1
|
Kumari S, Gupta S, Sukhija R, Gurjar S, Dubey SK, Taliyan R. Neuroprotective potential of Epigenetic modulators, its regulation and therapeutic approaches for the management of Parkinson's disease. Eur J Pharmacol 2024; 985:177123. [PMID: 39536854 DOI: 10.1016/j.ejphar.2024.177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The progressive degeneration of dopaminergic neurons in the substantia nigra region of the brain leads to a deficiency of dopamine and, ultimately, the onset of Parkinson's disease (PD). Since there is currently no cure for PD, patients all around the world are dealing with symptomatic management. PD progression is influenced by multiple elements, such as environmental, biological, chemical, genetic, and epigenetic factors. Epigenetics is gaining increased attention due to its role in controlling the expression of genes that contribute to PD. Recent advancements in our understanding of the brain network and its related conditions have shown that alterations in gene expression may occur independently of genetic abnormalities. Therefore, a thorough investigation has been carried out to explore the significance of epigenetics in all degenerative disorders. Epigenetic modifications are essential for regulating cellular homeostasis. Therefore, a deeper understanding of these modifications might provide valuable insights into many diseases and potentially serve as targets for therapeutic interventions. This review article focuses on diverse epigenetic alterations linked to the progression of PD. These abnormalities are supported by numerous research on the control of gene expression and encompass all the epigenetic processes. The beginning of PD is intricately associated with aberrant DNA methylation mechanisms. DNA methyltransferases are the enzymes that create and preserve various DNA methylation patterns. Integrating epigenetic data with existing clinical methods for diagnosing PD may aid in discovering potential curative medicines and novel drug development approaches. This article solely addresses the importance of epigenetic modulators in PD, primarily the mechanisms of DNMTs, their roles in the development of PD, and their therapeutic approaches; it bypasses other PD therapies.
Collapse
Affiliation(s)
- Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Sakshi Gupta
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Rajesh Sukhija
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Shaifali Gurjar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | | | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| |
Collapse
|
2
|
Wang Y, Wang Y, Xu Y, Cheng H, Dagnew TM, Kang L, Tocci D, Shen IZ, Zhang C, Wang C. Development of a PET Probe Targeting Bromodomain and Extra-Terminal Proteins for In Vitro and In Vivo Visualization. Pharmaceuticals (Basel) 2024; 17:1670. [PMID: 39770515 PMCID: PMC11677465 DOI: 10.3390/ph17121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Bromodomain and extra-terminal (BET) proteins are critical regulators of gene transcription, as they recognize acetylated lysine residues. The BD1 bromodomain of BRD4, a member of the BET family, has emerged as a promising therapeutic target for various diseases. This study aimed to develop and evaluate a novel C-11 labeled PET radiotracer, [11C]YL10, for imaging the BD1 bromodomain of BRD4 in vivo. Methods: [11C]YL10 was synthesized and evaluated for its ability to bind to the BD1 bromodomain selectively. PET imaging studies were conducted in mice to assess brain penetration, pharmacokinetics, and selectivity. In vitro autoradiography and blocking experiments were performed to confirm the tracer's specificity for the BD1 domain. Results: [11C]YL10 demonstrated good brain penetration, high selectivity for the BD1 bromodomain, and favorable pharmacokinetics in initial PET imaging studies. In vitro autoradiography and blocking experiments confirmed the specific binding of [11C]YL10 to the BD1 domain of BRD4, further validating its potential as a targeted radiotracer. Conclusions: The development of [11C]YL10 provides a new tool for studying BRD4 bromodomains using PET imaging technology. This radiotracer offers potential advancement in the diagnosis and research of neurodegenerative diseases and related disorders involving BRD4 dysregulation.
Collapse
Affiliation(s)
- Yongle Wang
- School of Pharmacy, Minzu University of China, Beijing 100081, China;
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Y.W.); (Y.X.); (H.C.); (T.M.D.); (L.K.); (D.T.)
| | - Yanli Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Y.W.); (Y.X.); (H.C.); (T.M.D.); (L.K.); (D.T.)
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Y.W.); (Y.X.); (H.C.); (T.M.D.); (L.K.); (D.T.)
| | - Hua Cheng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Y.W.); (Y.X.); (H.C.); (T.M.D.); (L.K.); (D.T.)
| | - Tewodros Mulugeta Dagnew
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Y.W.); (Y.X.); (H.C.); (T.M.D.); (L.K.); (D.T.)
| | - Leyi Kang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Y.W.); (Y.X.); (H.C.); (T.M.D.); (L.K.); (D.T.)
| | - Darcy Tocci
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Y.W.); (Y.X.); (H.C.); (T.M.D.); (L.K.); (D.T.)
| | - Iris Z. Shen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Y.W.); (Y.X.); (H.C.); (T.M.D.); (L.K.); (D.T.)
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, McCance Center for Brain Health, Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA;
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Y.W.); (Y.X.); (H.C.); (T.M.D.); (L.K.); (D.T.)
| |
Collapse
|
3
|
Cheng X, Tan Y, Li H, Zhang Z, Hui S, Zhang Z, Peng W. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8253-8278. [PMID: 38483656 DOI: 10.1007/s12035-024-04097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer's disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Yejun Tan
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| |
Collapse
|
4
|
Htet M, Estay-Olmos C, Hu L, Wu Y, Powers BE, Campbell CD, Ahmed MR, Hohman TJ, Schneider JA, Bennett DA, Menon V, De Jager PL, Kaas GA, Colbran RJ, Greer CB. HEXIM1 is correlated with Alzheimer's disease pathology and regulates immediate early gene dynamics in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615234. [PMID: 39386727 PMCID: PMC11463448 DOI: 10.1101/2024.09.27.615234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Impaired memory formation and recall is a distinguishing feature of Alzheimer's disease, and memory requires de novo gene transcription in neurons. Rapid and robust transcription of many genes is facilitated by the formation of a poised basal state, in which RNA polymerase II (RNAP2) has initiated transcription, but is paused just downstream of the gene promoter. Neuronal depolarization releases the paused RNAP2 to complete the synthesis of messenger RNA (mRNA) transcripts. Paused RNAP2 release is controlled by positive transcription elongation factor b (P-TEFb), which is sequestered into a larger inactive complex containing Hexamethylene bisacetamide inducible protein 1 (HEXIM1) under basal conditions. In this work, we find that neuronal expression of HEXIM1 mRNA is highly correlated with human Alzheimer's disease pathologies. Furthermore, P-TEFb regulation by HEXIM1 has a significant impact on the rapid induction of neuronal gene transcription, particularly in response to repeated depolarization. These data indicate that HEXIM1/P-TEFb has an important role in inducible gene transcription in neurons, and for setting and resetting the poised state that allows for the robust activation of genes necessary for synaptic plasticity. GRAPHICAL ABSTRACT
Collapse
|
5
|
Sun J, Gui Y, Zhou S, Zheng XL. Unlocking the secrets of aging: Epigenetic reader BRD4 as the target to combatting aging-related diseases. J Adv Res 2024; 63:207-218. [PMID: 37956861 PMCID: PMC11379999 DOI: 10.1016/j.jare.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Aging, a complex and profound journey, leads us through a labyrinth of physiological and pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating the aging process and driving the emergence and progression of aging-related diseases. AIM OF REVIEW This review aims to offer a comprehensive outline of BRD4's functions involved in the aging process, and potential mechanisms through which BRD4 governs the initiation and progression of various aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW BRD4 has a fundamental role in regulating the cell cycle, apoptosis, cellular senescence, the senescence-associated secretory phenotype (SASP), senolysis, autophagy, and mitochondrial function, which are involved in the aging process. Several studies have indicated that BRD4 governs the initiation and progression of various aging-related diseases, including Alzheimer's disease, ischemic cerebrovascular diseases, hypertension, atherosclerosis, heart failure, aging-related pulmonary fibrosis, and intervertebral disc degeneration (IVDD). Thus, the evidence from this review supports that BRD4 could be a promising target for managing various aging-related diseases, while further investigation is warranted to gain a thorough understanding of BRD4's role in these diseases.
