1
|
Sharma S, Gone GB, Roychowdhury P, Kim HS, Chung SJ, Kuppusamy G, De A. Photodynamic and sonodynamic therapy synergy: mechanistic insights and cellular responses against glioblastoma multiforme. J Drug Target 2025; 33:458-472. [PMID: 39556529 DOI: 10.1080/1061186x.2024.2431676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Glioblastoma multiforme (GBM), the most aggressive form of brain cancer, poses substantial challenges to effective treatment due to its complex and infiltrative nature, making it difficult to manage. Photodynamic therapy (PDT) and sonodynamic therapy (SDT), have emerged as promising individual treatment options against GBM due to their least-invasive approach. However, both PDT and SDT have drawbacks that require careful consideration. A combination therapy using light and sound waves has gained attention, offering new avenues to overcome challenges from individual therapies. Sono-photodynamic therapy (SPDT) has been used against various tumours. Researchers are considering SPDT as a favourable alternative to the conventional therapies for GBM. SPDT offers complementary mechanisms of action, including the production of ROS, disruption of cellular structures, and induction of apoptosis, leading to enhanced tumour cell death. This review gives an insight about PDT/SDT and their limitations in GBM treatment and the need for combination therapy. We try to unveil the process of SPDT and explore the mechanism behind improved SPDT-meditated cell death in GBM cells by focusing on the ROS-mediated cell response occurring as a result of SPDT and discussing current modifications in the existing sensitisers for their optimal use in SPDT for GBM therapy.
Collapse
Affiliation(s)
- Swati Sharma
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Geetanjali B Gone
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Parikshit Roychowdhury
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Jeon Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gowthmarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Anindita De
- Department of Pharmaceutics, School of Pharmacy, JSS University, Noida, Uttar Pradesh, India
- Department of Pharmacy, Ajou University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Ahoulou E, Ugboya A, Ogbonna V, Basnet K, Henary M, Grant KB. Single-Photon DNA Photocleavage up to 905 nm by a Benzylated 4-Quinolinium Carbocyanine Dye. ACS OMEGA 2025; 10:6544-6558. [PMID: 40028136 PMCID: PMC11865986 DOI: 10.1021/acsomega.4c07083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
This paper describes the DNA interactions of near-infrared (NIR) benzylated 4-quinolinium dicarbocyanine dyes containing a pentamethine bridge meso-substituted either with a bromine (4) or hydrogen (5) atom. In pH 7.0 buffered aqueous solutions, the 4-quinolinium dyes absorb light that extends into the near-infrared range up to ∼950 nm. The unique direct strand breakage of pUC19 DNA that is sensitized by irradiating either dicarbocyanine with an 850 nm LED laser constitutes the first published example of DNA photocleavage upon single-photon chromophore excitation at a wavelength greater than 830 nm. Brominated dye 4, which is more stable than and achieves DNA strand scission in higher yield than its hydrogen-bearing counterpart 5, cleaves plasmid DNA under 830 and 905 nm laser illumination. The addition of increasing amounts of DNA to aqueous pH 7.0 solutions converted an aggregated form of dye 4 to a monomer with bathochromic absorption that overlaps all three laser emission wavelengths. No induced circular dichroism and fluorescence signals were detected when DNA was present, pointing to possible external binding of the dye to the DNA. Experiments employing radical-specific fluorescent probes and chemical additives showed that brominated dye 4 likely breaks DNA strands by photosensitizing hydroxyl radical production. Micromolar concentrations of the dye were relatively nontoxic to cultured Escherichia coli cells in the dark but dramatically reduced survival of the cells under 830 nm illumination. As NIR light wavelengths deeply penetrate biological tissues, we envisage the future use of carbocyanine dyes as a sensitizing agent in phototherapeutic applications.
Collapse
Affiliation(s)
- Effibe
O. Ahoulou
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Aikohi Ugboya
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Victor Ogbonna
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kanchan Basnet
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Maged Henary
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- Center
for
Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kathryn B. Grant
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
3
|
Wang H, Hang L, Qu H, Wu P, Hua K, Jiang R, Diao Y, Fang L, Su S, Jiang G. Renal-Clearable Metalloporphyrin Complex-Based Nanosonosensitizers Using Photoacoustic Imaging Guiding to Enhance Sonodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10509-10523. [PMID: 39932218 DOI: 10.1021/acsami.4c21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sonodynamic therapy (SDT) is a noninvasive approach to tumor treatment, with ongoing efforts being focused on developing highly effective sonosensitizers with low toxicity. Herein, a liquid-phase stripping technique was introduced as a simple reflux method for synthesizing ultrasmall Mn-PCN-224 nanodots (MM NDs). Compared with PCN-224 nanodots, the synthesized MM NDs, which function as renal-clearable nanoagents, produced 2.42 times more reactive oxygen species (ROS) under identical ultrasound (US) irradiation conditions. In vivo and in vitro experiments revealed that A549 lung cancer cells treated with MM NDs under US irradiation and H2O2 exhibited a relative cell viability of ∼9% and a tumor inhibition rate of ∼91%. This result demonstrates that MM NDs can efficiently increase the effectiveness of SDT by leveraging their catalase-like activity and ultrasmall size (4 nm) to prevent ROS quenching. Furthermore, these nanoagents could be effectively utilized for photoacoustic (PA) imaging to track their accumulation in tumors and monitor the alleviation of the hypoxic tumor microenvironment. Notably, MM ND-mediated SDT demonstrated superior penetration depth compared to PDT, making it more effective in inhibiting contralateral tumors while facilitating deep-tissue treatment. Thus, this study introduces renal-clearable nanoagents with promising potential for PA-guided SDT, thereby paving the way for more effective tumor treatment strategies.
Collapse
Affiliation(s)
- Haiying Wang
- Guangdong Medical University, 2 Wenming East Road, Zhanjiang 524023, P. R. China
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, 466 Xingangzhong Road, Guangzhou 518037, P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, 466 Xingangzhong Road, Guangzhou 518037, P. R. China
| | - Hong Qu
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, 466 Xingangzhong Road, Guangzhou 518037, P. R. China
| | - Peiru Wu
- Guangdong Medical University, 2 Wenming East Road, Zhanjiang 524023, P. R. China
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, 466 Xingangzhong Road, Guangzhou 518037, P. R. China
| | - Kelei Hua
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, 466 Xingangzhong Road, Guangzhou 518037, P. R. China
| | - Rongjian Jiang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, 466 Xingangzhong Road, Guangzhou 518037, P. R. China
| | - Yanzhao Diao
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, 466 Xingangzhong Road, Guangzhou 518037, P. R. China
| | - LaiPing Fang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, 466 Xingangzhong Road, Guangzhou 518037, P. R. China
| | - Sulian Su
- Xiamen Humanity Hospital Fujian Medical University, 3777 Xianyue Road, Fujian 361000, P. R. China
| | - Guihua Jiang
- Guangdong Medical University, 2 Wenming East Road, Zhanjiang 524023, P. R. China
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, 466 Xingangzhong Road, Guangzhou 518037, P. R. China
- Xiamen Humanity Hospital Fujian Medical University, 3777 Xianyue Road, Fujian 361000, P. R. China
| |
Collapse
|
4
|
Yi X, Hussain I, Zhang P, Xiao C. Nuclear-Targeting Peptides for Cancer Therapy. Chembiochem 2024; 25:e202400596. [PMID: 39215136 DOI: 10.1002/cbic.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Nucleus is the central regulator of cells that controls cell proliferation, metabolism, and cell cycle, and is considered the most important organelle in cells. The precision medicine that can achieve nuclear targeting has achieved good therapeutic effects in anti-tumor therapy. However, the presence of biological barriers such as cell membranes and nuclear membranes in cells limit the delivery of therapeutic agents to the nucleus. Therefore, developing effective nuclear-targeting drug delivery strategies is particularly important. Nuclear-targeting peptides are a class of functional peptides that can penetrate cell membranes and target the nucleus. They mainly recognize and bind to the nuclear transport molecules (such as Importin-α/β) and transport the therapeutic agents to the nucleus through nuclear pore complexes (NPC). This review summarizes the most recent developments of strategies for anti-tumor therapy utilizing nuclear-targeting peptides, which will ultimately contribute to the development of more effective nuclear-targeting strategies to achieve better anti-tumor outcomes.
Collapse
Affiliation(s)
- Xuan Yi
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore, 54792, Pakistan
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| |
Collapse
|
5
|
Yang W, Johnson M, Lu B, Sourvanos D, Sun H, Dimofte A, Vikas V, Busch TM, Hadfield RH, Wilson BC, Zhu TC. Correction of Multispectral Singlet Oxygen Luminescent Dosimetry (MSOLD) for Tissue Optical Properties in Photofrin-Mediated Photodynamic Therapy. Antioxidants (Basel) 2024; 13:1458. [PMID: 39765787 PMCID: PMC11672821 DOI: 10.3390/antiox13121458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The direct detection of singlet-state oxygen (1O2) constitutes the holy grail dosimetric method for type-II photodynamic therapy (PDT), a goal that can be quantified using multispectral singlet oxygen near-infrared luminescence dosimetry (MSOLD). The optical properties of tissues, specifically their scattering and absorption coefficients, play a crucial role in determining how the treatment and luminescence light are attenuated. Variations in these properties can significantly impact the spatial distribution of the treatment light and hence the generation of singlet oxygen and the detection of singlet oxygen luminescence signals. In this study, we investigated the impact of varying optical properties on the detection of 1O2 luminescence signals during Photofrin-mediated PDT in tissue-mimicking phantoms. For comparison, we also conducted Monte Carlo (MC) simulations under the same conditions. The experimental and simulations are substantially equivalent. This study advances the understanding of MSOLD during PDT.
Collapse
Affiliation(s)
- Weibing Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.J.); (B.L.); (D.S.); (H.S.); (A.D.); (T.M.B.)
| | - Madelyn Johnson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.J.); (B.L.); (D.S.); (H.S.); (A.D.); (T.M.B.)
| | - Baozhu Lu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.J.); (B.L.); (D.S.); (H.S.); (A.D.); (T.M.B.)
| | - Dennis Sourvanos
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.J.); (B.L.); (D.S.); (H.S.); (A.D.); (T.M.B.)
