1
|
Semeniak D, Cruz DF, Chilkoti A, Mikkelsen MH. Plasmonic Fluorescence Enhancement in Diagnostics for Clinical Tests at Point-of-Care: A Review of Recent Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107986. [PMID: 35332957 PMCID: PMC9986847 DOI: 10.1002/adma.202107986] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/26/2022] [Indexed: 05/31/2023]
Abstract
Fluorescence-based biosensors have widely been used in the life-sciences and biomedical applications due to their low limit of detection and a diverse selection of fluorophores that enable simultaneous measurements of multiple biomarkers. Recent research effort has been made to implement fluorescent biosensors into the exploding field of point-of-care testing (POCT), which uses cost-effective strategies for rapid and affordable diagnostic testing. However, fluorescence-based assays often suffer from their feeble signal at low analyte concentrations, which often requires sophisticated, costly, and bulky instrumentation to maintain high detection sensitivity. Metal- and metal oxide-based nanostructures offer a simple solution to increase the output signal from fluorescent biosensors due to the generation of high field enhancements close to a metal or metal oxide surface, which has been shown to improve the excitation rate, quantum yield, photostability, and radiation pattern of fluorophores. This article provides an overview of existing biosensors that employ various strategies for fluorescence enhancement via nanostructures and have demonstrated the potential for use as POCT. Biosensors using nanostructures such as planar substrates, freestanding nanoparticles, and metal-dielectric-metal nanocavities are discussed with an emphasis placed on technologies that have shown promise towards POCT applications without the need for centralized laboratories.
Collapse
Affiliation(s)
- Daria Semeniak
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Daniela F Cruz
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Maiken H Mikkelsen
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
2
|
Uzawa H, Kondo S, Nagatsuka T, Miyaguchi H, Seto Y, Oshita A, Dohi H, Nishida Y, Saito M, Tamiya E. Assembly of Glycochips with Mammalian GSLs Mimetics toward the On-site Detection of Biological Toxins. ACS OMEGA 2021; 6:32597-32606. [PMID: 34901608 PMCID: PMC8655786 DOI: 10.1021/acsomega.1c04154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 05/09/2023]
Abstract
According to our previously proposed scheme, each of three kinds of glycosphingolipid (GSL) derivatives, that is, lactosyl ceramide [Lac-Cer (1)] and gangliosides [GM1-Cer (2) and GT1b-Cer (3)], was installed onto the glass surface modified with Au nanoparticles. In the present study, we tried to apply microwave irradiation to promote their installing reactions. Otherwise, this procedure takes a lot of time as long as a conventional self-assembled monolayer (SAM) technique is applied. Using an advanced microwave reactor capable of adjusting ambient temperatures within a desired range, various GSL glycochips were prepared from the derivatives (1)-(3) under different microwave irradiation conditions. The overall assembling process was programed with an IC controller to finish in 1 h, and the derived GSL glycochips were evaluated in the analysis of three kinds of biological toxins [a Ricinus agglutinin (RCA120), botulinum toxin (BTX), and cholera toxin (CTX)] using a localized surface plasmon resonance (LSPR) biosensor. In the LSPR analysis, most of the irradiated GSL chips showed an enhanced response to the targeting toxin when they were irradiated under optimal temperature conditions. Lac-Cer chips showed the highest response to RCA120 (an agglutinin with β-D-Gal specificity) when the microwave irradiation was conducted at 30-35 °C. Compared to our former Lac-Cer glycochips with the conventional SAM condition, their response was enhanced by 3.6 times. Analogously, GT1b chips gained an approximately 4.1 times enhancement in their response to botulinum type C toxin (BTX/C) when the irradiation was conducted around at 45-60 °C. In the LSPR evaluation of the GM1-Cer glycochips using CTX, an optimal condition also appeared at around 30-35 °C. On the other hand, the microwave irradiation did not lead to a notable increase compared to the former GM1-Cer chips derived with the SAM technique. Judging from these experimental results, the microwave irradiation effectively promotes the installing process for all the three kinds of the GSL derivatives, while the optimal thermal condition becomes different from each other. Many bacterial and botanic proteinous toxins are composed of such carbohydrate binding domains or subunits that can discriminate both the key epitope structure and the dimension of glycoconjugates on the host cell surface. It is assumed that the optimal irradiation and thermal conditions are required to array these semi-synthetic GSL derivatives on the Au nanoparticles in a proper density and geometry for tight adhesion with each of the biological toxins.
