1
|
Monkcom EC, Gómez L, Lutz M, Ye S, Bill E, Costas M, Klein Gebbink RJM. Synthesis, Structure and Reactivity of a Mononuclear N,N,O-Bound Fe(II) α-Keto-Acid Complex. Chemistry 2024; 30:e202302710. [PMID: 37882223 DOI: 10.1002/chem.202302710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
A bulky, tridentate phenolate ligand (ImPh2 NNOtBu ) was used to synthesise the first example of a mononuclear, facial, N,N,O-bound iron(II) benzoylformate complex, [Fe(ImPh2 NNOtBu )(BF)] (2). The X-ray crystal structure of 2 reveals that the iron centre is pentacoordinate (τ=0.5), with a vacant site located cis to the bidentate BF ligand. The Mössbauer parameters of 2 are consistent with high-spin iron(II), and are very close to those reported for α-ketoglutarate-bound non-heme iron enzyme active sites. According to NMR and UV-vis spectroscopies, the structural integrity of 2 is retained in both coordinating and non-coordinating solvents. Cyclic voltammetry studies show that the iron centre has a very low oxidation potential and is more prone to electrochemical oxidation than the redox-active phenolate ligand. Complex 2 reacts with NO to form a S=3 /2 {FeNO}7 adduct in which NO binds directly to the iron centre, according to EPR, UV-vis, IR spectroscopies and DFT analysis. Upon O2 exposure, 2 undergoes oxidative decarboxylation to form a diiron(III) benzoate complex, [Fe2 (ImPh2 NNOtBu )2 (μ2 -OBz)(μ2 -OH)2 ]+ (3). A small amount of hydroxylated ligand was also observed by ESI-MS, hinting at the formation of a high-valent iron(IV)-oxo intermediate. Initial reactivity studies show that 2 is capable of oxygen atom transfer reactivity with O2 , converting methyl(p-tolyl)sulfide to sulfoxide.
Collapse
Affiliation(s)
- Emily C Monkcom
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Laura Gómez
- Serveis Tècnics de Recerca, Universitat de Girona, Pic de Peguera 15, Parc Cientific, 17003, Girona, Spain
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi, Universitat de Girona, Pic de Peguera 15, Parc Cientific, 17003, Girona, Spain
| | - Robertus J M Klein Gebbink
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
2
|
Deng Q, Liu Y, Chen L, Xu M, Naowarojna N, Lee N, Chen L, Zhu D, Hong X, Deng Z, Liu P, Zhao C. Biochemical Characterization of a Multifunctional Mononuclear Nonheme Iron Enzyme (PtlD) in Neopentalenoketolactone Biosynthesis. Org Lett 2019; 21:7592-7596. [DOI: 10.1021/acs.orglett.9b02872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qian Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Yang Liu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Linyue Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Meiling Xu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Norman Lee
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Li Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Dongqing Zhu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Xuechuan Hong
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Changming Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| |
Collapse
|
3
|
Walport LJ, Schofield CJ. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. CHEM REC 2018; 18:1760-1781. [PMID: 30151867 DOI: 10.1002/tcr.201800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
4
|
Niu Y, Wan A, Lin Z, Lu X, Wan G. N 6-Methyladenosine modification: a novel pharmacological target for anti-cancer drug development. Acta Pharm Sin B 2018; 8:833-843. [PMID: 30505654 PMCID: PMC6251950 DOI: 10.1016/j.apsb.2018.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 12/11/2022] Open
Abstract
N6-Methyladenosine (m6A) modification is the most pervasive modification of human mRNA molecules. It is reversible via regulation of m6A modification methyltransferase, demethylase and proteins that preferentially recognize m6A modification as “writers”, “erasers” and “readers”, respectively. Altered expression levels of the m6A modification key regulators substantially affect their function, leading to significant phenotype changes in the cell and organism. Recent studies have proved that the m6A modification plays significant roles in regulation of metabolism, stem cell self-renewal, and metastasis in a variety of human cancers. In this review, we describe the potential roles of m6A modification in human cancers and summarize their underlying molecular mechanisms. Moreover, we will highlight potential therapeutic approaches by targeting the key m6A modification regulators for cancer drug development.
Collapse
|
5
|
Chang WC, Liu P, Guo Y. Mechanistic Elucidation of Two Catalytically Versatile Iron(II)- and α-Ketoglutarate-Dependent Enzymes: Cases Beyond Hydroxylation. COMMENT INORG CHEM 2018. [DOI: 10.1080/02603594.2018.1509856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wei-chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Rabe P, Kamps JJAG, Schofield CJ, Lohans CT. Roles of 2-oxoglutarate oxygenases and isopenicillin N synthase in β-lactam biosynthesis. Nat Prod Rep 2018; 35:735-756. [PMID: 29808887 PMCID: PMC6097109 DOI: 10.1039/c8np00002f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/01/2023]
Abstract
Covering: up to 2017 2-Oxoglutarate (2OG) dependent oxygenases and the homologous oxidase isopenicillin N synthase (IPNS) play crucial roles in the biosynthesis of β-lactam ring containing natural products. IPNS catalyses formation of the bicyclic penicillin nucleus from a tripeptide. 2OG oxygenases catalyse reactions that diversify the chemistry of β-lactams formed by both IPNS and non-oxidative enzymes. Reactions catalysed by the 2OG oxygenases of β-lactam biosynthesis not only involve their typical hydroxylation reactions, but also desaturation, epimerisation, rearrangement, and ring-forming reactions. Some of the enzymes involved in β-lactam biosynthesis exhibit remarkable substrate and product selectivities. We review the roles of 2OG oxygenases and IPNS in β-lactam biosynthesis, highlighting opportunities for application of knowledge of their roles, structures, and mechanisms.
Collapse
Affiliation(s)
- Patrick Rabe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jos J A G Kamps
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Christopher T Lohans
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
7
|
Lohans CT, Wang DY, Wang J, Hamed RB, Schofield CJ. Crotonases: Nature’s Exceedingly Convertible Catalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christopher T. Lohans
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - David Y. Wang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jimmy Wang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Refaat B. Hamed
- Department
of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
8
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
9
|
Tamanaha EY, Zhang B, Guo Y, Chang WC, Barr EW, Xing G, St Clair J, Ye S, Neese F, Bollinger JM, Krebs C. Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus nidulans Isopenicillin N Synthase. J Am Chem Soc 2016; 138:8862-74. [PMID: 27193226 PMCID: PMC4956533 DOI: 10.1021/jacs.6b04065] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme isopenicillin N synthase (IPNS) installs the β-lactam and thiazolidine rings of the penicillin core into the linear tripeptide l-δ-aminoadipoyl-l-Cys-d-Val (ACV) on the pathways to a number of important antibacterial drugs. A classic set of enzymological and crystallographic studies by Baldwin and co-workers established that this overall four-electron oxidation occurs by a sequence of two oxidative cyclizations, with the β-lactam ring being installed first and the thiazolidine ring second. Each phase requires cleavage of an aliphatic C-H bond of the substrate: the pro-S-CCys,β-H bond for closure of the β-lactam ring, and the CVal,β-H bond for installation of the thiazolidine ring. IPNS uses a mononuclear non-heme-iron(II) cofactor and dioxygen as cosubstrate to cleave these C-H bonds and direct the ring closures. Despite the intense scrutiny to which the enzyme has been subjected, the identities of the oxidized iron intermediates that cleave the C-H bonds have been addressed only computationally; no experimental insight into their geometric or electronic structures has been reported. In this work, we have employed a combination of transient-state-kinetic and spectroscopic methods, together with the specifically deuterium-labeled substrates, A[d2-C]V and AC[d8-V], to identify both C-H-cleaving intermediates. The results show that they are high-spin Fe(III)-superoxo and high-spin Fe(IV)-oxo complexes, respectively, in agreement with published mechanistic proposals derived computationally from Baldwin's founding work.