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation and Precision Dentistry (CiPD), School of Dental Medicine, School of Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjing Sun
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.J.); (B.L.); (D.S.); (H.S.); (A.D.); (T.M.B.)
| | - Andreea Dimofte
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.J.); (B.L.); (D.S.); (H.S.); (A.D.); (T.M.B.)
| | - Vikas Vikas
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; (V.V.); (R.H.H.)
| | - Theresa M. Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.J.); (B.L.); (D.S.); (H.S.); (A.D.); (T.M.B.)
| | - Robert H. Hadfield
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; (V.V.); (R.H.H.)
| | - Brian C. Wilson
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
| | - Timothy C. Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.J.); (B.L.); (D.S.); (H.S.); (A.D.); (T.M.B.)
| |
Collapse
|
6
|
Yan J, Yu J, Bu C, Yang L, Chen J, Ding X, Yuan P. Antibiotic-Augmented Chemodynamic Therapy for Treatment of Helicobacter pylori Infection in the Dynamic Stomach Environment. NANO LETTERS 2024; 24:14983-14992. [PMID: 39541155 DOI: 10.1021/acs.nanolett.4c03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the main causes of peptic ulcer disease and gastric cancer. The overuse of antibiotics leads to bacterial drug resistance and disruption to the gut microbiome. Herein, a nanoparticle (TA-FeHMSN@Amox) was developed, comprising amoxicillin (Amox)-loaded iron-engineered hollow mesoporous silica as the core and a metal-polyphenol shell formed by tannic acid (TA) and Fe3+. In acidic stomach conditions, TA-FeHMSN@Amox generates bactericidal ·OH through Fenton/Fenton-like reactions of the degraded product Fe2+ and hydrogen peroxide (H2O2) at the infection site, achieving chemodynamic therapy (CDT). Moreover, released amoxicillin enhances therapeutic efficacy by impeding the self-repair of the bacterial cell wall damaged by CDT, overcoming the limitations of ineffective CDT under conditions lacking sufficient acidity and H2O2. The acidity-responsive CDT combined with reduced antibiotic usage ensures superior in vivo therapeutic efficacy and biocompatibility with intestinal flora, providing a highly potent strategy for treating H. pylori infections in the dynamic stomach environment.
Collapse
Affiliation(s)
- Jiachang Yan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayin Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Changxin Bu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiaoyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xin Ding
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
7
|
DePasquale JA. Visible light potentiates rapid cell destruction and death by curcumin in vitro. Photochem Photobiol Sci 2024; 23:1893-1914. [PMID: 39333349 DOI: 10.1007/s43630-024-00639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Curcumin, a small molecule derived from the plant Curcuma longa, is a pleiotropic agent with widely varying pharmacological activities attributed to it. In addition to its anti-cancer activity curcumin is also known to be cytotoxic upon photoactivation. Time-lapse DIC and correlative fluorescence microscopy were used to evaluate the effects of curcumin, combined with continuous exposure to visible light, on cellular components of RTG-2 cells. Curcumin combined with visible light resulted in rapid and dramatic destruction of cells. F-actin and microtubule cytoskeletons were drastically altered, both showing fragmentation and overall loss from cells. Nuclei exhibited granulated nucleoplasm, condensed DNA, and physical shrinkage. Mitochondria rapidly fragmented along their length and disappeared from cells. Plasma membrane was breached based on lipophilic dye staining and the entrance of otherwise impermeant small molecules into the cell. Grossly distorted morphology hallmarked by significant swelling and coarse granulation of the cytoplasm was consistently observed. All of these effects were dependent on visible light as the same cellular targets in curcumin-treated cells outside the illuminated area were always unperturbed. The combination of curcumin and continuous exposure to visible light enables rapid and irreversible cellular destruction which can be monitored in real-time. Real-time monitoring of this structural disintegration suggests a new approach to applying curcumin in photodynamic treatments, where the progression of cell and tissue destruction might be simultaneously evaluated through optical means.
Collapse
|
8
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
9
|
Zhao X, Du J, Sun W, Fan J, Peng X. Regulating Charge Transfer in Cyanine Dyes: A Universal Methodology for Enhancing Cancer Phototherapeutic Efficacy. Acc Chem Res 2024; 57:2582-2593. [PMID: 39152945 DOI: 10.1021/acs.accounts.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
ConspectusDue to the advantages of spatiotemporal selectivity and inherent noninvasiveness, cancer phototherapy, which includes both photodynamic therapy (PDT) and photothermal therapy (PTT), has garnered significant attention in recent years as a promising cancer treatment. Despite the commendable progress in this field, persistent challenges remain. In PDT, limitations in dyes manifest as low intersystem crossing (ISC) efficiency and oxygen-dependent photoactivity, resulting in unsatisfactory performance, particularly under hypoxic conditions. Similarly, PTT encounters consistent insufficiencies in the photothermal conversion efficiency (PCE) of dyes. Additionally, the suboptimal phototherapeutic efficacy often exhibits a limited immune response. These factors collectively impose significant constraints on phototherapy in oncological applications, leading to limited tumor inhibition, tumor recurrence, and even metastasis.Unlike strategies that rely on external assistance with complicated systems, manipulating excited-state deactivation pathways in biocompatible dyes offers a universal way to systematically address these challenges. Our group has devoted considerable effort to achieving this goal. In this Account, we present and discuss our journey in optimizing excited-state energy-release pathways through regulating molecular charge transfer based on cyanine dyes, which are renowned for their exceptional photophysical properties and harmonious biocompatibility. The investigation begins with the introduction of amino groups in the meso position of a heptamethine cyanine dye, where the intramolecular charge transfer (ICT) effect causes a significant enlargement of the Stokes shift. Subsequently, ICT induced by introducing functional electron-deficient groups in cyanines is found to decrease the overlap of electron distribution or narrow the energy gaps of molecular frontier orbitals. Such modifications result in a reduction of the energy gaps between singlet and triplet states or an improvement in internal conversion, ultimately promoting phototherapy efficacy in both primary and distant tumors. Furthermore, with the intensification of the charge transfer effect aided by light, photoinduced intramolecular electron transfer occurs in some cyanines, leading to complete charge separation in the excited state. This process enhances the transition to the ground or triplet states, improving tumor phototherapy and inhibiting metastasis by increasing the PCE or the yield of reactive oxygen species, respectively. Shifting focus from intramolecular to intermolecular interactions, we successfully constructed and explored cyanines based on intermolecular charge transfer. These dyes, with excited-state dynamics mimicking natural photosynthesis, generate radicals and facilitate oxygen-independent hypoxic tumor PDT. Finally, we outlined the existing challenges and future directions for optimizing phototherapeutic efficacy by regulating molecular charge transfer. This Account provides molecular-level insights into improving phototherapeutic performance, offering valuable perspectives, and inspiring the development of functional dyes in other application fields.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, 315016 Ningbo, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| |
Collapse
|
10
|
Liu A, Huang Z, Du X, Duvva N, Du Y, Teng Z, Liao Z, Liu C, Tian H, Huo S. Biodegradable Ruthenium-Rhenium Complexes Containing Nanoamplifiers: Triggering ROS-Induced CO Release for Synergistic Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403795. [PMID: 38995228 PMCID: PMC11425273 DOI: 10.1002/advs.202403795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/03/2024] [Indexed: 07/13/2024]
Abstract
The constrained effectiveness of photodynamic therapy (PDT) has impeded its widespread use in clinical practice. Urgent efforts are needed to address the shortcomings faced in photodynamic therapy, such as photosensitizer toxicity, short half-life, and limited action range of reactive oxygen species (ROS). In this study, a biodegradable copolymer nanoamplifier is reported that contains ruthenium complex (Ru-complex) as photosensitizer (PS) and rhenium complex (Re-complex) as carbon monoxide (CO)-release molecule (CORM). The well-designed nanoamplifier brings PS and CORM into close spatial proximity, significantly promotes the utilization of light-stimulated reactive oxygen species (ROS), and cascaded amplifying CO release, thus enabling an enhanced synergistic effect of PDT and gas therapy for cancer treatment. Moreover, owing to its intrinsic photodegradable nature, the nanoamplifier exhibits good tumor accumulation and penetration ability, and excellent biocompatibility in vivo. These findings suggest that the biodegradable cascaded nanoamplifiers pave the way for a synergistic and clinically viable integration of photodynamic and gas therapy.
Collapse
Affiliation(s)
- Aijie Liu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
- Shenzhen Research Institute of Xiamen UniversityShenzhenGuangdong518057China
| | - Zhenkun Huang
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Xiangfu Du
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Naresh Duvva
- Department of Chemistry‐Ångström LaboratoryBox 523 Uppsala UniversityUppsalaSE‐75120Sweden
| | - Yuting Du
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Zihao Teng
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Zhihuan Liao
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Chen Liu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Haining Tian
- Department of Chemistry‐Ångström LaboratoryBox 523 Uppsala UniversityUppsalaSE‐75120Sweden
| | - Shuaidong Huo
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| |
Collapse
|
11
|
Feng Y, Yu Y, Shi H, Bai J, Wang L, Yang T, Liu L. Nitrite reductase-mimicking catalysis temporally regulating nitric oxide concentration gradient adaptive for antibacterial therapy. SCIENCE ADVANCES 2024; 10:eadp5935. [PMID: 39213361 PMCID: PMC11364101 DOI: 10.1126/sciadv.adp5935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
The unique bacterial infection microenvironment (IME) usually requires complicated design of nanomaterials to adapt to IME for enhancing antibacterial therapy. Here, an alternative IME adaptative nitrite reductase-mimicking nanozyme is constructed by in situ growth of ultrasmall copper sulfide clusters on the surface of a nanofibrillar lysozyme assembly (NFLA/CuS NHs), which can temporally regulate nitric oxide (NO) gradient concentration to kill bacteria initially and promote tissue regeneration subsequently. Benefiting from a copper nitrite reductase (CuNIR)-inspired structure with CuS cluster as active center and NFLA as skeleton, NFLA/CuS NHs efficiently boost the catalytic reduction of nitrite to NO. The inherent supramolecular fibrillar networks displays excellent bacterial capture capability, facilitating initial high-concentration NO attacks on the bacteria. The subsequent catalytic release of low-concentration NO by NFLA/CuS NHs-mediated nitrite reduction remarkably promotes cell migration and angiogenesis. This work paves the way for dynamically eliminating MDR bacterial infection and promoting tissue regeneration in a simple and smart way through CuNIR-mimicking catalysis.