Collapse
Affiliation(s)
- Jiaxing Sun
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada; Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada.
| |
Collapse
|
6
|
Wang F, Fan Y, Li Y, Zhou Y, Wang X, Zhu M, Chen X, Xue Y, Shen C. Identification of differentially expressed genes of blood leukocytes for Schizophrenia. Front Genet 2024; 15:1398240. [PMID: 38988837 PMCID: PMC11233772 DOI: 10.3389/fgene.2024.1398240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Background Schizophrenia (SCZ) is a severe neurodevelopmental disorder with brain dysfunction. This study aimed to use bioinformatic analysis to identify candidate blood biomarkers for SCZ. Methods The study collected peripheral blood leukocyte samples of 9 SCZ patients and 20 healthy controls for RNA sequencing analysis. Bioinformatic analyses included differentially expressed genes (DEGs) analysis, pathway enrichment analysis, and weighted gene co-expression network analysis (WGCNA). Results This study identified 1,205 statistically significant DEGs, of which 623 genes were upregulated and 582 genes were downregulated. Functional enrichment analysis showed that DEGs were mainly enriched in cell chemotaxis, cell surface, and serine peptidase activity, as well as involved in Natural killer cell-mediated cytotoxicity. WGCNA identified 16 gene co-expression modules, and five modules were significantly correlated with SCZ (p < 0.05). There were 106 upregulated genes and 90 downregulated genes in the five modules. The top ten genes sorted by the Degree algorithm were RPS28, BRD4, FUS, PABPC1, PCBP1, PCBP2, RPL27A, RPS21, RAG1, and RPL27. RAG1 and the other nine genes belonged to the turquoise and pink module respectively. Pathway enrichment analysis indicated that these 10 genes were mainly involved in processes such as Ribosome, cytoplasmic translation, RNA binding, and protein binding. Conclusion This study finds that the gene functions in key modules and related enrichment pathways may help to elucidate the molecular pathogenesis of SCZ, and the potential of key genes to become blood biomarkers for SCZ warrants further validation.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yao Fan
- Department of Clinical Epidemiology, Jiangsu Province Geriatric Institute, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yinghui Li
- Department of Medical Psychology, Huai'an Third Hospital, Huai'an, China
| | - Yuan Zhou
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Mengya Zhu
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Xuefei Chen
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Yong Xue
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Fonseca P, Cui W, Struyf N, Tong L, Chaurasiya A, Casagrande F, Zhao H, Fernando D, Chen X, Tobin NP, Seashore-Ludlow B, Lundqvist A, Hartman J, Göndör A, Östling P, Holmgren L. A phenotypic screening approach to target p60AmotL2-expressing invasive cancer cells. J Exp Clin Cancer Res 2024; 43:107. [PMID: 38594748 PMCID: PMC11003180 DOI: 10.1186/s13046-024-03031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Tumor cells have the ability to invade and form small clusters that protrude into adjacent tissues, a phenomenon that is frequently observed at the periphery of a tumor as it expands into healthy tissues. The presence of these clusters is linked to poor prognosis and has proven challenging to treat using conventional therapies. We previously reported that p60AmotL2 expression is localized to invasive colon and breast cancer cells. In vitro, p60AmotL2 promotes epithelial cell invasion by negatively impacting E-cadherin/AmotL2-related mechanotransduction. METHODS Using epithelial cells transfected with inducible p60AmotL2, we employed a phenotypic drug screening approach to find compounds that specifically target invasive cells. The phenotypic screen was performed by treating cells for 72 h with a library of compounds with known antitumor activities in a dose-dependent manner. After assessing cell viability using CellTiter-Glo, drug sensitivity scores for each compound were calculated. Candidate hit compounds with a higher drug sensitivity score for p60AmotL2-expressing cells were then validated on lung and colon cell models, both in 2D and in 3D, and on colon cancer patient-derived organoids. Nascent RNA sequencing was performed after BET inhibition to analyse BET-dependent pathways in p60AmotL2-expressing cells. RESULTS We identified 60 compounds that selectively targeted p60AmotL2-expressing cells. Intriguingly, these compounds were classified into two major categories: Epidermal Growth Factor Receptor (EGFR) inhibitors and Bromodomain and Extra-Terminal motif (BET) inhibitors. The latter consistently demonstrated antitumor activity in human cancer cell models, as well as in organoids derived from colon cancer patients. BET inhibition led to a shift towards the upregulation of pro-apoptotic pathways specifically in p60AmotL2-expressing cells. CONCLUSIONS BET inhibitors specifically target p60AmotL2-expressing invasive cancer cells, likely by exploiting differences in chromatin accessibility, leading to cell death. Additionally, our findings support the use of this phenotypic strategy to discover novel compounds that can exploit vulnerabilities and specifically target invasive cancer cells.
Collapse
Affiliation(s)
- Pedro Fonseca
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Weiyingqi Cui
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Nona Struyf
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Le Tong
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Ayushi Chaurasiya
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Felipe Casagrande
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Honglei Zhao
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Dinura Fernando
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Anita Göndör
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Department of Clinical Molecular Biology, University of Oslo, Akershus Universitetssykehus, 1478, Lørenskog, Oslo, Norway
| | - Päivi Östling
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Lars Holmgren
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden.
| |
Collapse
|
8
|
Masoudi E, Soleimani M, Zarinfard G, Homayoun M, Bakhtiari M. The effects of chitosan-loaded JQ1 nanoparticles on OVCAR-3 cell cycle and apoptosis-related gene expression. Res Pharm Sci 2024; 19:53-63. [PMID: 39006975 PMCID: PMC11244706 DOI: 10.4103/1735-5362.394820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/14/2023] [Accepted: 01/02/2024] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Ovarian cancer is the deadliest gynecological cancer. Bromodomain and extra terminal domain (BET) proteins play major roles in the regulation of gene expression at the epigenetic level. Jun Qi (JQ1) is a potent inhibitor of BET proteins. Regarding the short half-life and poor pharmacokinetic profile, JQ1 was loaded into newly developed nano-carriers. Chitosan nanoparticles are one of the best and potential polymers in cancer treatment. The present study aimed to build chitosan-JQl nanoparticles (Ch-J-NPs), treat OVCAR-3 cells with Ch-J-NPs, and evaluate the effects of these nanoparticles on cell cycle and apoptosis-associated genes. Experimental approach Ch-J-NPs were synthesized and characterized. The size and morphology of Ch-J-NPs were defined by DLS and FE-SEM techniques. OVCAR-3 cells were cultured and treated with Ch-J-NPs. Then, IC50 was measured using MTT assay. The groups were defined and cells were treated with IC50 concentration of Ch-J-NPs, for 48 h. Finally, cells in different groups were assessed for the expression of genes of interest using quantitative RT-PCR. Findings/Results IC50 values for Ch-J-NPs were 5.625 μg/mL. RT-PCR results demonstrated that the expression of genes associated with cell cycle activity (c-MYC, hTERT, CDK1, CDK4, and CDK6) was significantly decreased following treatment of cancer cells with Ch-J-NPs. Conversely, the expression of caspase-3, and caspase-9 significantly increased. BAX (pro-apoptotic) to BCL2 (anti-apoptotic) expression ratio, also increased significantly after treatment of cells with Ch-J-NPs. Conclusion and implications Ch-J-NPs showed significant anti-cell cyclic and apoptotic effects on OVCAR-3 cells.
Collapse
Affiliation(s)
- Ehsan Masoudi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mitra Soleimani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Giti Zarinfard
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Homayoun
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bakhtiari
- Department of Anatomical Sciences, School of Medicine, Behbahan University of Medical Sciences, Behbahan, Iran
| |
Collapse
|
9
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
10
|
Gladkova MG, Leidmaa E, Anderzhanova EA. Epidrugs in the Therapy of Central Nervous System Disorders: A Way to Drive on? Cells 2023; 12:1464. [PMID: 37296584 PMCID: PMC10253154 DOI: 10.3390/cells12111464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the epigenetic landscape (epidrugs) allow one to hit multiple targets, therefore, assumably addressing a wide spectrum of genetic and environmental mechanisms of central nervous system (CNS) disorders. The aim of this review is to understand what fundamental pathological mechanisms would be optimal to target with epidrugs in the treatment of neurological or psychiatric complications. To date, the use of histone deacetylases and DNA methyltransferase inhibitors (HDACis and DNMTis) in the clinic is focused on the treatment of neoplasms (mainly of a glial origin) and is based on the cytostatic and cytotoxic actions of these compounds. Preclinical data show that besides this activity, inhibitors of histone deacetylases, DNA methyltransferases, bromodomains, and ten-eleven translocation (TET) proteins impact the expression of neuroimmune inflammation mediators (cytokines and pro-apoptotic factors), neurotrophins (brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF)), ion channels, ionotropic receptors, as well as pathoproteins (β-amyloid, tau protein, and α-synuclein). Based on this profile of activities, epidrugs may be favorable as a treatment for neurodegenerative diseases. For the treatment of neurodevelopmental disorders, drug addiction, as well as anxiety disorders, depression, schizophrenia, and epilepsy, contemporary epidrugs still require further development concerning a tuning of pharmacological effects, reduction in toxicity, and development of efficient treatment protocols. A promising strategy to further clarify the potential targets of epidrugs as therapeutic means to cure neurological and psychiatric syndromes is the profiling of the epigenetic mechanisms, which have evolved upon actions of complex physiological lifestyle factors, such as diet and physical exercise, and which are effective in the management of neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Marina G. Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | | |
Collapse
|
11
|
Martella N, Pensabene D, Varone M, Colardo M, Petraroia M, Sergio W, La Rosa P, Moreno S, Segatto M. Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation. Biomedicines 2023; 11:biomedicines11030750. [PMID: 36979729 PMCID: PMC10045827 DOI: 10.3390/biomedicines11030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence:
| |
Collapse
|
12
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
13
|
Rapino F, Natoli T, Limone F, O'Connor E, Blank J, Tegtmeyer M, Chen W, Norabuena E, Narula J, Hazelbaker D, Angelini G, Barrett L, O'Neil A, Beattie UK, Thanos JM, de Rivera H, Sheridan SD, Perlis RH, McCarroll SA, Stevens B, Subramanian A, Nehme R, Rubin LL. Small-molecule screen reveals pathways that regulate C4 secretion in stem cell-derived astrocytes. Stem Cell Reports 2023; 18:237-253. [PMID: 36563689 PMCID: PMC9860128 DOI: 10.1016/j.stemcr.2022.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
In the brain, the complement system plays a crucial role in the immune response and in synaptic elimination during normal development and disease. Here, we sought to identify pathways that modulate the production of complement component 4 (C4), recently associated with an increased risk of schizophrenia. To design a disease-relevant assay, we first developed a rapid and robust 3D protocol capable of producing large numbers of astrocytes from pluripotent cells. Transcriptional profiling of these astrocytes confirmed the homogeneity of this population of dorsal fetal-like astrocytes. Using a novel ELISA-based small-molecule screen, we identified epigenetic regulators, as well as inhibitors of intracellular signaling pathways, able to modulate C4 secretion from astrocytes. We then built a connectivity map to predict and validate additional key regulatory pathways, including one involving c-Jun-kinase. This work provides a foundation for developing therapies for CNS diseases involving the complement cascade.
