1
|
Deng JQ, Li Y, Wang YJ, Cao YL, Xin SY, Li XY, Xi RM, Wang FS, Sheng JZ. Biosynthetic production of anticoagulant heparin polysaccharides through metabolic and sulfotransferases engineering strategies. Nat Commun 2024; 15:3755. [PMID: 38704385 PMCID: PMC11069525 DOI: 10.1038/s41467-024-48193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.
Collapse
Affiliation(s)
- Jian-Qun Deng
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yi Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yu-Jia Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ya-Lin Cao
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Si-Yu Xin
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xin-Yu Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Rui-Min Xi
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Feng-Shan Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Ju-Zheng Sheng
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
- National Glycoengineering Research Center, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Yu M, Hu S, Tang B, Yang H, Sun D. Engineering Escherichia coli Nissle 1917 as a microbial chassis for therapeutic and industrial applications. Biotechnol Adv 2023; 67:108202. [PMID: 37343690 DOI: 10.1016/j.biotechadv.2023.108202] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Genetically engineered microbes, especially Escherichia coli, have been widely used in the biosynthesis of proteins and metabolites for medical and industrial applications. As a traditional probiotic with a well-established safety record, E. coli Nissle 1917 (EcN) has recently emerged as a microbial chassis for generating living therapeutics, drug delivery vehicles, and microbial platforms for industrial production. Despite the availability of genetic tools for engineering laboratory E. coli K-12 and B strains, new genetic engineering systems are still greatly needed to expand the application range of EcN. In this review, we have summarized the latest progress in the development of genetic engineering systems in EcN, as well as their applications in the biosynthesis and delivery of valuable small molecules and biomacromolecules of medical and/or industrial interest, followed by a glimpse of how this rapidly growing field will evolve in the future.
Collapse
Affiliation(s)
- Mingjing Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shilong Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Biao Tang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hua Yang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
3
|
Monterrey DT, Benito-Arenas R, Revuelta J, García-Junceda E. Design of a biocatalytic cascade for the enzymatic sulfation of unsulfated chondroitin with in situ generation of PAPS. Front Bioeng Biotechnol 2023; 11:1099924. [PMID: 36726741 PMCID: PMC9885120 DOI: 10.3389/fbioe.2023.1099924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Sulfation of molecules in living organisms is a process that plays a key role in their functionality. In mammals, the sulfation of polysaccharides (glycosaminoglycans) that form the proteoglycans present in the extracellular matrix is particularly important. These polysaccharides, through their degree and sulfation pattern, are involved in a variety of biological events as signal modulators in communication processes between the cell and its environment. Because of this great biological importance, there is a growing interest in the development of efficient and sustainable sulfation processes, such as those based on the use of sulfotransferase enzymes. These enzymes have the disadvantage of being 3'-phosphoadenosine 5'-phosphosulfate (PAPS) dependent, which is expensive and difficult to obtain. In the present study, a modular multienzyme system was developed to allow the in situ synthesis of PAPS and its coupling to a chondroitin sulfation system. For this purpose, the bifunctional enzyme PAPS synthase 1 (PAPSS1) from Homo sapiens, which contains the ATP sulfurylase and APS kinase activities in a single protein, and the enzyme chondroitin 4-O-sulfotransferase (C4ST-1) from Rattus norvegicus were overexpressed in E. coli. The product formed after coupling of the PAPS generation system and the chondroitin sulfation module was analyzed by NMR.
Collapse
|
4
|
Couto MR, Rodrigues JL, Rodrigues LR. Heterologous production of chondroitin. BIOTECHNOLOGY REPORTS 2022; 33:e00710. [PMID: 35242620 PMCID: PMC8858990 DOI: 10.1016/j.btre.2022.e00710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023]
Abstract
Chondroitin sulfate (CS) is a glycosaminoglycan with a growing variety of applications. CS can be produced from microbial fermentation of native or engineered strains. Synthetic biology tools are being used to improve CS yields in different hosts. Integrated polymerization and sulfation can generate cost-effective CS.
