1
|
Amador-Hernandez JU, Guevara-Pantoja PE, Cedillo-Alcantar DF, Caballero-Robledo GA, Garcia-Cordero JL. Millifluidic valves and pumps made of tape and plastic. LAB ON A CHIP 2023; 23:4579-4591. [PMID: 37772361 DOI: 10.1039/d3lc00559c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
There is growing interest in producing micro- and milli-fluidic technologies made of thermoplastic with integrated fluidic control elements that are easy to assemble and suitable for mass production. Here, we developed millifluidic valves and pumps made of acrylic layers bonded with double-sided tape that are simple and fast to assemble. We demonstrate that a layer of pressure-sensitive adhesive (PSA) is flexible enough to be deformed at relatively low pressures. A chemical treatment deposited on specific regions of the PSA prevents it from sticking to the thermoplastic, which enabled us to create three different types of valves in normally open or closed configurations. We characterized different aspects of their performance, their operating pressures, the cut-off pressure values to open or close the valves (for different configurations and sizes), and the flow rate and volume pumped by seven different micropumps. As an application, we implemented a glucose assay with integrated pumps and valves, automatically generating glucose dilutions and reagent mixing. The ability to create polymeric microfluidic control units made with tape paves the way for their mass manufacturing.
Collapse
Affiliation(s)
- Josue U Amador-Hernandez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Pablo E Guevara-Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Diana F Cedillo-Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Gabriel A Caballero-Robledo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Jose L Garcia-Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland.
| |
Collapse
|
2
|
Werner EM, Lam BX, Hui EE. Phase-Optimized Peristaltic Pumping by Integrated Microfluidic Logic. MICROMACHINES 2022; 13:1784. [PMID: 36296137 PMCID: PMC9610095 DOI: 10.3390/mi13101784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/08/2023]
Abstract
Microfluidic droplet generation typically entails an initial stabilization period on the order of minutes, exhibiting higher variation in droplet volume until the system reaches monodisperse production. The material lost during this period can be problematic when preparing droplets from limited samples such as patient biopsies. Active droplet generation strategies such as antiphase peristaltic pumping effectively reduce stabilization time but have required off-chip control hardware that reduces system accessibility. We present a fully integrated device that employs on-chip pneumatic logic to control phase-optimized peristaltic pumping. Droplet generation stabilizes in about a second, with only one or two non-uniform droplets produced initially.
Collapse
Affiliation(s)
| | | | - Elliot E. Hui
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Mora MF, Kehl F, Tavares da Costa E, Bramall N, Willis PA. Fully Automated Microchip Electrophoresis Analyzer for Potential Life Detection Missions. Anal Chem 2020; 92:12959-12966. [DOI: 10.1021/acs.analchem.0c01628] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Maria F. Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Florian Kehl
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Eric Tavares da Costa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Nathan Bramall
- Leiden Measurement Technology LLC, 1230 Mountain View-Alviso Road Suite A, Sunnyvale, California 94089, United States
| | - Peter A. Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| |
Collapse
|
4
|
Guevara-Pantoja PE, Jiménez-Valdés RJ, García-Cordero JL, Caballero-Robledo GA. Pressure-actuated monolithic acrylic microfluidic valves and pumps. LAB ON A CHIP 2018; 18:662-669. [PMID: 29367991 DOI: 10.1039/c7lc01337j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this article, we describe a microfluidic device with embedded valves and pumps made exclusively of layers of acrylic glass. Flat acrylic sheets are carved out with a micromilling machine and bonded together by solvent bonding. The working principle of the valves is based on a thin flexible membrane (≈100 μm) machined on one acrylic sheet and actuated with pneumatic pressure. A completely closed valve resists a pressure difference of ≈17 kPa (≈2.5 psi), and when open, it can sustain flow rates of up to 100 μL s-1. Pumping is achieved by combining two valves and a pumping chamber in series, which is also based on the bending of a thin acrylic membrane. The maximum flow rate obtained with this pumping mechanism is 20 μL min-1. Acrylic is a popular rigid thermoplastic because it is inexpensive, making it ideal for mass production of disposable devices, and also because it has demonstrated compatibility with different biochemical assays. The physical and optical properties it shares with other thermoplastics could lead to this material being implemented for similar valves and pumps. As a proof-of-concept of our technology, we implemented a controlled cell-staining assay in two parallel incubation chambers integrating four valves and one pump into one device. Our monolithic acrylic valves can enable the mass production of disposable microfluidic devices that require fluid control with pressure-actuated valves and aid in the automation of biochemical assays.