Collapse
Affiliation(s)
- Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yi Yu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Hui Shi
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| |
Collapse
|
12
|
Berardi N, Amirsadeghi S, Swanton CJ. Plant competition cues activate a singlet oxygen signaling pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:964476. [PMID: 39228834 PMCID: PMC11368760 DOI: 10.3389/fpls.2024.964476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Oxidative stress responses of Arabidopsis to reflected low red to far-red signals (R:FR ≈ 0.3) generated by neighboring weeds or an artificial source of FR light were compared with a weed-free control (R:FR ≈1.6). In the low R:FR treatments, induction of the shade avoidance responses (SAR) coincided with increased leaf production of singlet oxygen (1O2). This 1O2 increase was not due to protochlorophyllide accumulation and did not cause cell death. Chemical treatments, however, with 5-aminolevulinic acid (the precursor of tetrapyrrole biosynthesis) and glutathione (a quinone A reductant) enhanced cell death and growth inhibition. RNA sequencing revealed that transcriptome responses to the reflected low R:FR light treatments minimally resembled previously known Arabidopsis 1O2 generating systems that rapidly generate 1O2 following a dark to light transfer. The upregulation of only a few early 1O2 responsive genes (6 out of 1931) in the reflected low R:FR treatments suggested specificity of the 1O2 signaling. Moreover, increased expression of two enzyme genes, the SULFOTRANSFERASE ST2A (ST2a) and the early 1O2-responsive IAA-LEUCINE RESISTANCE (ILR)-LIKE6 (ILL6), which negatively regulate jasmonate level, suggested that repression of bioactive JAs may promote the shade avoidance (versus defense) and 1O2 acclimation (versus cell death) responses to neighboring weeds.
Collapse
Affiliation(s)
- Nicole Berardi
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, Canada
| | - Sasan Amirsadeghi
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
13
|
Dhaini B, Arnoux P, Daouk J, Lux F, Tillement O, Hagège A, Hamieh T, Shafirstein G, Frochot C. Energy Transfer between AGuIX Nanoparticles and Photofrin under Light or X-ray Excitation for PDT Applications. Pharmaceuticals (Basel) 2024; 17:1033. [PMID: 39204138 PMCID: PMC11357330 DOI: 10.3390/ph17081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Photodynamic therapy is an accepted therapy cancer treatment. Its advantages encourage researchers to delve deeper. The use of nanoparticles in PDT has several advantages including the passive targeting of cancer cells. The aim of this article is to evaluate the effectiveness of AGuIX nanoparticles (activation and guiding of irradiation by X-ray) in the presence or absence of a photosensitizer, Photofrin, under illumination of 630 nm or under X-ray irradiation. The goal is to improve local tumor control by combining PDT with low-dose-X-ray-activated NPs in the treatment of locally advanced metastatic lung cancer. The study of the energy transfer, which occurs after excitation of Gd/Tb chelated in AGuIX in the presence of Photofrin, was carried out. We could observe the formation of singlet oxygen after the light or X-ray excitation of Gd and Tb that was not observed for AGuIX or Photofrin alone, proving that it is possible to realize energy transfer between both compounds.
Collapse
Affiliation(s)
- Batoul Dhaini
- Université de Lorraine, CNRS, LRGP, 54600 Nancy, France; (B.D.); (P.A.)
- Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences I, Lebanese University, Beirut 1102, Lebanon
| | - Philippe Arnoux
- Université de Lorraine, CNRS, LRGP, 54600 Nancy, France; (B.D.); (P.A.)
| | - Joël Daouk
- Université de Lorraine, CNRS, CRAN, 54505 Vandoeuvre-les-Nancy, France;
| | - François Lux
- Université de Lyon, CNRS, ILM, 69007 Lyon, France; (F.L.); (O.T.)
| | | | - Agnès Hagège
- Université Claude Bernard Lyon 1, CNRS, ISA, 69100 Villeurbanne, France (T.H.)
| | - Tayssir Hamieh
- Université Claude Bernard Lyon 1, CNRS, ISA, 69100 Villeurbanne, France (T.H.)
- Faculty of Science and Engineering, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Gal Shafirstein
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14226, USA;
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, 54600 Nancy, France; (B.D.); (P.A.)
| |
Collapse
|
14
|
Erhart T, Nadegger C, Vergeiner S, Kreutz C, Müller T, Kräutler B. Novel Types of Phyllobilins in a Fern - Molecular Reporters of the Evolution of Chlorophyll Breakdown in the Paleozoic Era. Chemistry 2024; 30:e202401288. [PMID: 38634697 DOI: 10.1002/chem.202401288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Breakdown of chlorophyll (Chl), as studied in angiosperms, follows the pheophorbide a oxygenase/phyllobilin (PaO/PB) pathway, furnishing linear tetrapyrroles, named phyllobilins (PBs). In an investigation with fern leaves we have discovered iso-phyllobilanones (iPBs) with an intriguingly rearranged and oxidized carbon skeleton. We report here a key second group of iPBs from the fern and on their structure analysis. Previously, these additional Chl-catabolites escaped their characterization, since they exist in aqueous media as mixtures of equilibrating isomers. However, their chemical dehydration furnished stable iPB-derivatives that allowed the delineation of the enigmatic structures and chemistry of the original natural catabolites. The structures of all fern-iPBs reflect the early core steps of a PaO/PB-type pathway and the PB-to-iPB carbon skeleton rearrangement. A striking further degradative chemical ring-cleavage was observed, proposed to consume singlet molecular oxygen (1O2). Hence, Chl-catabolites may play a novel active role in detoxifying cellular 1O2. The critical deviations from the PaO/PB pathway, found in the fern, reflect evolutionary developments of Chl-breakdown in the green plants in the Paleozoic era.
Collapse
Affiliation(s)
- Theresia Erhart
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Christian Nadegger
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Stefan Vergeiner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Thomas Müller
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
15
|
Liu X, Wang M, Cao L, Zhuang J, Wang D, Wu M, Liu B. Living Artificial Skin: Photosensitizer and Cell Sandwiched Bacterial Cellulose for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403355. [PMID: 38598646 DOI: 10.1002/adma.202403355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Chronic wounds pose a significant global public health challenge due to their suboptimal treatment efficacy caused by bacterial infections and microcirculatory disturbances. Inspired by the biofunctionality of natural skin, an artificial skin (HV@BC@TBG) is bioengineered with bacterial cellulose (BC) sandwiched between photosensitizers (PS) and functionalized living cells. Glucose-modified PS (TBG) and vascular endothelial growth factor (VEGF)-functionalized living cells (HV) are successively modified on each side of BC through biological metabolism and bio-orthogonal reaction. As the outermost layer, the TBG layer can generate reactive oxygen species (ROS) upon light illumination to efficiently combat bacterial infections. The HV layer is the inner layer near the diabetic wound, which servs as a living factory to continuously secrete VEGF to accelerate wound repair by promoting fibroblast proliferation and angiogenesis. The sandwiched structural artificial skin HV@BC@TBG is nontoxic, biocompatible, and demonstrated its ability to significantly accelerate the healing process of infected diabetic wounds, rendering it a promising next-generation medical therapy for chronic wound management.
Collapse
Affiliation(s)
- Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Meng Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, 310003, China
| | - Lei Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Jiahao Zhuang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Dandan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
16
|
Ren X, Wang X, Yang J, Zhang X, Du B, Bai P, Li L, Zhang R. Multi-Enzyme-Based Superabsorbent Hydrogel for Self-Enhanced NIR-II Photothermal-Catalytic Antibacterial Therapy. Adv Healthc Mater 2024; 13:e2303537. [PMID: 38060436 DOI: 10.1002/adhm.202303537] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/02/2023] [Indexed: 05/08/2024]
Abstract
The synergistic strategy of nanozyme-based catalytic therapy and photothermal therapy holds great potential for combating bacterial infection. However, challenges such as single and limited enzyme catalytic property, unfavorable catalytic environment, ineffective interaction between nanozymes and bacteria, unsafe laser irradiation ranges, and failed trauma fluid management impede their antibacterial capability and wound healing speed. Herein, for the first time, a PNMn hydrogel is fabricated with multi-enzyme activities and excellent near-infrared (NIR)-II photothermal performance for self-enhanced NIR-II photothermal-catalytic capabilities to efficiently eradicate bacteria. This hydrogel triggers parallel and cascade reactions to generate •OH, •O2 -, and 1O2 radicals from H2O2 and O2 without external energy input. Notably, it provides a suitable catalytic environment while capturing bacteria (≈30.1% of Escherichia coli and ≈29.3% of Staphylococcus aureus) to reinforce antibacterial activity. Furthermore, the PNMn hydrogel expedites skin wound healing by managing excess fluid (swelling rate up to ≈7299%). The PNMn hydrogel possesses remarkable stretching, elasticity, toughness, and adhesive characteristics under any shape of the wound, thus making it suitable for wound dressing. Therefore, the PNMn hydrogel has great potential to be employed as a next-generation wound dressing in the clinical context, providing a non-antibiotic strategy to improve the antibacterial performance and promote wound healing.
Collapse
Affiliation(s)
- Xiaofeng Ren
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Xiaozhe Wang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jie Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, P. R. China
| | - Xiaoyu Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Baojie Du
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, P. R. China
| | - Peirong Bai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, P. R. China
| | - Liping Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, P. R. China
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
17
|
Sun G, Huang S, Wang S, Li Y. Nanomaterial-based drug-delivery system as an aid to antimicrobial photodynamic therapy in treating oral biofilm. Future Microbiol 2024; 19:741-759. [PMID: 38683167 PMCID: PMC11259068 DOI: 10.2217/fmb-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 05/01/2024] Open
Abstract
Diverse microorganisms live as biofilm in the mouth accounts for oral diseases and treatment failure. For decades, the prevention and treatment of oral biofilm is a global challenge. Antimicrobial photodynamic therapy (aPDT) holds promise for oral biofilm elimination due to its several traits, including broad-spectrum antimicrobial capacity, lower possibility of resistance and low cytotoxicity. However, the physicochemical properties of photosensitizers and the biological barrier of oral biofilm have limited the efficiency of aPDT. Nanomaterials has been used to fabricate nanocarriers to improve photosensitizer properties and thus enhance antimicrobial effect. In this review, we have discussed the challenges of aPDT used in dentistry, categorized the nanomaterial-delivery system and listed the possible mechanisms involved in nanomaterials when enhancing aPDT effect.
