1
|
Jaouani R, Roman C, Decaix J, Lagarde F, Châtel A. Effect of aging of microplastics on gene expression levels of the marine mussel Mytilus edulis: Comparison in vitro/in vivo exposures. MARINE POLLUTION BULLETIN 2023; 189:114767. [PMID: 36870134 DOI: 10.1016/j.marpolbul.2023.114767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
In the present study, effects of aging MPs of polyethylene (PE) were investigated in the marine mussel Mytilus edulis, commonly used as bioindicator of aquatic ecosystem, using both in vitro and in vivo exposures, using concentrations found in marine waters (0.008, 10 and 100 μg.L-1). Changes in gene expression levels implicated in detoxification, immune system, cytoskeletton and cell cycle control were evaluated by quantitative RT-qPCR. Results demonstrated differential expression levels depending upon the state of plastic degradation (aged vs non-aged) and way of exposure (vitro vs vivo). This study highlighted the interest of using molecular biomarkers based on analysis of gene expression pattern in an ecotoxicological context that gives indication of relative slight changes between tested conditions as compared to other biochemical approaches (e.g. enzymatic activities). In addition, in vitro analysis could be used to generate large amount of data as regards to the toxicological effects of MPs.
Collapse
Affiliation(s)
- Rihab Jaouani
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France; Institut des Molécules et des Matériaux du Mans, UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Coraline Roman
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France
| | - Justine Decaix
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France
| | - Fabienne Lagarde
- Institut des Molécules et des Matériaux du Mans, UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex, France
| | - Amélie Châtel
- Biology of Organisms Stress Health Environment (BIOSSE), Université Catholique de l'Ouest, Angers, France.
| |
Collapse
|
2
|
Assessing the role of settlement in the environmental challenges of sensitive ecosystems. A case study in Zrebar wetland (Iran). ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Terrazas-Salgado L, Yáñez-Rivera B, Llera-Herrera R, García-Gasca A, Alvarado-Cruz I, Betancourt-Lozano M. Transcriptomic signaling in zebrafish ( Danio rerio) embryos exposed to environmental concentrations of glyphosate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:775-785. [PMID: 36048159 DOI: 10.1080/03601234.2022.2115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glyphosate [N-(phosphonomethyl)glycine] is one of the most popular herbicides worldwide. Globally, the use of glyphosate is increasing, and its residues have been found in drinking water and food products. The data regarding the possible toxic effects of this herbicide are controversial. Therefore, the aim of this study was to evaluate the effects of glyphosate at environmental concentrations in zebrafish (Danio rerio) embryos. Embryos were exposed to 0, 1, 100, and 1,000 µg/L glyphosate for 96 h, and mortality, heart rate, and hatching rate were evaluated. After the experiment, RNA was extracted from the embryos for transcriptional analysis. No mortality was recorded, and exposure to 100 µg/L and 1,000 µg/L of glyphosate resulted in lower heart rates at 48 h. In addition, RNA-seq analysis revealed that glyphosate exposure induced subtle changes in gene transcription profiles. We found 30 differentially expressed genes; however, the highest glyphosate concentration (1,000 µg/L) induced the greatest number of differentially expressed genes involved in oocyte maturation, metabolic processes, histone deacetylation, and nervous system development.
Collapse
Affiliation(s)
- Luis Terrazas-Salgado
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
| | - Beatriz Yáñez-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología - Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, México
| | - Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
| | - Isabel Alvarado-Cruz
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos S/N, Mazatlán, Sinaloa, México
| |
Collapse
|
4
|
Seibel H, Baßmann B, Rebl A. Blood Will Tell: What Hematological Analyses Can Reveal About Fish Welfare. Front Vet Sci 2021; 8:616955. [PMID: 33860003 PMCID: PMC8042153 DOI: 10.3389/fvets.2021.616955] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/10/2021] [Indexed: 01/11/2023] Open
Abstract
Blood analyses provide substantial information about the physiological aspects of animal welfare assessment, including the activation status of the neuroendocrine and immune system, acute and long-term impacts due to adverse husbandry conditions, potential diseases, and genetic predispositions. However, fish blood is still not routinely analyzed in research or aquaculture for the assessment of health and/or welfare. Over the years, the investigative techniques have evolved from antibody-based or PCR-based single-parameter analyses to now include transcriptomic, metabolomic, and proteomic approaches and from hematological observations to fluorescence-activated blood cell sorting in high-throughput modes. The range of testing techniques established for blood is now broader than for any other biogenic test material. Evaluation of the particular characteristics of fish blood, such as its cell composition, the nucleation of distinct blood cells, or the multiple isoforms of certain immune factors, requires adapted protocols and careful attention to the experimental designs and interpretation of the data. Analyses of fish blood can provide an integrated picture of the endocrine, immunological, reproductive, and genetic functions under defined environmental conditions and treatments. Therefore, the scarcity of high-throughput approaches using fish blood as a test material for fish physiology studies is surprising. This review summarizes the wide range of techniques that allow monitoring of informative fish blood parameters that are modulated by different stressors, conditions, and/or treatments. We provide a compact overview of several simple plasma tests and of multiparametric analyses of fish blood, and we discuss their potential use in the assessment of fish welfare and pathologies.
Collapse
Affiliation(s)
- Henrike Seibel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
- Gesellschaft für Marine Aquakultur mbH (GMA), Büsum, Germany
| | - Björn Baßmann
- Department of Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
5
|
Pimentel-Acosta CA, Ramírez-Salcedo J, Morales-Serna FN, Fajer-Ávila EJ, Chávez-Sánchez C, Lara HH, García-Gasca A. Molecular Effects of Silver Nanoparticles on Monogenean Parasites: Lessons from Caenorhabditis elegans. Int J Mol Sci 2020; 21:ijms21165889. [PMID: 32824343 PMCID: PMC7460582 DOI: 10.3390/ijms21165889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
The mechanisms of action of silver nanoparticles (AgNPs) in monogenean parasites of the genus Cichlidogyrus were investigated through a microarray hybridization approach using genomic information from the nematode Caenorhabditis elegans. The effects of two concentrations of AgNPs were explored, low (6 µg/L Ag) and high (36 µg/L Ag). Microarray analysis revealed that both concentrations of AgNPs activated similar biological processes, although by different mechanisms. Expression profiles included genes involved in detoxification, neurotoxicity, modulation of cell signaling, reproduction, embryonic development, and tegument organization as the main biological processes dysregulated by AgNPs. Two important processes (DNA damage and cell death) were mostly activated in parasites exposed to the lower concentration of AgNPs. To our knowledge, this is the first study providing information on the sub-cellular and molecular effects of exposure to AgNPs in metazoan parasites of fish.
Collapse
Affiliation(s)
- Citlalic A. Pimentel-Acosta
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Jorge Ramírez-Salcedo
- Unidad de Microarreglos, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico;
| | - Francisco Neptalí Morales-Serna
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
- CONACYT, Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico
| | - Emma J. Fajer-Ávila
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Cristina Chávez-Sánchez
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Humberto H. Lara
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
- Correspondence: ; Tel.: +52-66-9989-8700
| |
Collapse
|
6
|
Chen RY, Ngoc Hieu BT, Audira G, Lou B, Lin MD, Hsiao CD. Meta-Transcriptomic Analysis of RNAseq Data Reveals Pacu and Loach Fish with Unusually High Levels of Myoglobin Expression in Skeletal Muscles. Animals (Basel) 2020; 10:ani10071130. [PMID: 32635168 PMCID: PMC7401541 DOI: 10.3390/ani10071130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Accepted: 06/27/2020] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Oxygen-binding proteins that mediate oxygen-binding for storage and consumption, to reduce energy, are very diverse in fish, depending on their habitats. In the present study, oxygen-binding protein gene expression in the skeletal muscle of 25 diverse fish species was examined by a meta-transcriptomic approach. By using RNAseq data, this is the first study to examine the high level of myoglobin, one of the oxygen-binding proteins, transcripts in pacu and loach fish that might be related to their high tolerance for the oxygen-deficient environment. In addition, this study presents the power of the current method to compare the fish oxygen-binding protein expression and its putative gene expansion event. Abstract Oxygen-binding proteins, such as myoglobin, hemoglobin, neuroglobin, and cytoglobin, play a role in oxygen binding and delivery to tissues. In icefish, the loss of myoglobin and hemoglobin genes has been reported to be an adaptive evolution event. This interesting finding prompted us to exam oxygen-binding protein expression in diverse fish species. Taking advantage of substantial RNAseq data deposited in the NCBI (National Center for Biotechnology Information) database, we adopted a meta-transcriptomic approach to explore and compare four oxygen-binding protein gene expression levels in the skeletal muscle of 25 diverse fish species for the first time. RNAseq data were downloaded from the NCBI Sequence Read Archive (SRA) database, and de novo assembly was performed to generate transcript contigs. The genes encoding oxygen-binding proteins were then identified by the BLAST search, and the relative expression level of oxygen-binding protein genes was normalized by the RPKM (Reads per Kilobase Million) method. By performing expression profiling, hierarchy clustering, and principal component analysis, pacu and loach fish were noticed by their high myoglobin expression levels in skeletal muscle tissues among 25 diverse fish species. In conclusion, we demonstrated that meta-transcriptomic analysis of RNAseq data is an informative approach to compare the oxygen-binding protein expression and putative gene expansion event in fish.
Collapse
Affiliation(s)
- Rui-Yi Chen
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316100, China;
- Marine and Fishery Institute, Zhejiang Ocean University, Zhoushan 316100, China
| | - Bui Thi Ngoc Hieu
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (B.T.N.H.); (G.A.)
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (B.T.N.H.); (G.A.)
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Shiqiao Road 198, Hangzhou 310021, China
- Correspondence: (B.L.); (M.-D.L.); (C.-D.H.)
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, 701 Zhongyang Rd, Sec. 3, Hualien 97004, Taiwan
- Correspondence: (B.L.); (M.-D.L.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (B.T.N.H.); (G.A.)
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Correspondence: (B.L.); (M.-D.L.); (C.-D.H.)
| |
Collapse
|
7
|
Park C, Song H, Choi J, Sim S, Kojima H, Park J, Iida M, Lee Y. The mixture effects of bisphenol derivatives on estrogen receptor and androgen receptor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114036. [PMID: 31995776 DOI: 10.1016/j.envpol.2020.114036] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
Bisphenol A (BPA) is a well-known for endocrine-disrupting chemical (EDC) and is one of the highest amounts of chemicals produced worldwide. Some countries restrict the use of BPA, which is widely used in the production of a variety products. Considering the toxicity and limitations on use of BPA, efforts are needed to find safer alternatives. Increasingly, bisphenol F (BPF) and bisphenol S (BPS) are alternatives of BPA, which is increasing their exposure levels in various environments. There are many ways to assess whether a chemical is an EDC. Here, we evaluated the endocrine-disrupting risks of the bisphenols by investigating their agonist and antagonist activities with the estrogen (ER), androgen (AR), and aryl hydrocarbon (AhR) receptors. Our results showed that BPA, BPS, and BPF (BPs) have estrogen agonist and androgen antagonist activities and decrease the ERα protein level. Interestingly, a mixture of the BPs had ER and anti-AR activity at lower concentrations than BPs alone. The activation of AhR was not a concentration-dependent effect of BPs, although it was increased significantly. In conclusion, BPs have estrogen agonist and androgen antagonist activities, and the effect of exposure to a BPs mixture differs from that of BPs alone.