Collapse
Affiliation(s)
- Esta Y. Tamanaha
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yisong Guo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Wei-chen Chang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Eric W. Barr
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Gang Xing
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jennifer St Clair
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Shengfa Ye
- Max-Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany
| | - Frank Neese
- Max-Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
10
|
Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem 2016; 8:1063-84. [PMID: 27327972 DOI: 10.4155/fmc-2016-0078] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Avibactam, which is the first non-β-lactam β-lactamase inhibitor to be introduced for clinical use, is a broad-spectrum serine β-lactamase inhibitor with activity against class A, class C, and, some, class D β-lactamases. We provide an overview of efforts, which extend to the period soon after the discovery of the penicillins, to develop clinically useful non-β-lactam compounds as antibacterials, and, subsequently, penicillin-binding protein and β-lactamase inhibitors. Like the β-lactam inhibitors, avibactam works via a mechanism involving covalent modification of a catalytically important nucleophilic serine residue. However, unlike the β-lactam inhibitors, avibactam reacts reversibly with its β-lactamase targets. We discuss chemical factors that may account for the apparently special nature of β-lactams and related compounds as antibacterials and β-lactamase inhibitors, including with respect to resistance. Avenues for future research including non-β-lactam antibacterials acting similarly to β-lactams are discussed.
Collapse
Affiliation(s)
| | | | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, UK
| | | |
Collapse
|
11
|
Mai BK, Kim Y. Is It Fe(III)-Oxyl Radical That Abstracts Hydrogen in the C-H Activation of TauD? A Theoretical Study Based on the DFT Potential Energy Surfaces. Inorg Chem 2016; 55:3844-52. [PMID: 27031914 DOI: 10.1021/acs.inorgchem.5b02939] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taurine:α-ketoglutarate dioxygenase (TauD) is one of the most important enzymes in the α-ketoglutarate dioxygenase family, which are involved in many important biochemical processes. TauD converts taurine into amino acetaldehyde and sulfite at its nonheme iron center, and a large H/D kinetic isotope effect (KIE) has been found in the hydrogen atom transfer (HAT) of taurine suggesting a large tunneling effect. Recently, highly electrophilic Fe(III)-oxyl radicals have been proposed as a key species for HAT in the catalytic mechanism of C–H activation, which might be prepared prior to the actual HAT. In order to investigate this hypothesis and large tunneling effect, DFT potential energy surfaces along the intrinsic reaction path were generated. The predicted rate constants and H/D KIEs using variational transition-state theory including multidimensional tunneling, based on these potential surfaces, have excellent agreement with experimental data. This study revealed that the reactive processes of C–H activation consisted of two distinguishable parts: (1) the substrate approaching the Fe(IV)-oxo center without C–H bond cleavage, which triggers the catalytic process by inducing metal-to-ligand charge transfer to form the Fe(III)-oxyl species, and (2) the actual HAT from the substrate to the Fe(III)-oxyl species. Most of the activation energy was used in the first part, and the actual HAT required only a small amount of energy to overcome the TS with a very large tunneling effect. The donor–acceptor interaction between σC–H and σ*Fe–O orbitals reduced the activation energy significantly to make C–H activation feasible.
Collapse
Affiliation(s)
- Binh Khanh Mai
- Department of Applied Chemistry, Kyung Hee University , 1 Seochun-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-701, Korea
| | - Yongho Kim
- Department of Applied Chemistry, Kyung Hee University , 1 Seochun-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-701, Korea
| |
Collapse
|
12
|
Wójcik A, Radoń M, Borowski T. Mechanism of O2 Activation by α-Ketoglutarate Dependent Oxygenases Revisited. A Quantum Chemical Study. J Phys Chem A 2016; 120:1261-74. [PMID: 26859709 DOI: 10.1021/acs.jpca.5b12311] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Four mechanisms previously proposed for dioxygen activation catalyzed by α-keto acid dependent oxygenases (α-KAO) were studied with dispersion-corrected DFT methods employing B3LYP and TPSSh functionals in combination with triple-ζ basis set (cc-pVTZ). The aim of this study was to revisit mechanisms suggested in the past decade and resolve remaining issues related to dioxygen activation. Mechanism A, which runs on the quintet potential energy surface (PES) and includes formation of an Fe(III)-superoxide radical anion complex, subsequent oxidative decarboxylation, and O-O bond cleavage, was found to be most likely. However, mechanism B taking place on the septet PES involves a rate limiting barrier comparable to the one found for mechanism A, and thus it cannot be excluded, though two other mechanisms (C and D) were ruled out. Mechanism C is a minor variation of mechanism A, whereas mechanism D proceeds through formation of a triplet Fe(IV)-alkyl peroxo bridged intermediate. The study covered also full optimization of relevant minimum energy crossing points (MECPs). The relative energy of critical intermediates was also studied with the CCSD(T) method in order to benchmark TPSSh and B3LYP functionals with respect to their credibility in predicting relative energies of septet and triplet spin states of the ternary enzyme-Fe-α-keto glutarate (α-KG)-O2 complex.
Collapse
Affiliation(s)
- Anna Wójcik
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , ul. Gronostajowa 7, 30-387 Cracow, Poland
| | - Mariusz Radoń
- Department of Chemistry, Jagiellonian University , ul. Ingardena 3, 30-060 Cracow, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , ul. Niezapominajek 8, 30-239 Cracow, Poland
| |
Collapse
|
13
|
Lemke A, Ducho C. Synthesis of Deuterium-Labelled 3-Hydroxy- L-arginine: Comparative Studies on Different Protecting-Group Strategies. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Gauss D, Schoenenberger B, Wohlgemuth R. Chemical and enzymatic methodologies for the synthesis of enantiomerically pure glyceraldehyde 3-phosphates. Carbohydr Res 2014; 389:18-24. [DOI: 10.1016/j.carres.2013.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/21/2013] [Accepted: 12/27/2013] [Indexed: 11/28/2022]
|
15
|
Aik W, Scotti JS, Choi H, Gong L, Demetriades M, Schofield CJ, McDonough MA. Structure of human RNA N⁶-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res 2014; 42:4741-54. [PMID: 24489119 PMCID: PMC3985658 DOI: 10.1093/nar/gku085] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ALKBH5 is a 2-oxoglutarate (2OG) and ferrous iron-dependent nucleic acid oxygenase (NAOX) that catalyzes the demethylation of N6-methyladenine in RNA. ALKBH5 is upregulated under hypoxia and plays a role in spermatogenesis. We describe a crystal structure of human ALKBH5 (residues 66–292) to 2.0 Å resolution. ALKBH566–292 has a double-stranded β-helix core fold as observed in other 2OG and iron-dependent oxygenase family members. The active site metal is octahedrally coordinated by an HXD…H motif (comprising residues His204, Asp206 and His266) and three water molecules. ALKBH5 shares a nucleotide recognition lid and conserved active site residues with other NAOXs. A large loop (βIV–V) in ALKBH5 occupies a similar region as the L1 loop of the fat mass and obesity-associated protein that is proposed to confer single-stranded RNA selectivity. Unexpectedly, a small molecule inhibitor, IOX3, was observed covalently attached to the side chain of Cys200 located outside of the active site. Modelling substrate into the active site based on other NAOX–nucleic acid complexes reveals conserved residues important for recognition and demethylation mechanisms. The structural insights will aid in the development of inhibitors selective for NAOXs, for use as functional probes and for therapeutic benefit.