Collapse
Affiliation(s)
- Francesca Rapino
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ted Natoli
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Leiden University Medical Center, LUMC, 2333 ZA Leiden, the Netherlands
| | - Erin O'Connor
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jack Blank
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Matthew Tegtmeyer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Erika Norabuena
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Juhi Narula
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Dane Hazelbaker
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gabriella Angelini
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lindy Barrett
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alison O'Neil
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ursula K Beattie
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jessica M Thanos
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Heather de Rivera
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Beth Stevens
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ralda Nehme
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
14
|
Bhatia S, Singh M, Singh T, Singh V. Scrutinizing the Therapeutic Potential of PROTACs in the Management of Alzheimer's Disease. Neurochem Res 2023; 48:13-25. [PMID: 35987974 DOI: 10.1007/s11064-022-03722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 01/11/2023]
Abstract
Finding an effective cure for Alzheimer's disease has eluded scientists despite intense research. The disease is a cause of suffering for millions of people worldwide and is characterized by dementia accompanied by cognitive and motor deficits, ultimately culminating in the death of the patient. The course of the disease progression has various underlying contributing pathways, with the first and foremost factor being the development and accumulation of aberrant and misfolded proteins exhibiting neurotoxic functions. The impairment of cellular clearance mechanisms adds to their accumulation, resulting in neuronal death. This is where the PROteolysis TArgeting Chimera (PROTAC) technology comes into play, bringing the UPS degradation machinery in the proximity of the target protein for initiating its degradation and clearing abnormal protein debris with unparalleled precision demonstrating an edge over traditional protein inhibitors in many respects. The technology is widely explored in cancer research and utilized in the treatment of various tumors and malignancies, and is now being applied in treating AD. This review explores the application of PROTAC technology in developing lead compounds for managing this deadly disease along with detailing the pieces of evidence justifying its utility and efficacy.
Collapse
Affiliation(s)
- Shiveena Bhatia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A &M University Health Science Centre, Bryan, TX, 77807, USA
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
15
|
Li X, Zhu H, Wen J, Huang J, Chen Y, Tian M, Ren J, Zhou L, Yang Q. Inhibition of BRD4 decreases fibrous scarring after ischemic stroke in rats by inhibiting the phosphorylation of Smad2/3. Brain Res 2022; 1797:148126. [PMID: 36244457 DOI: 10.1016/j.brainres.2022.148126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022]
Abstract
AIMS Fibrous scarring may play a much more important role in preventing secondary expansion of tissue damage and hindering repair and regeneration than glial scarring after central nervous system (CNS) injury. However, relatively little is known about how fibrous scars form and how fibrous scar formation is regulated after CNS injury. Bromodomain-containing protein 4 (BRD4) is involved in fibrosis in many tissues, and transforming growth factor-β1 (TGF-β1)/Smad2/3 signaling is one of the critical pathways of fibrosis. However, it is unclear whether and how BRD4 affects fibrous scar formation after ischemicbraininjury. In the present study, whether BRD4 can regulate the formation of fibrous scars after ischemic stroke via TGF-β1/Smad2/3 signaling was assessed. MATERIALS AND METHODS Primary meningeal fibroblasts isolated from neonatal SD rats were treated with TGF-β1, SB431542 (a TGF-β1 receptor inhibitor) and JQ1 (a small-molecule BET inhibitor that can also inhibit BRD4). BRD4 was knocked down in adult Sprague-Dawley (SD) rats by using adenovirus before middle cerebral artery occlusion/reperfusion (MCAO/R) injury. The proliferation and migration of meningeal fibroblasts in vitro were evaluated with the Cell Counting Kit-8 (CCK-8) assay and scratch test, respectively. Neurological function was assessed with Longa scores, modified Bederson Scores and modified neurological severity scores (mNSSs). The infarct volume was assessed with TTC staining. The protein expression of synaptophysin (SY), BRD4, Smad2/3, p-Smad2/3, α-smooth muscle actin (α-SMA), collagen-1 (COL1) and fibronectin (FN) in vivo and in vitro was examined with immunocytochemistry, immunofluorescence, and Western blotting. KEY FINDINGS BRD4 expression was upregulated in a TGF-β1-induced meningeal fibroblast fibrosis model and was downregulated by the TGF-β1 receptor inhibitor SB431542 in vitro. JQ1, a small-molecule BET inhibitor, inhibited BRD4 and decreased TGF-β1-induced meningeal fibroblast proliferation, migration and activation. Furthermore, MCAO/R injury induced fibrosis and upregulated BRD4 expression in the cerebral infarct center. BRD4 knockdown by adenovirus inhibited fibrous scarring, promoted synaptic survival, decreased the infarct volume, and improved neurological function after MCAO/R injury. Moreover, inhibition of BRD4, either by JQ1 in vitro or adenovirus in vivo, decreased the phosphorylation of Smad2/3. CONCLUSIONS This study is the first to indicate that inhibition of BRD4 delays fibrous scarring after ischemic stroke through mechanisms involving the phosphorylation of Smad2/3.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huimin Zhu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiagui Huang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingfen Tian
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangxia Ren
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Zhang L, Liu Y, Lu Y, Wang G. Targeting epigenetics as a promising therapeutic strategy for treatment of neurodegenerative diseases. Biochem Pharmacol 2022; 206:115295. [DOI: 10.1016/j.bcp.2022.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
17
|
Kao DS, Du Y, DeMarco AG, Min S, Hall MC, Rochet JC, Tao WA. Identification of Novel Kinases of Tau Using Fluorescence Complementation Mass Spectrometry (FCMS). Mol Cell Proteomics 2022; 21:100441. [PMID: 36379402 PMCID: PMC9755369 DOI: 10.1016/j.mcpro.2022.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperphosphorylation of the microtubule-associated protein Tau is a major hallmark of Alzheimer's disease and other tauopathies. Understanding the protein kinases that phosphorylate Tau is critical for the development of new drugs that target Tau phosphorylation. At present, the repertoire of the Tau kinases remains incomplete, and methods to uncover novel upstream protein kinases are still limited. Here, we apply our newly developed proteomic strategy, fluorescence complementation mass spectrometry, to identify novel kinase candidates of Tau. By constructing Tau- and kinase-fluorescent fragment library, we detected 59 Tau-associated kinases, including 23 known kinases of Tau and 36 novel candidate kinases. In the validation phase using in vitro phosphorylation, among 15 candidate kinases we attempted to purify and test, four candidate kinases, OXSR1 (oxidative-stress responsive gene 1), DAPK2 (death-associated protein kinase 2), CSK (C-terminal SRC kinase), and ZAP70 (zeta chain of T-cell receptor-associated protein kinase 70), displayed the ability to phosphorylate Tau in time-course experiments. Furthermore, coexpression of these four kinases along with Tau increased the phosphorylation of Tau in human neuroglioma H4 cells. We demonstrate that fluorescence complementation mass spectrometry is a powerful proteomic strategy to systematically identify potential kinases that can phosphorylate Tau in cells. Our discovery of new candidate kinases of Tau can present new opportunities for developing Alzheimer's disease therapeutic strategies.