Collapse
Affiliation(s)
- Choa Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Junyeong Choi
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Seunghye Sim
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan; Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | | | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
8
|
Kostich MS, Bencic DC, Batt AL, See MJ, Flick RW, Gordon DA, Lazorchak JM, Biales AD. Multigene Biomarkers of Pyrethroid Exposure: Exploratory Experiments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2436-2446. [PMID: 31365144 PMCID: PMC7836324 DOI: 10.1002/etc.4552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
We describe initial development of microarray-based assays for detecting 4 pyrethroid pesticides (bifenthrin, cypermethrin, esfenvalerate, and permethrin) in water. To facilitate comparison of transcriptional responses with gross apical responses, we estimated concentration-mortality curves for these pyrethroids using flow-through exposures of newly hatched Daphnia magna, Pimephales promelas adults, and 24 h posthatch P. promelas. Median lethal concentration (LC50) estimates were below most reported values, perhaps attributable to the use of flow-through exposures or of measured rather than nominal concentrations. Microarray analysis of whole P. promelas larvae and brains from exposed P. promelas adults showed that assays using either tissue type can detect these pyrethroids at concentrations below LC50 values reported for between 72 and 96% of aquatic species, depending on the pesticide. These estimates are conservative because they correspond to the lowest concentrations tested. This suggests that the simpler and less expensive whole-larval assay provides adequate sensitivity for screening contexts where acute aquatic lethality is observed, but the responsible agent is not known. Gene set analysis (GSA) highlighted several Gene Ontology (GO) terms consistent with known pyrethroid action, but the implications of other GO terms are less clear. Exploration of the sensitivity of results to changes in data processing suggests robustness of the detection assay results, but GSA results were sensitive to methodological variations. Environ Toxicol Chem 2019;38:2436-2446. Published 2019 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Mitchell S. Kostich
- Office of Research and Development, National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - David C. Bencic
- Office of Research and Development, National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Angela L. Batt
- Office of Research and Development, National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Mary J. See
- Office of Research and Development, National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Robert W. Flick
- Office of Research and Development, National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Denise A. Gordon
- Office of Research and Development, National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jim M. Lazorchak
- Office of Research and Development, National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Adam D. Biales
- Office of Research and Development, National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Duroudier N, Markaide P, Cajaraville MP, Bilbao E. Season influences the transcriptomic effects of dietary exposure to PVP/PEI coated Ag nanoparticles on mussels Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:19-30. [PMID: 30940556 DOI: 10.1016/j.cbpc.2019.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022]
Abstract
Toxicity of AgNPs has been widely studied in waterborne exposed aquatic organisms. However, toxic effects caused by AgNPs ingested through the diet and depending on the season are still unexplored. The first cell response after exposure to xenobiotics occurs at gene transcription level. Thus, the aim of this study was to assess transcription level effects in the digestive gland of female mussels after dietary exposure to AgNPs both in autumn and in spring. Mussels were fed daily for 21 days with Isochrysis galbana microalgae previously exposed for 24 h to a dose close to environmentally relevant concentrations of 1 μg Ag/L PVP/PEI coated 5 nm AgNPs (in spring) and to a higher dose of 10 μg Ag/L of the same AgNPs both in autumn and in spring. After 1 and 21 days, mussels RNA was hybridized in a custom microarray containing 7806 annotated genes. Mussels were more responsive to the high dose compared to the low dose of AgNPs and a higher number of probes were altered in autumn than in spring. In both seasons, significantly regulated genes were involved in the cytoskeleton and lipid transport and metabolism COG categories, among others, while genes involved in carbohydrate transport and metabolism were specifically altered in autumn. Overall, transcription patterns were differently altered depending on the exposure time and season, indicating that season should be considered in ecotoxicological studies of metal nanoparticles in mussels.
Collapse
Affiliation(s)
- Nerea Duroudier
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Pablo Markaide
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country (UPV/EHU), Basque Country, Spain.
| |
Collapse
|
10
|
Defo MA, Douville M, Giraudo M, Brodeur P, Boily M, Houde M. RNA-sequencing to assess the health of wild yellow perch (Perca flavescens) populations from the St. Lawrence River, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1657-1668. [PMID: 30296762 DOI: 10.1016/j.envpol.2018.09.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/22/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to better understand in situ cumulative effects of anthropogenic stressors on the health of St. Lawrence River (QC, Canada) yellow perch populations using high-throughput transcriptomics and a multi-biological level approach. Fish were collected in the upstream fluvial Lake Saint-François (LSF) with low degree of environmental perturbations; Lake Saint-Louis (LSL) considered having a moderate degree of anthropogenic stressors, and Lake Saint-Pierre (LSP) a sector where the perch population has been severely declining. Morphometric results indicated that fish from the downstream LSP showed lower body condition compared to LSF and LSL. Liver transcriptomic responses were assessed by RNA-sequencing. Two hundred and eighty genes were over-transcribed in LSP perch while 200 genes were under-transcribed compared to LSF and LSL. In LSP fish, genes transcripts related to reproduction, retinol, iron, thyroid hormones, oxidative stress, lipid metabolism and immune functions were among the most abundant suggesting that multiple metabolic and physiological pathways were impacted by environmental stressors at this site. Inhibition of liver superoxide dismutase, catalase and glutathione S-transferase activities were also observed at the cellular level. Overall, identified impacted biological pathways in perch from LSP may help understand the precarious state of this population and identify the factors inhibiting its recovery.
Collapse
Affiliation(s)
- Michel A Defo
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada.
| | - Mélanie Douville
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada
| | - Maeva Giraudo
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada
| | - Philippe Brodeur
- Ministère des Forêts, de la Faune et des Parcs, Direction de la gestion de la faune de la Mauricie et du Centre-du-Québec, 100 rue Laviolette, Trois-Rivières, QC, G9A 5S9, Canada
| | - Monique Boily
- Groupe de Recherche en toxicologie de l'environnement (TOXEN). Département des sciences biologiques, Université du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montréal, QC, H2Y 2E7, Canada
| |
Collapse
|
11
|
Diaz de Cerio O, Bilbao E, Izagirre U, Etxebarria N, Moreno G, Díez G, Cajaraville MP, Cancio I. Toxicology tailored low density oligonucleotide microarray for the thicklip grey mullets (Chelon labrosus): Biomarker gene transcription profile after caging in a polluted harbour. MARINE ENVIRONMENTAL RESEARCH 2018; 140:265-277. [PMID: 30042060 DOI: 10.1016/j.marenvres.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
In aquatic organisms inhabiting polluted waters genes are activated to build an adaptive/compensatory defence against the possible effects of pollutants. Such responses can be used as biomarkers of exposure to chemical compounds, outlining the molecular mechanisms activated under specific pollution scenarios. With the aim of exploiting such approach in environmental health assessment, toxicologically relevant gene fragments were sequenced in the thicklip grey mullet (Chelon labrosus) and a toxicologically tailored low-density (160 genes) oligonucleotide microarray was customised. The tool was validated comparing organ/sex specific gene expression profiles and characterising responses under laboratory exposure to model chemicals. Finally, juvenile mullets were caged in a polluted harbour and hepatic gene expression profiles analysed after 5 and 21 days of deployment. Cages were deployed in the inner (IH) and outer (OH) Pasaia harbour, Bay of Biscay. Mussels (Mytilus galloprovincialis) were also caged as biological matrix for chemical bioaccumulation analysis and stress biomarkers measurements. Slightly higher concentrations of chemicals (metals, tributyltin, PAHs, phthalates) were quantified in IH than in OH, fish bile metabolites also revealing higher availability of PAHs in IH. Lysosome membrane stability in mussels was reduced, indicating stress condition in both sites. The developed microarray discriminated mullets showing distinctive expression profiles depending on site and deployment time. Genes related to immune and hypoxia responses were regulated comparing IH and OH at day 5. Phase I and II biotransformation genes, such as cyp2, cyp3 and ugt, were up-regulated in IH, together with the aryl hydrocarbon receptor 2 (ahr2) and the ahr repressor. Similarly, TBT-binding proteins and genes involved in lipid metabolism (pparγ, cyp7) were up-regulated with deployment time. Even if nowadays higher throughput approaches for gene expression analyses are available, the developed mullet tool constitutes a comprehensive tool to assess molecular responses of mullets exposed to pollutants, although it remains to be explored whether it can be applied to assess pollutant exposure in active pollution monitorings and in environmental health assessment.
Collapse
Affiliation(s)
- O Diaz de Cerio
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - E Bilbao
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - U Izagirre
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - N Etxebarria
- IBEA Res Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Analytical Chemistry Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - G Moreno
- International Seafood Sustainability Foundation (ISSF), 805 15th Street NW, Washington, DC, 20005, USA
| | - G Díez
- AZTI, Marine Research Division, Txatxarramendi irla z/g, 48395, Sukarrieta, Bizkaia, Spain
| | - M P Cajaraville
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - I Cancio
- CBET Res. Group. Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept. (Fac. Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain.
| |
Collapse
|
12
|
Yadetie F, Zhang X, Hanna EM, Aranguren-Abadía L, Eide M, Blaser N, Brun M, Jonassen I, Goksøyr A, Karlsen OA. RNA-Seq analysis of transcriptome responses in Atlantic cod (Gadus morhua) precision-cut liver slices exposed to benzo[a]pyrene and 17α-ethynylestradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:174-186. [PMID: 29929084 DOI: 10.1016/j.aquatox.2018.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP) that activate the aryl hydrocarbon receptor (Ahr) pathway, and endocrine disruptors acting through the estrogen receptor pathway are among environmental pollutants of major concern. In this work, we exposed Atlantic cod (Gadus morhua) precision-cut liver slices (PCLS) to BaP (10 nM and 1000 nM), ethynylestradiol (EE2) (10 nM and 1000 nM), and equimolar mixtures of BaP and EE2 (10 nM and 1000 nM) for 48 h, and performed RNA-Seq based transcriptome mapping followed by systematic bioinformatics analyses. Our gene expression analysis showed that several genes were differentially expressed in response to BaP and EE2 treatments in PCLS. Strong up-regulation of genes coding for the cytochrome P450 1a (Cyp1a) enzyme and the Ahr repressor (Ahrrb) was observed in BaP treated PCLS. EE2 treatment of liver slices strongly up-regulated genes coding for precursors of vitellogenin (Vtg) and eggshell zona pellucida (Zp) proteins. As expected, pathway enrichment and network analysis showed that the Ahr and estrogen receptor pathways are among the top affected by BaP and EE2 treatments, respectively. Interestingly, two genes coding for fibroblast growth factor 3 (Fgf3) and fibroblast growth factor 4 (Fgf4) were up-regulated by EE2 in this study. To our knowledge, the fgf3 and fgf4 genes have not previously been described in relation to estrogen signaling in fish liver, and these results suggest the modulation of the FGF signaling pathway by estrogens in fish. The signature expression profiles of top differentially expressed genes in response to the single compound (BaP or EE2) treatment were generally maintained in the expression responses to the equimolar binary mixtures. However, in the mixture-treated groups, BaP appeared to have anti-estrogenic effects as observed by lower number of differentially expressed putative EE2 responsive genes. Our in-depth quantitative analysis of changes in liver transcriptome in response to BaP and EE2, using PCLS tissue culture provides further mechanistic insights into effects of the compounds. Moreover, the analyses demonstrate the usefulness of PCLS in cod for omics experiments.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Eileen Marie Hanna
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | | | - Marta Eide
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Nello Blaser
- Department of Mathematics, University of Bergen, Bergen, Norway.
| | - Morten Brun
- Department of Mathematics, University of Bergen, Bergen, Norway.