Collapse
|
5
|
Pham P, Vo T, Luo X. Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics. LAB ON A CHIP 2017; 17:248-255. [PMID: 27942655 DOI: 10.1039/c6lc01362g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Membrane functionality is crucial in microfluidics for realizing operations such as filtration, separation, concentration, signaling among cells and gradient generation. Currently, common methods often sandwich commercially available membranes in multi-layer devices, or use photopolymerization or temperature-induced gelation to fabricate membrane structures in one-layer devices. Biofabrication offers an alternative to forming membrane structures with biomimetic materials and mechanisms in mild conditions. We have recently developed a biofabrication strategy to form parallel biopolymer membranes in gas-permeable polydimethylsiloxane (PDMS) microfluidic devices, which used positive pressure to dissipate air bubbles through PDMS to initiate membrane formation but required careful pressure balancing between two flows. Here, we report a technical innovation by simply placing as needed an add-on PDMS vacuum layer on PDMS microfluidic devices to dissipate air bubbles and guide the biofabrication of biopolymer membranes. Vacuuming through PDMS was simply achieved by either withdrawing a syringe or releasing a squeezed nasal aspirator. Upon vacuuming, air bubbles dissipated within minutes, membranes were effortlessly formed, and the add-on vacuum layer can be removed. Subsequent membrane growth could be robustly controlled with the flows and pH of solutions. This new process is user-friendly and has achieved a 100% success rate in more than 200 trials in membrane biofabrication.
Collapse
Affiliation(s)
- Phu Pham
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - Thanh Vo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| |
Collapse
|
6
|
Cybulski O, Jakiela S, Garstecki P. Whole Teflon valves for handling droplets. LAB ON A CHIP 2016; 16:2198-210. [PMID: 27182628 DOI: 10.1039/c6lc00375c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We propose and test a new whole-Teflon gate valve for handling droplets. The valve allows droplet plugs to pass through without disturbing them. This is possible due to the geometric design, the choice of material and lack of any pulses of flow generated by closing or opening the valve. The duct through the valve resembles a simple segment of tubing, without constrictions, change in lumen or side pockets. There are no extra sealing materials with different wettability or chemical resistance. The only material exposed to liquids is FEP Teflon, which is resistant to aggressive chemicals and fully biocompatible. The valve can be integrated into microfluidic systems: we demonstrate a complex system for culturing bacteria in hundreds of microliter droplet chemostats. The valve effectively isolates modules of the system to increase precision of operations on droplets. We verified that the valve allowed millions of droplet plugs to safely pass through, without any cross-contamination with bacteria between the droplets. The valve can be used in automating complex microfluidic systems for experiments in biochemistry, biology and organic chemistry.