Collapse
Affiliation(s)
- Der-Shyang Kao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Yanyan Du
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Andrew G DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Sehong Min
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA; Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
18
|
Chen M, Li M, Budai MM, Rice AP, Kimata JT, Mohan M, Wang J. Clearance of HIV-1 or SIV reservoirs by promotion of apoptosis and inhibition of autophagy: Targeting intracellular molecules in cure-directed strategies. J Leukoc Biol 2022; 112:1245-1259. [PMID: 35362118 PMCID: PMC9522917 DOI: 10.1002/jlb.4mr0222-606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
The reservoirs of the HIV display cellular properties resembling long-lived immune memory cells that could be exploited for viral clearance. Our interest in developing a cure for HIV stems from the studies of immunologic memory against infections. We and others have found that long-lived immune memory cells employ prosurvival autophagy and antiapoptotic mechanisms to protect their longevity. Here, we describe the rationale for the development of an approach to clear HIV-1 by selective elimination of host cells harboring replication-competent HIV (SECH). While reactivation of HIV-1 in the host cells with latency reversing agents (LRAs) induces viral gene expression leading to cell death, LRAs also simultaneously up-regulate prosurvival antiapoptotic molecules and autophagy. Mechanistically, transcription factors that promote HIV-1 LTR-directed gene expression, such as NF-κB, AP-1, and Hif-1α, can also enhance the expression of cellular genes essential for cell survival and metabolic regulation, including Bcl-xL, Mcl-1, and autophagy genes. In the SECH approach, we inhibit the prosurvival antiapoptotic molecules and autophagy induced by LRAs, thereby allowing maximum killing of host cells by the induced HIV-1 proteins. SECH treatments cleared HIV-1 infections in humanized mice in vivo and in HIV-1 patient PBMCs ex vivo. SECH also cleared infections by the SIV in rhesus macaque PBMCs ex vivo. Research efforts are underway to improve the efficacy and safety of SECH and to facilitate the development of SECH as a therapeutic approach for treating people with HIV.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Min Li
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew P. Rice
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason T. Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
19
|
Kundakovic M. BET-ting on histone proteomics in schizophrenia. Trends Neurosci 2022; 45:716-717. [PMID: 35718601 PMCID: PMC9691262 DOI: 10.1016/j.tins.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
In a recent study, Farrelly, Zheng, and colleagues used a histone proteomics approach and patient-derived neurons to show increase in histone variant H2A.Z acetylation associated with schizophrenia (SCZ). They identified the bromo- and extraterminal (BET) protein BRD4 as an H2A.Z acetylation 'reader', and showed that a BRD4 inhibitor ameliorated the SCZ-associated transcriptional signature, revealing a new candidate target for treatment.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
20
|
Zhang S, Bai P, Lei D, Liang Y, Zhen S, Bakiasi G, Pang H, Choi SH, Wang C, Tanzi RE, Zhang C. Degradation and inhibition of epigenetic regulatory protein BRD4 exacerbate Alzheimer's disease-related neuropathology in cell models. J Biol Chem 2022; 298:101794. [PMID: 35248531 PMCID: PMC8958546 DOI: 10.1016/j.jbc.2022.101794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Epigenetic regulation plays substantial roles in human pathophysiology, which provides opportunities for intervention in human disorders through the targeting of epigenetic pathways. Recently, emerging evidence from preclinical studies suggested the potential in developing therapeutics of Alzheimer's disease (AD) by targeting bromodomain containing protein 4 (BRD4), an epigenetic regulatory protein. However, further characterization of AD-related pathological events is urgently required. Here, we investigated the effects of pharmacological degradation or inhibition of BRD4 on AD cell models. Interestingly, we found that both degradation and inhibition of BRD4 by ARV-825 and JQ1, respectively, robustly increased the levels of amyloid-beta (Aβ), which has been associated with the neuropathology of AD. Subsequently, we characterized the mechanisms by which downregulation of BRD4 increases Aβ levels. We found that both degradation and inhibition of BRD4 increased the levels of BACE1, the enzyme responsible for cleavage of the amyloid-beta protein precursor (APP) to generate Aβ. Consistent with Aβ increase, we also found that downregulation of BRD4 increased AD-related phosphorylated Tau (pTau) protein in our 3D-AD human neural cell culture model. Therefore, our results suggest that downregulation of BRD4 would not be a viable strategy for AD intervention. Collectively, our study not only shows that BRD4 is a novel epigenetic component that regulates BACE1 and Aβ levels, but also provides novel and translational insights into the targeting of BRD4 for potential clinical applications.
Collapse
Affiliation(s)
- Siyi Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA; Department of Forensic Medicine, China Medical University, Shenyang, China
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Dan Lei
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yingxia Liang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Sherri Zhen
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Grisilda Bakiasi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hao Pang
- Department of Forensic Medicine, China Medical University, Shenyang, China
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
21
|
Nikkar R, Esmaeili-Bandboni A, Badrikoohi M, Babaei P. Effects of inhibiting astrocytes and BET/BRD4 chromatin reader on spatial memory and synaptic proteins in rats with Alzheimer's disease. Metab Brain Dis 2022; 37:1119-1131. [PMID: 35244824 DOI: 10.1007/s11011-022-00940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
Communication between astrocytes and neurons has a profound effect on the pathophysiology of Alzheimer's disease (AD). Astrocytes regulate homeostasis and increase synaptic plasticity in physiological situations, however, they become activated during the progression of AD. Whether or not these reactions are supportive or detrimental for the central nervous system have not been understood yet. Considering epigenetic regulation of neuroinflammatory genes by chromatin readers, particularly bromodomain and extraterminal domain (BET) family, here we examined the effect of chronic co-inhibition of astrocytes metabolism (with fluorocitrate) and also BRD4 (with JQ1) on cognition deficit at early stages of AD. Forty adult male Wistar rats underwent stereotaxic cannulation for inducing AD by intrahippocampal injection of Aβ1-42 (4 μg/8 μl/rat). Then animals were divided into five groups of Saline+DMSO, Aβ + saline+DMSO, Aβ + JQ1, Aβ + FC (fluorocitrate), and Aβ + JQ1 + FC and received the related treatments. Two weeks later, spatial memory was recorded by Morris Water Maze (MWM), and the levels of phosphorylated cyclic-AMP response element binding protein (CREB), postsynaptic density 95 (PSD95), synaptophysin (SYP), and tumor necrosis factor-alpha (TNF-α) were measured in the hippocampus by western blotting and RT-qPCR. Administration of JQ1 significantly improved both acquisition and retrieval of spatial memory, which were evident by decreased escape latency and increased total time spent (TTS) in target quadrant, and significant rise in p-CREB, PSD95, and synaptophysin compared with Aβ + saline+DMSO group. In contrast, both groups receiving FC demonstrated memory decline, and reduction in p-CREB, PSD95 and synaptophysin in parallel with increase in TNF-α. Our data indicate that chronic inhibition of BRD4 significantly restores memory impaired by amyloid β partly via CREB signaling and upregulating synaptic proteins of PSD95 and synaptophysin. However, inhibition of astrocytes nullifies the memory-boosting effects of JQ1 and reduces CREB/PSD95/synaptophysin levels in hippocampus.
Collapse
Affiliation(s)
- Rastin Nikkar
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aghil Esmaeili-Bandboni
- Department of Medical Genetics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahshid Badrikoohi
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
22
|
Babigian CJ, Wiedner HJ, Wahlestedt C, Sartor GC. JQ1 attenuates psychostimulant- but not opioid-induced conditioned place preference. Behav Brain Res 2022; 418:113644. [PMID: 34757001 PMCID: PMC8671323 DOI: 10.1016/j.bbr.2021.113644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms play important roles in the neurobiology of substance use disorder. In particular, bromodomain and extra-terminal domain (BET) proteins, a class of histone acetylation readers, have been found to regulate cocaine conditioned behaviors, but their role in the behavioral response to other drugs of abuse remains unclear. To address this knowledge gap, we examined the effects of the BET inhibitor, JQ1, on nicotine, amphetamine, morphine, and oxycodone conditioned place preference (CPP). Similar to previous cocaine studies, systemic administration of JQ1 caused a dose-dependent reduction in the acquisition of amphetamine and nicotine CPP in male mice. However, in opioid studies, JQ1 did not alter morphine or oxycodone CPP. Investigating the effects of JQ1 on other types of learning and memory, we found that JQ1 did not alter the acquisition of contextual fear conditioning. Together, these results indicate that BET proteins play an important role in the acquisition of psychostimulant-induced CPP but not the acquisition of opioid-induced CPP nor contextual fear conditioning.
Collapse
Affiliation(s)
- CJ Babigian
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269
| | - HJ Wiedner
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136,Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - C Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
| | - GC Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269,Correspondence to: Gregory C. Sartor, Ph.D., Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville road, Storrs, CT 06269, , Telephone: 860-486-3655
| |
Collapse
|
23
|
Inuzuka H, Liu J, Wei W, Rezaeian AH. PROTACs technology for treatment of Alzheimer's disease: Advances and perspectives. ACTA MATERIA MEDICA 2022; 1:24-41. [PMID: 35237768 PMCID: PMC8887676 DOI: 10.15212/amm-2021-0001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Neurodegenerative diseases (NDs) are characteristic with progression of neuron degeneration, resulting in dysfunction of cognition and mobility. Many neurodegenerative diseases are because of proteinopathies that results from unusual protein accumulations and aggregations. The aggregation of misfolded proteins like β-amyloid, α-synuclein, tau, and polyglutamates are hallmarked in Alzheimer's disease (AD), which are undruggable targets, and usually do not respond to conventional small-molecule agents. Therefore, developing novel technology and strategy for reducing the levels of protein aggregates would be critical for treatment of AD. Recently, the emerging proteolysis targeting chimeras (PRPTACs) technology has been significantly considered for artificial and selective degradation of aberrant target proteins. These engineered bifunctional molecules engage target proteins to be degraded by either the cellular degradation machinery in the ubiquitin-proteasome system (UPS) or via the autophagy-lysosome degradation pathway. Although the application of PROTACs technology is preferable than oligonucleotide and antibodies for treatment of NDs, many limitations such as their pharmacokinetic properties, tissue distribution and cell permeabilities, still need to be corrected. Herein, we review the recent advances in PROTACs technology with their limitation for pharmaceutical targeting of aberrant proteins involved in Alzheimer's diseases. We also review therapeutic potential of dysregulated signaling such as PI3K/AKT/mTOR axis for the management of AD.
