1
|
Xu Z, Park TJ, Cao H. Advances in mining and expressing microbial biosynthetic gene clusters. Crit Rev Microbiol 2023; 49:18-37. [PMID: 35166616 DOI: 10.1080/1040841x.2022.2036099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Natural products (NPs) especially the secondary metabolites originated from microbes exhibit great importance in biomedical, industrial and agricultural applications. However, mining biosynthetic gene clusters (BGCs) to produce novel NPs has been hindered owing that a large population of environmental microbes are unculturable. In the past decade, strategies to explore BGCs directly from (meta)genomes have been established along with the fast development of high-throughput sequencing technologies and the powerful bioinformatics data-processing tools, which greatly expedited the exploitations of novel BGCs from unculturable microbes including the extremophilic microbes. In this review, we firstly summarized the popular bioinformatics tools and databases available to mine novel BGCs from (meta)genomes based on either pure cultures or pristine environmental samples. Noticeably, approaches rooted from machine learning and deep learning with focuses on the prediction of ribosomally synthesized and post-translationally modified peptides (RiPPs) were dramatically increased in recent years. Moreover, synthetic biology techniques to express the novel BGCs in culturable native microbes or heterologous hosts were introduced. This working pipeline including the discovery and biosynthesis of novel NPs will greatly advance the exploitations of the abundant but unexplored microbial BGCs.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Tae-Jin Park
- HME Healthcare Co., Ltd, Suwon-si, Republic of Korea
| | - Huiluo Cao
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Gogineni V, Hamann MT. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochim Biophys Acta Gen Subj 2018; 1862:81-196. [PMID: 28844981 PMCID: PMC5918664 DOI: 10.1016/j.bbagen.2017.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability.
Collapse
Affiliation(s)
- Vedanjali Gogineni
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS, United States.
| | - Mark T Hamann
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy and Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
3
|
Mazard S, Penesyan A, Ostrowski M, Paulsen IT, Egan S. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future. Mar Drugs 2016; 14:E97. [PMID: 27196915 PMCID: PMC4882571 DOI: 10.3390/md14050097] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023] Open
Abstract
Cyanobacteria are among the first microorganisms to have inhabited the Earth. Throughout the last few billion years, they have played a major role in shaping the Earth as the planet we live in, and they continue to play a significant role in our everyday lives. Besides being an essential source of atmospheric oxygen, marine cyanobacteria are prolific secondary metabolite producers, often despite the exceptionally small genomes. Secondary metabolites produced by these organisms are diverse and complex; these include compounds, such as pigments and fluorescent dyes, as well as biologically-active compounds with a particular interest for the pharmaceutical industry. Cyanobacteria are currently regarded as an important source of nutrients and biofuels and form an integral part of novel innovative energy-efficient designs. Being autotrophic organisms, cyanobacteria are well suited for large-scale biotechnological applications due to the low requirements for organic nutrients. Recent advances in molecular biology techniques have considerably enhanced the potential for industries to optimize the production of cyanobacteria secondary metabolites with desired functions. This manuscript reviews the environmental role of marine cyanobacteria with a particular focus on their secondary metabolites and discusses current and future developments in both the production of desired cyanobacterial metabolites and their potential uses in future innovative projects.
Collapse
Affiliation(s)
- Sophie Mazard
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
4
|
Smanski MJ, Schlatter DC, Kinkel LL. Leveraging ecological theory to guide natural product discovery. ACTA ACUST UNITED AC 2016; 43:115-28. [DOI: 10.1007/s10295-015-1683-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/29/2015] [Indexed: 12/31/2022]
Abstract
Abstract
Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random ‘fishing expeditions’ for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.
Collapse
Affiliation(s)
- Michael J Smanski
- grid.17635.36 0000000419368657 Department of Biochemistry, Molecular Biology, and Biophysics University of Minnesota-Twin Cities 55108 Saint Paul MN USA
- grid.17635.36 0000000419368657 BioTechnology Institute University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| | - Daniel C Schlatter
- grid.17635.36 0000000419368657 Department of Plant Pathology University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| | - Linda L Kinkel
- grid.17635.36 0000000419368657 BioTechnology Institute University of Minnesota-Twin Cities 55108 Saint Paul MN USA
- grid.17635.36 0000000419368657 Department of Plant Pathology University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| |
Collapse
|
5
|
Machado H, Sonnenschein EC, Melchiorsen J, Gram L. Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria. BMC Genomics 2015; 16:158. [PMID: 25879706 PMCID: PMC4359443 DOI: 10.1186/s12864-015-1365-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background Antibiotic resistance in bacteria spreads quickly, overtaking the pace at which new compounds are discovered and this emphasizes the immediate need to discover new compounds for control of infectious diseases. Terrestrial bacteria have for decades been investigated as a source of bioactive compounds leading to successful applications in pharmaceutical and biotech industries. Marine bacteria have so far not been exploited to the same extent; however, they are believed to harbor a multitude of novel bioactive chemistry. To explore this potential, genomes of 21 marine Alpha- and Gammaproteobacteria collected during the Galathea 3 expedition were sequenced and mined for natural product encoding gene clusters. Results Independently of genome size, bacteria of all tested genera carried a large number of clusters encoding different potential bioactivities, especially within the Vibrionaceae and Pseudoalteromonadaceae families. A very high potential was identified in pigmented pseudoalteromonads with up to 20 clusters in a single strain, mostly NRPSs and NRPS-PKS hybrids. Furthermore, regulatory elements in bioactivity-related pathways including chitin metabolism, quorum sensing and iron scavenging systems were investigated both in silico and in vitro. Genes with siderophore function were identified in 50% of the strains, however, all but one harboured the ferric-uptake-regulator gene. Genes encoding the syntethase of acylated homoserine lactones were found in Roseobacter-clade bacteria, but not in the Vibrionaceae strains and only in one Pseudoalteromonas strains. The understanding and manipulation of these elements can help in the discovery and production of new compounds never identified under regular laboratory cultivation conditions. High chitinolytic potential was demonstrated and verified for Vibrio and Pseudoalteromonas species that commonly live in close association with eukaryotic organisms in the environment. Chitin regulation by the ChiS histidine-kinase seems to be a general trait of the Vibrionaceae family, however it is absent in the Pseudomonadaceae. Hence, the degree to which chitin influences secondary metabolism in marine bacteria is not known. Conclusions Utilizing the rapidly developing sequencing technologies and software tools in combination with phenotypic in vitro assays, we demonstrated the high bioactive potential of marine bacteria in an efficient, straightforward manner – an approach that will facilitate natural product discovery in the future.