Collapse
Affiliation(s)
- Guanwen Sun
- Department of stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Shan Huang
- Department of stomatology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Shaofeng Wang
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
- Xiamen Key Laboratory of Stomatological Disease Diagnosis & Treatment, Xiamen, China
| |
Collapse
|
18
|
Azzam S, Tomasova L, Danner C, Skiba M, Klein M, Guttenberg Z, Michaelis S, Wegener J. A high-precision wound healing assay based on photosensitized culture substrates. Sci Rep 2024; 14:9103. [PMID: 38643292 PMCID: PMC11032384 DOI: 10.1038/s41598-024-59564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024] Open
Abstract
Quantitative assessment of cell migration in vitro is often required in fundamental and applied research from different biomedical areas including wound repair, tumor metastasis or developmental biology. A collection of assays has been established throughout the years like the most widely used scratch assay or the so-called barrier assay. It is the principle of these assays to introduce a lesion into an otherwise confluent monolayer in order to study the migration of cells from the periphery into this artificial wound and determine the migration rate from the time necessary for wound closure. A novel assay makes use of photosensitizers doped into a polystyrene matrix. A thin layer of this composite material is coated on the bottom of regular cell culture ware showing perfect biocompatibility. When adherent cells are grown on this coating, resonant excitation of the photosensitizer induces a very local generation of 1O2, which kills the cells residing at the site of illumination. Cells outside the site of illumination are not harmed. When excitation of the photosensitizer is conducted by microscopic illumination, high-precision wounding in any size and geometry is available even in microfluidic channels. Besides proof-of-concept experiments, this study gives further insight into the mechanism of photosensitizer-mediated cell wounding.
Collapse
Affiliation(s)
- Saphia Azzam
- Institut Fuer Analytische Chemie, Chemo- & Biosensorik, Universitaet Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Lea Tomasova
- Ibidi GmbH, Lochhamer Schlag 11, 82166, Graefelfing, Germany
| | - Carina Danner
- Institut Fuer Analytische Chemie, Chemo- & Biosensorik, Universitaet Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Michael Skiba
- Institut Fuer Analytische Chemie, Chemo- & Biosensorik, Universitaet Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Maren Klein
- Institut Fuer Analytische Chemie, Chemo- & Biosensorik, Universitaet Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Zeno Guttenberg
- Ibidi GmbH, Lochhamer Schlag 11, 82166, Graefelfing, Germany
| | - Stefanie Michaelis
- Fraunhofer-Institut Fuer Elektronische Mikrosysteme Und Festkoerper-Technologien EMFT, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Joachim Wegener
- Institut Fuer Analytische Chemie, Chemo- & Biosensorik, Universitaet Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany.
- Fraunhofer-Institut Fuer Elektronische Mikrosysteme Und Festkoerper-Technologien EMFT, Universitaetsstr. 31, 93053, Regensburg, Germany.
| |
Collapse
|
19
|
Zheng J, Rong L, Lu Y, Chen J, Hua K, Du Y, Zhang Q, Li W. Trap & kill: a neutrophil-extracellular-trap mimic nanoparticle for anti-bacterial therapy. Biomater Sci 2024; 12:1841-1846. [PMID: 38410093 DOI: 10.1039/d4bm00145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fenton chemistry-mediated antimicrobials have demonstrated great promise in antibacterial therapy. However, the short life span and diffusion distance of hydroxyl radicals dampen the therapeutic efficiency of these antimicrobials. Herein, inspired by the neutrophil extracellular trap (NET), in which bacteria are trapped and agglutinated via electronic interactions and killed by reactive oxygen species, we fabricated a NET-mimic nanoparticle to suppress bacterial infection in a "trap & kill" manner. Specifically, this NET-mimic nanoparticle was synthesized via polymerization of ferrocene monomers followed by quaternization with a mannose derivative. Similar to the NET, the NET-mimic nanoparticles trap bacteria through electronic and sugar-lectin interactions between their mannose moieties and the lectins of bacteria, forming bacterial agglutinations. Therefore, they confine the spread of the bacteria and restrict the bacterial cells to the destruction range of hydroxyl radicals. Meanwhile, the ferrocene component of the nanoparticle catalyzes the production of highly toxic hydroxyl radicals at the H2O2 rich infection foci and effectively eradicates the agglutinated bacteria. In a mouse model of an antimicrobial-resistant bacteria-infected wound, the NET-mimic nanoparticles displayed potent antibacterial activity and accelerated wound healing.
Collapse
Affiliation(s)
- Jingtao Zheng
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China.
| | - Lei Rong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yao Lu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China.
| | - Jing Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Kai Hua
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China.
| | - Yongzhong Du
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd, Yantai, Shandong 264003, PR China
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Weishuo Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd, Yantai, Shandong 264003, PR China
| |
Collapse
|
20
|
Ghosh C, Ali LMA, Bessin Y, Clément S, Richeter S, Bettache N, Ulrich S. Self-assembled porphyrin-peptide cages for photodynamic therapy. Org Biomol Chem 2024; 22:1484-1494. [PMID: 38289387 DOI: 10.1039/d3ob01887c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The development of photodynamic therapy requires access to smart photosensitizers which combine appropriate photophysical and biological properties. Interestingly, supramolecular and dynamic covalent chemistries have recently shown their ability to produce novel architectures and responsive systems through simple self-assembly approaches. Herein, we report the straightforward formation of porphyrin-peptide conjugates and cage compounds which feature on their surface chemical groups promoting cell uptake and specific organelle targeting. We show that they self-assemble, in aqueous media, into positively-charged nanoparticles which generate singlet oxygen upon green light irradiation, while also undergoing a chemically-controlled disassembly due to the presence of reversible covalent linkages. Finally, the biological evaluation in cells revealed that they act as effective photosensitizers and promote synergistic effects in combination with Doxorubicin.
Collapse
Affiliation(s)
- Chandramouli Ghosh
- Institut des Biomolécules Max Mousseron (IBMM), Université of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron (IBMM), Université of Montpellier, CNRS, ENSCM, Montpellier, France.
- Department of Biochemistry Medical Research Institute, University of Alexandria, 21561 Alexandria, Egypt
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM), Université of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Sébastien Clément
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sébastien Richeter
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM), Université of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
21
|
Gomes ICP, Divino LDA, Rodrigues FM, Fleury CMF, Ducas ESA, Desordi JC, Iglesias BA, Santana RC, Monteiro CMO, Lopes WDZ, Gonçalves PJ, Souza GRL. Daylight photodynamic inactivation of cattle tick Rhipicephalus microplus by porphyrins: An alternative for the ectoparasite control. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112847. [PMID: 38241947 DOI: 10.1016/j.jphotobiol.2024.112847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
The bovine tick Rhipicephalus microplus, a primary ectoparasite of veterinary concern, contributes significantly to disease transmission and reduced cattle productivity, resulting in substantial economic losses. The overuse of chemical acaricides has led to the emergence of resistant strains, posing a considerable challenge to veterinary medicine. Consequently, the development of alternative parasite control methods is essential to ensure livestock quality and enhance food safety worldwide. Our study introduces an innovative approach to photodynamic inactivation (PDI) of the bovine tick, harnessing natural daylight for a potential field application. Reproductive parameters (female and egg mass, egg production index, and larval hatch) were evaluated in engorged female ticks under photodynamic action using the hematoporphyrin (HP) and tetra-cationic porphyrins free-base meso-tetra-ruthenated (4-pyridyl) (RuTPyP) and its zinc(II) complex (ZnRuTPyP) as photosensitizers (PS). The results showed that there was no significant difference between the groups treated with tetra‑ruthenium porphyrins and the control group. However, HP exhibits a control percentage of 97.9% at a concentration of 2.5 μmol.L-1, aligning with the expected control rates achieved by conventional chemical acaricides. Photophysical and physicochemical parameters such as the number of singlet oxygen produced and lipophilicity were discussed for each PS and related to tick control percentages. Furthermore, the interaction between HP and chitin, an important macromolecule presents in the tick's cuticle, considered as the primary target tick structure during PDI was observed by the absorption and fluorescence emission spectroscopic techniques. Therefore, the results presented here extend the potential for controlling R. microplus through photodynamic inactivation while utilizing sunlight as a source of natural irradiation.
Collapse
Affiliation(s)
| | - Lorena Dias Amor Divino
- Programa de Pós-Graduação em Ciências Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | | - Bernardo Almeida Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Caio Márcio Oliveira Monteiro
- Programa de Pós-Graduação em Ciências Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Welber Daniel Zanetti Lopes
- Programa de Pós-Graduação em Ciências Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Pablo José Gonçalves
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil; Instituto de Física, Universidade Federal de Goiás, Goiânia, Brazil; Centro de Excelência em Hidrogênio e Tecnologias Energéticas Sustentáveis (CEHTES), Goiânia, GO, Brazil.
| | - Guilherme Rocha Lino Souza
- Programa de Pós-Graduação em Ciências Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
22
|
Meerovich GA, Akhlyustina EV, Romanishkin ID, Makarova EA, Tiganova IG, Zhukhovitsky VG, Kholina EG, Kovalenko IB, Romanova YM, Loschenov VB, Strakhovskaya MG. Photodynamic inactivation of bacteria: Why it is not enough to excite a photosensitizer. Photodiagnosis Photodyn Ther 2023; 44:103853. [PMID: 37863377 DOI: 10.1016/j.pdpdt.2023.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The development of multidrug resistance (MDR) in infectious agents is one of the most serious global problems facing humanity. Antimicrobial photodynamic therapy (APDT) shows encouraging results in the fight against MDR pathogens, including those in biofilms. METHODS Photosensitizers (PS), monocationic methylene blue, polycationic and polyanionic derivatives of phthalocyanines, electroneutral and polycationic derivatives of bacteriochlorin were used to study photodynamic inactivation of Gram-positive and Gram-negative planktonic bacteria and biofilms under LED irradiation. Zeta potential measurements, confocal fluorescence imaging, and coarse-grained modeling were used to evaluate the interactions of PS with bacteria. PS aggregation and photobleaching were studied using absorption and fluorescence spectroscopy. RESULTS The main approaches to ensure high efficiency of bacteria photosensitization are analyzed. CONCLUSIONS PS must maintain a delicate balance between binding to exocellular and external structures of bacterial cells and penetration through the cell wall so as not to get stuck on the way to photooxidation-sensitive structures of the bacterial cell.