Collapse
Affiliation(s)
- Hirotaka Uzawa
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Satoshi Kondo
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takehiro Nagatsuka
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hajime Miyaguchi
- National
Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Yasuo Seto
- National
Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Aguri Oshita
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Hirofumi Dohi
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Yoshihiro Nishida
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Masato Saito
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Tamiya
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Sultangaziyev A, Bukasov R. Review: Applications of surface-enhanced fluorescence (SEF) spectroscopy in bio-detection and biosensing. SENSING AND BIO-SENSING RESEARCH 2020; 30:100382. [PMID: 33101976 PMCID: PMC7566769 DOI: 10.1016/j.sbsr.2020.100382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/05/2022] Open
Abstract
Surface-enhanced fluorescence (SEF) is rapidly becoming one of the main spectroscopic techniques for the detection of a variety of biomolecules and biomarkers. The main reasons for this trend are the high sensitivity and selectivity, robustness, and speed of this analytical method. Each year, the number of applications that utilize this phenomenon increases and with each such work, the complexity and novelty of the used substrates, procedures, and analytes rises. To obtain a clearer view of this phenomenon and research area, we decided to combine 76 valuable research articles from a variety of different research groups into this mini-review. We present and describe these works concisely and clearly, with a particular interest in the quantitative parameters of the experiment. These sources are classified according to the nature of the analyte, on the contrary to most reviews, which sort them by substrate nature. This point of view gives us insight into the development of this research area and the consequent increase in the complexity of the analyte nature. Moreover, this type of sorting can show possible future routes for the expansion of this research area. Along with the analytes, we can also pay attention to the substrates used for each situation and how the development of substrates affects the direction of research and subsequently, the choice of an analyte. About 108 sources and several interesting trends in the SEF research area over the past 25 years are discussed in this mini-review.
Collapse
Affiliation(s)
| | - Rostislav Bukasov
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
4
|
Lucas E, Knoblauch R, Combs-Bosse M, Broedel SE, Geddes CD. Low-concentration trypsin detection from a metal-enhanced fluorescence (MEF) platform: Towards the development of ultra-sensitive and rapid detection of proteolytic enzymes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117739. [PMID: 31753644 DOI: 10.1016/j.saa.2019.117739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 05/29/2023]
Abstract
Proteolytic enzymes, which serve to degrade proteins to their amino acid building blocks, provide a distinct challenge for both diagnostics and biological research fields. Due to their ubiquitous presence in a wide variety of organisms and their involvement in disease, proteases have been identified as biomarkers for various conditions. Additionally, low-levels of proteases may interfere with biological investigation, as contamination with these enzymes can physically alter the protein of interest to researchers, resulting in protein concentration loss or subtler polypeptide clipping that leads to a loss of functionality. Low levels of proteolytic degradation also reduce the shelf-life of commercially important proteins. Many detection platforms have been developed to achieve low-concentration or low-activity detection of proteases, yet many suffer from limitations in analysis time, label stability, and ultimately sensitivity. Herein we demonstrate the potential utility of fluorescein derivatives as fluorescent labels in a new, turn-off enzymatic assay based on the principles of metal-enhanced fluorescence (MEF). For fluorescein sodium salt alone on nano-slivered 96-well plates, or Quanta Plates™, we report up to 11,000x enhancement for fluorophores within the effective coupling or enhancement volume region, defined as ~100 nm from the silver surface. We also report a 9% coefficient of variation, and detection on the picomolar concentration scale. Further, we demonstrate the use of fluorescein isothiocyanate-labeled YebF protein as a coating layer for a MEF-based, Quanta Plate™ enzymatic activity assay using trypsin as the model enzyme. From this MEF assay we achieve a detection limit of ~1.89 ng of enzyme (2.8 mBAEE activity units) which corresponds to a minimum fluorescence signal decrease of 10%. The relative success of this MEF assay sets the foundation for further development and the tuning of MEF platforms for proteolytic enzyme sensing not just for trypsin, but other proteases as well. In addition, we discuss the future development of ultra-fast detection of proteases via microwave-accelerated MEF (MAMEF) detection technologies.