Collapse
Affiliation(s)
- Henrique Machado
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allè 6, DK-2970, Hørsholm, Denmark. .,Department of Systems Biology, Technical University of Denmark, Matematiktorvet bldg 301, DK-2800, Kgs Lyngby, Denmark.
| | - Eva C Sonnenschein
- Department of Systems Biology, Technical University of Denmark, Matematiktorvet bldg 301, DK-2800, Kgs Lyngby, Denmark.
| | - Jette Melchiorsen
- Department of Systems Biology, Technical University of Denmark, Matematiktorvet bldg 301, DK-2800, Kgs Lyngby, Denmark.
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark, Matematiktorvet bldg 301, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
6
|
Diethelm S, Teufel R, Kaysser L, Moore BS. A multitasking vanadium-dependent chloroperoxidase as an inspiration for the chemical synthesis of the merochlorins. Angew Chem Int Ed Engl 2014; 53:11023-6. [PMID: 25147132 PMCID: PMC4226426 DOI: 10.1002/anie.201405696] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 11/10/2022]
Abstract
The vanadium-dependent chloroperoxidase Mcl24 was discovered to mediate a complex series of unprecedented transformations in the biosynthesis of the merochlorin meroterpenoid antibiotics. In particular, a site-selective naphthol chlorination is followed by an oxidative dearomatization/terpene cyclization sequence to build up the stereochemically complex carbon framework of the merochlorins in one step. Inspired by the enzyme reactivity, a chemical chlorination protocol paralleling the biocatalytic process was developed. These chemical studies led to the identification of previously overlooked merochlorin natural products.
Collapse
Affiliation(s)
- Stefan Diethelm
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
| | - Robin Teufel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
| | - Leonard Kaysser
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, Homepage: http://scrippsscholars.ucsd.edu/bsmoore. Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
7
|
Diethelm S, Teufel R, Kaysser L, Moore BS. A Multitasking Vanadium-Dependent Chloroperoxidase as an Inspiration for the Chemical Synthesis of the Merochlorins. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405696] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Van Wagoner RM, Satake M, Wright JLC. Polyketide biosynthesis in dinoflagellates: what makes it different? Nat Prod Rep 2014; 31:1101-37. [DOI: 10.1039/c4np00016a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Molinski TF, Morinaka BI. INTEGRATED APPROACHES TO THE CONFIGURATIONAL ASSIGNMENT OF MARINE NATURAL PRODUCTS. Tetrahedron 2012; 68:9307-9343. [PMID: 23814320 PMCID: PMC3694619 DOI: 10.1016/j.tet.2011.12.070] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tadeusz F. Molinski
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive MC0358, La Jolla, CA, 92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive MC0358, La Jolla, CA, 92093
| | - Brandon I. Morinaka
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive MC0358, La Jolla, CA, 92093
| |
Collapse
|
10
|
Gerwick WH, Moore BS. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. ACTA ACUST UNITED AC 2012; 19:85-98. [PMID: 22284357 DOI: 10.1016/j.chembiol.2011.12.014] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 12/31/2022]
Abstract
Marine life forms are an important source of structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. These success stories have had to overcome difficulties inherent to natural products-derived drugs, such as adequate sourcing of the agent and issues related to structural complexity. Nevertheless, several marine-derived agents are now approved, most as "first-in-class" drugs, with five of seven appearing in the past few years. Additionally, there is a rich pipeline of clinical and preclinical marine compounds to suggest their continued application in human medicine. Understanding of how these agents are biosynthetically assembled has accelerated in recent years, especially through interdisciplinary approaches, and innovative manipulations and re-engineering of some of these gene clusters are yielding novel agents of enhanced pharmaceutical properties compared with the natural product.
Collapse
Affiliation(s)
- William H Gerwick
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92037, USA.
| | | |
Collapse
|
11
|
Pangallo KC, Reddy CM, Poyton M, Bolotin J, Hofstetter TB. δ¹⁵N enrichment suggests possible source for halogenated 1'-methyl-1,2'-bipyrroles (MBPs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2064-2070. [PMID: 22268675 DOI: 10.1021/es203143c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polyhalogenated 1'-methyl-1,2'-bipyrroles are natural products that biomagnify into upper trophic levels of marine food webs. Here we demonstrate that they are unusually enriched in (15)N (δ(15)N from +19.3‰ to +28.1‰) relative to other biosynthetic organic compounds measured to date and the mammals from which the compounds were isolated. We argue the (15)N enrichment likely stems from enriched precursors and/or fractionation during biosynthesis and is not from MBP degradation. We also consider possible sources of MBPs in light of these results.