Collapse
Affiliation(s)
- Olgierd Cybulski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
7
|
Gorbatsova J, Jaanus M, Vaher M, Kaljurand M. Digital microfluidics platform for interfacing solid-liquid extraction column with portable capillary electropherograph for analysis of soil amino acids. Electrophoresis 2015; 37:472-5. [DOI: 10.1002/elps.201500284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Jelena Gorbatsova
- Department of Chemistry, Faculty of Science; Tallinn University of Technology; Tallinn Estonia
| | - Martin Jaanus
- Department of Computer Control, Faculty of Information Technology; Tallinn University of Technology; Tallinn Estonia
| | - Merike Vaher
- Department of Chemistry, Faculty of Science; Tallinn University of Technology; Tallinn Estonia
| | - Mihkel Kaljurand
- Department of Chemistry, Faculty of Science; Tallinn University of Technology; Tallinn Estonia
| |
Collapse
|
8
|
Willis PA, Creamer JS, Mora MF. Implementation of microchip electrophoresis instrumentation for future spaceflight missions. Anal Bioanal Chem 2015; 407:6939-63. [PMID: 26253225 DOI: 10.1007/s00216-015-8903-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 11/27/2022]
Abstract
We present a comprehensive discussion of the role that microchip electrophoresis (ME) instrumentation could play in future NASA missions of exploration, as well as the current barriers that must be overcome to make this type of chemical investigation possible. We describe how ME would be able to fill fundamental gaps in our knowledge of the potential for past, present, or future life beyond Earth. Despite the great promise of ME for ultrasensitive portable chemical analysis, to date, it has never been used on a robotic mission of exploration to another world. We provide a current snapshot of the technology readiness level (TRL) of ME instrumentation, where the TRL is the NASA systems engineering metric used to evaluate the maturity of technology, and its fitness for implementation on missions. We explain how the NASA flight implementation process would apply specifically to ME instrumentation, and outline the scientific and technology development issues that must be addressed for ME analyses to be performed successfully on another world. We also outline research demonstrations that could be accomplished by independent researchers to help advance the TRL of ME instrumentation for future exploration missions. The overall approach described here for system development could be readily applied to a wide range of other instrumentation development efforts having broad societal and commercial impact.
Collapse
Affiliation(s)
- Peter A Willis
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA,
| | | | | |
Collapse
|
9
|
Bomer JG, Prokofyev AV, van den Berg A, Le Gac S. Wafer-scale fabrication of glass-FEP-glass microfluidic devices for lipid bilayer experiments. LAB ON A CHIP 2014; 14:4461-4464. [PMID: 25284632 DOI: 10.1039/c4lc00921e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report a wafer-scale fabrication process for the production of glass-FEP-glass microdevices using UV-curable adhesive (NOA81) as gluing material, which is applied using a novel "spin & roll" approach. Devices are characterized for the uniformity of the gluing layer, presence of glue in the microchannels, and alignment precision. Experiments on lipid bilayers with electrophysiological recordings using a model pore-forming polypeptide are demonstrated.
Collapse
Affiliation(s)
- Johan G Bomer
- BIOS - Lab on a Chip group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
10
|
da Costa ET, Mora MF, Willis PA, do Lago CL, Jiao H, Garcia CD. Getting started with open-hardware: development and control of microfluidic devices. Electrophoresis 2014; 35:2370-7. [PMID: 24823494 PMCID: PMC4176689 DOI: 10.1002/elps.201400128] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 12/20/2022]
Abstract
Understanding basic concepts of electronics and computer programming allows researchers to get the most out of the equipment found in their laboratories. Although a number of platforms have been specifically designed for the general public and are supported by a vast array of on-line tutorials, this subject is not normally included in university chemistry curricula. Aiming to provide the basic concepts of hardware and software, this article is focused on the design and use of a simple module to control a series of PDMS-based valves. The module is based on a low-cost microprocessor (Teensy) and open-source software (Arduino). The microvalves were fabricated using thin sheets of PDMS and patterned using CO2 laser engraving, providing a simple and efficient way to fabricate devices without the traditional photolithographic process or facilities. Synchronization of valve control enabled the development of two simple devices to perform injection (1.6 ± 0.4 μL/stroke) and mixing of different solutions. Furthermore, a practical demonstration of the utility of this system for microscale chemical sample handling and analysis was achieved performing an on-chip acid-base titration, followed by conductivity detection with an open-source low-cost detection system. Overall, the system provided a very reproducible (98%) platform to perform fluid delivery at the microfluidic scale.