Collapse
Affiliation(s)
- Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Corresponding author. Contact: ,
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Corresponding author. Contact: ,
| |
Collapse
|
24
|
Simultaneous administration of bromodomain and histone deacetylase I inhibitors alleviates cognition deficit in Alzheimer's model of rats. Brain Res Bull 2021; 179:49-56. [PMID: 34915044 DOI: 10.1016/j.brainresbull.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Histone deacetylases (HDACs) target various genes responsible for cognitive functions. However, chromatin readers, particularly bromodomain-containing protein 4 (BRD4), are capable to change the final products of genes. The objective of this study was to evaluate the simultaneous effects of inhibition of HDACs and BRD4 on spatial and aversive memories impaired by amyloid β (Aβ) in a rat model of Alzheimer's disease (AD) considering CREB and TNF-α signaling. METHODS Forty male Wistar rats aged 3 months were randomly divided into five groups: saline +DMSO, Aβ+saline+DMSO, Aβ+JQ1, Aβ+MS-275, Aβ+JQ1+MS-275, and received the related treatments. MS-275, is the second generation of HDACs inhibitor, and JQ1 is a potent inhibitor of the BET family of bromodomain proteins in mammals. After the treatments, cognitive function was assessed by Morris water maze (MWM) and passive avoidance learning (PAL). The hippocampal level of mRNA for CREB and TNF-α, and also phosphorylated CREB were measured using real-time PCR and western blotting respectively. RESULTS Administration of JQ1 and MS-275, either separately or simultaneously, improved acquisition and retrieval of spatial and aversive memories as it was evident by decreased escape latency and increased time spent in the target quadrant (TTS) in Morris water maze (MWM), together with increase in step-through latency, but reduced time spent in the dark zone time in passive avoidance learning (PAL) compared with Aβ+saline+DMSO. Furthermore, there was a significant rise in the hippocampal level of CREB mRNA and phosphorylated CREB, but a reduction in TNF-α expression in comparison with Aβ + Saline. CONCLUSION Simultaneous administration of JQ1 and MS-275 improves acquisition and retrieval of both spatial and aversive memories partly via CREB and TNF-α signaling with no superiority to monotherapy.
Collapse
|
25
|
Bai P, Lan Y, Patnaik D, Wang H, Liu Y, Chen Z, Yuan G, Afshar S, Striar R, Zagaroli JS, Tocci DR, Langan AG, Haggarty SJ, Wang C. Design, Synthesis, and Evaluation of Thienodiazepine Derivatives as Positron Emission Tomography Imaging Probes for Bromodomain and Extra-Terminal Domain Family Proteins. J Med Chem 2021; 64:14745-14756. [PMID: 34549949 DOI: 10.1021/acs.jmedchem.1c01323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To better understand the role of bromodomain and extra-terminal domain (BET) proteins in epigenetic mechanisms, we developed a series of thienodiazepine-based derivatives and identified two compounds, 3a and 6a, as potent BET inhibitors. Further in vivo pharmacokinetic studies and analysis of in vitro metabolic stability of 6a revealed excellent brain penetration and reasonable metabolic stability. Compounds 3a and 6a were radiolabeled with fluorine-18 in two steps and utilized in positron emission tomography (PET) imaging studies in mice. Preliminary PET imaging results demonstrated that [18F]3a and [18F]6a have good brain uptake (with maximum SUV = 1.7 and 2, respectively) and binding specificity in mice brains. These results show that [18F]6a is a potential PET radiotracer that could be applied to imaging BET proteins in the brain. Further optimization and improvement of the metabolic stability of [18F]6a are still needed in order to create optimal PET imaging probes of BET family members.
Collapse
Affiliation(s)
- Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Zude Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Robin Striar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Julia S Zagaroli
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Darcy R Tocci
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Amelia G Langan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
26
|
Liu L, Yang C, Candelario-Jalil E. Role of BET Proteins in Inflammation and CNS Diseases. Front Mol Biosci 2021; 8:748449. [PMID: 34604312 PMCID: PMC8481655 DOI: 10.3389/fmolb.2021.748449] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins consist of four mammalian members (BRD2, BRD3, BRD4, and BRDT), which play a pivotal role in the transcriptional regulation of the inflammatory response. Dysregulated inflammation is a key pathological process in various CNS disorders through multiple mechanisms, including NF-κB and Nrf2 pathways, two well-known master regulators of inflammation. A better mechanistic understanding of the BET proteins’ role in regulating the inflammatory process is of great significance since it could reveal novel therapeutic targets to reduce neuroinflammation associated with many CNS diseases. In this minireview, we first outline the structural features of BET proteins and summarize genetic and pharmacological approaches for BET inhibition, including novel strategies using proteolysis-targeting chimeras (PROTACs). We emphasize in vitro and in vivo evidence of the interplay between BET proteins and NF-κB and Nrf2 signaling pathways. Finally, we summarize recent studies showing that BET proteins are essential regulators of inflammation and neuropathology in various CNS diseases.
Collapse
Affiliation(s)
- Lei Liu
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Wu X, Peng C, Nelson PT, Cheng Q. Random forest-integrated analysis in AD and LATE brain transcriptome-wide data to identify disease-specific gene expression. PLoS One 2021; 16:e0256648. [PMID: 34492068 PMCID: PMC8423259 DOI: 10.1371/journal.pone.0256648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects thinking, memory, and behavior. Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently identified common neurodegenerative disease that mimics the clinical symptoms of AD. The development of drugs to prevent or treat these neurodegenerative diseases has been slow, partly because the genes associated with these diseases are incompletely understood. A notable hindrance from data analysis perspective is that, usually, the clinical samples for patients and controls are highly imbalanced, thus rendering it challenging to apply most existing machine learning algorithms to directly analyze such datasets. Meeting this data analysis challenge is critical, as more specific disease-associated gene identification may enable new insights into underlying disease-driving mechanisms and help find biomarkers and, in turn, improve prospects for effective treatment strategies. In order to detect disease-associated genes based on imbalanced transcriptome-wide data, we proposed an integrated multiple random forests (IMRF) algorithm. IMRF is effective in differentiating putative genes associated with subjects having LATE and/or AD from controls based on transcriptome-wide data, thereby enabling effective discrimination between these samples. Various forms of validations, such as cross-domain verification of our method over other datasets, improved and competitive classification performance by using identified genes, effectiveness of testing data with a classifier that is completely independent from decision trees and random forests, and relationships with prior AD and LATE studies on the genes linked to neurodegeneration, all testify to the effectiveness of IMRF in identifying genes with altered expression in LATE and/or AD. We conclude that IMRF, as an effective feature selection algorithm for imbalanced data, is promising to facilitate the development of new gene biomarkers as well as targets for effective strategies of disease prevention and treatment.
Collapse
Affiliation(s)
- Xinxing Wu
- University of Kentucky, Lexington, Kentucky, United States of America
| | - Chong Peng
- Qingdao University, Qingdao, Shandong, China
| | - Peter T. Nelson
- University of Kentucky, Lexington, Kentucky, United States of America
| | - Qiang Cheng
- University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
28
|
Cummings J, Schwartz GG, Nicholls SJ, Khan A, Halliday C, Toth PP, Sweeney M, Johansson JO, Wong NCW, Kulikowski E, Kalantar-Zadeh K, Lebioda K, Ginsberg HN, Winblad B, Zetterberg H, Ray KK. Cognitive Effects of the BET Protein Inhibitor Apabetalone: A Prespecified Montreal Cognitive Assessment Analysis Nested in the BETonMACE Randomized Controlled Trial. J Alzheimers Dis 2021; 83:1703-1715. [PMID: 34459400 PMCID: PMC8609701 DOI: 10.3233/jad-210570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Epigenetic changes may contribute importantly to cognitive decline in late life including Alzheimer’s disease (AD) and vascular dementia (VaD). Bromodomain and extra-terminal (BET) proteins are epigenetic “readers” that may distort normal gene expression and contribute to chronic disorders. Objective: To assess the effects of apabetalone, a small molecule BET protein inhibitor, on cognitive performance of patients 70 years or older participating in a randomized trial of patients at high risk for major cardiovascular events (MACE). Methods: The Montreal Cognitive Assessment (MoCA) was performed on all patients 70 years or older at the time of randomization. 464 participants were randomized to apabetalone or placebo in the cognition sub-study. In a prespecified analysis, participants were assigned to one of three groups: MoCA score≥26 (normal performance), MoCA score 25–22 (mild cognitive impairment), and MoCA score≤21 (dementia). Exposure to apabetalone was equivalent in the treatment groups in each MoCA-defined group. Results: Apabetalone was associated with an increased total MoCA score in participants with baseline MoCA score of≤21 (p = 0.02). There was no significant difference in change from baseline in the treatment groups with higher MoCA scores. In the cognition study, more patients randomized to apabetalone discontinued study drug for adverse effects (11.3% versus 7.9%). Conclusion: In this randomized controlled study, apabetalone was associated with improved cognition as measured by MoCA scores in those with baseline scores of 21 or less. BET protein inhibitors warrant further investigation for late life cognitive disorders.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Gregory G Schwartz
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Aziz Khan
- Resverlogix Corporation, Calgary, AB, Canada
| | | | - Peter P Toth
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, University of California Irvine, Irvine, CA, USA
| | | | - Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bengt Winblad
- Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden.,Karolinska University Hospital, Theme Inflammation and Aging, Huddinge, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Imperial College, London, UK
| |
Collapse
|
29
|
Bilecki W, Wawrzczak-Bargieła A, Majcher-Maślanka I, Chmelova M, Maćkowiak M. Inhibition of BET Proteins during Adolescence Affects Prefrontal Cortical Development: Relevance to Schizophrenia. Int J Mol Sci 2021; 22:ijms22168710. [PMID: 34445411 PMCID: PMC8395847 DOI: 10.3390/ijms22168710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Background: The present study investigated the role of proteins from the bromodomain and extra-terminal (BET) family in schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia induced by prenatal methylazoxymethanol (MAM) administration (MAM-E17). Methods: An inhibitor of BET proteins, JQ1, was administered during adolescence on postnatal days (P) 23–P29, and behavioural responses (sensorimotor gating, recognition memory) and prefrontal cortical (mPFC) function (long-term potentiation (LTP), molecular and proteomic analyses) studies were performed in adult males and females. Results: Deficits in sensorimotor gating and recognition memory were observed only in MAM-treated males. However, adolescent JQ1 treatment affected animals of both sexes in the control but not MAM-treated groups and reduced behavioural responses in both sexes. An electrophysiological study showed LTP impairments only in male MAM-treated animals, and JQ1 did not affect LTP in the mPFC. In contrast, MAM did not affect activity-dependent gene expression, but JQ1 altered gene expression in both sexes. A proteomic study revealed alterations in MAM-treated groups mainly in males, while JQ1 affected both sexes. Conclusions: MAM-induced schizophrenia-like abnormalities were observed only in males, while adolescent JQ1 treatment affected memory recognition and altered the molecular and proteomic landscape in the mPFC of both sexes. Thus, transient adolescent inhibition of the BET family might prompt permanent alterations in the mPFC.