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
13
|
Zare A, Henry D, Chua G, Gordon P, Habibi HR. Differential Hepatic Gene Expression Profile of Male Fathead Minnows Exposed to Daily Varying Dose of Environmental Contaminants Individually and in Mixture. Front Endocrinol (Lausanne) 2018; 9:749. [PMID: 30619083 PMCID: PMC6295643 DOI: 10.3389/fendo.2018.00749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023] Open
Abstract
Environmental contaminants are known to impair reproduction, metabolism and development in wild life and humans. To investigate the mechanisms underlying adverse effects of contaminants, fathead minnows were exposed to a number of endocrine disruptive chemicals (EDCs) including Nonylphenol (NP), bisphenol-A (BPA), Di(2-ethylhexyl) phthalate (DEHP), and a mixture of the three chemicals for 21 days, followed by determination of the liver transcriptome by expression microarrays. Pathway analysis revealed a distinct mode of action for the individual chemicals and their mixture. The results showed expression changes in over 980 genes in response to exposure to these EDC contaminants individually and in mixture. Ingenuity Pathway core and toxicity analysis were used to identify the biological processes, pathways and the top regulators affected by these compounds. A number of canonical pathways were significantly altered, including cell cycle & proliferation, lipid metabolism, inflammatory, innate immune response, stress response, and drug metabolism. We identified 18 genes that were expressed in all individual and mixed treatments. Relevant candidate genes identified from expression microarray data were verified using quantitative PCR. We were also able to identify specific genes affected by NP, BPA, and DEHP individually, but were also affected by exposure to the mixture of the contaminants. Overall the results of this study provide novel information on the adverse health impact of contaminants tested based on pathway analysis of transcriptome data. Furthermore, the results identify a number of new biomarkers that can potentially be used for screening environmental contaminants.
Collapse
Affiliation(s)
- Ava Zare
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Darren Henry
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Gordon Chua
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Paul Gordon
- Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
- *Correspondence: Hamid R. Habibi
| |
Collapse
|
14
|
Robertson LS, Galbraith HS, Iwanowicz D, Blakeslee CJ, Cornman RS. RNA sequencing analysis of transcriptional change in the freshwater mussel Elliptio complanata after environmentally relevant sodium chloride exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2352-2366. [PMID: 28224655 DOI: 10.1002/etc.3774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/25/2016] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
To identify potential biomarkers of salt stress in a freshwater sentinel species, we examined transcriptional responses of the common mussel Elliptio complanata to controlled sodium chloride (NaCl) exposures. Ribonucleic acid sequencing (RNA-Seq) of mantle tissue identified 481 transcripts differentially expressed in adult mussels exposed to 2 ppt NaCl (1.2 ppt chloride) for 7 d, of which 290 had nonoverlapping intervals. Differentially expressed gene categories included ion and transmembrane transport, oxidoreductase activity, maintenance of protein folding, and amino acid metabolism. The rate-limiting enzyme for synthesis of taurine, an amino acid frequently linked to osmotic stress in aquatic species, was upregulated, as was the transmembrane ion pump sodium/potassium adenosine 5'-triphosphatase. These patterns confirm a primary transcriptional response to the experimental dose, albeit likely overlapping with nonspecific secondary stress responses. Substantial involvement of the heat shock protein 70 chaperone family and the water-transporting aquaporin family was not detected, however, in contrast to some studies in other bivalves. A subset of the most significantly regulated genes was confirmed by quantitative polymerase chain reaction in an independent sample. Cluster analysis showed separation of mussels exposed to 2 ppt NaCl from control mussels in multivariate space, but mussels exposed to 1 ppt NaCl were largely indistinguishable from controls. Transcriptome-scale analysis of salt exposure under laboratory conditions efficiently identified candidate biomarkers for further functional analysis and field validation. Environ Toxicol Chem 2017;36:2352-2366. © Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Laura S Robertson
- Leetown Science Center, US Geological Survey, Kearneysville, West Virginia
| | - Heather S Galbraith
- Northern Appalachian Research Laboratory, Leetown Science Center, US Geological Survey, Wellsboro, Pennsylvania
| | - Deborah Iwanowicz
- Leetown Science Center, US Geological Survey, Kearneysville, West Virginia
| | - Carrie J Blakeslee
- Northern Appalachian Research Laboratory, Leetown Science Center, US Geological Survey, Wellsboro, Pennsylvania
| | - R Scott Cornman
- Fort Collins Science Center, US Geological Survey, Fort Collins, Colorado
| |
Collapse
|
15
|
Marjan P, Bragg LM, MacLatchy DL, Servos MR, Martyniuk CJ. How Does Reference Site Selection Influence Interpretation of Omics Data?: Evaluating Liver Transcriptome Responses in Male Rainbow Darter (Etheostoma caeruleum) across an Urban Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6470-6479. [PMID: 28489360 DOI: 10.1021/acs.est.7b00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Studies quantifying the influence of reference site selection on transcriptomic profiles in aquatic organisms exposed to complex mixtures are lacking in the literature, despite the significant implications of such research for the interpretation of omics data sets. We measured hepatic transcriptomic responses in fish across an urban environment in the central Grand River watershed (Ontario, Canada). Adult male rainbow darter (RBD) (Etheostoma caeruleum) were collected from nine sites at varying distances from two major municipal wastewater treatment plants (MWWTPs) (Waterloo, Kitchener), including three upstream reference sites. The transcriptomic response in RBD was independently compared with that of fish from each of the three reference sites. Data collected in fish downstream of the Waterloo MWWTP (poorest effluent quality) suggested that ∼15.5% of the transcriptome response was influenced by reference site selection. In contrast, at sites where the impact of MWWTPs was less-pronounced and fish showed less of a transcriptome response, reference site selection had a greater influence (i.e., ∼56.9% of transcripts were different depending on the site used). This study highlights the importance of conducting transcriptomics studies that leverage more than one reference site, and it broadens our understanding of the molecular responses in fish in dynamic natural environments.
Collapse
Affiliation(s)
- Patricija Marjan
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Deborah L MacLatchy
- Department of Biology, Wilfrid Laurier University , 75 University Avenue West, N2L 3C5 Waterloo, Ontario, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Cristopher J Martyniuk
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, University of Florida , 2187 Mowry Road, Building 471, PO Box 110885, Gainesville, Florida 32611, United States
| |
Collapse
|
16
|
Baillon L, Pierron F, Pannetier P, Normandeau E, Couture P, Labadie P, Budzinski H, Lambert P, Bernatchez L, Baudrimont M. Gene transcription profiling in wild and laboratory-exposed eels: Effect of captivity and in situ chronic exposure to pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:92-102. [PMID: 27470668 DOI: 10.1016/j.scitotenv.2016.07.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Aquatic ecosystems are subjected to a variety of man-induced stressors but also vary spatially and temporally due to variation in natural factors. In such complex environments, it remains difficult to detect, dissociate and evaluate the effects of contaminants in wild organisms. In this context, the aim of this study was to test whether the hepatic transcriptome profile of fish may be used to detect in situ exposure to a particular contaminant. Transcriptomic profiles from laboratory-exposed and wild eels sampled along a contamination gradient were compared. During laboratory experiments, fish were exposed during 45days to different pollutants (Hg, PCBs, OCPs or Cd) or natural factors (temperature, salinity or low food supply) at levels close to those found in the sampling sites. A strong difference was observed between the transcriptomic profiles obtained from wild and laboratory-exposed animals (whatever the sites or experimental conditions), suggesting a general stress induced by captivity in the laboratory. Among the biological functions that were up-regulated in laboratory eels in comparison to wild eels, histone modification was the most represented. This finding suggests that laboratory conditions could affect the epigenome of fish and thus modulate the transcriptional responses developed by fish in response to pollutant exposure. Among experimental conditions, only the transcription profiles of laboratory animals exposed to cold temperature were correlated with those obtained from wild fish, and more significantly with fish from contaminated sites. Common regulated genes were mainly involved in cell differentiation and liver development, suggesting that stem/progenitor liver cells could be involved in the adaptive response developed by fish chronically exposed to pollutant mixtures.
Collapse
Affiliation(s)
- Lucie Baillon
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Fabien Pierron
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France.
| | - Pauline Pannetier
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec) G1K 9A9, Canada
| | - Eric Normandeau
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Patrice Couture
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec) G1K 9A9, Canada
| | - Pierre Labadie
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Hélène Budzinski
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Patrick Lambert
- Irtsea, UR EABX, 50 avenue de Verdun-Gazinet, 33612 Cestas, France
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Magalie Baudrimont
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| |
Collapse
|
17
|
Baillon L, Pierron F, Oses J, Pannetier P, Normandeau E, Couture P, Labadie P, Budzinski H, Lambert P, Bernatchez L, Baudrimont M. Detecting the exposure to Cd and PCBs by means of a non-invasive transcriptomic approach in laboratory and wild contaminated European eels (Anguilla anguilla). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5431-5441. [PMID: 26566612 DOI: 10.1007/s11356-015-5754-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Detecting and separating specific effects of contaminants in a multi-stress field context remain a major challenge in ecotoxicology. In this context, the aim of this study was to assess the usefulness of a non-invasive transcriptomic method, by means of a complementary DNA (cDNA) microarray comprising 1000 candidate genes, on caudal fin clips. Fin gene transcription patterns of European eels (Anguilla anguilla) exposed in the laboratory to cadmium (Cd) or a polychloro-biphenyl (PCBs) mixture but also of wild eels from three sampling sites with differing contamination levels were compared to test whether fin clips may be used to detect and discriminate the exposure to these contaminants. Also, transcriptomic profiles from the liver and caudal fin of eels experimentally exposed to Cd were compared to assess the detection sensitivity of the fin transcriptomic response. A similar number of genes were differentially transcribed in the fin and liver in response to Cd exposure, highlighting the detection sensitivity of fin clips. Moreover, distinct fin transcription profiles were observed in response to Cd or PCB exposure. Finally, the transcription profiles of eels from the most contaminated site clustered with those from laboratory-exposed fish. This study thus highlights the applicability and usefulness of performing gene transcription assays on non-invasive tissue sampling in order to detect the in situ exposure to Cd and PCBs in fish.