Collapse
Affiliation(s)
- Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | | - Igor D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Irina G Tiganova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Vladimir G Zhukhovitsky
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia; Ministry of Public Health of the Russian Federation, Russian Medical Academy of Continuing Professional Education (RMANPO), Moscow 125993, Russia
| | | | - Ilya B Kovalenko
- Lomonosov Moscow State University, Moscow 119234, Russia; Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - Yulia M Romanova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Victor B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | |
Collapse
|
23
|
Feng Y, Cheng Z, Larsen AKK, Shi H, Sun T, Zhang P, Dong M, Liu L. Amyloid-like nanofibrous network confined and aligned ultrafine bimetallic nanozymes for smart antibacterial therapy. Mater Today Bio 2023; 22:100730. [PMID: 37576869 PMCID: PMC10413149 DOI: 10.1016/j.mtbio.2023.100730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Nanozyme-based antibacterial therapy (NABT) has emerged as a promising strategy to combat bacterial antimicrobial resistance. Engineering the noble metal nanozymes with strong bacterial capture and high catalytic activity for enhanced NABT is highly anticipated but still challenged. Herein, we developed hybrid nanozymes by engineering ultrafine bimetallic Au/Cu nanoparticles confined on the lysozyme amyloid-like nanofibrous networks (LNF). The introduction of copper in the nanozymes facilitates the H2O2 adsorption and reduces the energy barrier for activating the H2O2 decomposition to form •OH, meanwhile displaying the significantly enhanced POD-like activity under NIR irradiation. Taking advantage of the inherent supramolecular networks inspired from human defensin 6-trapping bacteria mechanism, the hybrid nanozymes effectively capture the bacteria and allow the catalytic attack around the bacterial surfaces to improve the antibacterial efficiency. Finally, the as-prepared nanozymes exhibit the preeminent bactericidal efficacy against bacteria, especially for drug-resistant bacteria both in vitro and in vivo, and the effect on wound healing.
Collapse
Affiliation(s)
- Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zerui Cheng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | | | - Hui Shi
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Tongtong Sun
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Peng Zhang
- Institute of Environmental Research at Greater Bay, Guangzhou University, 230 Waihuan West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Universitas Arhusiensis, Arhus, 8200, Denmark
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| |
Collapse
|
24
|
Peralta ME, Parisi JC, Castrogiovanni DC, Jadhav SA, Carlos L, Bosio GN, Mártire DO. Effective intracellular release of ibuprofen triggered by thermosensitive magnetic nanocarriers. Colloids Surf B Biointerfaces 2023; 230:113508. [PMID: 37562121 DOI: 10.1016/j.colsurfb.2023.113508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Stimuli-responsive nanocarriers are being widely applied in the development of new strategies for the diagnosis and treatment of diseases. An inherent difficulty in general drug therapy is the lack of precision with respect to a specific pathological site, which can lead to toxicity, excessive drug consumption, or premature degradation. In this work, the controlled drug delivery is achieved by using magnetite nanoparticles coated with mesoporous silica with core-shell structure (MMS) and grafted with the thermoresponsive polymer poly [N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate] (MMS-P). The efficiency of MMS-P as a temperature-controlled drug delivery system was evaluated by in vitro release experiments using ibuprofen (IBU) in various mammalian cell models. Further, the effects of IBU as a photoprotectant in cells exposed to photodynamic therapy (PDT) in a carbaryl-induced neurodegenerative model were evaluated. The results showed that MMS-P nanocarriers do not exhibit cytotoxicity in HepG2 cells at high doses such as 7600 µg mL-1. Pre-incubation of MMS-P charged with IBU showed no effect on the PDT in N2A cells; however, it produced a further decrease in the viability of HepG2 cells, leading to a reduction to PDT resistance. On the other hand, a cytoprotective effect against carbaryl toxicity in N2A cells was observed in IBU administrated by MMS-P, which confirms the effective intracellular IBU uptake by means of MMS-P. These results encourage the potential application of MMS-P as a drug delivery system and confirm the effect of IBU as a cytoprotective agent in a neurodegenerative model.
Collapse
Affiliation(s)
- Marcos E Peralta
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-UNCo), Universidad Nacional Del Comahue, Neuquén 8300, Argentina
| | - Julieta C Parisi
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA - CONICET, UNLP, La Plata 1900, Argentina
| | - Daniel C Castrogiovanni
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA - CONICET, UNLP, La Plata 1900, Argentina
| | - Sushilkumar A Jadhav
- School of Nanoscience and Technology, Shivaji University Kolhapur, Vidyanagar, 416004 Kolhapur, Maharashtra, India
| | - Luciano Carlos
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-UNCo), Universidad Nacional Del Comahue, Neuquén 8300, Argentina.
| | - Gabriela N Bosio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Daniel O Mártire
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
25
|
Chen S, Cao R, Xiang L, Li Z, Chen H, Zhang J, Feng X. Research progress in nucleus-targeted tumor therapy. Biomater Sci 2023; 11:6436-6456. [PMID: 37609783 DOI: 10.1039/d3bm01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The nucleus is considered the most important organelle in the cell as it plays a central role in controlling cell reproduction, metabolism, and the cell cycle. The successful delivery of drugs into the nucleus can achieve excellent therapeutic effects, which reveals the potential of nucleus-targeted therapy in precision medicine. However, the transportation of therapeutics into the nucleus remains a significant challenge due to various biological barriers. Herein, we summarize the recent progress in the nucleus-targeted drug delivery system (NDDS). The structures of the nucleus and nuclear envelope are first described in order to understand the mechanisms by which drugs cross the nuclear envelope. Then, various drug delivery strategies based on the mechanisms and their applications are discussed. Finally, the challenges and solutions in the field of nucleus-targeted drug delivery are raised for developing a more efficient NDDS and promoting its clinical transformation.
Collapse
Affiliation(s)
- Shaofeng Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Rumeng Cao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ling Xiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ziyi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Jiumeng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
26
|
Safiarian M, Ugboya A, Khan I, Marichev KO, Grant KB. New Insights into the Phototoxicity of Anthracene-Based Chromophores: The Chloride Salt Effect†. Chem Res Toxicol 2023; 36:1002-1020. [PMID: 37347986 PMCID: PMC10354805 DOI: 10.1021/acs.chemrestox.2c00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 06/24/2023]
Abstract
Unraveling the causes underlying polycyclic aromatic hydrocarbon phototoxicity is an essential step in understanding the harmful effects of these compounds in nature. Toward this end, we have studied the DNA interactions and photochemistry of N1-(anthracen-9-ylmethyl)ethane-1,2-diaminium dichloride in the presence and absence of NaF, KF, NaCl, KCl, NaBr, KBr, NaI, and KI (350 nm hν, pH 7.0). Exposing pUC19 plasmid to UV light in solutions containing 400 mM KCl formed significantly more direct strand breaks in DNA compared to no-salt control reactions. In contrast, NaCl increased DNA damage moderately, while the sodium(I) and potassium(I) fluoride, bromide, and iodide salts generally inhibited cleavage (I- > Br- > F-). A halide anion-induced heavy-atom effect was indicated by monitoring anthracene photodegradation and by employing the hydroxyl radical (•OH) probe hydroxyphenyl fluorescein (HPF). These studies revealed that among no-salt controls and the eight halide salts, only NaCl and KCl enabled the anthracene to photosensitize the production of high levels of DNA-damaging reactive oxygen species (ROS). Pre-irradiation of N1-(anthracen-9-ylmethyl)ethane-1,2-diaminium dichloride at 350 nm increased the amounts of chloride salt-induced •OH detected by HPF in subsequent anthracene photoactivation experiments. Taking into consideration that •OH and other highly reactive ROS are extremely short-lived, this result suggests that the pre-irradiation step might lead to the formation of oxidized anthracene photoproducts that are exceedingly redox-active. The fluorometric probes HPF and Singlet Oxygen Sensor Green revealed that KCl concentrations ranging from 150 to 400 mM and from 100 to 400 mM, respectively, enhanced N1-(anthracen-9-ylmethyl)ethane-1,2-diaminium dichloride photosensitized •OH and singlet oxygen (1O2) production over no-salt controls. Considering the relatively high levels of Na+, K+, and Cl- ions that exist in the environment and in living organisms, our findings may be relevant to the phototoxic effects exhibited by anthracenes and other polycyclic hydrocarbons in vivo.