Collapse
Affiliation(s)
- Eric Tavares da Costa
- Department of Chemistry, The University of Texas at San Antonio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo
| | - Maria F. Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, USA
| | - Peter A. Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, USA
| | - Claudimir L. do Lago
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo
| | - Hong Jiao
- HJ Science & Technology, 2929 Seventh Street, Suite 120, Berkeley, CA 94710 Berkeley, CA, USA
| | | |
Collapse
|
11
|
Microreactors for peptide synthesis: looking through the eyes of twenty first century !!! Amino Acids 2014; 46:2091-104. [DOI: 10.1007/s00726-014-1776-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
|
12
|
Trebbin M, Krüger K, DePonte D, Roth SV, Chapman HN, Förster S. Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. LAB ON A CHIP 2014; 14:1733-45. [PMID: 24671443 DOI: 10.1039/c3lc51363g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present microfluidic chip based devices that produce liquid jets with micrometer diameters while operating at very low flow rates. The chip production is based on established soft-lithographical techniques employing a three-layer design protocol. This allows the exact, controlled and reproducible design of critical parts such as nozzles and the production of nozzle arrays. The microfluidic chips reproducibly generate liquid jets exiting at perfect right angles with diameters between 20 μm and 2 μm, and under special circumstances, even down to 0.9 μm. Jet diameter, jet length, and the domain of the jetting/dripping instability can be predicted and controlled based on the theory for liquid jets in the plate-orifice configuration described by Gañán-Calvo et al. Additionally, conditions under which the device produces highly reproducible monodisperse droplets at exact and predictable rates can be achieved. The devices operate under atmospheric and under vacuum conditions making them highly relevant for a wide range of applications, for example, for free-electron lasers. Further, the straightforward integration of additional features such as a jet-in-jet is demonstrated. This device design has the potential to integrate more features based on established microfluidic components and may become a standard device for small liquid jet production.
Collapse
Affiliation(s)
- Martin Trebbin
- Physical Chemistry 1, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Ymbern O, Sández N, Calvo-López A, Puyol M, Alonso-Chamarro J. Gas diffusion as a new fluidic unit operation for centrifugal microfluidic platforms. LAB ON A CHIP 2014; 14:1014-1022. [PMID: 24448693 DOI: 10.1039/c3lc51114f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A centrifugal microfluidic platform prototype with an integrated membrane for gas diffusion is presented for the first time. The centrifugal platform allows multiple and parallel analysis on a single disk and integrates at least ten independent microfluidic subunits, which allow both calibration and sample determination. It is constructed with a polymeric substrate material and it is designed to perform colorimetric determinations by the use of a simple miniaturized optical detection system. The determination of three different analytes, sulfur dioxide, nitrite and carbon dioxide, is carried out as a proof of concept of a versatile microfluidic system for the determination of analytes which involve a gas diffusion separation step during the analytical procedure.
Collapse
Affiliation(s)
- Oriol Ymbern
- Sensors & Biosensors Group (GSB), Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, Bellaterra, Catalonia, 08193, Spain.
| | | | | | | | | |
Collapse
|
14
|
Gu P, Nishida T, Fan ZH. The use of polyurethane as an elastomer in thermoplastic microfluidic devices and the study of its creep properties. Electrophoresis 2013; 35:289-97. [PMID: 23868507 DOI: 10.1002/elps.201300160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/04/2023]
Abstract
We report using polyurethane (PU) as an elastomer in microvalves integrated with thermoplastic microfluidic devices. Elastomer-based microvalves have been used in a number of applications and the elastomer often used is PDMS. Although it is a convenient material for prototyping, PDMS has been recognized to possess shortcomings such as solvent incompatibility and unfavorable manufacturability. We investigated the use of PU as an elastomer to address the challenges. A reliable method was developed to bond hybrid materials such as PU and cyclic olefin copolymer. The film thickness from 3.5 to 24.5 μm was studied to identify an appropriate thickness of PU films for desirable elasticity in microvalves. We integrated PU with thermally actuated, elastomer-based microvalves in thermoplastic devices. Valve actuations were demonstrated, and the relationship between the valve actuation time and heater power was studied. We compared PU with PDMS in terms of their microvalve performance. Valves with PDMS failed to function after two weeks since the thermal-sensitive solution evaporated through porous PDMS membrane, whereas the same valve with PU functioned properly after eight months. In addition, we evaluated the creep and creep recovery of PU, which is a common phenomenon of viscoelastic materials and is related to the long-term elastic property of PU after prolonged use.