Collapse
Affiliation(s)
- Kristin C Pangallo
- Department of Chemistry, Colgate University, Hamilton, New York 13346, United States.
| | | | | | | | | |
Collapse
|
12
|
Jiang CS, Müller WEG, Schröder HC, Guo YW. Disulfide- and multisulfide-containing metabolites from marine organisms. Chem Rev 2011; 112:2179-207. [PMID: 22176580 DOI: 10.1021/cr200173z] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheng-Shi Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang High-Tech Park, Shanghai 201203, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Manzo E, Ciavatta ML, Villani G, Varcamonti M, Sayem SMA, van Soest R, Gavagnin M. Bioactive terpenes from Spongia officinalis. JOURNAL OF NATURAL PRODUCTS 2011; 74:1241-1247. [PMID: 21548580 DOI: 10.1021/np200226u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The terpene metabolite pattern of Mediterranean Spongia officinalis was chemically investigated. This study resulted in the isolation of a series of sesterterpenes and C21 furanoterpenes, according to the literature data on this sponge. Four new oxidized minor metabolites (compounds 1, 2, 3, and 4) were isolated along with six known compounds of the furospongin series (compounds 5-8, 9, and 10) and three scalarane sesterterpenes (compounds 11-13). Interestingly, tetrahydrofurospongin-2 (6) and dihydrofurospongin-2 (7), which were among the main metabolites, induced biofilm formation by Escherichia coli. All compounds isolated were also assayed for antibacterial and antifungal properties.
Collapse
Affiliation(s)
- Emiliano Manzo
- Istituto di Chimica Biomolecolare, CNR, Via Campi Flegrei 34, I 80078-Pozzuoli (Na), Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The years 2000 through mid-2010 marked a transformational period in understanding of the biosynthesis of marine natural products. During this decade the field emerged from one largely dominated by chemical approaches to understanding biosynthetic pathways to one incorporating the full force of modern molecular biology and bioinformatics. Fusion of chemical and biological approaches yielded great advances in understanding the genetic and enzymatic basis for marine natural product biosynthesis. Progress was particularly pronounced for marine microbes, especially actinomycetes and cyanobacteria. During this single decade, both the first complete marine microbial natural product biosynthetic gene cluster sequence was released as well as the first entire genome sequence for a secondary metabolite-rich marine microbe. The decade also saw tremendous progress in recognizing the key role of marine microbial symbionts of invertebrates in natural product biosynthesis. Application of genetic and enzymatic knowledge led to genetic engineering of novel “unnatural” natural products during this time, as well as opportunities for discovery of novel natural products through genome mining. The current review highlights selected seminal studies from 2000 through to June 2010 that illustrate breakthroughs in understanding of marine natural product biosynthesis at the genetic, enzymatic, and small-molecule natural product levels. A total of 154 references are cited.
Collapse
Affiliation(s)
- Amy L. Lane
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA.
| | - Bradley S. Moore
- Scripps Institution of Oceanography and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Exploring the links between natural products and bacterial assemblages in the sponge Aplysina aerophoba. Appl Environ Microbiol 2010; 77:862-70. [PMID: 21115701 DOI: 10.1128/aem.00100-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The sponge Aplysina aerophoba produces a large diversity of brominated alkaloids (BAs) and hosts a complex microbial assemblage. Although BAs are located within sponge cells, the enzymes that bind halogen elements to organic compounds have been exclusively described in algae, fungi, and bacteria. Bacterial communities within A. aerophoba could therefore be involved in the biosynthesis of these compounds. This study investigates whether changes in both the concentration of BAs and the bacterial assemblages are correlated in A. aerophoba. To do so, we quantified major natural products using high-performance liquid chromatography and analyzed bacterial assemblages using denaturing gradient gel electrophoresis on the 16S rRNA gene. We identified multiple associations between bacteria and natural products, including a strong relationship between a Chloroflexi phylotype and aplysinamisin-1 and between an unidentified bacterium and aerophobin-2 and isofistularin-3. Our results suggest that these bacteria could either be involved in the production of BAs or be directly affected by them. To our knowledge, this is one of the first reports that find a significant correlation between natural products and bacterial populations in any benthic organism. Further investigating these associations will shed light on the organization and functioning of host-endobiont systems such as Aplysina aerophoba.
Collapse
|
16
|
Kalaitzis JA, Chau R, Kohli GS, Murray SA, Neilan BA. Biosynthesis of toxic naturally-occurring seafood contaminants. Toxicon 2010; 56:244-58. [DOI: 10.1016/j.toxicon.2009.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 08/20/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
|
17
|
|
18
|
Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar Drugs 2010; 8:1153-77. [PMID: 20479972 PMCID: PMC2866480 DOI: 10.3390/md8041153] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 03/28/2010] [Accepted: 04/01/2010] [Indexed: 11/16/2022] Open
Abstract
As the association of marine animals with bacteria has become more commonly recognized, researchers have increasingly questioned whether these animals actually produce many of the bioactive compounds originally isolated from them. Bacteriocins, ribosomally synthesized antibiotic peptides, constitute one of the most potent weapons to fight against pathogen infections. Indeed, bacteriocinogenic bacteria may prevent pathogen dissemination by occupying the same ecological niche. Bacteriocinogenic strains associated with marine animals are a relevant source for isolation of probiotics. This review draws up an inventory of the marine bacteriocinogenic strains isolated from animal-associated microbial communities, known to date. Bacteriocin-like inhibitory substances (BLIS) and fully-characterized bacteriocins are described. Finally, their applications as probiotics in aquaculture are discussed.