Collapse
Affiliation(s)
- Eric Lucas
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 701 East Pratt Street, Baltimore, MD, 21202, USA
| | - Rachael Knoblauch
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 701 East Pratt Street, Baltimore, MD, 21202, USA
| | - Mandie Combs-Bosse
- Athena Environmental Sciences, Inc., Bwtech@UMBC South, 1450 S Rolling Rd, Baltimore, MD, 21227, USA
| | - Sheldon E Broedel
- Athena Environmental Sciences, Inc., Bwtech@UMBC South, 1450 S Rolling Rd, Baltimore, MD, 21227, USA
| | - Chris D Geddes
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 701 East Pratt Street, Baltimore, MD, 21202, USA.
| |
Collapse
|
5
|
Santaus TM, Greenberg K, Suri P, Geddes CD. Elucidation of a non-thermal mechanism for DNA/RNA fragmentation and protein degradation when using Lyse-It. PLoS One 2019; 14:e0225475. [PMID: 31790434 PMCID: PMC6886747 DOI: 10.1371/journal.pone.0225475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/05/2019] [Indexed: 01/11/2023] Open
Abstract
Rapid sample preparation is one of the leading bottlenecks to low-cost and efficient sample component detection. To overcome this setback, a technology known as Lyse-It has been developed to rapidly (less than 60 seconds) lyse Gram-positive and-negative bacteria alike, while simultaneously fragmenting DNA/RNA and proteins into tunable sizes. This technology has been used with a variety of organisms, but the underlying mechanism behind how the technology actually works to fragment DNA/RNA and proteins has hitherto been studied. It is generally understood how temperature affects cellular lysing, but for DNA/RNA and protein degradation, the temperature and amount of energy introduced by microwave irradiation of the sample, cannot explain the degradation of the biomolecules to the extent that was being observed. Thus, an investigation into the microwave generation of reactive oxygen species, in particular singlet oxygen, hydroxyl radicals, and superoxide anion radicals, was undertaken. Herein, we probe one aspect, the generation of reactive oxygen species (ROS), which is thought to contribute to a non-thermal mechanism behind biomolecule fragmentation with the Lyse-It technology. By utilizing off/on (Photoinduced electron transfer) PET fluorescent-based probes highly specific for reactive oxygen species, it was found that as oxygen concentration in the sample and/or microwave irradiation power increases, more reactive oxygen species are generated and ultimately, more oxidation and biomolecule fragmentation occurs within the microwave cavity.
Collapse
Affiliation(s)
- Tonya M. Santaus
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Ken Greenberg
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Prabhdeep Suri
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Chris D. Geddes
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
6
|
Bonyi E, Constance E, Kukoyi Z, Jafar S, Aslan K. Rapid Sensing of Biological and Environmental Analytes Using Microwave-Accelerated Bioassays and a MATLAB Application. NANO BIOMEDICINE AND ENGINEERING 2019; 11:111-123. [PMID: 31565490 PMCID: PMC6764453 DOI: 10.5101/nbe.v11i2.p111-123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report a method for rapid detection and analysis of biological and environmental analytes by microwave-accelerated bioassays (MABs) and a novel MATLAB-based image processing of colorimetric signals. In this regard, colorimetric bioassays for histidine-rich protein 2 (HRP-2) and microcystin-leucine arginine (MC-LR) toxin were carried out using MABs and without microwave heating (i.e, gold standard bioassays). Our MATLAB-based detection method is based on the direct correlation of color intensity of a solution calculated from images captured with a smartphone with the concentration of the biomolecule of interest using a MATLAB code developed in-house. We demonstrated that our MATLAB-based detection method can yield bioassay sensitivity comparable to the colorimetric gold standard tool, i.e., UV-Visible spectroscopy. In addition, colorimetric bioassay time for the HRP-2 assay (used in malaria diagnosis) and colorimetric MC-LR bioassay (used in MCLR toxin diagnosis) was reduced from up to 2 hours at room temperature without microwave heating to 15 minutes using the MABs technique.
Collapse
Affiliation(s)
- Enock Bonyi
- Department of Civil Engineering, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, USA
| | - Edward Constance
- Department of Civil Engineering, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, USA
| | - Zeenat Kukoyi
- Department of Civil Engineering, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, USA
| | - Sanjeeda Jafar
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, USA
| | - Kadir Aslan
- Department of Civil Engineering, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, USA
| |
Collapse
|
7
|
Santaus TM, Li S, Ladd P, Harvey A, Cole S, Stine OC, Geddes CD. Rapid sample preparation with Lyse-It® for Listeria monocytogenes and Vibrio cholerae. PLoS One 2018; 13:e0201070. [PMID: 30044836 PMCID: PMC6059484 DOI: 10.1371/journal.pone.0201070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
Sample preparation is a leading bottleneck in rapid detection of pathogenic bacteria. Here, we use Lyse-It® for bacterial cellular lysis, genomic DNA fragmentation, and protein release and degradation for both Listeria monocytogenes and Vibrio cholerae. The concept of Lyse-It® employs a conventional microwave and Lyse-It® slides for intensely focused microwave irradiation onto the sample. High microwave power and a <60 second irradiation time allow for rapid cellular lysis and subsequent intracellular component release. The pathogenic bacteria are identified by quantitative polymerase chain reaction (qPCR), which subsequently demonstrates the viability of DNA for amplification post microwave-induced lysis. Intracellular component release, degradation, and detection of L. monocytogenes and V. cholerae has been performed and shown in this paper. These results demonstrate a rapid, low-cost, and efficient way for bacterial sample preparation on both food and water-borne Gram-positive and -negative organisms alike.