Collapse
Affiliation(s)
- Pan Gu
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
15
|
Mora MF, Stockton AM, Willis PA. Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life. Electrophoresis 2012; 33:2624-38. [DOI: 10.1002/elps.201200102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Xu Y, Lv Y, Wang L, Xing W, Cheng J. A microfluidic device with passive air-bubble valves for real-time measurement of dose-dependent drug cytotoxicity through impedance sensing. Biosens Bioelectron 2012; 32:300-4. [DOI: 10.1016/j.bios.2011.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/25/2011] [Accepted: 12/05/2011] [Indexed: 11/25/2022]
|
17
|
Mora MF, Greer F, Stockton AM, Bryant S, Willis PA. Toward total automation of microfluidics for extraterrestial in situ analysis. Anal Chem 2011; 83:8636-41. [PMID: 21972965 DOI: 10.1021/ac202095k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite multiple orbiter and landed missions to extraterrestrial bodies in the solar system, including Mars and Titan, we still know relatively little about the detailed chemical composition and quantity of organics and biomolecules in those bodies. For chemical analysis on astrobiologically relevant targets such as Mars, Europa, Titan, and Enceladus, instrumentation should be extremely sensitive and capable of analyzing a broad range of organic molecules. Microchip capillary electrophoresis (μCE) with laser-induced fluorescence (LIF) detection provides this required sensitivity and targets a wide range of relevant markers but, to date, has lacked the necessary degree of automation for spaceflight applications. Here we describe a fully integrated microfluidic device capable of performing automated end-to-end analyses of amino acids by μCE with LIF detection. The device integrates an array of pneumatically actuated valves and pumps for autonomous fluidic routing with an electrophoretic channel. Operation of the device, including manipulation of liquids for sample pretreatment and electrophoretic analysis, was performed exclusively via computer control. The device was validated by mixing of laboratory standards and labeling of amino acids with Pacific Blue succinimidyl ester followed by electrophoretic analysis. To our knowledge, this is the first demonstration of completely automated end-to-end μCE analyses on a single, fully integrated microfluidic device.
Collapse
Affiliation(s)
- Maria F Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | | | | | | | | |
Collapse
|
18
|
Ogilvie IRG, Sieben VJ, Cortese B, Mowlem MC, Morgan H. Chemically resistant microfluidic valves from Viton® membranes bonded to COC and PMMA. LAB ON A CHIP 2011; 11:2455-9. [PMID: 21617822 DOI: 10.1039/c1lc20069k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present a reliable technique for irreversibly bonding chemically inert Viton® membranes to PMMA and COC substrates to produce microfluidic devices with integrated elastomeric structures. Viton® is widely used in commercially available valves and has several advantages when compared to other elastomeric membranes currently utilised in microfluidic valves (e.g. PDMS), such as high solvent resistance, low porosity and high temperature tolerance. The bond strength was sufficient to withstand a fluid pressure of 400 kPa (PMMA/Viton®) and 310 kPa (COC/Viton®) before leakage or burst failure, which is sufficient for most microfluidic applications. We demonstrate and characterise on-chip pneumatic Viton® microvalves on PMMA and COC substrates. We also provide a detailed method for bonding fluorinated Viton® elastomer, a highly chemically compatible material, to PMMA and COC polymers. This allows the production of microfluidic devices able to handle a wide range of chemically harsh fluids and broadens the scope of the microfluidic platform concept.
Collapse
|
19
|
Gervais L, de Rooij N, Delamarche E. Microfluidic chips for point-of-care immunodiagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:H151-76. [PMID: 21567479 DOI: 10.1002/adma.201100464] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Indexed: 05/03/2023]
Abstract
We might be at the turning point where research in microfluidics undertaken in academia and industrial research laboratories, and substantially sponsored by public grants, may provide a range of portable and networked diagnostic devices. In this Progress Report, an overview on microfluidic devices that may become the next generation of point-of-care (POC) diagnostics is provided. First, we describe gaps and opportunities in medical diagnostics and how microfluidics can address these gaps using the example of immunodiagnostics. Next, we conceptualize how different technologies are converging into working microfluidic POC diagnostics devices. Technologies are explained from the perspective of sample interaction with components of a device. Specifically, we detail materials, surface treatment, sample processing, microfluidic elements (such as valves, pumps, and mixers), receptors, and analytes in the light of various biosensing concepts. Finally, we discuss the integration of components into accurate and reliable devices.