Collapse
Affiliation(s)
- Florie Desriac
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Diane Defer
- Université Européenne de Bretagne, Université de Bretagne Sud, Centre de Recherche Saint Maudé, Laboratoire de Biotechnologie et Chimie Marines EA3884, 56321 Lorient Cedex, France; E-Mails:
(D.D.);
(N.B.)
| | - Nathalie Bourgougnon
- Université Européenne de Bretagne, Université de Bretagne Sud, Centre de Recherche Saint Maudé, Laboratoire de Biotechnologie et Chimie Marines EA3884, 56321 Lorient Cedex, France; E-Mails:
(D.D.);
(N.B.)
| | - Benjamin Brillet
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Patrick Le Chevalier
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Yannick Fleury
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| |
Collapse
|
19
|
Domínguez de María P, van Gemert RW, Straathof AJJ, Hanefeld U. Biosynthesis of ethers: unusual or common natural events? Nat Prod Rep 2010; 27:370-92. [PMID: 20179877 DOI: 10.1039/b809416k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ether bonds are found in a wide variety of natural products--mainly secondary metabolites--including lipids, oxiranes, terpenoids, flavonoids, polyketides, and carbohydrate derivatives, to name some representative examples. To furnish such a biodiversity of structures, a large number of different enzymes are involved in several different biosynthetic pathways. Depending on the compound and on the (micro) environment in which the reaction is performed, ethers are produced by very different (enzymatic) reactions, thus providing an impressive display of how Nature has combined evolution and thermodynamics to be able to produce a vast number of compounds. In addition, many of these compounds possess different biological activities of pharmacological interest. Moreover, some of these ethers (i.e., epoxides) have high chemical reactivity, and can be useful starting materials for further synthetic processes. This review aims to provide an overview of the different strategies that are found in Nature for the formation of these "bioethers". Both fundamental and practical insights of the biosynthetic processes will be discussed.
Collapse
|
20
|
López-Legentil S, Song B, DeTure M, Baden DG. Characterization and localization of a hybrid non-ribosomal peptide synthetase and polyketide synthase gene from the toxic dinoflagellate Karenia brevis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:32-41. [PMID: 19468793 DOI: 10.1007/s10126-009-9197-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/21/2009] [Indexed: 05/27/2023]
Abstract
The toxic dinoflagellate Karenia brevis, a causative agent of the red tides in Florida, produces a series of toxic compounds known as brevetoxins and their derivatives. Recently, several putative genes encoding polyketide synthase (PKS) were identified from K. brevis in an effort to elucidate the genetic systems involved in brevetoxin production. In this study, novel PKS sequences were isolated from three clones of K. brevis. Eighteen unique sequences were obtained for the PKS ketosynthase (KS) domain of K. brevis. Phylogenetic comparison with closely related PKS genes revealed that 16 grouped with cyanobacteria sequences, while the remaining two grouped with Apicomplexa and previously reported sequences for K. brevis. A fosmid library was also constructed to further characterize PKS genes detected in K. brevis Wilson clone. Several fosmid clones were positive for the presence of PKS genes, and one was fully sequenced to determine the full structure of the PKS cluster. A hybrid non ribosomal peptide synthetase and PKS (NRPS-PKS) gene cluster of 16,061 bp was isolated. In addition, we assessed whether the isolated gene was being actively expressed using reverse transcription polymerase chain reaction (RT-PCR) and determined its localization at the cellular level by chloroplast isolation. RT-PCR analyses revealed that this gene was actively expressed in K. brevis cultures. The hybrid NRPS-PKS gene cluster was located in the chloroplast, suggesting that K. brevis acquired the ability to produce some of its secondary metabolites through endosymbiosis with ancestral cyanobacteria. Further work is needed to determine the compound produced by the NRPS-PKS hybrid, to find other PKS gene sequences, and to assess their role in K. brevis toxin biosynthetic pathway.
Collapse
Affiliation(s)
- Susanna López-Legentil
- Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC 28409, USA.
| | | | | | | |
Collapse
|
21
|
Pereira A, Cao Z, Murray TF, Gerwick WH. Hoiamide a, a sodium channel activator of unusual architecture from a consortium of two papua new Guinea cyanobacteria. ACTA ACUST UNITED AC 2009; 16:893-906. [PMID: 19716479 DOI: 10.1016/j.chembiol.2009.06.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/23/2009] [Accepted: 06/26/2009] [Indexed: 11/30/2022]
Abstract
Hoiamide A, a novel bioactive cyclic depsipeptide, was isolated from an environmental assemblage of the marine cyanobacteria Lyngbya majuscula and Phormidium gracile collected in Papua New Guinea. This stereochemically complex metabolite possesses a highly unusual structure, which likely derives from a mixed peptide-polyketide biogenetic origin, and includes a peptidic section featuring an acetate extended and S-adenosyl methionine modified isoleucine moiety, a triheterocyclic fragment bearing two alpha-methylated thiazolines and one thiazole, and a highly oxygenated and methylated C15-polyketide substructure. Pure hoiamide A potently inhibited [(3)H]batrachotoxin binding to voltage-gated sodium channels (IC(50) = 92.8 nM), activated sodium influx (EC(50) = 2.31 microM) in mouse neocortical neurons, and exhibited modest cytotoxicity to cancer cells. Further investigation revealed that hoiamide A is a partial agonist of site 2 on the voltage-gated sodium channel.