Collapse
Affiliation(s)
- WeiShen Aik
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
17
|
Cyclolization of D-Lysergic Acid Alkaloid Peptides. ACTA ACUST UNITED AC 2014; 21:146-55. [DOI: 10.1016/j.chembiol.2013.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 11/22/2022]
|
18
|
Paradkar A. Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement. J Antibiot (Tokyo) 2013; 66:411-20. [DOI: 10.1038/ja.2013.26] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/25/2013] [Accepted: 03/11/2013] [Indexed: 11/09/2022]
|
19
|
Hangasky JA, Taabazuing CY, Valliere MA, Knapp MJ. Imposing function down a (cupin)-barrel: secondary structure and metal stereochemistry in the αKG-dependent oxygenases. Metallomics 2013; 5:287-301. [PMID: 23446356 PMCID: PMC4109655 DOI: 10.1039/c3mt20153h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Fe(ii)/αketoglutarate (αKG) dependent oxygenases catalyze a diverse range of reactions significant in biological processes such as antibiotic biosynthesis, lipid metabolism, oxygen sensing, and DNA and RNA repair. Although functionally diverse, the eight-stranded β-barrel (cupin) and HX(D/E)XnH facial triad motifs are conserved in this super-family of enzymes. Crystal structure analysis of 25 αKG oxygenases reveals two stereoisomers of the Fe cofactor, Anti and Clock, which differ in the relative position of the exchangeable ligand position and the primary substrate. Herein, we discuss the relationship between the chemical mechanism and the secondary coordination sphere of the αKG oxygenases, within the constraints of the stereochemistry of the Fe cofactor. Sequence analysis of the cupin barrel indicates that a small subset of positions constitute the second coordination sphere, which has significant ramifications for the structure of the ferryl intermediate. The competence of both Anti and Clock stereoisomers of Fe points to a ferryl intermediate that is 5 coordinate. The small number of conserved close contacts within the active sites of αKG oxygenases can be extended to chemically related enzymes, such as the αKG-dependent halogenases SyrB2 and CytC3, and the non-αKG dependent dioxygenases isopenicillin N synthase (IPNS) and cysteine dioxygenase (CDO).
Collapse
Affiliation(s)
- John A. Hangasky
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Meaghan A. Valliere
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Michael J. Knapp
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
20
|
Origins of the β-lactam rings in natural products. J Antibiot (Tokyo) 2013; 66:401-10. [DOI: 10.1038/ja.2013.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/26/2013] [Accepted: 03/05/2013] [Indexed: 11/08/2022]
|
21
|
Krebs C, Dassama LMK, Matthews ML, Jiang W, Price JC, Korboukh V, Li N, Bollinger JM. Novel Approaches for the Accumulation of Oxygenated Intermediates to Multi-Millimolar Concentrations. Coord Chem Rev 2013; 257:10.1016/j.ccr.2012.06.020. [PMID: 24368870 PMCID: PMC3870000 DOI: 10.1016/j.ccr.2012.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metalloenzymes that utilize molecular oxygen as a co-substrate catalyze a wide variety of chemically difficult oxidation reactions. Significant insight into the reaction mechanisms of these enzymes can be obtained by the application of a combination of rapid kinetic and spectroscopic methods to the direct structural characterization of intermediate states. A key limitation of this approach is the low aqueous solubility (< 2 mM) of the co-substrate, O2, which undergoes further dilution (typically by one-third or one-half) upon initiation of reactions by rapid-mixing. This situation imposes a practical upper limit on [O2] (and therefore on the concentration of reactive intermediate(s) that can be rapidly accumulated) of ∼1-1.3 mM in such experiments as they are routinely carried out. However, many spectroscopic methods benefit from or require significantly greater concentrations of the species to be studied. To overcome this problem, we have recently developed two new approaches for the preparation of samples of oxygenated intermediates: (1) direct oxygenation of reduced metalloenzymes using gaseous O2 and (2) the in situ generation of O2 from chlorite catalyzed by the enzyme chlorite dismutase (Cld). Whereas the former method is applicable only to intermediates with half lives of several minutes, owing to the sluggishness of transport of O2 across the gas-liquid interface, the latter approach has been successfully applied to trap several intermediates at high concentration and purity by the freeze-quench method. The in situ approach permits generation of a pulse of at least 5 mM O2 within ∼ 1 ms and accumulation of O2 to effective concentrations of up to ∼ 11 mM (i.e. ∼ 10-fold greater than by the conventional approach). The use of these new techniques for studies of oxygenases and oxidases is discussed.
Collapse
Affiliation(s)
- Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Laura M. K. Dassama
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Megan L. Matthews
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - John C. Price
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Victoria Korboukh
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ning Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
22
|
Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. The enzymes of β-lactam biosynthesis. Nat Prod Rep 2013; 30:21-107. [DOI: 10.1039/c2np20065a] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Aik W, McDonough MA, Thalhammer A, Chowdhury R, Schofield CJ. Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Curr Opin Struct Biol 2012; 22:691-700. [PMID: 23142576 DOI: 10.1016/j.sbi.2012.10.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 09/20/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
2-Oxoglutarate (2OG) and ferrous iron dependent oxygenases catalyze two-electron oxidations of a range of small and large molecule substrates, including proteins/peptides/amino acids, nucleic acids/bases, and lipids, as well as natural products including antibiotics and signaling molecules. 2OG oxygenases employ variations of a core double-stranded β-helix (DSBH; a.k.a. jelly-roll, cupin or jumonji C (JmjC)) fold to enable binding of Fe(II) and 2OG in a subfamily conserved manner. The topology of the DSBH limits regions directly involved in substrate binding: commonly the first, second and eighth strands, loops between the second/third and fourth/fifth DSBH strands, and the N-terminal and C-terminal regions are involved in primary substrate, co-substrate and cofactor binding. Insights into substrate recognition by 2OG oxygenases will help to enable selective inhibition and bioengineering studies.
Collapse
Affiliation(s)
- WeiShen Aik
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Ye S, Riplinger C, Hansen A, Krebs C, Bollinger JM, Neese F. Electronic structure analysis of the oxygen-activation mechanism by Fe(II)- and α-ketoglutarate (αKG)-dependent dioxygenases. Chemistry 2012; 18:6555-67. [PMID: 22511515 PMCID: PMC3955955 DOI: 10.1002/chem.201102829] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Indexed: 11/09/2022]
Abstract
α-Ketoglutarate (αKG)-dependent nonheme iron enzymes utilize a high-spin (HS) ferrous center to couple the activation of oxygen to the decarboxylation of the cosubstrate αKG to yield succinate and CO(2), and to generate a high-valent ferryl species that then acts as an oxidant to functionalize the target C-H bond. Herein a detailed analysis of the electronic-structure changes that occur in the oxygen activation by this enzyme was performed. The rate-limiting step, which is identical on the septet and quintet surfaces, is the nucleophilic attack of the distal O atom of the O(2) adduct on the carbonyl group in αKG through a bicyclic transition state ((5, 7) TS1). Due to the different electronic structures in (5, 7) TS1, the decay of (7)TS1 leads to a ferric oxyl species, which undergoes a rapid intersystem crossing to form the ferryl intermediate. By contrast, a HS ferrous center ligated by a peroxosuccinate is obtained on the quintet surface following (5)TS1. Thus, additional two single-electron transfer steps are required to afford the same Fe(IV)-oxo species. However, the triplet reaction channel is catalytically irrelevant. The biological role of αKG played in the oxygen-activation reaction is dual. The αKG LUMO (C=O π*) serves as an electron acceptor for the nucleophilic attack of the superoxide monoanion. On the other hand, the αKG HOMO (C1-C2 σ) provides the second and third electrons for the further reduction of the superoxide. In addition to density functional theory, high-level ab initio calculations have been used to calculate the accurate energies of the critical points on the alternative potential-energy surfaces. Overall, the results delivered by the ab initio calculations are largely parallel to those obtained with the B3LYP density functional, thus lending credence to our conclusions.