Collapse
|
30
|
Wang W, Wang R, Jiang Z, Li H, Zhu Z, Khalid A, Liu D, Pan F. Inhibiting Brd4 alleviated PTSD-like behaviors and fear memory through regulating immediate early genes expression and neuroinflammation in rats. J Neurochem 2021; 158:912-927. [PMID: 34050937 DOI: 10.1111/jnc.15439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by depression/anxiety and memory failure, primarily fear memory. According to the reports, neuroinflammation and synaptic plasticity can play a role in the neurophysiological mechanisms underlying PTSD. Bromodomain-containing protein 4 (Brd4) intriguingly affects regulating of inflammatory responses and learning and memory. This study aimed to explore the effect of inhibiting Brd4 on depression/anxiety-like behaviors, spatial and fear memory, and underlying mechanisms in a model of PTSD. Inescapable foot shocks (IFS) with a sound reminder in 6 days were used to induce PTSD-like behaviors which were tested using contextual and cue fear tests, sucrose preference test, open-field test, elevated plus maze test, and Y-maze test. Meanwhile, the Brd4 inhibitor JQ1 was used as an intervention. The results found that IFS induced PTSD-like behaviors and indicated obvious Brd4 expression in microglia of the prefrontal cortex (PFC), hippocampus, and amygdala, pro-inflammatory cytokines over-expression, microglial activation, and nuclear factor-kappa B over-expression in PFC and hippocampus but not in amygdala. Meanwhile, the alterations of immediate early genes (IEGs) were found in PFC, hippocampus, and amygdala. Besides, dendritic spine density was reduced in PFC and hippocampus but was elevated in amygdala of rats with IFS. In addition, treatment with JQ1 significantly reduced freezing time in the contextual and cue fear test, reversed the behavioral impairment, decreased the elevated neuroinflammation, and normalized the alteration in IEGs and dendritic spine densities. The results suggested that Brd4 was involved in IFS-induced PTSD-like behaviors through regulating neuroinflammation, dynamics of IEGs, and synaptic plasticity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Rui Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Zhijun Jiang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Haonan Li
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Arslan Khalid
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| |
Collapse
|
31
|
Kim SK, Liu X, Park J, Um D, Kilaru G, Chiang CM, Kang M, Huber KM, Kang K, Kim TK. Functional coordination of BET family proteins underlies altered transcription associated with memory impairment in fragile X syndrome. SCIENCE ADVANCES 2021; 7:7/21/eabf7346. [PMID: 34138732 PMCID: PMC8133748 DOI: 10.1126/sciadv.abf7346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 05/07/2023]
Abstract
Bromodomain and extraterminal proteins (BET) are epigenetic readers that play critical roles in gene regulation. Pharmacologic inhibition of the bromodomain present in all BET family members is a promising therapeutic strategy for various diseases, but its impact on individual family members has not been well understood. Using a transcriptional induction paradigm in neurons, we have systematically demonstrated that three major BET family proteins (BRD2/3/4) participated in transcription with different recruitment kinetics, interdependency, and sensitivity to a bromodomain inhibitor, JQ1. In a mouse model of fragile X syndrome (FXS), BRD2/3 and BRD4 showed oppositely altered expression and chromatin binding, correlating with transcriptional dysregulation. Acute inhibition of CBP/p300 histone acetyltransferase (HAT) activity restored the altered binding patterns of BRD2 and BRD4 and rescued memory impairment in FXS. Our study emphasizes the importance of understanding the BET coordination controlled by a balanced action between HATs with different substrate specificity.
Collapse
Affiliation(s)
- Seung-Kyoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xihui Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jongmin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea
| | - Gokhul Kilaru
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan 31116, Korea.
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Bai P, Lu X, Liu Y, Lan Y, Wang H, Fiedler S, Striar R, Wang C. Discovery of a Positron Emission Tomography Radiotracer Selectively Targeting the BD1 Bromodomains of BET Proteins. ACS Med Chem Lett 2021; 12:282-287. [PMID: 33603976 DOI: 10.1021/acsmedchemlett.0c00650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
In this paper, we report the design, synthesis, and biological evaluation of the first selective bromodomain and extra-terminal domain (BET) BD1 bromodomains of the PET radiotracer [18F]PB006. The standard compound PB006 showed high affinity and good selectivity toward BRD4 BD1 (K d = 100 nM and 29-fold selectively for BD1 over BD2) in an in vitro binding assay. PET imaging experiments in rodents were performed to evaluate the bioactivity of [18F]PB006 in vivo. A biodistribution study of [18F]PB006 in mice revealed high radiotracer uptake in peripheral tissues, such as liver and kidney, and moderate radiotracer uptake in the brain. Further blocking studies demonstrated the significant radioactivity decreasing (20-30% reduction compared with baseline) by pretreating unlabeled PB006 and JQ1, suggesting the high binding selectivity and specificity of [18F]PB006. Our study indicated that [18F]PB006 is a potent PET probe selectively targeting BET BD1, and further structural optimization of the radiotracer is still required to improve brain uptake to support neuroepigenetic imaging.
Collapse
Affiliation(s)
- Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Hao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Stephanie Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Robin Striar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
33
|
Huang FL, Li F, Zhang WJ, Li SJ, Yang ZH, Yang TL, Qi J, Duan Q, Li CQ. Brd4 participates in epigenetic regulation of the extinction of remote auditory fear memory. Neurobiol Learn Mem 2021; 179:107383. [PMID: 33460788 DOI: 10.1016/j.nlm.2021.107383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/02/2020] [Accepted: 01/10/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Inaccurate fear memories can be maladaptive and potentially portrait a core symptomatic dimension of fear adaptive disorders such as post-traumatic stress disorder (PTSD), which is generally characterized by an intense and enduring memory for the traumatic events. Evidence exists in support of epigenetic regulation of fear behavior. Brd4, a member of the bromodomain and extra-terminal domain (BET) protein family, serves as a chromatin "reader" by binding to histones in acetylated lysine residues, and hence promotes transcriptional activities. However, less is known whether Brd4 participates in modulating cognitive activities especially memory formation and extinction. Here we provide evidence for a role of Brd4 in modulation of auditory fear memory. Auditory fear conditioning resulted in a biphasic Brd4 activation in the anterior cingulate cortex (ACC) and hippocampus of adult mice. Thus, Brd4 phosphorylation occurred 6 h and 3-14 days, respectively, after auditory fear conditioning. Systemic inhibition of Brd4 with a BET inhibitor, JQ1, impaired the extinction of remote (i.e., 14 days after conditioning) fear memory. Further, conditional Brd4 knockout in excitatory neurons of the forebrain impaired remote fear extinction as observed in the JQ1-treated mice. Herein, we identified that Brd4 is essential for extinction of remote fear in rodents. These results thus indicate that Brd4 potentially plays a role in the pathogenesis of PTSD.
Collapse
Affiliation(s)
- Fu-Lian Huang
- Department of Physiology, Yiyang Medical College, Yiyang 413000, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Wen-Juan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Song-Ji Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Ze-Hua Yang
- Department of Physiology, Yiyang Medical College, Yiyang 413000, China
| | - Tian-Lun Yang
- Cardiovascular Division, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun Qi
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Qiong Duan
- Cardiovascular Division, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Hypertension Research Institute, Nanchang 330006, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China.
| |
Collapse
|
34
|
Iyer H, Wahul AB, P K A, Sawant BS, Kumar A. A BRD's (BiRD's) eye view of BET and BRPF bromodomains in neurological diseases. Rev Neurosci 2021; 32:403-426. [PMID: 33661583 DOI: 10.1515/revneuro-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation 'readers'. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Harish Iyer
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Abhipradnya B Wahul
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Annapoorna P K
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bharvi S Sawant
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
35
|
Kalra P, McGraw L, Kimbrough JR, Pandey AK, Solberg J, Cui H, Divakaran A, John K, Hawkinson JE, Pomerantz WCK. Quantifying the Selectivity of Protein-Protein and Small Molecule Interactions with Fluorinated Tandem Bromodomain Reader Proteins. ACS Chem Biol 2020; 15:3038-3049. [PMID: 33138352 PMCID: PMC8185897 DOI: 10.1021/acschembio.0c00720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multidomain bromodomain-containing proteins regulate gene expression via chromatin binding, interactions with the transcriptional machinery, and by recruiting enzymatic activity. Selective inhibition of members of the bromodomain and extra-terminal (BET) family is important to understand their role in disease and gene regulation, although due to the similar binding sites of BET bromodomains, selective inhibitor discovery has been challenging. To support the bromodomain inhibitor discovery process, here we report the first application of protein-observed fluorine (PrOF) NMR to the tandem bromodomains of BRD4 and BRDT to quantify the selectivity of their interactions with acetylated histones as well as small molecules. We further determine the selectivity profile of a new class of ligands, 1,4-acylthiazepanes, and find them to have ≥3-10-fold selectivity for the C-terminal bromodomain of both BRD4 and BRDT. Given the speed and lower protein concentration required over traditional protein-observed NMR methods, we envision that these fluorinated tandem proteins may find use in fragment screening and evaluating nucleosome and transcription factor interactions.