Collapse
Affiliation(s)
- Alban Pereira
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, 92093, USA
| | | | | | | |
Collapse
|
22
|
Walther T, Renner S, Waldmann H, Arndt HD. Synthesis and structure-activity correlation of a brunsvicamide-inspired cyclopeptide collection. Chembiochem 2009; 10:1153-62. [PMID: 19360807 DOI: 10.1002/cbic.200900035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyanobacterial cyclopeptides: A series of analogues of the cyanobacterial cyclopeptide brunsvicamide A was prepared by effective solid-support-based total synthesis. Variations in stereochemistry revealed the importance of the D-lysine and the L-isoleucine residues for the substrate-competitive inhibitory activity of brunsvicamide A against carboxypeptidase A. The brunsvicamides are modified cyclopeptides from cyanobacteria, cyclised through the epsilon-amino group of a D-lysine unit. They are functionalised with urea groups and show potent carboxypeptidase inhibitory activities. In order to unravel the structural parameters that determine their activities, a collection of brunsvicamide analogues with varied amino acid structures and stereochemistries was synthesised by a combined solution- and solid-phase approach. Biochemical investigation of the compound collection for carboxypeptidase A inhibition revealed that the presence of D-lysine and L-isoleucine in the urea section is important for inhibition. It was found that brunsvicamide A is a substrate-competitive inhibitor of carboxypeptidase A. These findings are in agreement with the substrate specificity of the enzyme and were rationalised by computational studies, which showed the high relevance of the lysine stereochemistry for inhibitory activity.
Collapse
Affiliation(s)
- Thilo Walther
- Technische Universität Dortmund, Fakultät Chemie, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | | | | | | |
Collapse
|
23
|
Abstract
The first total synthesis of somocystinamide A, a disulfide dimer with extremely labile enamide functional groups, was accomplished in a concise and stereospecific manner. Somocystinamide A is reported to possess exceptionally potent antiangiogenic and tumoricidal activities. The current work should enable further pharmacological investigation of this important natural product.
Collapse
Affiliation(s)
- Takashi L Suyama
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | |
Collapse
|
24
|
Minto RE, Blacklock BJ. Biosynthesis and function of polyacetylenes and allied natural products. Prog Lipid Res 2008; 47:233-306. [PMID: 18387369 PMCID: PMC2515280 DOI: 10.1016/j.plipres.2008.02.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/25/2008] [Accepted: 02/28/2008] [Indexed: 11/19/2022]
Abstract
Polyacetylenic natural products are a substantial class of often unstable compounds containing a unique carbon-carbon triple bond functionality, that are intriguing for their wide variety of biochemical and ecological functions, economic potential, and surprising mode of biosynthesis. Isotopic tracer experiments between 1960 and 1990 demonstrated that the majority of these compounds are derived from fatty acid and polyketide precursors. During the past decade, research into the metabolism of polyacetylenes has swiftly advanced, driven by the cloning of the first genes responsible for polyacetylene biosynthesis in plants, moss, fungi, and actinomycetes and the initial characterization of the gene products. The current state of knowledge of the biochemistry and molecular genetics of polyacetylenic secondary metabolic pathways will be presented together with an up-to-date survey of new terrestrial and marine natural products, their known biological activities, and a discussion of their likely metabolic origins.
Collapse
Affiliation(s)
- Robert E Minto
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, United States.
| | | |
Collapse
|
25
|
Jiang Y, Xie P, Chen J, Liang G. Detection of the hepatotoxic microcystins in 36 kinds of cyanobacteriaSpirulinafood products in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25:885-94. [DOI: 10.1080/02652030701822045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Y. Jiang
- a Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, China
| | - P. Xie
- a Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, China
| | - J. Chen
- a Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, China
| | - G. Liang
- a Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, China
| |
Collapse
|
26
|
Thakur NL, Jain R, Natalio F, Hamer B, Thakur AN, Müller WE. Marine molecular biology: An emerging field of biological sciences. Biotechnol Adv 2008; 26:233-45. [DOI: 10.1016/j.biotechadv.2008.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Revised: 01/03/2008] [Accepted: 01/03/2008] [Indexed: 12/17/2022]
|
27
|
Pankewitz F, Hilker M. Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis. Biol Rev Camb Philos Soc 2008; 83:209-26. [PMID: 18410406 DOI: 10.1111/j.1469-185x.2008.00040.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyketides are known to be used by insects for pheromone communication and defence against enemies. Although in microorganisms (fungi, bacteria) and plants polyketide biogenesis is known to be catalysed by polyketide synthases (PKS), no insect PKS involved in biosynthesis of pheromones or defensive compounds have yet been found. Polyketides detected in insects may also be biosynthesized by endosymbionts. From a chemical perspective, polyketide biogenesis involves the formation of a polyketide chain using carboxylic acids as precursors. Fatty acid biosynthesis also requires carboxylic acids as precursors, but utilizes fatty acid synthases (FAS) to catalyse this process. In the present review, studies of the biosynthesis of insect polyketides applying labelled carboxylic acids as precursors are outlined to exemplify chemical approaches used to elucidate insect polyketide formation. However, since compounds biosynthesised by FAS may use the same precursors, it still remains unclear whether the structures that are formed from e.g. acetate chains (acetogenins) or propanoate chains (propanogenins) are PKS or FAS products. A critical comparison of PKS and FAS architectures and activities supports the hypothesis of a common evolutionary origin of these enzyme complexes and highlights why PKS can catalyse the biosynthesis of much more complex products than can FAS. Finally, we summarise knowledge which might assist researchers in designing approaches for the detection of insect PKS genes.