Collapse
Affiliation(s)
- Shengfa Ye
- Max-Plank Institute for Bioinorganic Chemistry Stiftstrasse 34–36 45470 Mülheim an der Ruhr (Germany)
| | - Christoph Riplinger
- Max-Plank Institute for Bioinorganic Chemistry Stiftstrasse 34–36 45470 Mülheim an der Ruhr (Germany)
| | - Andreas Hansen
- Max-Plank Institute for Bioinorganic Chemistry Stiftstrasse 34–36 45470 Mülheim an der Ruhr (Germany)
| | - Carsten Krebs
- Department of Chemistry Department of Biochemistry and Molecular Biology The Pennsylvania State University University Park, Pennsylvania 16802 (USA)
| | - J. Martin Bollinger
- Department of Chemistry Department of Biochemistry and Molecular Biology The Pennsylvania State University University Park, Pennsylvania 16802 (USA)
| | - Frank Neese
- Max-Plank Institute for Bioinorganic Chemistry Stiftstrasse 34–36 45470 Mülheim an der Ruhr (Germany)
| |
Collapse
|
25
|
Dassama LMK, Yosca TH, Conner DA, Lee MH, Blanc B, Streit BR, Green MT, DuBois JL, Krebs C, Bollinger JM. O(2)-evolving chlorite dismutase as a tool for studying O(2)-utilizing enzymes. Biochemistry 2012; 51:1607-16. [PMID: 22304240 DOI: 10.1021/bi201906x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct interrogation of fleeting intermediates by rapid-mixing kinetic methods has significantly advanced our understanding of enzymes that utilize dioxygen. The gas's modest aqueous solubility (<2 mM at 1 atm) presents a technical challenge to this approach, because it limits the rate of formation and extent of accumulation of intermediates. This challenge can be overcome by use of the heme enzyme chlorite dismutase (Cld) for the rapid, in situ generation of O(2) at concentrations far exceeding 2 mM. This method was used to define the O(2) concentration dependence of the reaction of the class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis, in which the enzyme's Mn(IV)/Fe(III) cofactor forms from a Mn(II)/Fe(II) complex and O(2) via a Mn(IV)/Fe(IV) intermediate, at effective O(2) concentrations as high as ~10 mM. With a more soluble receptor, myoglobin, an O(2) adduct accumulated to a concentration of >6 mM in <15 ms. Finally, the C-H-bond-cleaving Fe(IV)-oxo complex, J, in taurine:α-ketoglutarate dioxygenase and superoxo-Fe(2)(III/III) complex, G, in myo-inositol oxygenase, and the tyrosyl-radical-generating Fe(2)(III/IV) intermediate, X, in Escherichia coli RNR, were all accumulated to yields more than twice those previously attained. This means of in situ O(2) evolution permits a >5 mM "pulse" of O(2) to be generated in <1 ms at the easily accessible Cld concentration of 50 μM. It should therefore significantly extend the range of kinetic and spectroscopic experiments that can routinely be undertaken in the study of these enzymes and could also facilitate resolution of mechanistic pathways in cases of either sluggish or thermodynamically unfavorable O(2) addition steps.
Collapse
Affiliation(s)
- Laura M K Dassama
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Du L, Gao J, Liu Y, Zhang D, Liu C. The reaction mechanism of hydroxyethylphosphonate dioxygenase: a QM/MM study. Org Biomol Chem 2012; 10:1014-24. [DOI: 10.1039/c1ob06221b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Rodríguez M, Núñez LE, Braña AF, Méndez C, Salas JA, Blanco G. Mutational analysis of the thienamycin biosynthetic gene cluster from Streptomyces cattleya. Antimicrob Agents Chemother 2011; 55:1638-49. [PMID: 21263049 PMCID: PMC3067130 DOI: 10.1128/aac.01366-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/09/2010] [Accepted: 01/14/2011] [Indexed: 11/20/2022] Open
Abstract
The generation of non-thienamycin-producing mutants with mutations in the thnL, thnN, thnO, and thnI genes within the thn gene cluster from Streptomyces cattleya and their involvement in thienamycin biosynthesis and regulation were previously reported. Four additional mutations were independently generated in the thnP, thnG, thnR, and thnT genes by insertional inactivation. Only the first two genes were found to play a role in thienamycin biosynthesis, since these mutations negatively or positively affect antibiotic production. A mutation of thnP results in the absence of thienamycin production, whereas a 2- to 3-fold increase in thienamycin production was observed for the thnG mutant. On the other hand, mutations in thnR and thnT showed that although these genes were previously reported to participate in this pathway, they seem to be nonessential for thienamycin biosynthesis, as thienamycin production was not affected in these mutants. High-performance liquid chromatography (HPLC)-mass spectrometry (MS) analysis of all available mutants revealed some putative intermediates in the thienamycin biosynthetic pathway. A compound with a mass corresponding to carbapenam-3-carboxylic acid was detected in some of the mutants, suggesting that the assembly of the bicyclic nucleus of thienamycin might proceed in a way analogous to that of the simplest natural carbapenem, 1-carbapen-2-em-3-carboxylic acid biosynthesis. The accumulation of a compound with a mass corresponding to 2,3-dihydrothienamycin in the thnG mutant suggests that it might be the last intermediate in the biosynthetic pathway. These data, together with the establishment of cross-feeding relationships by the cosynthesis analysis of the non-thienamycin-producing mutants, lead to a proposal for some enzymatic steps during thienamycin assembly.
Collapse
Affiliation(s)
- Miriam Rodríguez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Luz Elena Núñez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alfredo F. Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
28
|
Ye S, Price JC, Barr EW, Green MT, Bollinger JM, Krebs C, Neese F. Cryoreduction of the NO-adduct of taurine:alpha-ketoglutarate dioxygenase (TauD) yields an elusive {FeNO}(8) species. J Am Chem Soc 2010; 132:4739-51. [PMID: 20218714 DOI: 10.1021/ja909715g] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Fe(II)- and alpha-ketoglutarate (alphaKG)-dependent enzymes are a functionally and mechanistically diverse group of mononuclear nonheme-iron enzymes that activate dioxygen to couple the decarboxylation of alphaKG, which yields succinate and CO(2), to the oxidation of an aliphatic C-H bond of their substrates. Their mechanisms have been studied in detail by a combination of kinetic, spectroscopic, and computational methods. Two reaction intermediates have been trapped and characterized for several members of this enzyme family. The first intermediate is the C-H-cleaving Fe(IV)-oxo complex, which exhibits a large deuterium kinetic isotope effect on its decay. The second intermediate is a Fe(II):product complex. Reaction intermediates proposed to occur before the Fe(IV)-oxo intermediate do not accumulate and therefore cannot be characterized experimentally. One of these intermediates is the initial O(2) adduct, which is a {FeO(2)}(8) species in the notation introduced by Enemark and Feltham. Here, we report spectroscopic and computational studies on the stable NO-adduct of taurine:alphaKG dioxygenase (TauD), termed TauD-{FeNO}(7), and its one-electron reduced form, TauD-{FeNO}(8). The latter is isoelectronic with the proposed O(2) adduct and was generated by low-temperature gamma-irradiation of TauD-{FeNO}(7). To our knowledge, TauD-{FeNO}(8) is the first paramagnetic {FeNO}(8) complex. The detailed analysis of experimental and computational results shows that TauD-{FeNO}(8) has a triplet ground state. This has mechanistic implications that are discussed in this Article. Annealing of the triplet {FeNO}(8) species presumably leads to an equally elusive {FeHNO}(8) complex with a quintet ground state.