Collapse
Affiliation(s)
- Lucie Baillon
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Fabien Pierron
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France.
- CNRS, EPOC, UMR 5805, F-33400, Talence, France.
| | - Jennifer Oses
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Pauline Pannetier
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Eric Normandeau
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Patrice Couture
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Pierre Labadie
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Hélène Budzinski
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Patrick Lambert
- Irtsea, UR EABX, 50 avenue de Verdun-Gazinet, 33612, Cestas, France
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Magalie Baudrimont
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| |
Collapse
|
18
|
Garcia-Reyero N, Thornton C, Hawkins AD, Escalon L, Kennedy AJ, Steevens JA, Willett KL. Assessing the exposure to nanosilver and silver nitrate on fathead minnow gill gene expression and mucus production. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.enmm.2015.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Hausen J, Otte JC, Strähle U, Hammers-Wirtz M, Hollert H, Keiter SH, Ottermanns R. Fold-change threshold screening: a robust algorithm to unmask hidden gene expression patterns in noisy aggregated transcriptome data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16384-16392. [PMID: 26178833 DOI: 10.1007/s11356-015-5019-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 07/02/2015] [Indexed: 06/04/2023]
Abstract
Transcriptomics is often used to investigate changes in an organism's genetic response to environmental contamination. Data noise can mask the effects of contaminants making it difficult to detect responding genes. Because the number of genes which are found differentially expressed in transcriptome data is often very large, algorithms are needed to reduce the number down to a few robust discriminative genes. We present an algorithm for aggregated analysis of transcriptome data which uses multiple fold-change thresholds (threshold screening) and p values from Bayesian generalized linear model in order to assess the robustness of a gene as a potential indicator for the treatments tested. The algorithm provides a robustness indicator (ROBI) as well as a significance profile, which can be used to assess the statistical significance of a given gene for different fold-change thresholds. Using ROBI, eight discriminative genes were identified from an exemplary dataset (Danio rerio FET treated with chlorpyrifos, methylmercury, and PCB) which could be potential indicators for a given substance. Significance profiles uncovered genetic effects and revealed appropriate fold-change thresholds for single genes or gene clusters. Fold-change threshold screening is a powerful tool for dimensionality reduction and feature selection in transcriptome data, as it effectively reduces the number of detected genes suitable for environmental monitoring. In addition, it is able to unmask patterns in altered genetic expression hidden by data noise and reduces the chance of type II errors, e.g., in environmental screening.
Collapse
Affiliation(s)
- Jonas Hausen
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jens C Otte
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Monika Hammers-Wirtz
- Research Institute for Ecosystem Analysis and Assessment - gaiac, Kackertstraße 10, 52072, Aachen, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Steffen H Keiter
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Man-Technology-Environment Research Centre, Örebro University, 701 82, Örebro, Sweden
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
20
|
Meta-Analysis of Microarray Data of Rainbow Trout Fry Gonad Differentiation Modulated by Ethynylestradiol. PLoS One 2015; 10:e0135799. [PMID: 26379055 PMCID: PMC4574709 DOI: 10.1371/journal.pone.0135799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 07/27/2015] [Indexed: 01/25/2023] Open
Abstract
Sex differentiation in fish is a highly labile process easily reversed by the use of exogenous hormonal treatment and has led to environmental concerns since low doses of estrogenic molecules can adversely impact fish reproduction. The goal of this study was to identify pathways altered by treatment with ethynylestradiol (EE2) in developing fish and to find new target genes to be tested further for their possible role in male-to-female sex transdifferentiation. To this end, we have successfully adapted a previously developed bioinformatics workflow to a meta-analysis of two datasets studying sex reversal following exposure to EE2 in juvenile rainbow trout. The meta-analysis consisted of retrieving the intersection of the top gene lists generated for both datasets, performed at different levels of stringency. The intersecting gene lists, enriched in true positive differentially expressed genes (DEGs), were subjected to over-representation analysis (ORA) which allowed identifying several statistically significant enriched pathways altered by EE2 treatment and several new candidate pathways, such as progesterone-mediated oocyte maturation and PPAR signalling. Moreover, several relevant key genes potentially implicated in the early transdifferentiation process were selected. Altogether, the results show that EE2 has a great effect on gene expression in juvenile rainbow trout. The feminization process seems to result from the altered transcription of genes implicated in normal female gonad differentiation, resulting in expression similar to that observed in normal females (i.e. the repression of key testicular markers cyp17a1, cyp11b, tbx1), as well as from other genes (including transcription factors) that respond specifically to the EE2 treatment. The results also showed that the bioinformatics workflow can be applied to different types of microarray platforms and could be generalized to (eco)toxicogenomics studies for environmental risk assessment purposes.
Collapse
|
21
|
Smetanová S, Riedl J, Zitzkat D, Altenburger R, Busch W. High-throughput concentration-response analysis for omics datasets. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2167-80. [PMID: 25900799 DOI: 10.1002/etc.3025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/25/2014] [Accepted: 04/15/2015] [Indexed: 05/25/2023]
Abstract
Omics-based methods are increasingly used in current ecotoxicology. Therefore, a large number of observations for various toxic substances and organisms are available and may be used for identifying modes of action, adverse outcome pathways, or novel biomarkers. For these purposes, good statistical analysis of toxicogenomic data is vital. In contrast to established ecotoxicological techniques, concentration-response modeling is rarely used for large datasets. Instead, statistical hypothesis testing is prevalent, which provides only a limited scope for inference. The present study therefore applied automated concentration-response modeling for 3 different ecotoxicotranscriptomic and ecotoxicometabolomic datasets. The modeling process was performed by simultaneously applying 9 different regression models, representing distinct mechanistic, toxicological, and statistical ideas that result in different curve shapes. The best-fitting models were selected by using Akaike's information criterion. The linear and exponential models represented the best data description for more than 50% of responses. Models generating U-shaped curves were frequently selected for transcriptomic signals (30%), and sigmoid models were identified as best fit for many metabolomic signals (21%). Thus, selecting the models from an array of different types seems appropriate, because concentration-response functions may vary because of the observed response type, and they also depend on the compound, the organism, and the investigated concentration and exposure duration range. The application of concentration-response models can help to further tap the potential of omics data and is a necessary step for quantitative mixture effect assessment at the molecular response level.
Collapse
Affiliation(s)
- Soňa Smetanová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
- UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany
| | - Janet Riedl
- UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany
| | - Dimitar Zitzkat
- UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany
| | - Rolf Altenburger
- UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany
| | - Wibke Busch
- UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany
| |
Collapse
|
22
|
Depiereux S, De Meulder B, Bareke E, Berger F, Le Gac F, Depiereux E, Kestemont P. Adaptation of a Bioinformatics Microarray Analysis Workflow for a Toxicogenomic Study in Rainbow Trout. PLoS One 2015; 10:e0128598. [PMID: 26186543 PMCID: PMC4506078 DOI: 10.1371/journal.pone.0128598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/28/2015] [Indexed: 12/26/2022] Open
Abstract
Sex steroids play a key role in triggering sex differentiation in fish, the use of exogenous hormone treatment leading to partial or complete sex reversal. This phenomenon has attracted attention since the discovery that even low environmental doses of exogenous steroids can adversely affect gonad morphology (ovotestis development) and induce reproductive failure. Modern genomic-based technologies have enhanced opportunities to find out mechanisms of actions (MOA) and identify biomarkers related to the toxic action of a compound. However, high throughput data interpretation relies on statistical analysis, species genomic resources, and bioinformatics tools. The goals of this study are to improve the knowledge of feminisation in fish, by the analysis of molecular responses in the gonads of rainbow trout fry after chronic exposure to several doses (0.01, 0.1, 1 and 10 μg/L) of ethynylestradiol (EE2) and to offer target genes as potential biomarkers of ovotestis development. We successfully adapted a bioinformatics microarray analysis workflow elaborated on human data to a toxicogenomic study using rainbow trout, a fish species lacking accurate functional annotation and genomic resources. The workflow allowed to obtain lists of genes supposed to be enriched in true positive differentially expressed genes (DEGs), which were subjected to over-representation analysis methods (ORA). Several pathways and ontologies, mostly related to cell division and metabolism, sexual reproduction and steroid production, were found significantly enriched in our analyses. Moreover, two sets of potential ovotestis biomarkers were selected using several criteria. The first group displayed specific potential biomarkers belonging to pathways/ontologies highlighted in the experiment. Among them, the early ovarian differentiation gene foxl2a was overexpressed. The second group, which was highly sensitive but not specific, included the DEGs presenting the highest fold change and lowest p-value of the statistical workflow output. The methodology can be generalized to other (non-model) species and various types of microarray platforms.