Collapse
Affiliation(s)
- Tonya M. Santaus
- University of Maryland, Baltimore County, Chemistry and Biochemistry Department, Baltimore, MD, United States of America
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, MD, United States of America
| | - Shan Li
- University of Maryland School of Medicine, Epidemiology and Public Health Department, Baltimore, MD, United States of America
| | - Paula Ladd
- University of Maryland, Baltimore County, Chemistry and Biochemistry Department, Baltimore, MD, United States of America
| | - Amanda Harvey
- University of Maryland, Baltimore County, Chemistry and Biochemistry Department, Baltimore, MD, United States of America
| | - Shannon Cole
- University of Maryland, Baltimore County, Chemistry and Biochemistry Department, Baltimore, MD, United States of America
| | - O. Colin Stine
- University of Maryland School of Medicine, Epidemiology and Public Health Department, Baltimore, MD, United States of America
| | - Chris D. Geddes
- University of Maryland, Baltimore County, Chemistry and Biochemistry Department, Baltimore, MD, United States of America
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
8
|
Melendez JH, Santaus TM, Brinsley G, Kiang D, Mali B, Hardick J, Gaydos CA, Geddes CD. Microwave-accelerated method for ultra-rapid extraction of Neisseria gonorrhoeae DNA for downstream detection. Anal Biochem 2016; 510:33-40. [PMID: 27325503 DOI: 10.1016/j.ab.2016.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023]
Abstract
Nucleic acid-based detection of gonorrhea infections typically require a two-step process involving isolation of the nucleic acid, followed by detection of the genomic target often involving polymerase chain reaction (PCR)-based approaches. In an effort to improve on current detection approaches, we have developed a unique two-step microwave-accelerated approach for rapid extraction and detection of Neisseria gonorrhoeae (gonorrhea, GC) DNA. Our approach is based on the use of highly focused microwave radiation to rapidly lyse bacterial cells, release, and subsequently fragment microbial DNA. The DNA target is then detected by a process known as microwave-accelerated metal-enhanced fluorescence (MAMEF), an ultra-sensitive direct DNA detection analytical technique. In the current study, we show that highly focused microwaves at 2.45 GHz, using 12.3-mm gold film equilateral triangles, are able to rapidly lyse both bacteria cells and fragment DNA in a time- and microwave power-dependent manner. Detection of the extracted DNA can be performed by MAMEF, without the need for DNA amplification, in less than 10 min total time or by other PCR-based approaches. Collectively, the use of a microwave-accelerated method for the release and detection of DNA represents a significant step forward toward the development of a point-of-care (POC) platform for detection of gonorrhea infections.
Collapse
Affiliation(s)
- Johan H Melendez
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Tonya M Santaus
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Gregory Brinsley
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Daniel Kiang
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Buddha Mali
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Justin Hardick
- The Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | - Chris D Geddes
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21202, USA.
| |
Collapse
|
9
|
Boyd MA, Tennant SM, Melendez JH, Toema D, Galen JE, Geddes CD, Levine MM. Adaptation of red blood cell lysis represents a fundamental breakthrough that improves the sensitivity of Salmonella detection in blood. J Appl Microbiol 2015; 118:1199-209. [PMID: 25630831 PMCID: PMC4418380 DOI: 10.1111/jam.12769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 11/29/2022]
Abstract
AIMS Isolation of Salmonella Typhi from blood culture is the standard diagnostic for confirming typhoid fever but it is unavailable in many developing countries. We previously described a Microwave Accelerated Metal Enhanced Fluorescence (MAMEF)-based assay to detect Salmonella in medium. Attempts to detect Salmonella in blood were unsuccessful, presumably due to the interference of erythrocytes. The objective of this study was to evaluate various blood treatment methods that could be used prior to PCR, real-time PCR or MAMEF to increase sensitivity of detection of Salmonella. METHODS AND RESULTS We tested ammonium chloride and erythrocyte lysis buffer, water, Lymphocyte Separation Medium, BD Vacutainer(®) CPT(™) Tubes and dextran. Erythrocyte lysis buffer was the best isolation method as it is fast, inexpensive and works with either fresh or stored blood. The sensitivity of PCR- and real-time PCR detection of Salmonella in spiked blood was improved when whole blood was first lysed using erythrocyte lysis buffer prior to DNA extraction. Removal of erythrocytes and clotting factors also enabled reproducible lysis of Salmonella and fragmentation of DNA, which are necessary for MAMEF sensing. CONCLUSIONS Use of the erythrocyte lysis procedure prior to DNA extraction has enabled improved sensitivity of Salmonella detection by PCR and real-time PCR and has allowed lysis and fragmentation of Salmonella using microwave radiation (for future detection by MAMEF). SIGNIFICANCE AND IMPACT OF THE STUDY Adaptation of the blood lysis method represents a fundamental breakthrough that improves the sensitivity of DNA-based detection of Salmonella in blood.
