts regardless of their lengths. We found that the 3' RNA-Seq method detected more short transcripts than the whole transcript method. With regard to differential expression analysis, we found that the whole transcript method detected more differentially expressed genes, regardless of the level of sequencing depth. CONCLUSIONS The 3' RNA-Seq method was better able to detect short transcripts, while the whole transcript RNA-Seq was able to detect more differentially expressed genes. Thus, both approaches have relative advantages and should be selected based on the goals of the experiment.
Collapse
Affiliation(s)
- Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Brie K Fuqua
- Department of Medicine, Cardiology, University of California, Los Angeles, California, USA
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Yehudit Hasin
- Department of Medicine, Cardiology, University of California, Los Angeles, California, USA
- Department of Human Genetics, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Clara Yukhtman
- Department of Medicine, Cardiology, University of California, Los Angeles, California, USA
| | - Chris D Vulpe
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Aldons J Lusis
- Department of Medicine, Cardiology, University of California, Los Angeles, California, USA.
- Department of Human Genetics, University of California, Los Angeles, California, USA.
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA.
| | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los Angeles, California, USA.
- Department of Human Genetics, University of California, Los Angeles, California, USA.
- Department of Bioinformatics, University of California, Los Angeles, California, USA.
| |
Collapse
|
13
|
Kovalenko TF, Patrushev LI. Pseudogenes as Functionally Significant Elements of the Genome. BIOCHEMISTRY (MOSCOW) 2018; 83:1332-1349. [PMID: 30482145 DOI: 10.1134/s0006297918110044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudogene is a gene copy that has lost its original function. For a long time, pseudogenes have been considered as "junk DNA" that inevitably arises as a result of ongoing evolutionary process. However, experimental data obtained during recent years indicate this understanding of the nature of pseudogenes is not entirely correct, and many pseudogenes perform important genetic functions. In the review, we have addressed classification of pseudogenes, methods of their detection in the genome, and the problem of their evolutionary conservatism and prevalence among species belonging to different taxonomic groups in the light of modern data. The mechanisms of gene expression regulation by pseudogenes and the role of pseudogenes in pathogenesis of various human diseases are discussed.
Collapse
Affiliation(s)
- T F Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
14
|
Meydan C, Bekenstein U, Soreq H. Molecular Regulatory Pathways Link Sepsis With Metabolic Syndrome: Non-coding RNA Elements Underlying the Sepsis/Metabolic Cross-Talk. Front Mol Neurosci 2018; 11:189. [PMID: 29922126 PMCID: PMC5996041 DOI: 10.3389/fnmol.2018.00189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/15/2018] [Indexed: 01/04/2023] Open
Abstract
Sepsis and metabolic syndrome (MetS) are both inflammation-related entities with high impact for human health and the consequences of concussions. Both represent imbalanced parasympathetic/cholinergic response to insulting triggers and variably uncontrolled inflammation that indicates shared upstream regulators, including short microRNAs (miRs) and long non-coding RNAs (lncRNAs). These may cross talk across multiple systems, leading to complex molecular and clinical outcomes. Notably, biomedical and RNA-sequencing based analyses both highlight new links between the acquired and inherited pathogenic, cardiac and inflammatory traits of sepsis/MetS. Those include the HOTAIR and MIAT lncRNAs and their targets, such as miR-122, −150, −155, −182, −197, −375, −608 and HLA-DRA. Implicating non-coding RNA regulators in sepsis and MetS may delineate novel high-value biomarkers and targets for intervention.
Collapse
Affiliation(s)
- Chanan Meydan
- Department of Internal Medicine, Mayanei Hayeshua Medical Center, Bnei Brak, Israel
| | - Uriya Bekenstein
- The Department of Biological Chemistry, The Edmond and Lilly Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Department of Biological Chemistry, The Edmond and Lilly Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Wang JY, Feng Y, Fu YH, Liu GL. Effect of Sevoflurane Anesthesia on Brain Is Mediated by lncRNA HOTAIR. J Mol Neurosci 2018; 64:346-351. [PMID: 29352445 DOI: 10.1007/s12031-018-1029-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/10/2018] [Indexed: 01/19/2023]
Abstract
Postoperative cognitive dysfunction in elderly patients has been related to neurodegenerative disorders and mortality. Sevoflurane anesthesia has been implicated in both postoperative cognitive dysfunction and neurotoxicity. Given the advantages of using inhaled anesthetics like sevoflurane, it is important to understand how their usage results in neurotoxicity and subsequently devise ways to circumvent or attenuate the anesthetic-mediated induction in neurotoxicity. Long noncoding RNAs (LncRNAs) are a group of > 200 bp long RNAs and show specific spatiotemporal expression profiles. Several recent reports suggest that lncRNAs are involved in responses of the central nervous system (CNS) following acute injuries. However, their role in sevoflurane anesthesia-mediated cognitive dysfunction has not been studied. RNA immunoprecipitation (RIP) combined with qRT-PCR detection of six different lncRNAs showed that the HOTAIR lncRNAs were significantly more bound to both Sin3A and coREST, both corepressors of the RE-1 silencing transcription factor, within rat hippocampus following sevoflurane anesthesia compared with sham. Sevoflurane inhalation resulted in significant inhibition of brain-derived neurotrophic factor (BDNF) and cognitive impairment. Treatment with a combination of siRNAs targeting HOTAIR rescued BDNF expression and improved cognitive responses. Taken together, our results suggest that sevoflurane-mediated brain function impairment is at least in part mediated by the HOTAIR lncRNA.
Collapse
Affiliation(s)
- Jian-Yue Wang
- Department of Anesthesiology, Binzhou People's Hospital, No.515, Huangheqi Road, Binzhou, Shandong, 256610, China.
| | - Yong Feng
- Department of Anesthesiology, Binzhou People's Hospital, No.515, Huangheqi Road, Binzhou, Shandong, 256610, China
| | - Yan-Hong Fu
- Department of Anesthesiology, Binzhou People's Hospital, No.515, Huangheqi Road, Binzhou, Shandong, 256610, China
| | - Guang-Li Liu
- Department of Anesthesiology, Binzhou People's Hospital, No.515, Huangheqi Road, Binzhou, Shandong, 256610, China
| |
Collapse
|
16
|
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 2018; 64:S161-S189. [PMID: 29865057 PMCID: PMC6380522 DOI: 10.3233/jad-179939] [Citation(s) in RCA: 696] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-pathologic cohort studies of aging and Alzheimer's disease (AD). OBJECTIVES To summarize progress over the past five years and its implications for understanding neurodegenerative diseases. METHODS Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in the future. RESULTS We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development of a novel drug discovery platform. CONCLUSION Complexity at multiple levels needs to be understood and overcome to develop effective treatments and preventions for cognitive decline and AD dementia.
Collapse
Affiliation(s)
- David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL., USA
| |
Collapse
|