Chondroitin sulfate (CS) is a glycosaminoglycan with a broad range of applications being a popular dietary supplement for osteoarthritis. Usually, CS is extracted from animal sources. However, the known risks of animal products use have been driving the search for alternative methods and sources to obtain this compound. Several pathogenic bacteria naturally produce chondroitin-like polysaccharides through well-known pathways and, therefore, have been the basis for numerous studies that aim to produce chondroitin using non-pathogenic hosts. However, the yields obtained are not enough to meet the high demand for this glycosaminoglycan. Metabolic engineering strategies have been used to construct improved heterologous hosts. The identification of metabolic bottlenecks and regulation points, and the screening for efficient enzymes are key points for constructing microbial cell factories with improved chondroitin yields to achieve industrial CS production. The recent advances on enzymatic and microbial strategies to produce non-animal chondroitin are herein reviewed. Challenges and prospects for future research are also discussed.
Collapse
Affiliation(s)
- Márcia R. Couto
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana L. Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- Corresponding author.
| | - Lígia R. Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
5
|
Li X, Yu Y, Tang J, Gong B, Li W, Chen T, Zhou X. The construction of a dual-functional strain that produces both polysaccharides and sulfotransferases. Biotechnol Lett 2021; 43:1831-1844. [PMID: 34176028 DOI: 10.1007/s10529-021-03156-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Heparosan is used as the starting polysaccharide sulfated using sulfotransferase to generate fully elaborate heparin, a widely used clinical drug. However, the preparation of heparosan and enzymes was considered tedious since such material must be prepared in separate fermentation batches. In this study, a commonly admitted probiotic, Escherichia coli strain Nissle 1917 (EcN), was engineered to intracellularly express sulfotransferases and, simultaneously, secreting heparosan into the culture medium. RESULTS The engineered strain EcN::T7M, carrying the λDE3 region of BL21(DE3) encoding T7 RNA polymerase, expressed the sulfotransferase domain (NST) of human N-deacetylase/N-sulfotransferase-1 (NDST-1) and the catalytic domain of mouse 3-O-sulfotransferase-1 (3-OST-1) in a flask. The fed-batch fermentation of EcN::T7M carrying the plasmid expressing NST was carried out, which brought the yield of NST to 0.21 g/L and the yield of heparosan to 0.85 g/L, respectively. Furthermore, the heparosan was purified, characterized by 1H nuclear magnetic resonance (NMR), and sulfated by NST using 3'-phosphoadenosine-5'-phosphosulfate (PAPS) as the sulfo donor. The analysis of element composition showed that over 80% of disaccharide repeats of heparosan were N-sulfated. CONCLUSIONS These results indicate that EcN::T7M is capable of preparing sulfotransferase and heparosan at the same time. The EcN::T7M strain is also a suitable host for expressing exogenous proteins driven by tac promoter and T7 promoter.
Collapse
Affiliation(s)
- Xiaomei Li
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yanying Yu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiaqing Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Bingxue Gong
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wenjing Li
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tingting Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xianxuan Zhou
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
6
|
Jin W, Zhang F, Linhardt RJ. Glycosaminoglycans in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:189-204. [PMID: 34495536 DOI: 10.1007/978-3-030-70115-4_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides that consist of alternating disaccharides sequences of uronic acids and/or galactose hexamino sugars most of which are sulfated. GAGs are ubiquitously expressed on the cell surface, in the intracellular milieu and in the extracellular matrix of all animal cells. Thus, GAGs exhibit many essential roles in a variety of physiological and pathological processes. The targets of GAGs are GAG-binding proteins and related proteins that are of significant interest to both the academic community and in the pharmaceutical industry. In this review, the structures of GAGs, their binding proteins, and analogs are presented that further the development of GAGs and their analogs for the treatment of neurodegenerative diseases agents.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA. .,Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
7
|
Chiu LT, Sabbavarapu NM, Lin WC, Fan CY, Wu CC, Cheng TJR, Wong CH, Hung SC. Trisaccharide Sulfate and Its Sulfonamide as an Effective Substrate and Inhibitor of Human Endo- O-sulfatase-1. J Am Chem Soc 2020; 142:5282-5292. [PMID: 32083852 DOI: 10.1021/jacs.0c00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human endo-O-sulfatases (Sulf-1 and Sulf-2) are extracellular heparan sulfate proteoglycan (HSPG)-specific 6-O-endosulfatases, which regulate a multitude of cell-signaling events through heparan sulfate (HS)-protein interactions and are associated with the onset of osteoarthritis. These endo-O-sulfatases are transported onto the cell surface to liberate the 6-sulfate groups from the internal d-glucosamine residues in the highly sulfated subdomains of HSPGs. In this study, a variety of HS oligosaccharides with different chain lengths and N- and O-sulfation patterns via chemical synthesis were systematically studied about the substrate specificity of human Sulf-1 employing the fluorogenic substrate 4-methylumbelliferyl sulfate (4-MUS) in a competition assay. The trisaccharide sulfate IdoA2S-GlcNS6S-IdoA2S was found to be the minimal-size substrate for Sulf-1, and substitution of the sulfate group at the 6-O position of the d-glucosamine unit with the sulfonamide motif effectively inhibited the Sulf-1 activity with IC50 = 0.53 μM, Ki = 0.36 μM, and KD = 12 nM.