Collapse
Affiliation(s)
- M A Boyd
- Center for Vaccine Development, University of Maryland Baltimore, Baltimore, MD, USA; Department of Pediatrics, University of Maryland Baltimore, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Extraction and sensitive detection of toxins A and B from the human pathogen Clostridium difficile in 40 seconds using microwave-accelerated metal-enhanced fluorescence. PLoS One 2014; 9:e104334. [PMID: 25162622 PMCID: PMC4146460 DOI: 10.1371/journal.pone.0104334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is the primary cause of antibiotic associated diarrhea in humans and is a significant cause of morbidity and mortality. Thus the rapid and accurate identification of this pathogen in clinical samples, such as feces, is a key step in reducing the devastating impact of this disease. The bacterium produces two toxins, A and B, which are thought to be responsible for the majority of the pathology associated with the disease, although the relative contribution of each is currently a subject of debate. For this reason we have developed a rapid detection assay based on microwave-accelerated metal-enhanced fluorescence which is capable of detecting the presence of 10 bacteria in unprocessed human feces within 40 seconds. These promising results suggest that this prototype biosensor has the potential to be developed into a rapid, point of care, real time diagnostic assay for C. difficile.
Collapse
|
11
|
Yao J, Yang M, Duan Y. Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem Rev 2014; 114:6130-78. [DOI: 10.1021/cr200359p] [Citation(s) in RCA: 592] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Yao
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mei Yang
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yixiang Duan
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Research
Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
12
|
Bauch M, Toma K, Toma M, Zhang Q, Dostalek J. Plasmon-Enhanced Fluorescence Biosensors: a Review. PLASMONICS (NORWELL, MASS.) 2014; 9:781-799. [PMID: 27330521 PMCID: PMC4846700 DOI: 10.1007/s11468-013-9660-5] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 05/18/2023]
Abstract
Surfaces of metallic films and metallic nanoparticles can strongly confine electromagnetic field through its coupling to propagating or localized surface plasmons. This interaction is associated with large enhancement of the field intensity and local optical density of states which provides means to increase excitation rate, raise quantum yield, and control far field angular distribution of fluorescence light emitted by organic dyes and quantum dots. Such emitters are commonly used as labels in assays for detection of chemical and biological species. Their interaction with surface plasmons allows amplifying fluorescence signal (brightness) that accompanies molecular binding events by several orders of magnitude. In conjunction with interfacial architectures for the specific capture of target analyte on a metallic surface, plasmon-enhanced fluorescence (PEF) that is also referred to as metal-enhanced fluorescence (MEF) represents an attractive method for shortening detection times and increasing sensitivity of various fluorescence-based analytical technologies. This review provides an introduction to fundamentals of PEF, illustrates current developments in design of metallic nanostructures for efficient fluorescence signal amplification that utilizes propagating and localized surface plasmons, and summarizes current implementations to biosensors for detection of trace amounts of biomarkers, toxins, and pathogens that are relevant to medical diagnostics and food control.