Collapse
Affiliation(s)
- Luc Gervais
- IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | | | | |
Collapse
|
20
|
Kuhn S, Hartman RL, Sultana M, Nagy KD, Marre S, Jensen KF. Teflon-coated silicon microreactors: impact on segmented liquid-liquid multiphase flows. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6519-6527. [PMID: 21510687 DOI: 10.1021/la2004744] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We describe fluoropolymer modification of silicon microreactors for control of wetting properties in chemical synthesis applications and characterize the impact of the coating on liquid-liquid multiphase flows of solvents and water. Annular flow of nitrogen gas and a Teflon AF (DuPont) dispersion enable controlled evaporation of fluoropolymer solvent, which in turn brings about three-dimensional polymer deposition on microchannel walls. Consequently, the wetting behavior is switched from hydrophilic to hydrophobic. Analysis of microreactors reveals that the polymer layer thickness increases down the length of the reactor from ∼1 to ∼13 μm with an average thickness of ∼7 μm. Similarly, we show that microreactor surfaces can be modified with poly(tetrafluoroethylene) (PTFE). These PTFE-coated microreactors are further characterized by measuring residence time distributions in segmented liquid-liquid multiphase flows, which display reduced axial dispersion for the coated microreactors. Applying particle image velocimetry, changes in segment shape and velocity fluctuations are observed resulting in reduced axial dispersion. Furthermore, the segment size distribution is narrowed for the hydrophobic microreactors, enabling further control of residence distributions for synthesis and screening applications.
Collapse
Affiliation(s)
- Simon Kuhn
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Although microfluidics has shown exciting potential, its broad applications are significantly limited by drawbacks of the materials used to make them. In this work, we present a convenient strategy for fabricating whole-Teflon microfluidic chips with integrated valves that show outstanding inertness to various chemicals and extreme resistance against all solvents. Compared with other microfluidic materials [e.g., poly(dimethylsiloxane) (PDMS)] the whole-Teflon chip has a few more advantages, such as no absorption of small molecules, little adsorption of biomolecules onto channel walls, and no leaching of residue molecules from the material bulk into the solution in the channel. Various biological cells have been cultured in the whole-Teflon channel. Adherent cells can attach to the channel bottom, spread, and proliferate well in the channels (with similar proliferation rate to the cells in PDMS channels with the same dimensions). The moderately good gas permeability of the Teflon materials makes it suitable to culture cells inside the microchannels for a long time.
Collapse
Affiliation(s)
- Kangning Ren
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wen Dai
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jianhua Zhou
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jing Su
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hongkai Wu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
22
|
Gu H, Duits MHG, Mugele F. Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci 2011; 12:2572-97. [PMID: 21731459 PMCID: PMC3127135 DOI: 10.3390/ijms12042572] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/11/2011] [Accepted: 04/02/2011] [Indexed: 01/06/2023] Open
Abstract
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Collapse
Affiliation(s)
- Hao Gu
- Physics of Complex Fluids, Faculty of Science and Technology, IMPACT and MESA + Institutes, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands; E-Mails: (M.H.G.D.); (F.M.)
| | - Michel H. G. Duits
- Physics of Complex Fluids, Faculty of Science and Technology, IMPACT and MESA + Institutes, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands; E-Mails: (M.H.G.D.); (F.M.)
| | - Frieder Mugele
- Physics of Complex Fluids, Faculty of Science and Technology, IMPACT and MESA + Institutes, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands; E-Mails: (M.H.G.D.); (F.M.)
| |
Collapse
|
23
|
Gu P, Liu K, Chen H, Nishida T, Fan ZH. Chemical-assisted bonding of thermoplastics/elastomer for fabricating microfluidic valves. Anal Chem 2010; 83:446-52. [PMID: 21121689 DOI: 10.1021/ac101999w] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermoplastics such as cyclic olefin copolymer (COC) and polymethylmethacrylate (PMMA) have been increasingly used in fabricating microfluidic devices. However, the state-of-the-art microvalve technology is a polydimethylsiloxane (PDMS)-based three-layer structure. In order to integrate such a valve with a thermoplastics-based microfluidic device, a bonding method for thermoplastics/PDMS must be developed. We report here a method to bond COC with PDMS through surface activation by corona discharge, surface modification using 3-(trimethoxysilyl)propyl methacrylate (TMSPMA), and thermal annealing. The method is also applicable to PMMA. The bonding strength between thermoplastics and PDMS was represented by the peeling force, which was measured using a method established by the International Organization for Standardization (ISO). The bonding strength measurement offered an objective and quantitative indicator for protocol optimization, as well as comparison with other PDMS-associated bonding methods. Using optimized bonding conditions, two valve arrays were fabricated in a COC/PDMS/COC device and cyclic operations of valve closing/opening were successfully demonstrated. The valve-containing devices withstood 100 psi (∼689 KPa) without delamination. Further, we integrated such valve arrays in a device for protein separation and demonstrated isoelectric focusing in the presence of valves.