Collapse
Affiliation(s)
- Shengfa Ye
- Institute of Physical and Theoretical Chemistry, Universität Bonn, D-53115 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Iqbal A, Arunlanantham H, Brown T, Chowdhury R, Clifton IJ, Kershaw NJ, Hewitson KS, McDonough MA, Schofield CJ. Crystallographic and mass spectrometric analyses of a tandem GNAT protein from the clavulanic acid biosynthesis pathway. Proteins 2010; 78:1398-407. [PMID: 20014241 DOI: 10.1002/prot.22653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
(3R,5R)-Clavulanic acid (CA) is a clinically important inhibitor of Class A beta-lactamases. Sequence comparisons suggest that orf14 of the clavulanic acid biosynthesis gene cluster encodes for an acetyl transferase (CBG). Crystallographic studies reveal CBG to be a member of the emerging structural subfamily of tandem Gcn5-related acetyl transferase (GNAT) proteins. Two crystal forms (C2 and P2(1) space groups) of CBG were obtained; in both forms one molecule of acetyl-CoA (AcCoA) was bound to the N-terminal GNAT domain, with the C-terminal domain being unoccupied by a ligand. Mass spectrometric analyzes on CBG demonstrate that, in addition to one strongly bound AcCoA molecule, a second acyl-CoA molecule can bind to CBG. Succinyl-CoA and myristoyl-CoA displayed the strongest binding to the "second" CoA binding site, which is likely in the C-terminal GNAT domain. Analysis of the CBG structures, together with those of other tandem GNAT proteins, suggest that the AcCoA in the N-terminal GNAT domain plays a structural role whereas the C-terminal domain is more likely to be directly involved in acetyl transfer. The available crystallographic and mass spectrometric evidence suggests that binding of the second acyl-CoA occurs preferentially to monomeric rather than dimeric CBG. The N-terminal AcCoA binding site and the proposed C-terminal acyl-CoA binding site of CBG are compared with acyl-CoA binding sites of other tandem and single domain GNAT proteins.
Collapse
|
30
|
Walsh CT, Fischbach MA. Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 2010; 132:2469-93. [PMID: 20121095 DOI: 10.1021/ja909118a] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products have played a prominent role in the history of organic chemistry, and they continue to be important as drugs, biological probes, and targets of study for synthetic and analytical chemists. In this Perspective, we explore how connecting Nature's small molecules to the genes that encode them has sparked a renaissance in natural product research, focusing primarily on the biosynthesis of polyketides and non-ribosomal peptides. We survey monomer biogenesis, coupling chemistries from templated and non-templated pathways, and the broad set of tailoring reactions and hybrid pathways that give rise to the diverse scaffolds and functionalization patterns of natural products. We conclude by considering two questions: What would it take to find all natural product scaffolds? What kind of scientists will be studying natural products in the future?
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
31
|
Raber ML, Castillo A, Greer A, Townsend CA. A conserved lysine in beta-lactam synthetase assists ring cyclization: Implications for clavam and carbapenem biosynthesis. Chembiochem 2010; 10:2904-12. [PMID: 19882698 DOI: 10.1002/cbic.200900389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
beta-Lactam synthetase (beta-LS) is the paradigm of a growing class of enzymes that form the critical beta-lactam ring in the clavam and carbapenem antibiotics. beta-LS catalyzes a two-stage reaction in which N(2)-(2-carboxyethyl)-L-arginine is first adenylated, and then undergoes intramolecular ring closure. It was previously shown that the forward kinetic commitment to beta-lactam formation is high, and that the overall rate of reaction is partially limited to a protein conformational change rather than to the chemical step alone of closing the strained ring. beta-Lactam formation was evaluated on the basis of X-ray crystal structures, site-specific mutation, and kinetic and computational studies. The combined evidence clearly points to a reaction coordinate involving the formation of a tetrahedral transition state/intermediate stabilized by a conserved Lys. The combination of substrate preorganization, a well-stabilized transition state and an excellent leaving group facilitates this acyl substitution to account for the strong forward commitment to catalysis and to lower the barrier of four-membered ring formation to the magnitude of a protein conformational change.
Collapse
Affiliation(s)
- Mary L Raber
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
32
|
Mackenzie AK, Valegård K, Iqbal A, Caines ME, Kershaw NJ, Jensen SE, Schofield CJ, Andersson I. Crystal Structures of an Oligopeptide-Binding Protein from the Biosynthetic Pathway of the β-Lactamase Inhibitor Clavulanic Acid. J Mol Biol 2010; 396:332-44. [DOI: 10.1016/j.jmb.2009.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 11/30/2022]
|
33
|
Lemke A, Büschleb M, Ducho C. Concise synthesis of both diastereomers of 3-hydroxy-l-arginine. Tetrahedron 2010. [DOI: 10.1016/j.tet.2009.10.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Krebs C, Bollinger JM. Freeze-quench (57)Fe-Mössbauer spectroscopy: trapping reactive intermediates. PHOTOSYNTHESIS RESEARCH 2009; 102:295-304. [PMID: 19238577 DOI: 10.1007/s11120-009-9406-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/15/2009] [Indexed: 05/24/2023]
Abstract
(57)Fe-Mössbauer spectroscopy is a method that probes transitions between the nuclear ground state (I=1/2) and the first nuclear excited state (I=3/2). This technique provides detailed information about the chemical environment and electronic structure of iron. Therefore, it has played an important role in studies of the numerous iron-containing proteins and enzymes. In conjunction with the freeze-quench method, (57)Fe-Mössbauer spectroscopy allows for monitoring changes of the iron site(s) during a biochemical reaction. This approach is particularly powerful for detection and characterization of reactive intermediates. Comparison of experimentally determined Mössbauer parameters to those predicted by density functional theory for hypothetical model structures can then provide detailed insight into the structures of reactive intermediates. We have recently used this methodology to study the reactions of various mononuclear non-heme-iron enzymes by trapping and characterizing several Fe(IV)-oxo reaction intermediates. In this article, we summarize these findings and demonstrate the potential of the method.
Collapse
Affiliation(s)
- Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, 332 Chemistry Building, Pennsylvania, PA 16802, USA.
| | | |
Collapse
|
35
|
Antibiotics from microbes: converging to kill. Curr Opin Microbiol 2009; 12:520-7. [PMID: 19695947 DOI: 10.1016/j.mib.2009.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 11/20/2022]
Abstract
As genetically encoded small molecules, antibiotics are phenotypes that have resulted from mutation and natural selection. Advances in genetics, biochemistry, and bioinformatics have connected hundreds of antibiotics to the gene clusters that encode them, allowing these molecules to be analyzed using the tools of evolutionary biology. This review surveys examples of convergent evolution from microbially produced antibiotics, including the convergence of distinct gene clusters on similar phenotypes and the merger of distinct gene clusters into a single functional unit. Examining antibiotics through an evolutionary lens highlights the versatility of biosynthetic pathways, reveals lessons for combating antibiotic resistance, and provides an entry point for studying the natural roles of these natural products.