Collapse
Affiliation(s)
- Florian Pankewitz
- Freie Universität Berlin, Institute of Biology, Haderslebener Str. 9, D-12163 Berlin, Germany
| | | |
Collapse
|
28
|
Mehner C, Müller D, Krick A, Kehraus S, Löser R, Gütschow M, Maier A, Fiebig HH, Brun R, König GM. A Novel β-Amino Acid in Cytotoxic Peptides from the CyanobacteriumTychonema sp. European J Org Chem 2008. [DOI: 10.1002/ejoc.200701033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Bowling JJ, Kochanowska AJ, Kasanah N, Hamann MT. Nature's bounty - drug discovery from the sea. Expert Opin Drug Discov 2007; 2:1505-22. [PMID: 23484601 PMCID: PMC4928193 DOI: 10.1517/17460441.2.11.1505] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With ∼ 40 years of research completed after the development of self-contained underwater breathing apparatus, drug discovery opportunities in the sea are still too numerous to count. Since the FDA approval of the direct-from-the-sea calcium channel blocker ziconotide, marine natural products have been validated as a source for new medicines. However, the demand for natural products is extremely high due to the development of high-throughput assays and this bottleneck has created the need for an intense focus on increasing the rate of isolating and elucidating the structures of new bioactive secondary metabolites. In addition to highlighting the drug discovery potential of the marine environment, this review discusses several of the pressing needs to increase the rate of drug discovery in marine natural products, and describes some of the work and new technologies that are contributing in this regard.
Collapse
Affiliation(s)
- John J Bowling
- The University of Mississippi, Department of Pharmacognosy, School of Pharmacy, University, MS 38677, USA +1 662 915 5730 ; +1 662 915 6975 ;
| | | | | | | |
Collapse
|
30
|
Dunlap WC, Battershill CN, Liptrot CH, Cobb RE, Bourne DG, Jaspars M, Long PF, Newman DJ. Biomedicinals from the phytosymbionts of marine invertebrates: A molecular approach. Methods 2007; 42:358-76. [PMID: 17560324 DOI: 10.1016/j.ymeth.2007.03.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 03/07/2007] [Accepted: 03/09/2007] [Indexed: 11/22/2022] Open
Abstract
Marine invertebrate animals such as sponges, gorgonians, tunicates and bryozoans are sources of biomedicinally relevant natural products, a small but growing number of which are advancing through clinical trials. Most metazoan and anthozoan species harbour commensal microorganisms that include prokaryotic bacteria, cyanobacteria (blue-green algae), eukaryotic microalgae, and fungi within host tissues where they reside as extra- and intra-cellular symbionts. In some sponges these associated microbes may constitute as much as 40% of the holobiont volume. There is now abundant evidence to suggest that a significant portion of the bioactive metabolites thought originally to be products of the source animal are often synthesized by their symbiotic microbiota. Several anti-cancer metabolites from marine sponges that have progressed to pre-clinical or clinical-trial phases, such as discodermolide, halichondrin B and bryostatin 1, are thought to be products derived from their microbiotic consortia. Freshwater and marine cyanobacteria are well recognised for producing numerous and structurally diverse bioactive and cytotoxic secondary metabolites suited to drug discovery. Sea sponges often contain dominant taxa-specific populations of cyanobacteria, and it is these phytosymbionts (= photosymbionts) that are considered to be the true biogenic source of a number of pharmacologically active polyketides and nonribosomally synthesized peptides produced within the sponge. Accordingly, new collections can be pre-screened in the field for the presence of phytobionts and, together with metagenomic screening using degenerate PCR primers to identify key polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes, afford a biodiscovery rationale based on the therapeutic prospects of phytochemical selection. Additionally, new cloning and biosynthetic expression strategies may provide a sustainable method for the supply of new pharmaceuticals derived from the uncultured phytosymbionts of marine organisms.
Collapse
Affiliation(s)
- Walter C Dunlap
- Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Donadio S, Brandi L, Monciardini P, Sosio M, Gualerzi CO. Novel assays and novel strains – promising routes to new antibiotics? Expert Opin Drug Discov 2007; 2:789-98. [DOI: 10.1517/17460441.2.6.789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Plaza A, Bewley CA. Largamides A-H, unusual cyclic peptides from the marine cyanobacterium Oscillatoria sp. J Org Chem 2007; 71:6898-907. [PMID: 16930043 DOI: 10.1021/jo061044e] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Seven new depsipeptides, termed largamides A-G (1-7), and one new cyclic peptide, largamide H (8), have been isolated from the marine cyanobacterium Oscillatoria sp. Their structures were determined by NMR and ESI-MS techniques. The absolute configurations were assigned using LC-MS, chiral HPLC, and combined analysis of homonuclear and heteronuclear (2,3)J couplings, along with ROE data. Largamides, isolated from a single homogeneous cyanobacterial collection, represent three different structural classes of peptides. Largamides A-C (1-3) are characterized by the unusual occurrence of a senecioic acid unit, while largamides B (2) and C (3) possess in addition the rare 2-amino-5-(4'-hydroxyphenyl)pentanoic acid (Ahppa) and the novel 2-amino-6-(4'-hydroxyphenyl)hexanoic acid (Ahpha), respectively. Largamides D-G (4-7) are the first 3-amino-6-hydroxy-2-piperidone acid (Ahp)-containing depsipeptides reported with the rare Ahppa unit. Largamide H (8) is a unique cyclic peptide displaying a new 2,5-dihydroxylated beta-amino acid moiety, a methoxylated derivative of Ahppa, and two residues of the nonstandard 2,3-dehydro-2-aminobutanoic acid (Dab). Largamides D-G (4-7) inhibited chymotrypsin with IC(50) values ranging between 4 and 25 microM.