Collapse
Affiliation(s)
- Pan Gu
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611-6250, United States
| | | | | | | | | |
Collapse
|
24
|
Garcia-Cordero JL, Kurzbuch D, Benito-Lopez F, Diamond D, Lee LP, Ricco AJ. Optically addressable single-use microfluidic valves by laser printer lithography. LAB ON A CHIP 2010; 10:2680-7. [PMID: 20740236 DOI: 10.1039/c004980h] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report the design, fabrication, and characterization of practical microfluidic valves fabricated using laser printer lithography. These optofluidic valves are opened by directing optical energy from a solid-state laser, with similar power characteristics to those used in CD/DVD drives, to a spot of printed toner where localized heating melts an orifice in the polymer layer in as little as 500 ms, connecting previously isolated fluidic components or compartments. Valve functionality, response time, and laser input energy dependence of orifice size are reported for cyclo-olefin polymer (COP) and polyethylene terephthalate (PET) films. Implementation of these optofluidic valves is demonstrated on pressure-driven and centrifugal microfluidic platforms. In addition, these "one-shot" valves comprise a continuous polymer film that hermetically isolates on-chip fluid volumes within fluidic devices using low-vapor-permeability materials; we confirmed this for a period of one month. The fabrication and integration of optofluidic valves are compatible with a range of polymer microfabrication technologies and should facilitate the development of fully integrated, reconfigurable, and automated lab-on-a-chip systems, particularly when reagents must be stored on chip for extended periods, e.g. for medical diagnostic devices, lab-on-a-chip synthetic systems, or hazardous biochemical analysis platforms.
Collapse
|
25
|
|
26
|
Marre S, Jensen KF. Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 2010; 39:1183-202. [DOI: 10.1039/b821324k] [Citation(s) in RCA: 547] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Bart J, Tiggelaar R, Yang M, Schlautmann S, Zuilhof H, Gardeniers H. Room-temperature intermediate layer bonding for microfluidic devices. LAB ON A CHIP 2009; 9:3481-8. [PMID: 20024026 DOI: 10.1039/b914270c] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this work a novel room-temperature bonding technique based on chemically activated Fluorinated Ethylene Propylene (FEP) sheet as an intermediate between chemically activated substrates is presented. Surfaces of silicon and glass substrates are chemically modified with APTES bearing amine terminal groups, while FEP sheet surfaces are treated to form carboxyl groups and subsequently activated by means of EDC-NHS chemistry. The activation procedures of silicon, glass and FEP sheet are characterized by contact angle measurements and XPS. Robust bonds are created at room-temperature by simply pressing two amine-terminated substrates together with activated FEP sheet in between. Average tensile strengths of 5.9 MPa and 5.2 MPa are achieved for silicon-silicon and glass-glass bonds, respectively, and the average fluidic pressure that can be operated is 10.2 bar. Moreover, it is demonstrated that FEP-bonded microfluidic chips can handle mild organic solvents at elevated pressures without leakage problems. This versatile room-temperature intermediate layer bonding technique has a high potential for bonding, packaging, and assembly of various (bio-) chemical microfluidic systems and MEMS devices.