Collapse
Affiliation(s)
- Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Logan McGraw
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Anil K Pandey
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jonathan Solberg
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Huarui Cui
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| | - Kristen John
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jon E Hawkinson
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
36
|
Burns AM, Gräff J. Cognitive epigenetic priming: leveraging histone acetylation for memory amelioration. Curr Opin Neurobiol 2020; 67:75-84. [PMID: 33120188 DOI: 10.1016/j.conb.2020.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Multiple studies have found that increasing histone acetylation by means of histone deacetylase inhibitor (HDACi) treatment can ameliorate memory and rescue cognitive impairments, but their mode of action is not fully understood. In particular, it is unclear how HDACis, applied systemically and devoid of genomic target selectivity, would specifically improve memory-related molecular processes. One theory for such specificity is called cognitive epigenetic priming (CEP), according to which HDACis promote memory by facilitating the expression of neuroplasticity-related genes that have been stimulated by learning itself. In this review, we summarize the experimental evidence in support of CEP, describe newly discovered off-target effects of HDACis and highlight similarities between drug-induced and naturally occurring CEP. Understanding the underlying mechanisms of CEP is important in light of the preclinical premise of HDACis as cognitive enhancers.
Collapse
Affiliation(s)
- Allison M Burns
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
37
|
Kannan-Sundhari A, Abad C, Maloof ME, Ayad NG, Young JI, Liu XZ, Walz K. Bromodomain Protein BRD4 Is Essential for Hair Cell Function and Survival. Front Cell Dev Biol 2020; 8:576654. [PMID: 33015071 PMCID: PMC7509448 DOI: 10.3389/fcell.2020.576654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Hair cells (HCs) play crucial roles in perceiving sound, acceleration, and fluid motion. The tonotopic architecture of the sensory epithelium recognizes mechanical stimuli and convert them into electrical signals. The expression and regulation of the genes in the inner ear is very important to keep the sensory organ functional. Our study is the first to investigate the role of the epigenetic reader Brd4 in the mouse inner ear. We demonstrate that HC specific deletion of Brd4 in vivo in the mouse inner ear is sufficient to cause profound hearing loss (HL), degeneration of stereocilia, nerve fibers and HC loss postnatally in mouse; suggesting an important role in hearing function and maintenance.
Collapse
Affiliation(s)
- Abhiraami Kannan-Sundhari
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States.,The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, United States
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | - Marie E Maloof
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nagi G Ayad
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Juan I Young
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, United States.,John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | - Xue Zhong Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States.,The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, United States.,John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | - Katherina Walz
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, United States.,John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| |
Collapse
|
38
|
Duan Q, Huang FL, Li SJ, Chen KZ, Gong L, Qi J, Yang ZH, Yang TL, Li F, Li CQ. BET proteins inhibitor JQ-1 impaired the extinction of remote auditory fear memory: An effect mediated by insulin like growth factor 2. Neuropharmacology 2020; 177:108255. [DOI: 10.1016/j.neuropharm.2020.108255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/10/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
|
39
|
Li Y, Xiang J, Zhang J, Lin J, Wu Y, Wang X. Inhibition of Brd4 by JQ1 Promotes Functional Recovery From Spinal Cord Injury by Activating Autophagy. Front Cell Neurosci 2020; 14:555591. [PMID: 32982695 PMCID: PMC7493001 DOI: 10.3389/fncel.2020.555591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a destructive neurological disorder that is characterized by impaired sensory and motor function. Inhibition of bromodomain protein 4 (Brd4) has been shown to promote the maintenance of cell homeostasis by activating autophagy. However, the role of Brd4 inhibition in SCI and the underlying mechanisms are poorly understood. Thus, the goal of the present study was to evaluate the effects of sustained Brd4 inhibition using the bromodomain and extraterminal domain (BET) inhibitor JQ1 on the regulation of apoptosis, oxidative stress and autophagy in a mouse model of SCI. First, we observed that Brd4 expression at the lesion sites of mouse spinal cords increased after SCI. Treatment with JQ1 significantly decreased the expression of Brd4 and improved functional recovery for up to 28 day after SCI. In addition, JQ1-mediated inhibition of Brd4 reduced oxidative stress and inhibited the expression of apoptotic proteins to promote neural survival. Our results also revealed that JQ1 treatment activated autophagy and restored autophagic flux, while the positive effects of JQ1 were abrogated by autophagy inhibitor 3-MA intervention, indicating that autophagy plays a crucial role in therapeutic effects Brd4 induced by inhibition of the functional recovery SCI. In the mechanistic analysis, we observed that modulation of the AMPK-mTOR-ULK1 pathway is involved in the activation of autophagy mediated by Brd4 inhibition. Taken together, the results of our investigation provides compelling evidence that Brd4 inhibition by JQ1 promotes functional recovery after SCI and that Brd4 may serve as a potential target for SCI treatment.
Collapse
Affiliation(s)
- Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Xiang
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Jing Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiahao Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
BET bromodomains as novel epigenetic targets for brain health and disease. Neuropharmacology 2020; 181:108306. [PMID: 32946883 DOI: 10.1016/j.neuropharm.2020.108306] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Epigenetic pharmacotherapy for CNS-related diseases is a burgeoning area of research. In particular, members of the bromodomain and extra-terminal domain (BET) family of proteins have emerged as intriguing therapeutic targets due to their putative involvement in an array of brain diseases. With their ability to bind to acetylated histones and act as a scaffold for chromatin modifying complexes, BET proteins were originally thought of as passive epigenetic 'reader' proteins. However, new research depicts a more complex reality where BET proteins act as key nodes in lineage-specific and signal-dependent transcriptional mechanisms to influence disease-relevant functions. Amid a recent wave of drug development efforts from basic scientists and pharmaceutical companies, BET inhibitors are currently being studied in several CNS-related disease models, but safety and tolerability remain a concern. Here we review the progress in understanding the neurobiological mechanisms of BET proteins and the therapeutic potential of targeting BET proteins for brain health and disease.
Collapse
|
41
|
Xiang Y, Tanaka Y, Patterson B, Hwang SM, Hysolli E, Cakir B, Kim KY, Wang W, Kang YJ, Clement EM, Zhong M, Lee SH, Cho YS, Patra P, Sullivan GJ, Weissman SM, Park IH. Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons. Mol Cell 2020; 79:84-98.e9. [PMID: 32526163 PMCID: PMC7375197 DOI: 10.1016/j.molcel.2020.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.
Collapse
Affiliation(s)
- Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sung-Min Hwang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eriona Hysolli
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wanshan Wang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ethan M Clement
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yee Sook Cho
- Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Prabir Patra
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
| | - Gareth J Sullivan
- Department of Molecular Medicine, Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Oslo University Hospital and University of Oslo, Oslo 0424, Norway; Department of Pediatric Research, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
| | - Sherman M Weissman
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
42
|
Jash K, Gondaliya P, Kirave P, Kulkarni B, Sunkaria A, Kalia K. Cognitive dysfunction: A growing link between diabetes and Alzheimer's disease. Drug Dev Res 2020; 81:144-164. [DOI: 10.1002/ddr.21579] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Kavya Jash
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Prathibha Kirave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Bhagyashri Kulkarni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Aditya Sunkaria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| |
Collapse
|
43
|
Lines KE, Filippakopoulos P, Stevenson M, Müller S, Lockstone HE, Wright B, Knapp S, Buck D, Bountra C, Thakker RV. Effects of epigenetic pathway inhibitors on corticotroph tumour AtT20 cells. Endocr Relat Cancer 2020; 27:163-174. [PMID: 31935194 PMCID: PMC7040567 DOI: 10.1530/erc-19-0448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Medical treatments for corticotrophinomas are limited, and we therefore investigated the effects of epigenetic modulators, a new class of anti-tumour drugs, on the murine adrenocorticotropic hormone (ACTH)-secreting corticotrophinoma cell line AtT20. We found that AtT20 cells express members of the bromo and extra-terminal (BET) protein family, which bind acetylated histones, and therefore, studied the anti-proliferative and pro-apoptotic effects of two BET inhibitors, referred to as (+)-JQ1 (JQ1) and PFI-1, using CellTiter Blue and Caspase Glo assays, respectively. JQ1 and PFI-1 significantly decreased proliferation by 95% (P < 0.0005) and 43% (P < 0.0005), respectively, but only JQ1 significantly increased apoptosis by >50-fold (P < 0.0005), when compared to untreated control cells. The anti-proliferative effects of JQ1 and PFI-1 remained for 96 h after removal of the respective compound. JQ1, but not PFI-1, affected the cell cycle, as assessed by propidium iodide staining and flow cytometry, and resulted in a higher number of AtT20 cells in the sub G1 phase. RNA-sequence analysis, which was confirmed by qRT-PCR and Western blot analyses, revealed that JQ1 treatment significantly altered expression of genes involved in apoptosis, such as NFκB, and the somatostatin receptor 2 (SSTR2) anti-proliferative signalling pathway, including SSTR2. JQ1 treatment also significantly reduced transcription and protein expression of the ACTH precursor pro-opiomelanocortin (POMC) and ACTH secretion by AtT20 cells. Thus, JQ1 treatment has anti-proliferative and pro-apoptotic effects on AtT20 cells and reduces ACTH secretion, thereby indicating that BET inhibition may provide a novel approach for treatment of corticotrophinomas.