Collapse
Affiliation(s)
- Alberto Plaza
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0820, USA
| | | |
Collapse
|
33
|
Kobayashi J, Kubota T. Bioactive macrolides and polyketides from marine dinoflagellates of the genus Amphidinium. JOURNAL OF NATURAL PRODUCTS 2007; 70:451-60. [PMID: 17335244 DOI: 10.1021/np0605844] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Marine microorganisms such as bacteria, cyanobacteria, dinoflagellates, and others have attracted many natural product chemists as the real producers of marine toxins such as fish and algal poisons as well as bioactive substances isolated from marine invertebrates such as sponges and tunicates. Among marine microorganisms, dinoflagellates have proved to be important sources of marine toxins and have been investigated worldwide by natural product chemists. We have continued investigations on chemically interesting and biologically significant secondary metabolites from Amphidinium spp., of a genus of symbiotic marine dinoflagellates separated from inside cells of Okinawan marine flatworms. This review covers the results described in our recent publications on a series of cytotoxic macrolides, designated amphidinolides, and long-chain polyketides isolated from Amphidinium spp. In this review, topics include the isolation, structure elucidation, synthesis, biosynthesis, and bioactivity of amphidinolides and long-chain polyketides.
Collapse
Affiliation(s)
- Jun'ichi Kobayashi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | | |
Collapse
|
34
|
Motti CA, Bourne DG, Burnell JN, Doyle JR, Haines DS, Liptrot CH, Llewellyn LE, Ludke S, Muirhead A, Tapiolas DM. Screening marine fungi for inhibitors of the C4 plant enzyme pyruvate phosphate dikinase: unguinol as a potential novel herbicide candidate. Appl Environ Microbiol 2007; 73:1921-7. [PMID: 17220253 PMCID: PMC1828816 DOI: 10.1128/aem.02479-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 2,245 extracts, derived from 449 marine fungi cultivated in five types of media, were screened against the C(4) plant enzyme pyruvate phosphate dikinase (PPDK), a potential herbicide target. Extracts from several fungal isolates selectively inhibited PPDK. Bioassay-guided fractionation of one isolate led to the isolation of the known compound unguinol, which inhibited PPDK with a 50% inhibitory concentration of 42.3 +/- 0.8 muM. Further kinetic analysis revealed that unguinol was a mixed noncompetitive inhibitor of PPDK with respect to the substrates pyruvate and ATP and an uncompetitive inhibitor of PPDK with respect to phosphate. Unguinol had deleterious effects on a model C(4) plant but no effect on a model C(3) plant. These results indicate that unguinol inhibits PPDK via a novel mechanism of action which also translates to an herbicidal effect on whole plants.
Collapse
MESH Headings
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Digitaria/drug effects
- Enzyme Inhibitors/isolation & purification
- Enzyme Inhibitors/pharmacology
- Fungi/classification
- Fungi/isolation & purification
- Fungi/metabolism
- Herbicides/isolation & purification
- Herbicides/pharmacology
- Heterocyclic Compounds, 3-Ring/isolation & purification
- Heterocyclic Compounds, 3-Ring/pharmacology
- Hordeum/drug effects
- Kinetics
- Molecular Sequence Data
- Phylogeny
- Protein Binding
- Pyruvate, Orthophosphate Dikinase/antagonists & inhibitors
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Cherie A Motti
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland, Australia 4810.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
This review covers the literature published in 2005 for marine natural products, with 704 citations (493 for the period January to December 2005) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (812 for 2005), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Abstract
The Roseobacter lineage is a phylogenetically coherent, physiologically heterogeneous group of alpha-Proteobacteria comprising up to 25% of marine microbial communities, especially in coastal and polar oceans, and it is the only lineage in which cultivated bacteria are closely related to environmental clones. Currently 41 subclusters are described, covering all major marine ecological niches (seawater, algal blooms, microbial mats, sediments, sea ice, marine invertebrates). Members of the Roseobacter lineage play an important role for the global carbon and sulfur cycle and the climate, since they have the trait of aerobic anoxygenic photosynthesis, oxidize the greenhouse gas carbon monoxide, and produce the climate-relevant gas dimethylsulfide through the degradation of algal osmolytes. Production of bioactive metabolites and quorum-sensing-regulated control of gene expression mediate their success in complex communities. Studies of representative isolates in culture, whole-genome sequencing, e.g., of Silicibacter pomeroyi, and the analysis of marine metagenome libraries have started to reveal the environmental biology of this important marine group.