Collapse
Affiliation(s)
| | | | - Imran Khan
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kostiantyn O. Marichev
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kathryn B. Grant
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
27
|
Ishchenko AA, Syniugina AT. Structure and Photosensitaizer Ability of Polymethine Dyes in Photodynamic Therapy: A Review. THEOR EXP CHEM+ 2023. [DOI: 10.1007/s11237-023-09754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
28
|
Yang CR, Lin YS, Wu RS, Lin CJ, Chu HW, Huang CC, Anand A, Unnikrishnan B, Chang HT. Dual-emissive carbonized polymer dots for the ratiometric fluorescence imaging of singlet oxygen in living cells. J Colloid Interface Sci 2023; 634:575-585. [PMID: 36549206 DOI: 10.1016/j.jcis.2022.12.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Singlet oxygen (1O2) is a type of reactive oxygen species (ROS), playing a vital role in the physiological and pathophysiological processes. Specific probes for monitoring intracellular 1O2 still remain challenging. In this study, we develop a ratiometric fluorescent probe for the real-time intracellular detection of 1O2 using o-phenylenediamine-derived carbonized polymer dots (o-PD CPDs). The o-PD CPDs possessing dual-excitation-emission properties (blue and yellow fluorescence) were successfully synthesized in a two-phase system (water/acetonitrile) using an ionic liquid tetrabutylammonium hexafluorophosphate as a supporting electrolyte through the electrolysis of o-PD. The o-PD CPDs can act as a photosensitizer to produce 1O2 upon white LED irradiation, in turn, the generated 1O2 selectively quenches the yellow emission of the o-PD CPDs. This quenching behavior is ascribed to the specific cycloaddition reaction between 1O2 and alkene groups in the polymer scaffolds on o-PD CPDs. The interior carbon core can be a reliable internal standard since its blue fluorescence intensity remains unchanged in the presence of 1O2. The ratiometric response of o-PD CPDs is selective toward 1O2 against other ROS species. The developed o-PD CPDs have been successfully applied to monitor the 1O2 level in the intracellular environment. Furthermore, in the inflammatory neutrophil cell model, o-PD CPDs can also detect the 1O2 and other ROS species such as hypochlorous acid after phorbol 12-myristate 13-acetate (PMA)-induced inflammation. Through the dual-channel fluorescence imaging, the ratiometric response of o-PD CPDs shows great potential for detecting endogenous and stimulating 1O2in vivo.
Collapse
Affiliation(s)
- Cheng-Ruei Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ren-Siang Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Han-Wei Chu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
29
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
30
|
Monsour CG, Tadle AB, Tafolla-Aguirre BJ, Lakshmanan N, Yoon JH, Sabio RB, Selke M. Singlet Oxygen Quenching by Resveratrol Derivatives. Photochem Photobiol 2023; 99:672-679. [PMID: 36031343 PMCID: PMC9971345 DOI: 10.1111/php.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
We investigated the singlet oxygen quenching ability of several derivatives of trans-resveratrol which have been reported to have significant antioxidant ability, including photoprotective activity. We measured the total rate constants of singlet oxygen removal (kT ) by the methylated resveratrol derivative 1,3-dimethoxy-5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene, and the partially methylated resveratrol derivatives 4-((E)-2-(3,5-dimethoxyphenyl)ethenyl)phenol (pterostilbene), 5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol and (2R,3R)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydrochromen-4-one (dihydromyricetin). A protic solvent system results in higher kT values, except for the completely methylated derivative. We also investigated the ability of trans-resveratrol to directly act as a photosensitizer (rather than via secondary photoproducts resulting from other primary photochemical reactions) for the production of singlet oxygen but found that neither resveratrol nor any of its derivatives are able to do so. We then studied the chemical reactions of the methylated derivative with singlet oxygen. The main pathway consists of a [4 + 2] cycloaddition reaction involving the trans-double bond and the para-substituted benzene ring similar to what has been observed for trans-resveratrol. Unlike trans-resveratrol, the primary singlet oxygen product undergoes a second [4 + 2] cycloaddition with singlet oxygen leading to the formation of diendoperoxides. A second reactivity pathway for both trans-resveratrol and the methylated derivative leads to the formation of aldehydes via cleavage of a transient dioxetane.
Collapse
Affiliation(s)
- Charlotte G. Monsour
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Abegail B. Tadle
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | | | - Nidhi Lakshmanan
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Jin Hyeok Yoon
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Rhemrose B. Sabio
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| |
Collapse
|
31
|
Ma XR, Lu JJ, Huang B, Lu XY, Li RT, Ye RR. Heteronuclear Ru(II)-Re(I) complexes as potential photodynamic anticancer agents with anti-metastatic and anti-angiogenic activities. J Inorg Biochem 2023; 240:112090. [PMID: 36543061 DOI: 10.1016/j.jinorgbio.2022.112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Herein, three heterometallic Ru(II)-Re(I) complexes, [Ru(NN)2(tpphz)Re(CO)3Cl](PF6)2 (N-N = 2,2'-bipyridine (bpy, in RuRe1), 1,10-phenanthroline (phen, in RuRe2), 4,7-diphenyl-1,10-phenanthroline (DIP, in RuRe3), tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2″',3″'-j]phenazine), using tpphz as a bridging ligand to connect Ru(II) polypyridyl moiety and Re(I) tricarbonyl moiety were designed and synthesized. Cytotoxicity tests revealed that RuRe1-3 exhibited high phototoxicities against several cancer cell lines tested, with IC50 values ranging from 0.8 to 6.8 μM. Notably, RuRe2 exhibited the most significant increase in cytotoxicity against human prostate cancer (PC3) cells under light (450 nm) irradiation, with phototoxicity index (PI) value increasing by >112.3-fold. Further mechanistic studies of RuRe2 revealed that RuRe2-mediated PDT could induce tumor cell apoptosis through the mitochondrial pathway. Moreover, RuRe2-mediated PDT could inhibit PC3 cell scratch healing and reduce the expression levels of matrix metalloproteinases 2 (MMP-2), matrix metalloproteinases 9 (MMP-9) and vascular endothelial growth factor receptor VEGFR2. Finally, angiogenic activity assays performed in human umbilical vein endothelial cells (HUVECs) showed that RuRe2 exerted an anti-angiogenesis effect. Our study demonstrated that RuRe1-3 were promising PDT antitumor agents with potential anti-metastatic and anti-angiogenic activities.
Collapse
Affiliation(s)
- Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China.
| | - Xing-Yun Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
32
|
Li G, Wu M, Xu Y, Wang Q, Liu J, Zhou X, Ji H, Tang Q, Gu X, Liu S, Qin Y, Wu L, Zhao Q. Recent progress in the development of singlet oxygen carriers for enhanced photodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Li Y, Wang Q, Qu X, Zhang Q, Zhang X. A metalloporphyrin and hydantoin functionalized nanozyme with synergistically enhanced bacterial inhibition. Biomater Sci 2023; 11:1785-1796. [PMID: 36648752 DOI: 10.1039/d2bm01337a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An elaborate design of multimodal antibacterial agents has been revealed to be a promising strategy to address bacterial resistance, originating from the abuse of antibiotics. In this work, we have developed a positively charged and porous material, FePPOPHydantoin, as a disinfectant via introducing 1,3-dibromo-5,5-dimethylhydantoin (Hydantoin) and porphyrin iron units into a polymer framework. The extended π conjugated networks of FePPOPHydantoin endowed the material with strong near-infrared (NIR) absorption, high density of surface catalytic active centers, superior stability, and reproducibility. FePPOPHydantoin exhibits high peroxidase mimetic and photo-Fenton activity, which can catalyze the biologically allowable maximum concentrations of hydrogen peroxide (100 μM) to produce a vast amount of hydroxyl radicals. Simultaneously, the effective electrostatic interaction between the positively charged FePPOPHydantoin and the negatively charged bacteria facilitates the binding of FePPOPHydantoin on the bacterial membrane, restricting bacteria within the destruction range of hydroxyl radicals and thus making the bacteria more vulnerable. Finally, further close contact between bacteria and Hydantoin units in FePPOPHydantoin gave the material an antibacterial efficiency of over 99.999%. Compared with chemical therapy, photo-Fenton therapy, or peroxidase catalytic therapy alone, FePPOPHydantoin had a noteworthy multi-amplified antibacterial efficiency. Furthermore, FePPOPHydantoin exhibited good biocompatibility and negligible cytotoxicity. The in vivo antibacterial therapy on the Staphylococcus aureus (S. aureus) infected mouse wound model clearly proved the effectiveness of FePPOPHydantoin for fighting bacterial infections. This work highlights opportunities for the design of nanozymes with enhanced bacteriostatic activity, providing a new avenue for the construction of novel antibiotics.
Collapse
Affiliation(s)
- Yanhong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Xinyan Qu
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
34
|
Galinari CB, Biachi TDP, Gonçalves RS, Cesar GB, Bergmann EV, Malacarne LC, Kioshima Cotica ÉS, Bonfim-Mendonça PDS, Svidzinski TIE. Photoactivity of hypericin: from natural product to antifungal application. Crit Rev Microbiol 2023; 49:38-56. [PMID: 35171731 DOI: 10.1080/1040841x.2022.2036100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Considering the multifaceted and increasing application of photodynamic therapy (PDT), in recent years the antimicrobial employment of this therapy has been highlighted, because of the antiviral, antibacterial, antiparasitic, and antifungal activities that have already been demonstrated. In this context, research focussed on antimycological action, especially for treatment of superficial infections, presents promising growth due to the characteristics of these infections that facilitate PDT application as new therapeutic options are needed in the field of medical mycology. Among the more than one hundred classes of photosensitizers the antifungal action of hypericin (Hyp) stands out due to its ability to permeate the lipid membrane and accumulate in different cytoplasmic organelles of eukaryotic cells. In this review, we aim to provide a complete overview of the origin, physicochemical characteristics, and optimal alternative drug deliveries that promote the photodynamic action of Hyp (Hyp-PDT) against fungi. Furthermore, considering the lack of a methodological consensus, we intend to compile the best strategies to guide researchers in the antifungal application of Hyp-PDT. Overall, this review provides a future perspective of new studies and clinical possibilities for the advances of such a technique in the treatment of mycoses in humans.
Collapse
Affiliation(s)
- Camila Barros Galinari
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Tiago de Paula Biachi
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lu D, Wang H, Feng C, Bai T, Xu B, Wei Y, Shen L, Lin Q. Spin-Coating-Based Facile Annular Photodynamic Intraocular Lens Fabrication for Efficient and Safer Posterior Capsular Opacification Prevention. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48341-48355. [PMID: 36255103 DOI: 10.1021/acsami.2c09612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Posterior capsular opacification (PCO) is the most common complication after cataract surgery, which is primarily caused by the proliferation of the residual lens epithelial cells (LECs) in the lens capsule. Previous studies have demonstrated that a drug-eluting intraocular lens (IOL), aimed to in situ eliminate LECs, are an effective and promising way to prevent PCO. However, because of the potential toxicities of the antiproliferative drugs to the adjacent tissues, the safety of such drug-eluting IOLs is still a highly important issue to be solved. In this investigation, a facile photodynamic coating-modified IOL was developed for effective and safer PCO prevention. An annular poly(lactide-co-glycolic acid) (PLGA) coating loaded with photosensitizer chlorin e6 (Ce6) was prepared by a spin-coating technique. The optical property investigations showed that the Ce6@PLGA coating was particularly suitable for the IOL surface modification. The in vitro cell culture investigation showed that Ce6@PLGA coating-modified IOLs effectively eliminated LECs when treated with light illumination, whereas it appeared to have good cytocompatibility without irradiation. The investigation of the cell elimination mechanism showed that the apoptosis of HLECs may be associated with the cytomembrane disruption induced by ROS, which is generated by the photodynamic coating during light illumination. The in vivo implantation experiments confirmed the desired PCO prevention effect, as well as the safety to and biocompatibility with the surrounding tissues. Thus, the facile Ce6@PLGA coating will provide an effective yet safe alternative of IOL surface modification for PCO prevention.