Collapse
Affiliation(s)
- Jacob Bart
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Pitchaimani K, Sapp BC, Winter A, Gispanski A, Nishida T, Hugh Fan Z. Manufacturable plastic microfluidic valves using thermal actuation. LAB ON A CHIP 2009; 9:3082-7. [PMID: 19823723 DOI: 10.1039/b909742b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A low-cost, manufacturable, thermally actuated, plastic microfluidic valve has been developed. The valve contains an encapsulated, temperature-sensitive fluid, which expands, deflecting a thin elastomeric film into a fluidic channel to control fluid flow. The power input for thermal expansion of each microfluidic valve can be controlled using a printed circuit board (PCB)-based controller, which is suitable for mass production and large-scale integration. A plastic microfluidic device with such valves was fabricated using compression molding and thermal lamination. The operation of the valves was investigated by measuring a change in the microchannel's ionic conduction current mediated by the resistance variation corresponding to the deflection of the microvalve. Valve closing was also confirmed by the disappearance of fluorescence when a fluorescent solution was displaced in the valve region. Valve operation was characterized for heater power ranging from 36 mW to 80 mW. When the valve was actuating, the local channel temperature was 10 to 19 degrees C above the ambient temperature depending on the heater power used. Repetitive valve operations (up to 50 times) have been demonstrated with a flow resulting from a hydrostatic head. Valve operation was tested for a flow rate of 0.33-4.7 microL/min.
Collapse
Affiliation(s)
- Karthik Pitchaimani
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611-6250, USA
| | | | | | | | | | | |
Collapse
|
29
|
Hartman RL, Jensen KF. Microchemical systems for continuous-flow synthesis. LAB ON A CHIP 2009; 9:2495-507. [PMID: 19680575 DOI: 10.1039/b906343a] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microchemical systems have evolved rapidly over the last decade with extensive chemistry applications. Such systems enable discovery and development of synthetic routes while simultaneously providing increased understanding of underlying pathways and kinetics. We review basic trends and aspects of microsystems as they relate to continuous-flow microchemical synthesis. Key literature reviews are summarized and principles governing different microchemical operations discussed. Current trends and limitations of microfabrication, micromixing, chemical synthesis in microreactors, continuous-flow separations, multi-step synthesis, and integration of analytics are delineated. We conclude by summarizing the major challenges and outlook related to these topics.
Collapse
|
30
|
Willis PA, Greer F, Lee MC, Smith JA, White VE, Grunthaner FJ, Sprague JJ, Rolland JP. Monolithic photolithographically patterned Fluorocur PFPE membrane valves and pumps for in situ planetary exploration. LAB ON A CHIP 2008; 8:1024-1026. [PMID: 18584073 DOI: 10.1039/b804265a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Photolithographically defined monolithic membrane valves utilizing Fluorocur perfluoropolyether (PFPE) were fabricated and characterized to be essentially unaltered after one million actuations and exposure to the environmental stresses associated with in situ exploration of Mars.
Collapse
Affiliation(s)
- Peter A Willis
- Instrument Electronics and Sensors Section, NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Grover WH, von Muhlen MG, Manalis SR. Teflon films for chemically-inert microfluidic valves and pumps. LAB ON A CHIP 2008; 8:913-8. [PMID: 18497911 PMCID: PMC4032772 DOI: 10.1039/b800600h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present a simple method for fabricating chemically-inert Teflon microfluidic valves and pumps in glass microfluidic devices. These structures are modeled after monolithic membrane valves and pumps that utilize a featureless polydimethylsiloxane (PDMS) membrane bonded between two etched glass wafers. The limited chemical compatibility of PDMS has necessitated research into alternative materials for microfluidic devices. Previous work has shown that spin-coated amorphous fluoropolymers and Teflon-fluoropolymer laminates can be fabricated and substituted for PDMS in monolithic membrane valves and pumps for space flight applications. However, the complex process for fabricating these spin-coated Teflon films and laminates may preclude their use in many research and manufacturing contexts. As an alternative, we show that commercially-available fluorinated ethylene-propylene (FEP) Teflon films can be used to fabricate chemically-inert monolithic membrane valves and pumps in glass microfluidic devices. The FEP Teflon valves and pumps presented here are simple to fabricate, function similarly to their PDMS counterparts, maintain their performance over extended use, and are resistant to virtually all chemicals. These structures should facilitate lab-on-a-chip research involving a vast array of chemistries that are incompatible with native PDMS microfluidic devices.
Collapse
Affiliation(s)
- William H Grover
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|