Collapse
Affiliation(s)
- Sophie Depiereux
- Unit of research in Environmental and Evolutionary Biology (URBE-NARILIS), Laboratory of Ecophysiology and Ecotoxicology, University of Namur, Namur, Belgium
| | - Bertrand De Meulder
- Unit of Research in Molecular Biology (URBM-NARILIS), University of Namur, Namur, Belgium
| | - Eric Bareke
- Unit of Research in Molecular Biology (URBM-NARILIS), University of Namur, Namur, Belgium
- Sainte-Justine UHC Research Centre, University of Montreal, Montréal (Québec), H3T 1C5, Canada
| | - Fabrice Berger
- Unit of Research in Molecular Biology (URBM-NARILIS), University of Namur, Namur, Belgium
| | - Florence Le Gac
- Institut National de la Recherche Agronomique, INRA-LPGP, UPR1037, Campus de Beaulieu, 35042, Rennes, France
| | - Eric Depiereux
- Unit of Research in Molecular Biology (URBM-NARILIS), University of Namur, Namur, Belgium
| | - Patrick Kestemont
- Unit of research in Environmental and Evolutionary Biology (URBE-NARILIS), Laboratory of Ecophysiology and Ecotoxicology, University of Namur, Namur, Belgium
| |
Collapse
|
23
|
Background fish feminization effects in European remote sites. Sci Rep 2015; 5:11292. [PMID: 26061088 PMCID: PMC4462152 DOI: 10.1038/srep11292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/18/2015] [Indexed: 11/08/2022] Open
Abstract
Human activity has spread trace amounts of chemically stable endocrine-disrupting pollutants throughout the biosphere. These compounds have generated a background level of estrogenic activity that needs to be assessed. Fish are adequate sentinels for feminization effects as male specimens are more sensitive than humans to exogenous estrogenic compounds. High mountain lakes, the most distant environments of continental areas, only receive semi-volatile compounds from atmospheric deposition. We analyzed the expression levels of estrogen-regulated genes in male fish from these mountain lakes in Europe. Incipient feminization involving expression of estrogen receptor and zona radiata genes revealed a widespread diffuse estrogenic impact. This effect was correlated with the concentrations of some organochlorine compounds in fish and was consistent with the persistent occurrence of these tropospheric pollutants in the most remote planet regions. These results should be of general concern given the increasing endocrine disruption effects in human populations.
Collapse
|
24
|
Defo MA, Bernatchez L, Campbell PGC, Couture P. Transcriptional and biochemical markers in transplanted Perca flavescens to characterize cadmium- and copper-induced oxidative stress in the field. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 162:39-53. [PMID: 25770975 DOI: 10.1016/j.aquatox.2015.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
Despite recent progress achieved in elucidating the mechanisms underlying local adaptation to pollution, little is known about the evolutionary change that may be occurring at the molecular level. The goal of this study was to examine patterns of gene transcription and biochemical responses induced by metal accumulation in clean yellow perch (Perca flavescens) and metal depuration in contaminated fish in a mining and smelting region of Canada. Fish were collected from a reference lake (lake Opasatica) and a Cd, Cu and Zn contaminated lake (lake Dufault) located in the Rouyn-Noranda region (Qc, Canada) and caged for one or four weeks in their own lake or transplanted in the other lake. Free-ranging fish from the same lakes were also collected. Kidney Cd and Cu concentrations in clean fish caged in the contaminated lake increased with the time of exposure, but metal depuration did not occur in contaminated fish caged in the clean lake. After 4 weeks, the major retinoid metabolites analysed, the percentage of free dehydroretinol (dROH) and the retinol dehydrogenase-2 (rdh-2) transcription level in liver decreased in clean fish transplanted into the metal-contaminated lake, suggesting that metal exposure negatively impacted retinoid metabolism. However, we observed an increase in almost all of the retinoid parameters analysed in fish from the metal-impacted lake caged in the same lake, which we interpret as an adaptation response to higher ambient metal concentration. In support of this hypothesis, liver transcription levels of microsomal glutathione-S-transferase-3 (mgst-3) and glucose-6-phosphate dehydrogenase (g6pdh) were enhanced in clean fish transplanted into the metal-contaminated lake and this up-regulation was accompanied by an increase in the activities of corresponding enzymes, involved in antioxidant response. However, although in the same fish the transcription level of Cu/Zn superoxide dismutase (Cu/Zn sod) was also increased, this did not lead to a change in the activity of the SOD enzyme, suggesting that this upregulation was aimed at maintaining SOD-related antioxidant capacities. In contrast, the transcription level of the cat gene, which did not change in contaminated fish, did not compensate for the decrease of CAT activity. After 4 weeks of exposure, some plastic responses of the clean fish were observed when they were transplanted in the metal-contaminated lake. However, probably as a consequence of the prior 80 years of exposure to metals, the contaminated population showed a limited plastic response in the expression of the majority of the candidate genes tested, when they were transplanted in the reference lake. The overall findings of this field investigation highlight how yellow perch molecularly and biochemically responded to a sudden or relatively long-term exposure (4 weeks) to a cocktail of metals.
Collapse
Affiliation(s)
- Michel A Defo
- Institut National De La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 De La Couronne, Québec, QC G1K 9A9, Canada
| | - Louis Bernatchez
- Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Peter G C Campbell
- Institut National De La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 De La Couronne, Québec, QC G1K 9A9, Canada
| | - Patrice Couture
- Institut National De La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 De La Couronne, Québec, QC G1K 9A9, Canada
| |
Collapse
|
25
|
Rodriguez-Jorquera IA, Kroll KJ, Toor GS, Denslow ND. Transcriptional and physiological response of fathead minnows (Pimephales promelas) exposed to urban waters entering into wildlife protected areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:155-165. [PMID: 25656232 DOI: 10.1016/j.envpol.2015.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
The mission of protected areas is to conserve biodiversity and improve human welfare. To assess the effect of urban waters entering into protected areas, we performed 48-h whole-effluent exposures with fathead minnows, analyzing changes in steady state levels of mRNAs in the livers of exposed fish. Raw wastewater, treated city wastewater, and treated wastewater from a university were collected for exposures. All exposed fish showed altered mRNA levels of DNA damage-repair genes. Fish exposed to raw and treated wastewaters showed down-regulation of transcripts for key intermediates of cholesterol biosynthesis and elevated plasma cholesterol. The type of wastewater treatment influenced the response of gene transcription. Because of the relevance of some of the altered cellular pathways, we suggest that these effluents may cause deleterious effects on fish inside protected areas that receive these waters. Inclusion of research and mitigation efforts for this type of threat in protected areas management is advised.
Collapse
Affiliation(s)
- Ignacio A Rodriguez-Jorquera
- Interdisciplinary Ecology Program, School of Natural Resources and Environment, Soil and Water Science Department, University of Florida, USA; Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, USA
| | - Kevin J Kroll
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, USA
| | - Gurpal S Toor
- Soil & Water Quality Laboratory, Gulf Coast Research & Education Center, Institute of Food & Agricultural Sciences University of Florida, Wimauma, USA
| | - Nancy D Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, USA.
| |
Collapse
|
26
|
Azizishirazi A, Dew WA, Bougas B, Bernatchez L, Pyle GG. Dietary sodium protects fish against copper-induced olfactory impairment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:1-9. [PMID: 25646894 DOI: 10.1016/j.aquatox.2015.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
Exposure to low concentrations of copper impairs olfaction in fish. To determine the transcriptional changes in the olfactory epithelium induced by copper exposure, wild yellow perch (Perca flavescens) were exposed to 20 μg/L of copper for 3 and 24h. A novel yellow perch microarray with 1000 candidate genes was used to measure differential gene transcription in the olfactory epithelium. While three hours of exposure to copper changed the transcription of only one gene, the transcriptions of 70 genes were changed after 24h of exposure to copper. Real-time PCR was utilized to determine the effect of exposure duration on two specific genes of interest, two sub-units of Na/K-ATPase. At 24 and 48 h, Na/K-ATPase transcription was down-regulated by copper at olfactory rosettes. As copper-induced impairment of Na/K-ATPase activity in gills can be ameliorated by increased dietary sodium, rainbow trout (Oncorhynchus mykiss) were used to determine if elevated dietary sodium was also protective against copper-induced olfactory impairment. Measurement of the olfactory response of rainbow trout using electro-olfactography demonstrated that sodium was protective of copper-induced olfactory dysfunction. This work demonstrates that the transcriptions of both subunits of Na/K-ATPase in the olfactory epithelium of fish are affected by Cu exposure, and that dietary Na protects against Cu-induced olfactory dysfunction.
Collapse
Affiliation(s)
- Ali Azizishirazi
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - William A Dew
- Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada; Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Berenice Bougas
- Institut National de la Recherche Scientifique, Centre INRS Eau Terre et Environnement, 490, rue de la Couronne, Québec City, Québec G1K 9A9, Canada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec G1V 0A6, Canada
| | - Greg G Pyle
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada; Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
27
|
Milan M, Pauletto M, Boffo L, Carrer C, Sorrentino F, Ferrari G, Pavan L, Patarnello T, Bargelloni L. Transcriptomic resources for environmental risk assessment: a case study in the Venice lagoon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 197:90-98. [PMID: 25514060 DOI: 10.1016/j.envpol.2014.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
The development of new resources to evaluate the environmental status is becoming increasingly important representing a key challenge for ocean and coastal management. Recently, the employment of transcriptomics in aquatic toxicology has led to increasing initiatives proposing to integrate eco-toxicogenomics in the evaluation of marine ecosystem health. However, several technical issues need to be addressed before introducing genomics as a reliable tool in regulatory ecotoxicology. The Venice lagoon constitutes an excellent case, in which the assessment of environmental risks derived from the nearby industrial activities represents a crucial task. In this context, the potential role of genomics to assist environmental monitoring was investigated through the definition of reliable gene expression markers associated to chemical contamination in Manila clams, and their subsequent employment for the classification of Venice lagoon areas. Overall, the present study addresses key issues to evaluate the future outlooks of genomics in the environmental monitoring and risk assessment.
Collapse
Affiliation(s)
- M Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - M Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - L Boffo
- Azienda ULSS n. 14 Chioggia, Italy
| | - C Carrer
- Thetis S.P.A. - Magistrato alle Acque, Laboratorio Centro Studi Microinquinanti Organici (C.S.M.O.), Via Asconio Pediano, 9, 35127 Padova, Italy
| | - F Sorrentino
- Ufficio Tecnico per l'Antinquinamento, Magistrato alle Acque di Venezia, San Polo 737, Riva del Vin, 30125 Venezia, Italy
| | - G Ferrari
- Ufficio Tecnico per l'Antinquinamento, Magistrato alle Acque di Venezia, San Polo 737, Riva del Vin, 30125 Venezia, Italy
| | - L Pavan
- G3 Industriale, Via Milano 18, 30020 Marcon, VE, Italy
| | - T Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
28
|
Brockmeier EK, Jayasinghe BS, Pine WE, Wilkinson KA, Denslow ND. Exposure to paper mill effluent at a site in North Central Florida elicits molecular-level changes in gene expression indicative of progesterone and androgen exposure. PLoS One 2014; 9:e106644. [PMID: 25198161 PMCID: PMC4157789 DOI: 10.1371/journal.pone.0106644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/07/2014] [Indexed: 01/06/2023] Open
Abstract
Endocrine disrupting compounds (EDCs) are chemicals that negatively impact endocrine system function, with effluent from paper mills one example of this class of chemicals. In Florida, female Eastern mosquitofish (Gambusia holbrooki) have been observed with male secondary sexual characteristics at three paper mill-impacted sites, indicative of EDC exposure, and are still found at one site on the Fenholloway River. The potential impacts that paper mill effluent exposure has on the G. holbrooki endocrine system and the stream ecosystem are unknown. The objective of this study was to use gene expression analysis to determine if exposure to an androgen receptor agonist was occurring and to couple this analysis with in vitro assays to evaluate the presence of androgen and progesterone receptor active chemicals in the Fenholloway River. Focused gene expression analyses of masculinized G. holbrooki from downstream of the Fenholloway River paper mill were indicative of androgen exposure, while genes related to reproduction indicated potential progesterone exposure. Hepatic microarray analysis revealed an increase in the expression of metabolic genes in Fenholloway River fish, with similarities in genes and biological processes compared to G. holbrooki exposed to androgens. Water samples collected downstream of the paper mill and at a reference site indicated that progesterone and androgen receptor active chemicals were present at both sites, which corroborates previous chemical analyses. Results indicate that G. holbrooki downstream of the Fenholloway River paper mill are impacted by a mixture of both androgens and progesterones. This research provides data on the mechanisms of how paper mill effluents in Florida are acting as endocrine disruptors.