Collapse
Affiliation(s)
- Duoduo Lu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Hui Wang
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Chulei Feng
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Ting Bai
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Baoqi Xu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Youfei Wei
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Liangliang Shen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| |
Collapse
|
36
|
Teeuwen PCP, Melissari Z, Senge MO, Williams RM. Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers. Molecules 2022; 27:molecules27206967. [PMID: 36296559 PMCID: PMC9610856 DOI: 10.3390/molecules27206967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Within this work, we review the metal coordination effect on the photophysics of metal dipyrrinato complexes. Dipyrrinato complexes are promising candidates in the search for alternative transition metal photosensitizers for application in photodynamic therapy (PDT). These complexes can be activated by irradiation with light of a specific wavelength, after which, cytotoxic reactive oxygen species (ROS) are generated. The metal coordination allows for the use of the heavy atom effect, which can enhance the triplet generation necessary for generation of ROS. Additionally, the flexibility of these complexes for metal ions, substitutions and ligands allows the possibility to tune their photophysical properties. A general overview of the mechanism of photodynamic therapy and the properties of the triplet photosensitizers is given, followed by further details of dipyrrinato complexes described in the literature that show relevance as photosensitizers for PDT. In particular, the photophysical properties of Re(I), Ru(II), Rh(III), Ir(III), Zn(II), Pd(II), Pt(II), Ni(II), Cu(II), Ga(III), In(III) and Al(III) dipyrrinato complexes are discussed. The potential for future development in the field of (dipyrrinato)metal complexes is addressed, and several new research topics are suggested throughout this work. We propose that significant advances could be made for heteroleptic bis(dipyrrinato)zinc(II) and homoleptic bis(dipyrrinato)palladium(II) complexes and their application as photosensitizers for PDT.
Collapse
Affiliation(s)
- Paula C. P. Teeuwen
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Zoi Melissari
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin St James’s Hospital, D08 RX0X Dublin, Ireland
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin St James’s Hospital, D08 RX0X Dublin, Ireland
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Lichtenberg-Str. 2a, 85748 Garching, Germany
- Correspondence: (M.O.S.); (R.M.W.)
| | - René M. Williams
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
- Correspondence: (M.O.S.); (R.M.W.)
| |
Collapse
|
37
|
Choi J, Sun IC, Sook Hwang H, Yeol Yoon H, Kim K. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Adv Drug Deliv Rev 2022; 186:114344. [PMID: 35580813 DOI: 10.1016/j.addr.2022.114344] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Photodynamic nanomedicines have significantly enhanced the therapeutic efficacy of photosensitizers (PSs) by overcoming critical limitations of PSs such as poor water solubility and low tumor accumulation. Furthermore, functional photodynamic nanomedicines have enabled overcoming oxygen depletion during photodynamic therapy (PDT) and tissue light penetration limitation by supplying oxygen or upconverting light in targeted tumor tissues, resulting in providing the potential to overcome biological therapeutic barriers of PDT. Nevertheless, their localized therapeutic effects still remain a huddle for the effective treatment of metastatic- or recurrent tumors. Recently, newly designed photodynamic nanomedicines and their combination chemo- or immune checkpoint inhibitor therapy enable the systemic treatment of various metastatic tumors by eliciting antitumor immune responses via immunogenic cell death (ICD). This review introduces recent advances in photodynamic nanomedicines and their applications, focusing on overcoming current limitations. Finally, the challenges and future perspectives of the clinical translation of photodynamic nanomedicines in cancer PDT are discussed.
Collapse
Affiliation(s)
- Jiwoong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
38
|
Wang Y, Xu Y, Guo X, Wang L, Zeng J, Qiu H, Tan Y, Chen D, Zhao H, Gu Y. Enhanced antimicrobial activity through the combination of antimicrobial photodynamic therapy and low-frequency ultrasonic irradiation. Adv Drug Deliv Rev 2022; 183:114168. [PMID: 35189265 DOI: 10.1016/j.addr.2022.114168] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
The rapid increase of antibiotic resistance in pathogenic microorganisms has become one of the most severe threats to human health. Antimicrobial photodynamic therapy (aPDT), a light-based regimen, has offered a compelling nonpharmacological alternative to conventional antibiotics. The activity of aPDT is based on cytotoxic effect of reactive oxygen species (ROS), which are generated through the photosensitized reaction between photon, oxygen and photosensitizer. However, limited by the penetration of light and photosensitizers in human tissues and/or the infiltration of oxygen and photosensitizers in biofilms, the eradication of deeply located or biofilm-associated infections by aPDT remains challenging. Ultrasound irradiation bears a deeper penetration in human tissues than light and, sequentially, can promote drug delivery through cavitation effect. As such, the combination of ultrasound and aPDT represents a potent antimicrobial strategy. In this review, we summarized the recent progresses in the area of the combination therapy using ultrasound and aPDT, and discussed the potential mechanisms underlying enhanced antimicrobial effect by this combination therapy. The future research directions are also highlighted.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yixuan Xu
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xianghuan Guo
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Lei Wang
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jing Zeng
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yizhou Tan
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Defu Chen
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Hongyou Zhao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Gu
- Department of Laser Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; Precision Laser Medical Diagnosis and Treatment Innovation Unit, Chinese Academy of Medical Sciences, Beijing 100000, China.
| |
Collapse
|
39
|
Zu Y, Wang Y, Yao H, Yan L, Yin W, Gu Z. A Copper Peroxide Fenton Nanoagent-Hydrogel as an In Situ pH-Responsive Wound Dressing for Effectively Trapping and Eliminating Bacteria. ACS APPLIED BIO MATERIALS 2022; 5:1779-1793. [PMID: 35319859 DOI: 10.1021/acsabm.2c00138] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial infection has been a great threat to wounds due to the abuse of antibiotics and drug resistance. Elaborately constructing an efficient antibacterial strategy for accelerated healing of bacteria-infected wounds is of great importance. Herein, we develop a transferrin-conjugated copper peroxide nanoparticle-hydrogel (denoted as CP@Tf-hy) wound dressing with no toxicity to mammalian cells at a test dosage. When exposed to an initial acidic wound environment, the CP@Tf-hy simultaneously displays in situ self-supplied H2O2 and pH-responsive release of Fenton catalytic copper ions accompanied by highly toxic hydroxyl radical (•OH) generation against antibiotic-resistant bacteria. Meanwhile, the positively charged CP@Tf-hy can efficiently trap and restrain negatively charged bacteria to the range of •OH destruction to greatly overcome its intrinsic disadvantages of short life and diffusion distance. Importantly, the CP@Tf-hy consumes the bacterial overexpressed antioxidant glutathione while boosting Fenton catalytic copper(I) ions to generate more •OH. The synergistic effects of the enhanced Fenton reaction, responsive copper ion release, and bacterial trapping can achieve high bacterial elimination efficacy (7 log reduction). In vivo investigations demonstrate that the porous CP@Tf-hy significantly promotes hemostasis, cell proliferation, and migration of the wound, consequently accelerating bacteria-infected wound healing. The safe, low-cost, and all-in-one CP@Tf-hy holds great prospects as an antibacterial dressing for rapid resistant bacteria-infected purulent wound healing.
Collapse
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Wang
- College of Pharmacy, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Huiqin Yao
- College of Pharmacy, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Wang Y, Yao H, Zu Y, Yin W. Biodegradable MoO x @MB incorporated hydrogel as light-activated dressing for rapid and safe bacteria eradication and wound healing. RSC Adv 2022; 12:8862-8877. [PMID: 35424847 PMCID: PMC8985166 DOI: 10.1039/d2ra00963c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Wounds infected with drug-resistant bacteria are hard to treat, which remains a serious problem in clinical practice. An innovative strategy for treating wound infections is thus imperative. Herein, we describe the construction of a nanocomposite from biocompatible poly(vinyl alcohol) (PVA)/polyethylene glycol (PEG) hydrogel loaded biodegradable MoO x nanoparticles (NPs) and photosensitizer methylene blue (MB), denoted as MoO x @MB-hy. By incorporating MoO x @MB NPs, the nanocomposite hydrogel can act as a photoactivated wound dressing for near-infrared-II 1064 nm and 660 nm laser synergetic photothermal-photodynamic therapy (PTT-PDT). The key to PTT-induced heat becomes the most controllable release of MB from MoO x @MB-hy to produce more 1O2 under 660 nm irradiation. Importantly, MoO x @MB-hy can consume glutathione (GSH) and trap bacteria nearer to the distance limit of ROS damage to achieve a self-migration-enhanced accumulation of reactive oxygen species (ROS), thereby conquering the intrinsic shortcomings of short diffusion distance and lifetime of ROS. Consequently, MoO x @MB-hy has high antibacterial efficiencies of 99.28% and 99.16% against Ampr E. coli and B. subtilis within 15 min. Moreover, the light-activated strategy can rapidly promote healing in wounds infected by drug-resistant bacteria. This work paves a way to design a novel nanocomposite hydrogel dressing for safe and highly-efficient antibacterial therapy.