Collapse
|
36
|
Caines MEC, Sorensen JL, Schofield CJ. Structural and mechanistic studies on N(2)-(2-carboxyethyl)arginine synthase. Biochem Biophys Res Commun 2009; 385:512-7. [PMID: 19477162 DOI: 10.1016/j.bbrc.2009.05.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/15/2009] [Indexed: 11/30/2022]
Abstract
N(2)-(2-Carboxyethyl)arginine synthase (CEAS), an unusual thiamin diphosphate (ThDP)-dependent enzyme, catalyses the committed step in the biosynthesis of the b-lactamase inhibitor clavulanic acid in Streptomyces clavuligerus. Crystal structures of tetrameric CEAS-ThDP in complex with the substrate analogues 5-guanidinovaleric acid (GVA) and tartrate, and a structure reflecting a possible enol(ate)-ThDP reaction intermediate are described. The structures suggest overlapping binding sites for the substrates D-glyceraldehyde-3-phosphate (D-G3P) and L-arginine, and are consistent with the proposed CEAS mechanism in which D-G3P binds at the active site and reacts to form an alpha,beta-unsaturated intermediate,which subsequently undergoes (1,4)-Michael addition with the alpha-amino group of L-arginine. Additional solution studies are presented which probe the amino acid substrate tolerance of CEAS, providing further insight into the L-arginine binding site. These findings may facilitate the engineering of CEAS towards the synthesis of alternative beta-amino acid products.
Collapse
Affiliation(s)
- Matthew E C Caines
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX13TA, United Kingdom
| | | | | |
Collapse
|
37
|
Helmetag V, Samel SA, Thomas MG, Marahiel MA, Essen LO. Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis. FEBS J 2009; 276:3669-82. [PMID: 19490124 DOI: 10.1111/j.1742-4658.2009.07085.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nonheme iron oxygenase VioC from Streptomyces vinaceus catalyzes Fe(II)-dependent and alpha-ketoglutarate-dependent Cbeta-hydroxylation of L-arginine during the biosynthesis of the tuberactinomycin antibiotic viomycin. Crystal structures of VioC were determined in complexes with the cofactor Fe(II), the substrate L-arginine, the product (2S,3S)-hydroxyarginine and the coproduct succinate at 1.1-1.3 A resolution. The overall structure reveals a beta-helix core fold with two additional helical subdomains that are common to nonheme iron oxygenases of the clavaminic acid synthase-like superfamily. In contrast to other clavaminic acid synthase-like oxygenases, which catalyze the formation of threo diastereomers, VioC produces the erythro diastereomer of Cbeta-hydroxylated L-arginine. This unexpected stereospecificity is caused by conformational control of the bound substrate, which enforces a gauche(-) conformer for chi(1) instead of the trans conformers observed for the asparagine oxygenase AsnO and other members of the clavaminic acid synthase-like superfamily. Additionally, the substrate specificity of VioC was investigated. The side chain of the L-arginine substrate projects outwards from the active site by undergoing interactions mainly with the C-terminal helical subdomain. Accordingly, VioC exerts broadened substrate specificity by accepting the analogs L-homoarginine and L-canavanine for Cbeta-hydroxylation.
Collapse
Affiliation(s)
- Verena Helmetag
- Department of Chemistry, Philipps-University Marburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Ducho C, Hamed RB, Batchelar ET, Sorensen JL, Odell B, Schofield CJ. Synthesis of regio- and stereoselectively deuterium-labelled derivatives of L-glutamate semialdehyde for studies on carbapenem biosynthesis. Org Biomol Chem 2009; 7:2770-9. [PMID: 19532994 DOI: 10.1039/b903312b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L-glutamate semialdehyde (L-GSA) is an intermediate in biosynthetic pathways including those leading to the carbapenem antibiotics. We describe studies on asymmetric deuteration or hydrogenation of appropriate didehydro-amino acid precursors for the stereoselective synthesis of C-2- and/or C-3-[2H]-labelled L-GSA suitable for use in mechanistic studies. Regioselective deuterium incorporation into the 5-position of L-GSA was achieved using a labelled form of the Schwartz reagent (Cp2Zr2HCl). 4,4-Dideuterated and fully backbone deuterated L-GSAs were prepared. The application of the labelled L-GSA derivatives to biosynthetic studies was exemplified by the chemo-enzymatic preparation of selectively deuterated trans-carboxymethylprolines using two different carboxymethylproline synthases (CarB and ThnE), enzymes that catalyse early steps in the biosynthesis of two carbapenems: (5R)-carbapenem-3-carboxylate and thienamycin, respectively.
Collapse
Affiliation(s)
- Christian Ducho
- University of Oxford, Department of Chemistry, Chemistry Research Laboratory, Mansfield Road, Oxford, United Kingdom OX1 3TA
| | | | | | | | | | | |
Collapse
|
39
|
Hamed RB, Batchelar ET, Mecinović J, Claridge TDW, Schofield CJ. Evidence that Thienamycin Biosynthesis Proceeds via C-5 Epimerization: ThnE Catalyzes the Formation of (2S,5S)-trans-Carboxymethylproline. Chembiochem 2009; 10:246-50. [DOI: 10.1002/cbic.200800652] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Batchelar ET, Hamed RB, Ducho C, Claridge TDW, Edelmann MJ, Kessler B, Schofield CJ. Thioester hydrolysis and C-C bond formation by carboxymethylproline synthase from the crotonase superfamily. Angew Chem Int Ed Engl 2008; 47:9322-5. [PMID: 18972478 DOI: 10.1002/anie.200803906] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Edward T Batchelar
- Department of Chemistry, Oxford University, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Batchelar E, Hamed R, Ducho C, Claridge T, Edelmann M, Kessler B, Schofield C. Thioester Hydrolysis and CC Bond Formation by Carboxymethylproline Synthase from the Crotonase Superfamily. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Edward T. Batchelar
- Department of Chemistry, Oxford University, Mansfield Road, Oxford, OX1 3TA (UK), Fax: (+44)‐1865‐275674 http://www.chem.ox.ac.uk/researchguide/cjschofield.html
| | - Refaat B. Hamed
- Department of Chemistry, Oxford University, Mansfield Road, Oxford, OX1 3TA (UK), Fax: (+44)‐1865‐275674 http://www.chem.ox.ac.uk/researchguide/cjschofield.html
| | - Christian Ducho
- Department of Chemistry, Oxford University, Mansfield Road, Oxford, OX1 3TA (UK), Fax: (+44)‐1865‐275674 http://www.chem.ox.ac.uk/researchguide/cjschofield.html
- Current address: Georg‐August‐University Göttingen, Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Göttingen (Germany)
| | - Timothy D. W. Claridge
- Department of Chemistry, Oxford University, Mansfield Road, Oxford, OX1 3TA (UK), Fax: (+44)‐1865‐275674 http://www.chem.ox.ac.uk/researchguide/cjschofield.html
| | - Mariola J. Edelmann
- Henry Wellcome Building for Molecular Physiology, Department of Clinical Medicine, University of Oxford (UK)
| | - Benedikt Kessler
- Henry Wellcome Building for Molecular Physiology, Department of Clinical Medicine, University of Oxford (UK)
| | - Christopher J. Schofield
- Department of Chemistry, Oxford University, Mansfield Road, Oxford, OX1 3TA (UK), Fax: (+44)‐1865‐275674 http://www.chem.ox.ac.uk/researchguide/cjschofield.html
| |
Collapse
|
42
|
Raber ML, Freeman MF, Townsend CA. Dissection of the stepwise mechanism to beta-lactam formation and elucidation of a rate-determining conformational change in beta-lactam synthetase. J Biol Chem 2008; 284:207-217. [PMID: 18955494 DOI: 10.1074/jbc.m805390200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clavulanic acid is a widely used beta-lactamase inhibitor whose key beta-lactam core is formed by beta-lactam synthetase. beta-Lactam synthetase exhibits a Bi-Ter mechanism consisting of two chemical steps, acyl-adenylation followed by beta-lactam formation. 32PPi-ATP exchange assays showed the first irreversible step of catalysis is acyl-adenylation. From a small, normal solvent isotope effect (1.38 +/- 0.04), it was concluded that beta-lactam synthesis contributes at least partially to kcat. Site-specific mutation of Lys-443 identified this residue as the ionizable group at pKa approximately 8.1 apparent in the pH-kcat profile that stabilizes the beta-lactam-forming step. Viscosity studies demonstrated that a protein conformational change was also partially rate-limiting on kcat attenuating the observed solvent isotope effect on beta-lactam formation. Adherence to Kramers' theory gave a slope of 1.66 +/- 0.08 from a plot of log(o kcat/kcat) versus log(eta/eta(o)) consistent with opening of a structured loop visible in x-ray data preceding product release. Internal "friction" within the enzyme contributes to a slope of > 1 in this analysis. Correspondingly, earlier in the catalytic cycle ordering of a mobile active site loop upon substrate binding was manifested by an inverse solvent isotope effect (0.67 +/- 0.15) on kcat/Km. The increased second-order rate constant in heavy water was expected from ordering of this loop over the active site imposing torsional strain. Finally, an Eyring plot displayed a large enthalpic change accompanying loop movement (DeltaH approximately 20 kcal/mol) comparable to the chemical barrier of beta-lactam formation.