Collapse
Affiliation(s)
- Irene Wagner-Döbler
- National Research Institute for Biotechnology (GBF), Department for Cell Biology, 38124 Braunschweig, Germany.
| | | |
Collapse
|
38
|
Camacho FG, Rodríguez JG, Mirón AS, García MCC, Belarbi EH, Chisti Y, Grima EM. Biotechnological significance of toxic marine dinoflagellates. Biotechnol Adv 2006; 25:176-94. [PMID: 17208406 DOI: 10.1016/j.biotechadv.2006.11.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Dinoflagellates are microalgae that are associated with the production of many marine toxins. These toxins poison fish, other wildlife and humans. Dinoflagellate-associated human poisonings include paralytic shellfish poisoning, diarrhetic shellfish poisoning, neurotoxic shellfish poisoning, and ciguatera fish poisoning. Dinoflagellate toxins and bioactives are of increasing interest because of their commercial impact, influence on safety of seafood, and potential medical and other applications. This review discusses biotechnological methods of identifying toxic dinoflagellates and detecting their toxins. Potential applications of the toxins are discussed. A lack of sufficient quantities of toxins for investigational purposes remains a significant limitation. Producing quantities of dinoflagellate bioactives requires an ability to mass culture them. Considerations relating to bioreactor culture of generally fragile and slow-growing dinoflagellates are discussed. Production and processing of dinoflagellates to extract bioactives, require attention to biosafety considerations as outlined in this review.
Collapse
Affiliation(s)
- F Garcia Camacho
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain.
| | | | | | | | | | | | | |
Collapse
|
39
|
MacKinnon SL, Cembella AD, Burton IW, Lewis N, LeBlanc P, Walter JA. Biosynthesis of 13-Desmethyl Spirolide C by the Dinoflagellate Alexandrium ostenfeldii. J Org Chem 2006; 71:8724-31. [PMID: 17080999 DOI: 10.1021/jo0608873] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biosynthetic origins of the cyclic imine toxin 13-desmethyl spirolide C were determined by supplementing cultures of the toxigenic dinoflagellate Alexandrium ostenfeldii with stable isotope-labeled precursors [1,2-13C2]acetate, [1-13C]acetate, [2-13CD3]acetate, and [1,2-13C2,15N]glycine and measuring the incorporation patterns by 13C NMR spectroscopy. Despite partial scrambling of the acetate labels, the results show that most carbons of the macrocycle are polyketide-derived and that glycine is incorporated as an intact unit into the cyclic imine moiety. This work represents the first conclusive evidence that such cyclic imine toxins are polyketides and provides support for biosynthetic pathways previously defined for other polyether dinoflagellate toxins.
Collapse
Affiliation(s)
- Shawna L MacKinnon
- Institute for Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax NS, Canada B3H 3Z1
| | | | | | | | | | | |
Collapse
|
40
|
Sudek S, Haygood MG, Youssef DTA, Schmidt EW. Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl Environ Microbiol 2006; 72:4382-7. [PMID: 16751554 PMCID: PMC1489667 DOI: 10.1128/aem.00380-06] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene cluster for the biosynthesis of a new small cyclic peptide, dubbed trichamide, was discovered in the genome of the global, bloom-forming marine cyanobacterium Trichodesmium erythraeum ISM101 because of striking similarities to the previously characterized patellamide biosynthesis cluster. The tri cluster consists of a precursor peptide gene containing the amino acid sequence for mature trichamide, a putative heterocyclization gene, an oxidase, two proteases, and hypothetical genes. Based upon detailed sequence analysis, a structure was predicted for trichamide and confirmed by Fourier transform mass spectrometry. Trichamide consists of 11 amino acids, including two cysteine-derived thiazole groups, and is cyclized by an N C terminal amide bond. As the first natural product reported from T. erythraeum, trichamide shows the power of genome mining in the prediction and discovery of new natural products.
Collapse
Affiliation(s)
- Sebastian Sudek
- Scripps Institution of Oceanography, University of California--San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Bradley S Moore
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
42
|
Frias HV, Mendes MA, Cardozo KHM, Carvalho VM, Tomazela D, Colepicolo P, Pinto E. Use of electrospray tandem mass spectrometry for identification of microcystins during a cyanobacterial bloom event. Biochem Biophys Res Commun 2006; 344:741-6. [PMID: 16631112 DOI: 10.1016/j.bbrc.2006.03.199] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 03/30/2006] [Indexed: 11/24/2022]
Abstract
Drastic environmental conditions such as elevated temperature, abrupt pH variation, low turbulence, and high nutrient inputs can enhance the development of toxic cyanobacterial blooms in lakes and reservoirs. This study describes the occurrence of four microcystin variants (MC) in a bloom in the eutrophic reservoir Billings, in São Paulo City. The bloom sample was collected in October 2003, and Microcystis were the main genus found. The MC were separated and purified by reverse phase high performance liquid chromatography (RP-HPLC). Their structures were elucidated by electrospray ionization tandem mass spectrometry (ESI-MS/MS) and four MC variants were determined: MC-RR, MC-LR, MC-YR, and MC-hRhR. MC-hRhR is described for the first time as a new variant of MC with two homoarginines at positions 2 and 4 in its structure. ESI-MS/MS analysis thus provides a powerful and convenient tool for the determination of variants of MC. These results represent an important contribution to the knowledge of the biochemistry of toxic cyanobacteria and their toxins, specifically in São Paulo State.
Collapse
Affiliation(s)
- Humberto Vieira Frias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, CEP 05508-900, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
|