Collapse
Affiliation(s)
- Martin Bauch
- AIT-Austrian Institute of Technology GmbH, Muthgasse 11, Vienna, 1190 Austria
| | - Koji Toma
- AIT-Austrian Institute of Technology GmbH, Muthgasse 11, Vienna, 1190 Austria
- Present Address: Forschungszentrum Jülich GmbH, Jülich, 52425 Germany
| | - Mana Toma
- AIT-Austrian Institute of Technology GmbH, Muthgasse 11, Vienna, 1190 Austria
- Present Address: Forschungszentrum Jülich GmbH, Jülich, 52425 Germany
| | - Qingwen Zhang
- AIT-Austrian Institute of Technology GmbH, Muthgasse 11, Vienna, 1190 Austria
- Present Address: Department of Physical Chemistry, School of Chemistry, BIT-Beijing Institute of Technology, Beijing, 100081 China
| | - Jakub Dostalek
- AIT-Austrian Institute of Technology GmbH, Muthgasse 11, Vienna, 1190 Austria
| |
Collapse
|
13
|
Sugawa K, Tamura T, Tahara H, Yamaguchi D, Akiyama T, Otsuki J, Kusaka Y, Fukuda N, Ushijima H. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects. ACS NANO 2013; 7:9997-10010. [PMID: 24090528 DOI: 10.1021/nn403925d] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ordered arrays of copper nanostructures were fabricated and modified with porphyrin molecules in order to evaluate fluorescence enhancement due to the localized surface plasmon resonance. The nanostructures were prepared by thermally depositing copper on the upper hemispheres of two-dimensional silica colloidal crystals. The wavelength at which the surface plasmon resonance of the nanostructures was generated was tuned to a longer wavelength than the interband transition region of copper (>590 nm) by controlling the diameter of the underlying silica particles. Immobilization of porphyrin monolayers onto the nanostructures was achieved via self-assembly of 16-mercaptohexadecanoic acid, which also suppressed the oxidation of the copper surface. The maximum fluorescence enhancement of porphyrin by a factor of 89.2 was achieved as compared with that on a planar Cu plate (CuP) due to the generation of the surface plasmon resonance. Furthermore, it was found that while the fluorescence from the porphyrin was quenched within the interband transition region, it was efficiently enhanced at longer wavelengths. It was demonstrated that the enhancement induced by the proximity of the fluorophore to the nanostructures was enough to overcome the highly efficient quenching effects of the metal. From these results, it is speculated that the surface plasmon resonance of copper has tremendous potential for practical use as high functional plasmonic sensor and devices.
Collapse
Affiliation(s)
- Kosuke Sugawa
- Department of Materials and Applied Chemistry, College of Science Technology, Nihon University , Chiyoda, Tokyo 101-8308, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Blind evaluation of the microwave-accelerated metal-enhanced fluorescence ultrarapid and sensitive Chlamydia trachomatis test by use of clinical samples. J Clin Microbiol 2013; 51:2913-20. [PMID: 23804384 DOI: 10.1128/jcm.00980-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accurate point-of-care (POC) diagnostic tests for Chlamydia trachomatis infection are urgently needed for the rapid treatment of patients. In a blind comparative study, we evaluated microwave-accelerated metal-enhanced fluorescence (MAMEF) assays for ultrafast and sensitive detection of C. trachomatis DNA from vaginal swabs. The results of two distinct MAMEF assays were compared to those of nucleic acid amplification tests (NAATs). The first assay targeted the C. trachomatis 16S rRNA gene, and the second assay targeted the C. trachomatis cryptic plasmid. Using pure C. trachomatis, the MAMEF assays detected as few as 10 inclusion-forming units/ml of C. trachomatis in less than 9 min, including DNA extraction and detection. A total of 257 dry vaginal swabs from 245 female adolescents aged 14 to 22 years were analyzed. Swabs were eluted with water, the solutions were lysed to release and to fragment genomic DNA, and MAMEF-based DNA detection was performed. The prevalence of C. trachomatis by NAATs was 17.5%. Of the 45 samples that were C. trachomatis positive and the 212 samples that were C. trachomatis negative by NAATs, 33/45 and 197/212 were correctly identified by the MAMEF assays if both assays were required to be positive (sensitivity, 73.3%; specificity, 92.9%). Using the plasmid-based assay alone, 37/45 C. trachomatis-positive and 197/212 C. trachomatis-negative samples were detected (sensitivity, 82.2%; specificity, 92.9%). Using the 16S rRNA assay alone, 34/45 C. trachomatis-positive and 197/212 C. trachomatis-negative samples were detected (sensitivity, 75.5%; specificity, 92.9%). The overall rates of agreement with NAAT results for the individual 16S rRNA and cryptic plasmid assays were 89.5% and 91.0%, respectively. Given the sensitivity, specificity, and rapid detection of the plasmid-based assay, the plasmid-based MAMEF assay appears to be suited for clinical POC testing.