Collapse
Affiliation(s)
- Mary L Raber
- Department of Chemistry and Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Michael F Freeman
- Department of Chemistry and Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Craig A Townsend
- Department of Chemistry and Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218.
| |
Collapse
|
43
|
Barwick M, Abu-Izneid T, Novak I. Computational Study of Pharmacophores: β-Sultams. J Phys Chem A 2008; 112:10993-7. [PMID: 18828576 DOI: 10.1021/jp805024y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mathew Barwick
- Charles Sturt University, POB 883, Orange NSW 2800, Australia
| | | | - Igor Novak
- Charles Sturt University, POB 883, Orange NSW 2800, Australia
| |
Collapse
|
44
|
Kovaleva EG, Lipscomb JD. Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat Chem Biol 2008; 4:186-93. [PMID: 18277980 PMCID: PMC2720164 DOI: 10.1038/nchembio.71] [Citation(s) in RCA: 512] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxidase and oxygenase enzymes allow the use of relatively unreactive O2 in biochemical reactions. Many of the mechanistic strategies used in nature for this key reaction are represented within the 2-histidine-1-carboxylate facial triad family of non-heme Fe(II)-containing enzymes. The open face of the metal coordination sphere opposite the three endogenous ligands participates directly in the reaction chemistry. Here, data from several studies are presented showing that reductive O2 activation within this family is initiated by substrate (and in some cases cosubstrate or cofactor) binding, which then allows coordination of O2 to the metal. From this starting point, the O2 activation process and the reactions with substrates diverge broadly. The reactive species formed in these reactions have been proposed to encompass four oxidation states of iron and all forms of reduced O2 as well as several of the reactive oxygen species that derive from O-O bond cleavage.
Collapse
Affiliation(s)
- Elena G Kovaleva
- Elena G. Kovaleva and John D. Lipscomb are in the Department of Biochemistry, Molecular Biology and Biophysics and the Center for Metals in Biocatalysis, University of Minnesota, 6-155 Jackson Hall, Minneapolis, Minnesota, 55455 USA
| | - John D Lipscomb
- Elena G. Kovaleva and John D. Lipscomb are in the Department of Biochemistry, Molecular Biology and Biophysics and the Center for Metals in Biocatalysis, University of Minnesota, 6-155 Jackson Hall, Minneapolis, Minnesota, 55455 USA
| |
Collapse
|
45
|
You Z, Omura S, Ikeda H, Cane DE, Jogl G. Crystal structure of the non-heme iron dioxygenase PtlH in pentalenolactone biosynthesis. J Biol Chem 2007; 282:36552-60. [PMID: 17942405 PMCID: PMC3010413 DOI: 10.1074/jbc.m706358200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The non-heme iron dioxygenase PtlH from the soil organism Streptomyces avermitilis is a member of the iron(II)/alpha-ketoglutarate-dependent dioxygenase superfamily and catalyzes an essential reaction in the biosynthesis of the sesquiterpenoid antibiotic pentalenolactone. To investigate the structural basis for substrate recognition and catalysis, we have determined the x-ray crystal structure of PtlH in several complexes with the cofactors iron, alpha-ketoglutarate, and the non-reactive enantiomer of the substrate, ent-1-deoxypentalenic acid, in four different crystal forms to up to 1.31 A resolution. The overall structure of PtlH forms a double-stranded barrel helix fold, and the cofactor-binding site for iron and alpha-ketoglutarate is similar to other double-stranded barrel helix fold enzymes. Additional secondary structure elements that contribute to the substrate-binding site in PtlH are not conserved in other double-stranded barrel helix fold enzymes. Binding of the substrate enantiomer induces a reorganization of the monoclinic crystal lattice leading to a disorder-order transition of a C-terminal alpha-helix. The newly formed helix blocks the major access to the active site and effectively traps the bound substrate. Kinetic analysis of wild type and site-directed mutant proteins confirms a critical function of two arginine residues in substrate binding, while simulated docking of the enzymatic reaction product reveals the likely orientation of bound substrate.
Collapse
Affiliation(s)
- Zheng You
- Department of Chemistry, Brown University, Box H, Providence, RI 02912-9108, USA
| | - Satoshi Omura
- The Kitasato Institute, 9-1, Shirokane 5-chome, Minato-ku, Tokyo 108-8642, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | - David E. Cane
- Department of Chemistry, Brown University, Box H, Providence, RI 02912-9108, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G, Providence, RI 02912, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G, Providence, RI 02912, USA
| |
Collapse
|
46
|
Abstract
High-valent non-heme iron-oxo intermediates have been proposed for decades as the key intermediates in numerous biological oxidation reactions. In the past three years, the first direct characterization of such intermediates has been provided by studies of several alphaKG-dependent oxygenases that catalyze either hydroxylation or halogenation of their substrates. In each case, the Fe(IV)-oxo intermediate is implicated in cleavage of the aliphatic C-H bond to initiate hydroxylation or halogenation. The observation of non-heme Fe(IV)-oxo intermediates and Fe(II)-containing product(s) complexes with almost identical spectroscopic parameters in the reactions of two distantly related alphaKG-dependent hydroxylases suggests that members of this subfamily follow a conserved mechanism for substrate hydroxylation. In contrast, for the alphaKG-dependent non-heme iron halogenase, CytC3, two distinct Fe(IV) complexes form and decay together, suggesting that they are in rapid equilibrium. The existence of two distinct conformers of the Fe site may be the key factor accounting for the divergence of the halogenase reaction from the more usual hydroxylation pathway after C-H bond cleavage. Distinct transformations catalyzed by other mononuclear non-heme enzymes are likely also to involve initial C-H bond cleavage by Fe(IV)-oxo complexes, followed by diverging reactivities of the resulting Fe(III)-hydroxo/substrate radical intermediates.