Collapse
Affiliation(s)
- K E Lines
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - M Stevenson
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - S Müller
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - H E Lockstone
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - B Wright
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - S Knapp
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Frankfurt, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - D Buck
- Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - C Bountra
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - R V Thakker
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
44
|
Kent K, Johnston M, Strump N, Garcia TX. Toward Development of the Male Pill: A Decade of Potential Non-hormonal Contraceptive Targets. Front Cell Dev Biol 2020; 8:61. [PMID: 32161754 PMCID: PMC7054227 DOI: 10.3389/fcell.2020.00061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
With the continued steep rise of the global human population, and the paucity of safe and practical contraceptive options available to men, the need for development of effective and reversible non-hormonal methods of male fertility control is widely recognized. Currently there are several contraceptive options available to men, however, none of the non-hormonal alternatives have been clinically approved. To advance progress in the development of a safe and reversible contraceptive for men, further identification of novel reproductive tract-specific druggable protein targets is required. Here we provide an overview of genes/proteins identified in the last decade as specific or highly expressed in the male reproductive tract, with deletion phenotypes leading to complete male infertility in mice. These phenotypes include arrest of spermatogenesis and/or spermiogenesis, abnormal spermiation, abnormal spermatid morphology, abnormal sperm motility, azoospermia, globozoospermia, asthenozoospermia, and/or teratozoospermia, which are all desirable outcomes for a novel male contraceptive. We also consider other associated deletion phenotypes that could impact the desirability of a potential contraceptive. We further discuss novel contraceptive targets underscoring promising leads with the objective of presenting data for potential druggability and whether collateral effects may exist from paralogs with close sequence similarity.
Collapse
Affiliation(s)
- Katarzyna Kent
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Madelaine Johnston
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Natasha Strump
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Thomas X Garcia
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
45
|
DeMars KM, Yang C, Candelario-Jalil E. Neuroprotective effects of targeting BET proteins for degradation with dBET1 in aged mice subjected to ischemic stroke. Neurochem Int 2019; 127:94-102. [DOI: 10.1016/j.neuint.2019.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
|
46
|
Sánchez-Ventura J, Amo-Aparicio J, Navarro X, Penas C. BET protein inhibition regulates cytokine production and promotes neuroprotection after spinal cord injury. J Neuroinflammation 2019; 16:124. [PMID: 31186006 PMCID: PMC6560758 DOI: 10.1186/s12974-019-1511-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) usually causes a devastating lifelong disability for patients. After a traumatic lesion, disruption of the blood-spinal cord barrier induces the infiltration of macrophages into the lesion site and the activation of resident glial cells, which release cytokines and chemokines. These events result in a persistent inflammation, which has both detrimental and beneficial effects, but eventually limits functional recovery and contributes to the appearance of neuropathic pain. Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that regulate the expression of inflammatory genes by interacting with acetylated lysine residues. While BET inhibitors are a promising therapeutic strategy for cancer, little is known about their implication after SCI. Thus, the current study was aimed to investigate the anti-inflammatory role of BET inhibitors in this pathologic condition. METHODS We evaluated the effectiveness of the BET inhibitor JQ1 to modify macrophage reactivity in vitro and to modulate inflammation in a SCI mice model. We analyzed the effects of BET inhibition in pro-inflammatory and anti-inflammatory cytokine production in vitro and in vivo. We determined the effectiveness of BET inhibition in tissue sparing, inflammation, neuronal protection, and behavioral outcome after SCI. RESULTS We have found that the BET inhibitor JQ1 reduced the levels of pro-inflammatory mediators and increased the expression of anti-inflammatory cytokines. A prolonged treatment with JQ1 also decreased reactivity of microglia/macrophages, enhanced neuroprotection and functional recovery, and acutely reduced neuropathic pain after SCI. CONCLUSIONS BET protein inhibition is an effective treatment to regulate cytokine production and promote neuroprotection after SCI. These novel results demonstrate for the first time that targeting BET proteins is an encouraging approach for SCI repair and a potential strategy to treat other inflammatory pathologies.
Collapse
Affiliation(s)
- Judith Sánchez-Ventura
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jesús Amo-Aparicio
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Xavier Navarro
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Clara Penas
- Institut of Neurosciences, Dept Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
47
|
Sartor GC, Malvezzi AM, Kumar A, Andrade NS, Wiedner HJ, Vilca SJ, Janczura KJ, Bagheri A, Al-Ali H, Powell SK, Brown PT, Volmar CH, Foster TC, Zeier Z, Wahlestedt C. Enhancement of BDNF Expression and Memory by HDAC Inhibition Requires BET Bromodomain Reader Proteins. J Neurosci 2019; 39:612-626. [PMID: 30504275 PMCID: PMC6343644 DOI: 10.1523/jneurosci.1604-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/05/2018] [Accepted: 11/11/2018] [Indexed: 02/01/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors may have therapeutic utility in multiple neurological and psychiatric disorders, but the underlying mechanisms remain unclear. Here, we identify BRD4, a BET bromodomain reader of acetyl-lysine histones, as an essential component involved in potentiated expression of brain-derived neurotrophic factor (BDNF) and memory following HDAC inhibition. In in vitro studies, we reveal that pharmacological inhibition of BRD4 reversed the increase in BDNF mRNA induced by the class I/IIb HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Knock-down of HDAC2 and HDAC3, but not other HDACs, increased BDNF mRNA expression, whereas knock-down of BRD4 blocked these effects. Using dCas9-BRD4, locus-specific targeting of BRD4 to the BDNF promoter increased BDNF mRNA. In additional studies, RGFP966, a pharmacological inhibitor of HDAC3, elevated BDNF expression and BRD4 binding to the BDNF promoter, effects that were abrogated by JQ1 (an inhibitor of BRD4). Examining known epigenetic targets of BRD4 and HDAC3, we show that H4K5ac and H4K8ac modifications and H4K5ac enrichment at the BDNF promoter were elevated following RGFP966 treatment. In electrophysiological studies, JQ1 reversed RGFP966-induced enhancement of LTP in hippocampal slice preparations. Last, in behavioral studies, RGFP966 increased subthreshold novel object recognition memory and cocaine place preference in male C57BL/6 mice, effects that were reversed by cotreatment with JQ1. Together, these data reveal that BRD4 plays a key role in HDAC3 inhibitor-induced potentiation of BDNF expression, neuroplasticity, and memory.SIGNIFICANCE STATEMENT Some histone deacetylase (HDAC) inhibitors are known to have neuroprotective and cognition-enhancing properties, but the underlying mechanisms have yet to be fully elucidated. In the current study, we reveal that BRD4, an epigenetic reader of histone acetylation marks, is necessary for enhancing brain-derived neurotrophic factor (BDNF) expression and improved memory following HDAC inhibition. Therefore, by identifying novel epigenetic regulators of BDNF expression, these data may lead to new therapeutic targets for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gregory C Sartor
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136,
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Andrea M Malvezzi
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Ashok Kumar
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, and
| | - Nadja S Andrade
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Hannah J Wiedner
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Samantha J Vilca
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Karolina J Janczura
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Amir Bagheri
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Samuel K Powell
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Peyton T Brown
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Claude H Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Thomas C Foster
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, and
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136,
| |
Collapse
|
48
|
Bai P, Wey HY, Patnaik D, Lu X, Lan Y, Rokka J, Stephanie F, Haggarty SJ, Wang C. Positron emission tomography probes targeting bromodomain and extra-terminal (BET) domains to enable in vivo neuroepigenetic imaging. Chem Commun (Camb) 2019; 55:12932-12935. [DOI: 10.1039/c9cc06734e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel PET radiotracer of BET proteins enable in vivo neuroepigenetic imaging.
Collapse
Affiliation(s)
- Ping Bai
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
- Athinoula A. Martinos Center for Biomedical Imaging
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory
- Center for Genomic Medicine
- Department of Neurology
- Massachusetts General Hospital
- Harvard Medical School
| | - Xiaoxia Lu
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Johanna Rokka
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Fiedler Stephanie
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory
- Center for Genomic Medicine
- Department of Neurology
- Massachusetts General Hospital
- Harvard Medical School
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| |
Collapse
|
49
|
Affiliation(s)
- Andre Fischer
- Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
- Department for Systems Medicine and Brain Diseases, German Center for Neurodegenerative Diseases (DZNE) site Göttingen, Göttingen, Germany.
| |
Collapse
|
50
|
Cacabelos R, Carril JC, Sanmartín A, Cacabelos P. Pharmacoepigenetic Processors: Epigenetic Drugs, Drug Resistance, Toxicoepigenetics, and Nutriepigenetics. PHARMACOEPIGENETICS 2019:191-424. [DOI: 10.1016/b978-0-12-813939-4.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|