Collapse
Affiliation(s)
- Erica K. Brockmeier
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (EB); (ND)
| | - B. Sumith Jayasinghe
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - William E. Pine
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Krystan A. Wilkinson
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
- Chicago Zoological Society, c/o Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Nancy D. Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (EB); (ND)
| |
Collapse
|
29
|
Li C, Gowan S, Anil A, Beck BH, Thongda W, Kucuktas H, Kaltenboeck L, Peatman E. Discovery and validation of gene-linked diagnostic SNP markers for assessing hybridization between Largemouth bass (Micropterus salmoides) and Florida bass (M. floridanus). Mol Ecol Resour 2014; 15:395-404. [DOI: 10.1111/1755-0998.12308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Li
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Spencer Gowan
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Ammu Anil
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Benjamin H. Beck
- United States Department of Agriculture; Agricultural Research Service; Stuttgart National Aquaculture Research Center; Stuttgart AR 72160 USA
| | - Wilawan Thongda
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Huseyin Kucuktas
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Ludmilla Kaltenboeck
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Eric Peatman
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| |
Collapse
|
30
|
Azizishirazi A, Dew WA, Bougas B, Dashtban M, Bernatchez L, Pyle GG. Chemosensory mediated behaviors and gene transcription profiles in wild yellow perch (Perca flavescens) from metal contaminated lakes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:239-245. [PMID: 24859710 DOI: 10.1016/j.ecoenv.2014.04.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
The olfactory system of fish is sensitive to the toxic effects of low concentrations of contaminants. To investigate the effects of long-term metal exposure on olfaction in wild yellow perch (Perca flavescens), fish from one clean (Geneva Lake) and two metal-contaminated lakes (Ramsey and Hannah lakes) were collected in and around the metal-mining district of Sudbury, ON. Two different techniques were used to measure the effects of exposure to environmental contamination: (i) behavioral responses were recorded in response to conspecific skin extract and (ii) gene transcription differences in olfactory rosettes were characterized using a novel, 1000-candidate gene yellow perch microarray. Behavioral assays performed on fish from the clean lake demonstrated avoidance of a conspecific skin extract, while fish from metal contaminated lakes showed no avoidance response. A total of 109 out of the 1000 genes were differentially transcribed among the lakes. Most of the differentially transcribed genes were between the two metal contaminated lakes relative to either of the contaminated lakes and the reference lake. No genes were differentially expressed between Geneva Lake (clean) and Hannah Lake (metal contaminated). These results demonstrated that even though the different populations of fish from both Hannah and Ramey lakes were affected at the behavioral level, the impairment of olfaction was not measurable using gene transcriptional changes in olfactory rosettes.
Collapse
Affiliation(s)
- Ali Azizishirazi
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1
| | - William A Dew
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | - Berenice Bougas
- Institut National de la Recherche Scientifique, Centre INRS Eau Terre et Environnement, 490 rue de la Couronne, Québec, Québec, Canada G1K 9A9
| | - Mehdi Dashtban
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec ,Canada G1V 0A6
| | - Greg G Pyle
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1; Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4.
| |
Collapse
|
31
|
Garcia-Reyero N, Tingaud-Sequeira A, Cao M, Zhu Z, Perkins EJ, Hu W. Endocrinology: advances through omics and related technologies. Gen Comp Endocrinol 2014; 203:262-73. [PMID: 24726988 DOI: 10.1016/j.ygcen.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 12/27/2022]
Abstract
The rapid development of new omics technologies to measure changes at genetic, transcriptomic, proteomic, and metabolomics levels together with the evolution of methods to analyze and integrate the data at a systems level are revolutionizing the study of biological processes. Here we discuss how new approaches using omics technologies have expanded our knowledge especially in nontraditional models. Our increasing knowledge of these interactions and evolutionary pathway conservation facilitates the use of nontraditional species, both invertebrate and vertebrate, as new model species for biological and endocrinology research. The increasing availability of technology to create organisms overexpressing key genes in endocrine function allows manipulation of complex regulatory networks such as growth hormone (GH) in transgenic fish where disregulation of GH production to produce larger fish has also permitted exploration of the role that GH plays in testis development, suggesting that it does so through interactions with insulin-like growth factors. The availability of omics tools to monitor changes at nearly any level in any organism, manipulate gene expression and behavior, and integrate data across biological levels, provides novel opportunities to explore endocrine function across many species and understand the complex roles that key genes play in different aspects of the endocrine function.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Institute for Genomics Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39759, USA.
| | - Angèle Tingaud-Sequeira
- Laboratoire MRMG, Maladies Rares: Génétique et Métabolisme, Université de Bordeaux, 33405 Talence Cedex, France
| | - Mengxi Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Edward J Perkins
- US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
32
|
Hasenbein M, Werner I, Deanovic LA, Geist J, Fritsch EB, Javidmehr A, Foe C, Fangue NA, Connon RE. Transcriptomic profiling permits the identification of pollutant sources and effects in ambient water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:688-698. [PMID: 24061060 DOI: 10.1016/j.scitotenv.2013.08.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
Contaminant exposure is one possible contributor to population declines of endangered fish species in the Sacramento-San Joaquin Estuary, California, including the endangered delta smelt (Hypomesus transpacificus). Herein we investigated transcriptional responses in larval delta smelt resulting from exposure to water samples collected at the Department of Water Resources Field Station at Hood, a site of concern, situated upstream of known delta smelt habitat and spawning sites and downstream of the Sacramento Regional Wastewater Treatment Plant (SRWTP). Microarray assessments indicate impacts on energy metabolism, DNA repair mechanisms and RNA processing, the immune system, development and muscle function. Transcription responses of fish exposed to water samples from Hood were compared with exposures to 9% effluent samples from SRWTP, water from the Sacramento River at Garcia Bend (SRGB), upstream of the effluent discharge, and SRGB water spiked with 2mg/L total ammonium (9% effluent equivalent). Results indicate that transcriptomic profiles from Hood are similar to 9% SRWTP effluent and ammonium spiked SRGB water, but significantly different from SRGB. SRGB samples however were also significantly different from laboratory controls, suggesting that SRWTP effluent is not solely responsible for the responses determined at Hood, that ammonium exposure likely enhances the effect of multiple-contaminant exposures, and that the observed mortality at Hood is due to the combination of both effluent discharge and contaminants arising from upstream of the tested sites.
Collapse
Affiliation(s)
- Matthias Hasenbein
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technische Universität München, Mühlenweg 22, D-85354 Freising, Germany; Department of Wildlife, Fish & Conservation Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Williams TD, Mirbahai L, Chipman JK. The toxicological application of transcriptomics and epigenomics in zebrafish and other teleosts. Brief Funct Genomics 2014; 13:157-71. [DOI: 10.1093/bfgp/elt053] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
34
|
Brockmeier EK, Yu F, Amador DM, Bargar TA, Denslow ND. Custom microarray construction and analysis for determining potential biomarkers of subchronic androgen exposure in the Eastern Mosquitofish (Gambusia holbrooki). BMC Genomics 2013; 14:660. [PMID: 24074126 PMCID: PMC3852779 DOI: 10.1186/1471-2164-14-660] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The eastern mosquitofish (Gambusia holbrooki) has the potential to become a bioindicator organism of endocrine disrupting chemicals (EDCs) due to its androgen-driven secondary sexual characteristics. However, the lack of molecular information on G. holbrooki hinders its use as a bioindicator coupled with biomarker data. While traditional gene-by-gene approaches provide insight for biomarker development, a holistic analysis would provide more rapid and expansive determination of potential biomarkers. The objective of this study was to develop and utilize a mosquitofish microarray to determine potential biomarkers of subchronic androgen exposure. To achieve this objective, two specific aims were developed: 1) Sequence a G. holbrooki cDNA library, and 2) Use microarray analysis to determine genes that are differentially regulated by subchronic androgen exposure in hepatic tissues of 17β-trenbolone (TB) exposed adult female G. holbrooki. RESULTS A normalized library of multiple organs of male and female G. holbrooki was prepared and sequenced by the Illumina GA IIx and Roche 454 XLR70. Over 30,000 genes with e-value ≤ 10⁻⁴ were annotated and 14,758 of these genes were selected for inclusion on the microarray. Hepatic microarray analysis of adult female G. holbrooki exposed to the vehicle control or 1 μg/L of TB (a potent anabolic androgen) revealed 229 genes upregulated and 279 downregulated by TB (one-way ANOVA, p < 0.05, FDR α = 0.05, fold change > 1.5 and < -1.5). Fifteen gene ontology biological processes were enriched by TB exposure (Fisher's Exact Test, p < 0.05). The expression levels of 17β-hydroxysteroid dehydrogenase 3 and zona pellucida glycoprotein 2 were validated by quantitative polymerase chain reaction (qPCR) (Student's t-test, p < 0.05). CONCLUSIONS Coupling microarray data with phenotypic changes driven by androgen exposure in mosquitofish is key for developing this organism into a bioindicator for EDCs. Future studies using this array will enhance knowledge of the biology and toxicological response of this species. This work provides a foundation of molecular knowledge and tools that can be used to delve further into understanding the biology of G. holbrooki and how this organism can be used as a bioindicator organism for endocrine disrupting pollutants in the environment.