Collapse
Affiliation(s)
- Yifan Wang
- College of Pharmacy, School of Basic Medicine, Ningxia Medical University Yinchuan Ningxia 750004 China
| | - Huiqin Yao
- College of Pharmacy, School of Basic Medicine, Ningxia Medical University Yinchuan Ningxia 750004 China
| | - Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, National Center for Nanoscience and Technology, Chinese Academy of Sciences Beijing 100049 China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, National Center for Nanoscience and Technology, Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
41
|
Islayem D, Fakih FB, Lee S. Comparison of Colorimetric Methods to Detect Malondialdehyde, A Biomarker of Reactive Oxygen Species. ChemistrySelect 2022. [DOI: 10.1002/slct.202103627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Deema Islayem
- Department of Biomedical Engineering Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
| | - Fatima Ba Fakih
- Department of Biomedical Engineering Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
- Healthcare Engineering Innovation Center Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
- Healthcare Engineering Innovation Center Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
- Khalifa University's Center for Biotechnology Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
| |
Collapse
|
42
|
Mogensen DJ, Etzerodt M, Ogilby PR. Photoinduced Bleaching in an Efficient Singlet Oxygen Photosensitizing Protein: Identifying a Culprit in the Flavin-Binding LOV-Based Protein SOPP3. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Shramova EI, Chumakov SP, Shipunova VO, Ryabova AV, Telegin GB, Kabashin AV, Deyev SM, Proshkina GM. Genetically encoded BRET-activated photodynamic therapy for the treatment of deep-seated tumors. LIGHT, SCIENCE & APPLICATIONS 2022; 11:38. [PMID: 35190528 PMCID: PMC8861062 DOI: 10.1038/s41377-022-00729-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 05/05/2023]
Abstract
Photodynamic therapy (PDT) is one of the most appealing photonic modalities for cancer treatment based on anticancer activity of light-induced photosensitizer-mediated reactive oxygen species (ROS), but a limited depth of light penetration into tissues does not make possible the treatment of deep-seated neoplasms and thus complicates its widespread clinical adoption. Here, we introduce the concept of genetically encoded bioluminescence resonance energy transfer (BRET)-activated PDT, which combines an internal light source and a photosensitizer (PS) in a single-genetic construct, which can be delivered to tumors seated at virtually unlimited depth and then triggered by the injection of a substrate to initiate their treatment. To illustrate the concept, we engineered genetic NanoLuc-miniSOG BRET pair, combining NanoLuc luciferase flashlight and phototoxic flavoprotein miniSOG, which generates ROS under luciferase-substrate injection. We prove the concept feasibility in mice bearing NanoLuc-miniSOG expressing tumor, followed by its elimination under the luciferase-substrate administration. Then, we demonstrate a targeted delivery of NanoLuc-miniSOG gene, via tumor-specific lentiviral particles, into a tumor, followed by its successful elimination, with tumor-growth inhibition (TGI) coefficient exceeding 67%, which confirms a great therapeutic potential of the proposed concept. In conclusion, this study provides proof-of-concept for deep-tissue "photodynamic" therapy without external light source that can be considered as an alternative for traditional PDT.
Collapse
Affiliation(s)
- Elena I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - Stepan P Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
| | - Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe shosse, Moscow, 115409, Russia
| | - Anastasiya V Ryabova
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova, 38, Moscow, 119991, Russia
| | - Georgij B Telegin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect Nauki 6, Pushchino, 142290, Russia
| | - Andrei V Kabashin
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe shosse, Moscow, 115409, Russia
- Aix Marseille University, CNRS, LP3, 163 Ave. De Luminy, Case 917, 13288, Marseille, France
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia.
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe shosse, Moscow, 115409, Russia.
| | - Galina M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow, 117997, Russia.
| |
Collapse
|
44
|
Karges J. Clinical Development of Metal Complexes as Photosensitizers for Photodynamic Therapy of Cancer. Angew Chem Int Ed Engl 2022; 61:e202112236. [PMID: 34748690 DOI: 10.1002/anie.202112236] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer has emerged over the last decades as one of the deadliest diseases in the world. Among the most commonly used techniques (i.e. surgery, immunotherapy, radiotherapy or chemotherapy), increasing attention has been devoted towards photodynamic therapy. However, the vast majority of clinically applied photosensitizers are not ideal and associated with several limitations including poor aqueous solubility, poor photostability and slow clearance from the body, causing photosensitivity. In an effort to overcome these drawbacks, much attention has been devoted towards the incorporation of a metal ion. Herein, the clinical development of metal-containing compounds including Purlytin® , Lutrin® /Antrin® , Photosens® , TOOKAD® soluble or TLD-1433 is critically reviewed.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
45
|
Karges J. Klinische Entwicklung von Metallkomplexen als Photosensibilisatoren für die photodynamische Therapie von Krebs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
46
|
Photosensitizers with Aggregation-induced Emission and Their Biomedical Applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Zhou Y, Xia W, Liu C, Ye S, Wang L, Liu R. A DNA and Mitochondria Dual-targeted Photosensitizer for Two-Photon Excited Bioimaging and Photodynamic Therapy. Biomater Sci 2022; 10:1742-1751. [DOI: 10.1039/d1bm01969d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biological substrates and organelle multi-targeted photosensitizers for ultra-efficient cancer treatment through photodynamic therapy (PDT) are highly desirable. Herein, a multiple pyridinium anchored photosensitizer containing the triphenylamine unit, TPA-2PI has...
Collapse
|
48
|
Li Y, Wang D, Wen J, Yu P, Liu J, Li J, Chu H. Chemically Grafted Nanozyme Composite Cryogels to Enhance Antibacterial and Biocompatible Performance for Bioliquid Regulation and Adaptive Bacteria Trapping. ACS NANO 2021; 15:19672-19683. [PMID: 34878257 DOI: 10.1021/acsnano.1c06983] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excessive biofluid and infection around wounds hinder wound healing. However, conventionally antibacterial wound dressings cannot simultaneously achieve effective biofluid control and intelligent infection treatment, tending to overhydrate wounds and develop drug-resistant bacteria due to the limitations of antibacterial components and material structures. The design of a nanozyme composite cryogel with interconnected macroporous structures, excellent designability, and lower chance of drug-resistance is greatly needed. Herein, Fe-MIL-88NH2 nanozyme is grafted to glycidyl methacrylate functionalized dialdehyde chitosan via Schiff base reaction, and acryloyl Pluronic 127 (PF127-DA) is used as a cross-linking agent to fabricate nanozyme composite cryogels (CSG-MX) as a wound dressing to enhance antibacterial and biocompatible performance for biofluid management and wound infection therapy. CSG-MX has great hydrophilicity, acid-enhanced positive charge, pH-responsive release, rebinding of nanozymes, and excellent peroxidase and oxidase mimicry activity (generation of •OH and O2•- radicals). Notably, due to the negative potential of bacteria, the impact of infection on pH value, and the enzyme-like activity as well as the reversible release of nanozymes influenced by pH, CSG-MX can achieve intelligently adaptive trapping and killing of bacteria. CSG-MX has enormous potential to be a next-generation wound dressing for biofluid management and bacterial infection treatment in the clinic.
Collapse
Affiliation(s)
- Yanyan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dingqian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Wen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinming Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hetao Chu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
49
|
Sun C, Wang W, Sun X, Chu W, Yang J, Dai J, Ju Y. An intrinsically thermogenic nanozyme for synergistic antibacterial therapy. Biomater Sci 2021; 9:8323-8334. [PMID: 34783326 DOI: 10.1039/d1bm01390d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infections with a high mortality rate have become serious health issues for human beings. As natural enzymes play an important role in the survival and proliferation of bacteria, effective inhibition of bacterial natural enzyme activities is important for antimicrobial therapy. Herein, a novel enzymatic antibacterial strategy, of enhancing nanozyme activity but reducing bacterial natural enzyme activity, is developed based on yolk-shell Fe2C@Fe3O4-PEG thermogenic nanozymes with highly magnetothermal properties and thermal-enhanced peroxidase-like activities. When applying an alternating magnetic field, the special yolk-shell Fe2C@Fe3O4-PEG nanozymes show a better magnetothermal effect than Fe2C (yolk) and Fe3O4 (shell) due to the increased value of their magnetic energy product, and the peroxidase-like activity of the nanozymes is further improved. Meanwhile, remarkably restrained by the enhanced magnetothermal effect from the nanozymes, typical natural enzyme activities of bacteria are detected with an inhibition rate of nearly 80%. Both in vitro and in vivo experiments exhibit superior synergistic antibacterial efficacy. The antimicrobial mechanisms are explained as the reduction of natural enzyme activities and the disruption of cell walls and membranes induced by the self-magnetothermal effect of nanozymes along with the production of abundant ˙OH radicals derived from the thermal-enhanced peroxidase-like activity of nanozymes. Overall, this work focuses on an intrinsically thermogenic nanozyme, which provides a potential platform for future synergistic antibacterial application.
Collapse
Affiliation(s)
- Caixia Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Wenqian Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaolian Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Weihua Chu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China. .,College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
50
|
Alves SR, Calori IR, Tedesco AC. Photosensitizer-based metal-organic frameworks for highly effective photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112514. [PMID: 34857293 DOI: 10.1016/j.msec.2021.112514] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) uses a photosensitizer, molecular oxygen, and visible light as an alternative clinical protocol against located malignant tumors and other diseases. More recently, PDT has been combined to immunotherapy as a promising option to treat metastatic cancer. However, previous generations of photosensitizers (PSs) revealed clinical difficulties such as long-term skin photosensitivity (first generation), the need for drug delivery vehicles (second generation), and intracellular self-aggregation (third generation), which have generated a somewhat confusing scenario in PDT approaches and evolution. Recently, metal-organic frameworks (MOFs) with exceptionally high PS loading as a building unit of MOF framework have emerged as fourth-generation PS and presented outstanding outcomes under pre-clinical studies. For PS-based MOFs, the inorganic building unit (metal ions/clusters) plays an important role as a coadjuvant in PDT to alleviate hypoxia, to decrease antioxidant species, to yield ROS, or to act as a contrast agent for imaging-guided therapy. In this review, we intend to carry out a broad update on the recent history and the characteristics of PS-based MOFs from basic chemistry to the structure relationship with biological application in PDT. The details and variables that result in different photophysics, size, and morphology, are discussed. Also, we present an overview of the achievements on the pre-clinical assays in combination with other strategies, including alleviating hypoxia in solid tumors, chemotherapy, and the most recent immunotherapy for cancer.
Collapse
Affiliation(s)
- Samara Rodrigues Alves
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|