Collapse
|
15
|
Mohammed M, Aslan K. Design and Proof-of-Concept Use of a Circular PMMA Platform with 16-Well Sample Capacity for Microwave-Accelerated Bioassays. ACTA ACUST UNITED AC 2013; 5:10-19. [PMID: 24273679 DOI: 10.5101/nbe.v5i1.p20-27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We demonstrate the design and the proof-of-concept use of a new, circular poly(methyl methacrylate)-based bioassay platform (PMMA platform), which affords for the rapid processing of 16 samples at once. The circular PMMA platform (5 cm in diameter) was coated with a silver nanoparticle film to accelerate the bioassay steps by microwave heating. A model colorimetric bioassay for biotinylated albumin (using streptavidin-labeled horse radish peroxidase) was performed on the PMMA platform coated with and without silver nanoparticles (a control experiment), and at room temperature and using microwave heating. It was shown that the simulated temperature profile of the PMMA platform during microwave heating were comparable to the real-time temperature profile during actual microwave heating of the constructed PMMA platform in a commercial microwave oven. The model colorimetric bioassay for biotinylated albumin was successfully completed in ~2 min (total assay time) using microwave heating, as compared to 90 min at room temperature (total assay time), which indicates a ~45-fold decrease in assay time. Our PMMA platform design afforded for significant reduction in non-specific interactions and low background signal as compared to non-silvered PMMA surfaces when employed in a microwave-accelerated bioassay carried out in a conventional microwave cavity.
Collapse
Affiliation(s)
- Muzaffer Mohammed
- Morgan State University, Department of Chemistry, Baltimore, Maryland 21251
| | | |
Collapse
|
16
|
Abel B, Aslan K. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating. ANNALEN DER PHYSIK 2012; 524:741-750. [PMID: 23645933 PMCID: PMC3640794 DOI: 10.1002/andp.201200125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization), where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques.
Collapse
Affiliation(s)
- Biebele Abel
- Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251 USA
| | | |
Collapse
|
17
|
Lee JH, Hwang JH, Nam JM. DNA-tailored plasmonic nanoparticles for biosensing applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 5:96-109. [DOI: 10.1002/wnan.1196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Dragan AI, Albrecht MT, Pavlovic R, Keane-Myers AM, Geddes CD. Ultra-fast pg/ml anthrax toxin (protective antigen) detection assay based on microwave-accelerated metal-enhanced fluorescence. Anal Biochem 2012; 425:54-61. [DOI: 10.1016/j.ab.2012.02.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 02/07/2023]
|
19
|
Tennant SM, Zhang Y, Galen JE, Geddes CD, Levine MM. Ultra-fast and sensitive detection of non-typhoidal Salmonella using microwave-accelerated metal-enhanced fluorescence ("MAMEF"). PLoS One 2011; 6:e18700. [PMID: 21494634 PMCID: PMC3073000 DOI: 10.1371/journal.pone.0018700] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/08/2011] [Indexed: 01/11/2023] Open
Abstract
Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in <30 seconds. Furthermore the assay is sensitive and specific: it can detect oriC from Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1∶1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids).
Collapse
Affiliation(s)
- Sharon M Tennant
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
20
|
Peng HI, Miller BL. Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles. Analyst 2010; 136:436-47. [PMID: 21049107 DOI: 10.1039/c0an00636j] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The emerging field of plasmonics, the study of electromagnetic responses of metal nanostructures, has revealed many novel signal enhancing phenomena. As applied to the development of label-free optical DNA biosensors, it is now well established that plasmon-based surface enhanced spectroscopies on nanostructured metal surfaces or metal nanoparticles can markedly improve the sensitivity of optical biosensors, with some showing great promise for single molecule detection. In this review, we first summarize the basic concepts of plasmonics in metal nanostructures, as well as the characteristic optical phenomena to which plasmons give rise. We will then describe recent advances in optical DNA biosensing systems enabled by metal nanoparticle-derived plasmonic effects, including the use of surface enhanced Raman scattering (SERS), colorimetric methods, "scanometric" processes, and metal-enhanced fluorescence (MEF).
Collapse
Affiliation(s)
- Hsin-I Peng
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, RC Box 270168, Rochester, NY 14627, USA
| | | |
Collapse
|
21
|
Zhang Y, Agreda P, Kelley S, Gaydos C, Geddes CD. Development of a microwave-accelerated metal-enhanced fluorescence 40 second, <100 cfu/ml point of care assay for the detection of Chlamydia trachomatis. IEEE Trans Biomed Eng 2010; 58:781-4. [PMID: 20709634 DOI: 10.1109/tbme.2010.2066275] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An inexpensive technology to both lyse Chlamydia trachomatis (CT) and detect DNA released from CT within 40 s is demonstrated. In a microwave cavity, energy is highly focused using 100-nm gold films with "bow-tie" structures to lyse CT within 10 s. The ultrafast detection of the released DNA from less than 100 cfu/mL CT is accomplished in an additional 30 s by employing the microwave-accelerated metal-enhanced fluorescence technique. This new "release and detect" platform technology is a highly attractive alternative method for the lysing of bacteria, DNA extraction, and the fast quantification of bacteria and potentially other pathogenic species and cells as well. Our approach is a significant step forward for the development of a point of care test for CT.