Collapse
Affiliation(s)
- Erica K Brockmeier
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Road, P,O, Box 110885, 32611 Gainesville, FL, USA.
| | | | | | | | | |
Collapse
|
35
|
Navarro A, Campos B, Barata C, Piña B. Transcriptomic seasonal variations in a natural population of zebra mussel (Dreissena polymorpha). THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 454-455:482-489. [PMID: 23567168 DOI: 10.1016/j.scitotenv.2013.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/01/2013] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
The zebra mussel Dreissena polymorpha is a Caspian Sea bivalve that colonized freshwater bodies worldwide during the XX century. To analyze the impact of seasonal and environmental variations on the physiology and metabolism of this invasive species, we developed a custom microarray using 4057 publicly available DNA sequences from Dreissena and other related genera. Transcriptome profiles were analyzed using half-body samples from a relatively clean site (Riba-Roja, low Ebro River, N.E. Spain), at three different stages of the annual cycle: Pre-spawning (February), spawning (June), and gonad resorption (September). Transcripts from a total of 745 unique sequences showed significant changes among these three groups of samples. Functional characterization of these transcripts based on their closest known homologues showed that genes involved in stress defense (oxidative and infection) were overrepresented in September, whereas genes related to reproductive functions were overrepresented in the spawning and pre-spawning periods. This transcriptomic information can help to identify developmental stages at which the organism is more vulnerable for future control strategies. These data will also contribute to the implementation of gene expression-based assays for pollution monitoring in water bodies harboring stable zebra mussel populations.
Collapse
Affiliation(s)
- Anna Navarro
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
36
|
Wang M, Wang Y, Zhang L, Wang J, Hong H, Wang D. Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:123-131. [PMID: 23416409 DOI: 10.1016/j.aquatox.2013.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Mercury (Hg) is a widespread persistent pollutant in aquatic ecosystems. We investigated the protein profiles of medaka (Oryzias melastigma) liver chronically exposed to different mercuric chloride (HgCl2) concentrations (1 or 10 μg/L) for 60 d using two-dimensional difference gel electrophoresis (2D-DIGE), as well as cell ultrastructure and Hg content analysis of the hepatic tissue. The results showed that Hg exposure significantly increased metal accumulation in the liver, and subsequently damaged liver ultrastructure. Comparison of the 2D-DIGE protein profiles of the exposed and control groups revealed that the abundance of 45 protein spots was remarkably altered in response to Hg treatment. The altered spots were subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis, with the resultant identification of 33 spots. These proteins were mainly involved in cytoskeleton assembly, oxidative stress, and energy production. Among them, several proteins related to mitochondrial function (e.g. respiratory metabolism) were significantly altered in the treated hepatocytes, implying that this organelle might be the primary target for Hg attack in the cells. This study provided new insights into the molecular mechanisms and/or toxic pathways by which chronic Hg hepatotoxicity affects aquatic organisms, and also provided basic information for screening potential biomarkers for aquatic Hg monitoring.
Collapse
Affiliation(s)
- Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
37
|
Milan M, Ferraresso S, Ciofi C, Chelazzi G, Carrer C, Ferrari G, Pavan L, Patarnello T, Bargelloni L. Exploring the effects of seasonality and chemical pollution on the hepatopancreas transcriptome of the Manila clam. Mol Ecol 2013; 22:2157-72. [DOI: 10.1111/mec.12257] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/21/2012] [Accepted: 01/12/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Massimo Milan
- Department of Comparative Biomedicine and Food Science; University of Padova; Viale dell'Università 16 35020 Legnaro (PD) Italy
- Department of Evolutionary Biology; University of Florence; Via Romana 17 50125 Florence Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science; University of Padova; Viale dell'Università 16 35020 Legnaro (PD) Italy
| | - Claudio Ciofi
- Department of Evolutionary Biology; University of Florence; Via Romana 17 50125 Florence Italy
| | - Guido Chelazzi
- Department of Evolutionary Biology; University of Florence; Via Romana 17 50125 Florence Italy
| | - Claudio Carrer
- Thetis S.P.A; Laboratorio Centro Studi Microinquinanti Organici (C.S.M.O.). Magistrato alle Acque; Via Asconio Pediano 9 35127 Padova
| | - Giorgio Ferrari
- Ufficio Tecnico per l'Antinquinamento; Magistrato alle Acque di Venezia; San Polo 737 Riva del Vin 30125 Venezia
| | - Lino Pavan
- G3 Industriale; Via Milano 18 30020 Marcon (VE)
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science; University of Padova; Viale dell'Università 16 35020 Legnaro (PD) Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science; University of Padova; Viale dell'Università 16 35020 Legnaro (PD) Italy
| |
Collapse
|
38
|
Agbo SO, Lemmetyinen J, Keinänen M, Keski-Saari S, Akkanen J, Leppänen MT, Wang Z, Wang H, Price DA, Kukkonen JVK. Response of Lumbriculus variegatus transcriptome and metabolites to model chemical contaminants. Comp Biochem Physiol C Toxicol Pharmacol 2013. [PMID: 23178640 DOI: 10.1016/j.cbpc.2012.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Assessment of the underlying molecular events leading to xenobiotic toxicity is challenging especially when techniques are applied in isolation. We examined transcriptional and metabolic changes in Lumbriculus variegatus exposed to benzo(a)pyrene (B(a)P), cadmium (Cd) or pentachlorophenol (PCP) by DNA microarrays (7422 ESTs) and gas chromatography-mass spectrometry (GC-MS), respectively. In addition, the DNA damage response of worms exposed to B(a)P was assessed by a capillary electrophoresis laser induced fluorescence (CE-LIF) immunoassay. We found elevated expression of oxidative stress responsive genes, which correlated positively with the changes in antioxidant vitamin precursors including alpha-tocopherol and cholecalciferol. Other genes with strong differential expressions were mostly involved in actin related processes and proteolysis, despite an apparent delayed Cd response. Phosphates, sugars and fatty acids were effectively reduced and suggested that chemical treatments may have interfered with energy metabolism. The increased amount of B(a)P diol-epoxide (BPDE)-DNA adducts in exposed worms appeared to correlate with the variability in uridine, inosine and xanthine, which are key components of nucleoside metabolism. This suggests that DNA damage was imminent or peaked within 6h. The results conformed to transcriptional changes in B(a)P exposed worms and compliment other approaches to elucidate underlying molecular changes.
Collapse
Affiliation(s)
- Stanley O Agbo
- Department of Biology, University of Eastern Finland, P. O. Box 111, FI-80101 Joensuu, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Song M, Song MK, Choi HS, Ryu JC. Monitoring of deiodinase deficiency based on transcriptomic responses in SH-SY5Y cells. Arch Toxicol 2013; 87:1103-13. [PMID: 23397585 DOI: 10.1007/s00204-013-1018-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/22/2013] [Indexed: 12/20/2022]
Abstract
Iodothyronine deiodinase types I, II, and III (D1, D2, and D3, respectively), which constitute a family of selenoenzymes, activate and inactivate thyroid hormones through the removal of specific iodine moieties from thyroxine and its derivatives. These enzymes are important in the biological effects mediated by thyroid hormones. The expression of activating and inactivating deiodinases plays a critical role in a number of cell systems, including the neuronal system, during development as well as in adult vertebrates. To investigate deiodinase-disrupting chemicals based on transcriptomic responses, we examined differences in gene expression profiles between T3-treated and deiodinase-knockdown SH-SY5Y cells using microarray analysis and quantitative real-time RT-PCR. A total of 1,558 genes, consisting of 755 upregulated and 803 downregulated genes, were differentially expressed between the T3-treated and deiodinase-knockdown cells. The expression levels of 10 of these genes (ID2, ID3, CCL2, TBX3, TGOLN2, C1orf71, ZNF676, GULP1, KLF9, and ITGB5) were altered by deiodinase-disrupting chemicals (2,3,7,8-tetrachlorodibenzo-p-dioxin, polychlorinated biphenyls, propylthiouracil, iodoacetic acid, methylmercury, β-estradiol, methimazole, 3-methylcholanthrene, aminotriazole, amiodarone, cadmium chloride, dimethoate, fenvalerate, octylmethoxycinnamate, iopanoic acid, methoxychlor, and 4-methylbenzylidene-camphor). These genes are potential biomarkers for detecting deiodinase deficiency and predicting their effects on thyroid hormone production.
Collapse
Affiliation(s)
- Mee Song
- Cellular and Molecular Toxicology Laboratory, Center for Integrated Risk Research, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
40
|
Yadetie F, Karlsen OA, Lanzén A, Berg K, Olsvik P, Hogstrand C, Goksøyr A. Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:314-325. [PMID: 23103053 DOI: 10.1016/j.aquatox.2012.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/17/2012] [Accepted: 09/23/2012] [Indexed: 06/01/2023]
Abstract
Methylmercury (MeHg) is a widely distributed contaminant polluting many aquatic environments, with health risks to humans exposed mainly through consumption of seafood. The mechanisms of toxicity of MeHg are not completely understood. In order to map the range of molecular targets and gain better insights into the mechanisms of toxicity, we prepared Atlantic cod (Gadus morhua) 135k oligonucleotide arrays and performed global analysis of transcriptional changes in the liver of fish treated with MeHg (0.5 and 2 mg/kg of body weight) for 14 days. Inferring from the observed transcriptional changes, the main pathways significantly affected by the treatment were energy metabolism, oxidative stress response, immune response and cytoskeleton remodeling. Consistent with known effects of MeHg, many transcripts for genes in oxidative stress pathways such as glutathione metabolism and Nrf2 regulation of oxidative stress response were differentially regulated. Among the differentially regulated genes, there were disproportionate numbers of genes coding for enzymes involved in metabolism of amino acids, fatty acids and glucose. In particular, many genes coding for enzymes of fatty acid beta-oxidation were up-regulated. The coordinated effects observed on many transcripts coding for enzymes of energy pathways may suggest disruption of nutrient metabolism by MeHg. Many transcripts for genes coding for enzymes in the synthetic pathways of sulphur containing amino acids were also up-regulated, suggesting adaptive responses to MeHg toxicity. By this toxicogenomics approach, we were also able to identify many potential biomarker candidate genes for monitoring environmental MeHg pollution. These results based on changes on transcript levels, however, need to be confirmed by other methods such as proteomics.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Department of Molecular Biology, University of Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
41
|
Brown-Peterson NJ, Manning CS, Brouwer M, Griffitt RJ. Effects of pyrene exposure on sheepshead minnow (Cyprinodon variegatus) reproduction. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:842-852. [PMID: 24053361 DOI: 10.1080/15287394.2013.826565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons are known to adversely affect survival, growth, and reproduction in many aquatic species. Adult female sheepshead minnow, Cyprinodon varietagus (SHM), were exposed to chronic, low levels of pyrene (12.5, 25, or 50 μg/L nominal concentrations) and the impact on reproductive ability and larval survival was assessed. Viable egg production was significantly reduced in a dose-dependent manner following a 28-d exposure of SHM to pyrene, confirming reproductive dysfunction. Gonadosomatic index (GSI) values were unchanged with pyrene exposure, but histological assessment of ovarian development showed significant differences in reproductive phases in SHM exposed to pyrene for 28 d, with a greater percentage of prespawning and nonspawning females observed in the two highest pyrene concentrations. The percentage of embryos successfully hatching varied significantly among treatments, with lowest hatch occurring at 25 μg/L, but survival of larval fish to 14 d was not significantly different. These results suggest that chronic maternal exposure to low concentrations of pyrene has the potential to affect population structures by altering reproductive development and output as well as embryo/larval survival rates.