Collapse
Affiliation(s)
- Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | | | - Christopher T. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
47
|
Sinnecker S, Svensen N, Barr EW, Ye S, Bollinger JM, Neese F, Krebs C. Spectroscopic and Computational Evaluation of the Structure of the High-Spin Fe(IV)-Oxo Intermediates in Taurine: α-Ketoglutarate Dioxygenase fromEscherichia coliand Its His99Ala Ligand Variant. J Am Chem Soc 2007; 129:6168-79. [PMID: 17451240 DOI: 10.1021/ja067899q] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Fe(II)- and alpha-ketoglutarate (alphaKG)-dependent dioxygenases activate O2 for cleavage of unactivated C-H bonds in their substrates. The key intermediate that abstracts hydrogen in the reaction of taurine:alphaKG dioxygenase (TauD), a member of this enzyme family, was recently characterized. The intermediate, denoted J, was shown to contain an iron(IV)-oxo unit. Other important structural features of J, such as the number, identity, and disposition of ligands in the Fe(IV) coordination sphere, are not yet understood. To probe these important structural features, a series of models for J with the Fe(IV) ion coordinated by the expected two imidazole (from His99 and His255), two carboxylate (succinate and Asp101), and oxo ligands have been generated by density functional theory (DFT) calculations, and spectroscopic parameters (Mössbauer isomer shift, quadrupole splitting, and asymmetry parameter, 57Fe hyperfine coupling tensor, and zero field splitting parameters, D and E/D) have been calculated for each model. The calculated parameters of distorted octahedral models for J, in which one of the carboxylates serves as a monodentate ligand and the other as a bidentate ligand, and a trigonal bipyramidal model, in which both carboxylates serve as monodentate ligands, agree well with the experimental parameters, whereas the calculated parameters of a square pyramidal model, in which the oxo ligand is in the equatorial plane, are inconsistent with the data. Similar analysis of the Fe(IV) complex generated in the variant protein with His99, the residue that contributes the imidazole ligand cis to the oxo group, replaced by alanine suggests that the deleted imidazole is replaced by a water ligand. This work lends credence to the idea that the combination of Mössbauer spectroscopy and DFT calculations can provide detailed structural information for reactive intermediates in the catalytic cycles of iron enzymes.
Collapse
Affiliation(s)
- Sebastian Sinnecker
- Max-Planck Institut für Bioanorganische Chemie, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Strieker M, Kopp F, Mahlert C, Essen LO, Marahiel MA. Mechanistic and structural basis of stereospecific Cbeta-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide. ACS Chem Biol 2007; 2:187-96. [PMID: 17373765 DOI: 10.1021/cb700012y] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Non-ribosomally synthesized lipopeptide antibiotics of the daptomycin type are known to contain unnatural beta-modified amino acids, which are essential for bioactivity. Here we present the biochemical and structural basis for the incorporation of 3-hydroxyasparagine at position 9 in the 11-residue acidic lipopeptide lactone calcium-dependent antibiotic (CDA). Direct hydroxylation of l-asparagine by AsnO, a non-heme Fe(2+)/alpha-ketoglutarate-dependent oxygenase encoded by the CDA biosynthesis gene cluster, was validated by Fmoc derivatization of the reaction product and LC/MS analysis. The 1.45, 1.92, and 1.66 A crystal structures of AsnO as apoprotein, Fe(2+) complex, and product complex, respectively, with (2S,3S)-3-hydroxyasparagine and succinate revealed the stereoselectivity and substrate specificity of AsnO. The comparison of native and product-complex structures of AsnO showed a lid-like region (residues F208-E223) that seals the active site upon substrate binding and shields it from sterically demanding peptide substrates. Accordingly, beta-hydroxylated asparagine is synthesized prior to its incorporation into the growing CDA peptide. The AsnO structure could serve as a template for engineering novel enzymes for the synthesis of beta-hydroxylated amino acids.
Collapse
Affiliation(s)
- Matthias Strieker
- Department of Chemistry/Biochemistry, Philipps University of Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
49
|
Hoffart LM, Barr EW, Guyer RB, Bollinger JM, Krebs C. Direct spectroscopic detection of a C-H-cleaving high-spin Fe(IV) complex in a prolyl-4-hydroxylase. Proc Natl Acad Sci U S A 2006; 103:14738-43. [PMID: 17003127 PMCID: PMC1578498 DOI: 10.1073/pnas.0604005103] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Fe(II)- and alpha-ketoglutarate (alphaKG)-dependent dioxygenases use mononuclear nonheme iron centers to effect hydroxylation of their substrates and decarboxylation of their cosubstrate, alphaKG, to CO(2) and succinate. Our recent dissection of the mechanism of taurine:alphaKG dioxygenase (TauD), a member of this enzyme family, revealed that two transient complexes accumulate during catalysis in the presence of saturating substrates. The first complex contains the long-postulated C-H-cleaving Fe(IV)-oxo intermediate, J, and the second is an enzyme.product(s) complex. Here, we demonstrate the accumulation of two transient complexes in the reaction of a prolyl-4-hydroxylase (P4H), a functional homologue of human alphaKG-dependent dioxygenases with essential roles in collagen biosynthesis and oxygen sensing. The kinetic and spectroscopic properties of these two P4H complexes suggest that they are homologues of the TauD intermediates. Most notably, the first exhibits optical absorption and Mössbauer spectra similar to those of J and, like J, a large substrate deuterium kinetic isotope on its decay. The close correspondence of the accumulating states in the P4H and TauD reactions supports the hypothesis of a conserved mechanism for substrate hydroxylation by enzymes in this family.
Collapse
Affiliation(s)
| | - Eric W. Barr
- Departments of *Biochemistry and Molecular Biology and
| | | | - J. Martin Bollinger
- Departments of *Biochemistry and Molecular Biology and
- Chemistry, Pennsylvania State University, University Park, PA 16802
- To whom correspondence may be addressed. E-mail:
or
| | - Carsten Krebs
- Departments of *Biochemistry and Molecular Biology and
- Chemistry, Pennsylvania State University, University Park, PA 16802
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
50
|
Luo L, Pappalardi MB, Tummino PJ, Copeland RA, Fraser ME, Grzyska PK, Hausinger RP. An assay for Fe(II)/2-oxoglutarate-dependent dioxygenases by enzyme-coupled detection of succinate formation. Anal Biochem 2006; 353:69-74. [PMID: 16643838 DOI: 10.1016/j.ab.2006.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/07/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
The Fe(II)/2-oxoglutarate-dependent dioxygenases are a catalytically diverse family of nonheme iron enzymes that oxidize their primary substrates while decomposing the 2-oxoglutarate cosubstrate to form succinate and CO(2). We report a generic assay for these enzymes that uses succinyl-coenzyme A synthetase, pyruvate kinase, and lactate dehydrogenase to couple the formation of the product succinate to the conversion of reduced nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide. We demonstrate the utility of this new method by measuring the kinetic parameters of two bacterial Fe(II)/2-oxoglutarate-dependent dioxygenases. Significantly, this method can be used to investigate both the productive turnover reactions and the nonproductive "uncoupled" decarboxylation reactions of this enzyme family, as demonstrated by using wild-type and variant forms of 2-oxoglutarate-dependent taurine dioxygenase. This assay is amenable to miniaturization and easily adapted to a format suitable for high-throughput screening; thus, it will be a valuable tool to study Fe(II)/2-oxoglutarate-dependent dioxygenases.
Collapse
Affiliation(s)
- Lusong Luo
- Department of Enzymology and Mechanistic Pharmacology, MMPD CEDD, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | | | | | | | | | | |
Collapse
|