Collapse
Affiliation(s)
- Yongxia Zhang
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, MD 21202, USA.
| | | | | | | | | |
Collapse
|
22
|
Aslan K, Zhang Y, Geddes CD. Sonication-assisted metal-enhanced fluorescence-based bioassays. Anal Chem 2009; 81:4713-9. [PMID: 19432434 DOI: 10.1021/ac802535s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new bioassay technique, sonication-assisted metal-enhanced fluorescence, which is based on the combined use of ultrasound waves and metal-enhanced fluorescence (MEF), is reported. In this technique, low-intensity ultrasound waves significantly reduce the bioassay time by creating a temperature gradient between the bulk and the surface, which is thought to result in a mass transport of biomolecules from the bulk to the surface. After the assay is completed in 1 min, fluorescence emission is enhanced due to the MEF phenomenon. For proof-of-concept, a model bioassay based on the interactions of biotin and fluorophore-labeled avidin was constructed on SIFs and was subsequently completed in <1 min using low-intensity ultrasound at 40 kHz. The end-point values for fluorescence emission from sonicated assays were compared to those measured from assays carried out at room temperature without sonication to confirm to accuracy of the new technique. The effect of sonication on the assay components were studied using optical absorption spectroscopy, atomic force microscopy, and fluorescence spectroscopy techniques. Real-time thermal imaging was used to measure the changes in temperature of the bioassay components during the sonication process. Fluorescence resonance energy transfer (FRET) was also employed to investigate the effect of sonication on potential surface protein denaturation and conformational changes.
Collapse
Affiliation(s)
- Kadir Aslan
- The Institute of Fluorescence, University of Maryland Biotechnology Institute, 701 East Pratt Street, Baltimore, Maryland 21202, USA
| | | | | |
Collapse
|
23
|
Zhang Y, Aslan K, Geddes CD. Voltage-Gated Metal-Enhanced Fluorescence. J Fluoresc 2009; 19:363-7. [DOI: 10.1007/s10895-009-0467-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
|
24
|
Aslan K, Geddes CD. New tools for rapid clinical and bioagent diagnostics: microwaves and plasmonic nanostructures. Analyst 2008; 133:1469-80. [PMID: 18936822 DOI: 10.1039/b808292h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this timely review, we summarize recent work on ultra-fast and sensitive bioassays based on microwave heating, and provide our current interpretation of the role of the combined use of microwave energy and plasmonic nanostructures for applications in rapid clinical and bioagent diagnostics. The incorporation of microwave heating into plasmonic nanostructure-based bioassays brings new advancements to diagnostic tests. A temperature gradient, created by the selective heating of water in the presence of plasmonic nanostructures, results in an increased mass transfer of target biomolecules towards the biorecognition partners placed on the plasmonic nanostructures, enabling diagnostic tests to be completed in less than a minute, and in some cases only a few seconds, by further microwave heating. The diagnostic tests can also be run in complex biological samples, such as human serum and whole blood.
Collapse
Affiliation(s)
- Kadir Aslan
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics, Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | | |
Collapse
|
25
|
Aslan K, Previte MJR, Zhang Y, Gallagher T, Baillie L, Geddes CD. Extraction and Detection of DNA from Bacillus anthracis Spores and the Vegetative Cells within 1 min. Anal Chem 2008; 80:4125-32. [DOI: 10.1021/ac800519r] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kadir Aslan
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics and Laboratory for Advanced Fluorescence Spectroscopy, Medical Biotechnology Center, and Biodefense Initiative, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201, and Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Cardiff, Wales U.K
| | - Michael J. R. Previte
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics and Laboratory for Advanced Fluorescence Spectroscopy, Medical Biotechnology Center, and Biodefense Initiative, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201, and Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Cardiff, Wales U.K
| | - Yongxia Zhang
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics and Laboratory for Advanced Fluorescence Spectroscopy, Medical Biotechnology Center, and Biodefense Initiative, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201, and Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Cardiff, Wales U.K
| | - Theresa Gallagher
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics and Laboratory for Advanced Fluorescence Spectroscopy, Medical Biotechnology Center, and Biodefense Initiative, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201, and Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Cardiff, Wales U.K
| | - Les Baillie
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics and Laboratory for Advanced Fluorescence Spectroscopy, Medical Biotechnology Center, and Biodefense Initiative, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201, and Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Cardiff, Wales U.K
| | - Chris D. Geddes
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics and Laboratory for Advanced Fluorescence Spectroscopy, Medical Biotechnology Center, and Biodefense Initiative, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201, and Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, Cardiff, Wales U.K
| |
Collapse
|