Collapse
Affiliation(s)
- Nancy J Brown-Peterson
- a Department of Coastal Sciences , University of Southern Mississippi , Ocean Springs , Mississippi , USA
| | | | | | | |
Collapse
|
42
|
He C, Wang C, Zhou Y, Li J, Zuo Z. Embryonic exposure to benzo(a)pyrene influences neural development and function in rockfish (Sebastiscus marmoratus). Neurotoxicology 2012; 33:758-62. [DOI: 10.1016/j.neuro.2012.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/20/2011] [Accepted: 01/06/2012] [Indexed: 12/27/2022]
|
43
|
Pierrard MA, Roland K, Kestemont P, Dieu M, Raes M, Silvestre F. Fish peripheral blood mononuclear cells preparation for future monitoring applications. Anal Biochem 2012; 426:153-65. [DOI: 10.1016/j.ab.2012.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 03/19/2012] [Accepted: 04/04/2012] [Indexed: 01/08/2023]
|
44
|
Cuklev F, Gunnarsson L, Cvijovic M, Kristiansson E, Rutgersson C, Björlenius B, Larsson DGJ. Global hepatic gene expression in rainbow trout exposed to sewage effluents: a comparison of different sewage treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 427-428:106-114. [PMID: 22575374 DOI: 10.1016/j.scitotenv.2012.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/04/2012] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents.
Collapse
Affiliation(s)
- Filip Cuklev
- Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
45
|
Beggel S, Werner I, Connon RE, Geist JP. Impacts of the phenylpyrazole insecticide fipronil on larval fish: time-series gene transcription responses in fathead minnow (Pimephales promelas) following short-term exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:160-165. [PMID: 22542256 DOI: 10.1016/j.scitotenv.2012.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/19/2012] [Accepted: 04/02/2012] [Indexed: 05/31/2023]
Abstract
The utilization of molecular endpoints in ecotoxicology can provide rapid and valuable information on immediate organismal responses to chemical stressors and is increasingly used for mechanistic interpretation of effects at higher levels of biological organization. This study contributes knowledge on the sublethal effects of a commonly used insecticide, the phenylpyrazole fipronil, on larval fathead minnow (Pimephales promelas), utilizing a quantitative transcriptomic approach. Immediately after 24h of exposure to fipronil concentrations of ≥31 μg.L(-1), highly significant changes in gene transcription were observed for aspartoacylase, metallothionein, glucocorticoid receptor, cytochrome P450 3A126 and vitellogenin. Different mechanisms of toxicity were apparent over the course of the experiment, with short-term responses indicating neurotoxic effects. After 6 days of recovery, endocrine effects were observed with vitellogenin being up-regulated 90-fold at 61 μg.L(-1) fipronil. Principal component analysis demonstrated a significant increase in gene transcription changes over time and during the recovery period. In conclusion, multiple mechanisms of action were observed in response to fipronil exposure, and unknown delayed effects would have been missed if transcriptomic responses had only been measured at a single time-point. These challenges can be overcome by the inclusion of multiple endpoints and delayed effects in experimental designs.
Collapse
Affiliation(s)
- Sebastian Beggel
- Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technische Universität München, Mühlenweg 22, D-85354 Freising, Germany
| | | | | | | |
Collapse
|
46
|
Mehinto AC, Martyniuk CJ, Spade DJ, Denslow ND. Applications for next-generation sequencing in fish ecotoxicogenomics. Front Genet 2012; 3:62. [PMID: 22539934 PMCID: PMC3336092 DOI: 10.3389/fgene.2012.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/02/2012] [Indexed: 01/23/2023] Open
Abstract
The new technologies for next-generation sequencing (NGS) and global gene expression analyses that are widely used in molecular medicine are increasingly applied to the field of fish biology. This has facilitated new directions to address research areas that could not be previously considered due to the lack of molecular information for ecologically relevant species. Over the past decade, the cost of NGS has decreased significantly, making it possible to use non-model fish species to investigate emerging environmental issues. NGS technologies have permitted researchers to obtain large amounts of raw data in short periods of time. There have also been significant improvements in bioinformatics to assemble the sequences and annotate the genes, thus facilitating the management of these large datasets.The combination of DNA sequencing and bioinformatics has improved our abilities to design custom microarrays and study the genome and transcriptome of a wide variety of organisms. Despite the promising results obtained using these techniques in fish studies, NGS technologies are currently underused in ecotoxicogenomics and few studies have employed these methods. These issues should be addressed in order to exploit the full potential of NGS in ecotoxicological studies and expand our understanding of the biology of non-model organisms.
Collapse
Affiliation(s)
- Alvine C Mehinto
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
47
|
Gündel U, Kalkhof S, Zitzkat D, von Bergen M, Altenburger R, Küster E. Concentration-response concept in ecotoxicoproteomics: effects of different phenanthrene concentrations to the zebrafish (Danio rerio) embryo proteome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 76:11-22. [PMID: 22062151 DOI: 10.1016/j.ecoenv.2011.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/16/2011] [Accepted: 10/08/2011] [Indexed: 05/31/2023]
Abstract
Concentration-response experiments, based on the testing of less replicates in favour of more exposure concentrations, represent the typical design of choice applied in toxicological and ecotoxicological effect assessment studies using traditional endpoints such as lethality. However, to our knowledge this concept has not found implementation in the increasingly applied OMICS techniques studying thousands of molecular endpoints at the same time. The present study is among the first applying the concentration-response concept for an ecotoxicoproteomics study. The effects of six different concentrations in the low effect range (<LC₂₀) of the PAH phenanthrene to the proteome of the ecotoxicological vertebrate model zebrafish (Danio rerio) embryo were investigated (two replicates per concentration) after 5 days exposure. Proteomics analyses were performed on organism extracts using 2-DE DIGE. Protein abundance profiles of around 713 protein spots were studied. About one-third of the protein signals could be detected to show robust reactions correlating with stressor concentration. Within this group, 65 protein signals showed significant changes compared to controls already at 1% lethal concentration (LC₀₁). Interestingly, 28 proteins significantly reacted at very low concentrations (<LC₀₁) and showed an exposure concentration dependent regulation status. Characteristic protein spots were identified by mass spectrometry. With the results of the present study the utility and several benefits using a concentration-response approach in proteomics studies could be shown. These included (i) knowledge about and the ability to model concentration dependent dynamics of molecular endpoints, (ii) to gain information about sensitivity of the molecular response in comparison to traditional endpoints and (iii) to help selecting the most promising protein spots for further investigations such as protein identification and biomarker studies. Using this experimental design based on testing of several exposure concentrations and less replicates might provide a step forward in getting increased output from toxicoproteomics studies.
Collapse
Affiliation(s)
- Ulrike Gündel
- Department Bioanalytical Ecotoxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Lidder P, Sonnino A. Biotechnologies for the management of genetic resources for food and agriculture. ADVANCES IN GENETICS 2012; 78:1-167. [PMID: 22980921 DOI: 10.1016/b978-0-12-394394-1.00001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can facilitate the development and appropriate use of biotechnologies in developing countries; and that FAO and other relevant international organizations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies.
Collapse
Affiliation(s)
- Preetmoninder Lidder
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| | - Andrea Sonnino
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| |
Collapse
|
49
|
Lennquist A, Asker N, Kristiansson E, Brenthel A, Björnsson BT, Kling P, Hultman M, Larsson DGJ, Förlin L. Physiology and mRNA expression in rainbow trout (Oncorhynchus mykiss) after long-term exposure to the new antifoulant medetomidine. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:234-41. [PMID: 21703361 DOI: 10.1016/j.cbpc.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 02/04/2023]
Abstract
Medetomidine is under evaluation for use as an antifouling agent, and its effects on non-target aquatic organisms are therefore of interest. In this study, rainbow trout was exposed to low (0.5 and 5.0nM) concentrations of medetomidine for up to 54 days. Recently we have reported on effects on paleness and melanophore aggregation of medetomidine in these fish. Here, specific growth rates were investigated together with a broad set of physiological parameters including plasma levels of growth hormone (GH), insulin-like growth factor-I (IGF-I) and leptin, glucose and haemoglobin (Hb), hematocrit (Ht), condition factor, liver and heart somatic indexes (LSI, HSI). Hepatic enzyme activities of CYP1A (EROD activity), glutathione S-transferases (GST) and glutathione reductase (GR) were also measured. Additionally, hepatic mRNA expression was analysed through microarray and quantitative PCR in fish sampled after 31 days of exposure. Medetomidine at both concentrations significantly lowered blood glucose levels and the higher concentration significantly reduced the LSI. The mRNA expression analysis revealed few differentially expressed genes in the liver and the false discovery rate was high. Taken together, the results suggest that medetomidine at investigated concentrations could interfere with carbohydrate metabolism of exposed fish but without any clear consequences for growth.
Collapse
Affiliation(s)
- Anna Lennquist
- Department of Zoology/Zoophysiology, University of Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pierron F, Normandeau E, Defo MA, Campbell PGC, Bernatchez L, Couture P. Effects of chronic metal exposure on wild fish populations revealed by high-throughput cDNA sequencing. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1388-1399. [PMID: 21557025 DOI: 10.1007/s10646-011-0696-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2011] [Indexed: 05/30/2023]
Abstract
Given the inherent variability of aquatic systems, predicting the in situ effects of contaminants on such ecosystems still represents a major challenge for ecotoxicology. In this context, transcriptomic tools can help identify and investigate the mechanisms of toxicity beyond the traditional morphometric, physiological and population-level endpoints. In this study, we used the 454 sequencing technology to examine the in situ effects of chronic metal (Cd, Cu) exposure on the yellow perch (Perca flavescens) transcriptome. Total hepatic mRNA from fish sampled along a polymetallic gradient was extracted, reverse transcribed, labeled with unique barcode sequences and sequenced. This approach allowed us to identify correlations between the transcription level of single genes and the hepatic concentrations of individual metals; 71% of the correlations established were negative. Chronic metal exposure was thus associated with a decrease in the transcription levels of numerous genes involved in protein biosynthesis, in the immune system, and in lipid and energy metabolism. Our results suggest that this marked decrease could result from an impairment of bile acid metabolism by Cd and energy restriction but also from the recruitment of several genes involved in epigenetic modifications of histones and DNA that lead to gene silencing.
Collapse
Affiliation(s)
- Fabien Pierron
- Institut National de La Recherche Scientifique, INRS-Centre Eau Terre Environnement, 490 de la Couronne, Quebec, QC, G1K 9A9, Canada
| | | | | | | | | | | |
Collapse
|