Collapse
Affiliation(s)
- Li-Ting Chiu
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming University, 155, Section 2, Linong Street, Taipei 115, Taiwan
| | | | - Wei-Chen Lin
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chiao-Yuan Fan
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chih-Chung Wu
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Ting-Jen Rachel Cheng
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road BCC 338, La Jolla, California 92037, United States
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Department of Applied Science, National Taitung University, 369, Section 2, University Road, Taitung 95092, Taiwan
| |
Collapse
|
8
|
Abstract
Glycosaminoglycans (GAGs) are a family of structurally complex heteropolysaccharides composed of alternating hexosamine and uronic acid or galatose residue that include hyaluronan, chondroitin sulfate and dermatan sulfate, heparin and heparan sulfate, and keratan sulfate. GAGs display a range of critical biological functions, including regulating cell-cell interactions and cell proliferation, inhibiting enzymes, and activating growth factor receptors during various metabolic processes. Indeed, heparin is a widely used GAG-based anticoagulant drug. Unfortunately, naturally derived GAGs are highly heterogeneous, limiting studies of their structure-activity relationships and even resulting in safety concerns. For example, the heparin contamination crisis in 2007 reportedly killed more than a hundred people in the United States. Unfortunately, the chemical synthesis of GAGs, or their oligosaccharides, based on repetitive steps of protection, activation, coupling, and deprotection, is incredibly challenging. Recent advances in chemoenzymatic synthesis integrate the flexibility of chemical derivatization with enzyme-catalyzed reactions, mimicking the biosynthetic pathway of GAGs, and represent a promising strategy to solve many of these synthetic challenges. In this critical Account, we examine the recent progress made, in our laboratory and by others, in the chemoenzymatic synthesis of GAGs, focusing on heparan sulfate and heparin, a class of GAGs with profound physiological and pharmacological importance. A major challenge for the penetration of the heparin market by homogeneous heparin products is their cost-effective large-scale synthesis. In the past decade, we and our collaborators have systematically explored the key factors that impact this process, including better enzyme expression, improved biocatalysts using protein engineering and immobilization, low cost production of enzyme cofactors, optimization of the order of enzymatic transformations, as well as development of efficient technologies, such as using ultraviolet absorbing or fluorous tags, to detect and purify synthetic intermediates. These improvements have successfully resulted in multigram-scale synthesis of low-molecular-weight heparins (LMWHs), with some showing excellent anticoagulant activity and even resulting in more effective protamine reversal than commercial, animal-sourced LMWH drugs. Sophisticated structural analysis is another challenge for marketing heparins, since impurities and contaminants can be present that are difficult to distinguish from heparin drug products. The availability of the diverse library of structurally defined heparin oligosaccharides has facilitated the systematic analytical studies undertaken by our group, resulting in important information for characterizing diverse heparin products, safeguarding their quality. Recently, a series of chemically modified nucleotide sugars have been investigated in our laboratory and have been accepted by synthases to obtain novel GAGs and GAG oligosaccharides. These include fluoride and azido regioselectively functionalized sugars and stable isotope-enriched GAGs and GAG oligosaccharides, critical for better understanding the biological roles of these important biopolymers. We speculate that the repertoire of unnatural acceptors and nucleotide sugar donors will soon be expanded to afford many new GAG analogues with new biological and pharmacological properties including improved specificity and metabolic stability.
Collapse
Affiliation(s)
- Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
9
|
Chemoenzymatic synthesis of ultralow and low-molecular weight heparins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140301. [DOI: 10.1016/j.bbapap.2019.140301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
|
10
|
Chopra P, Logun MT, White EM, Lu W, Locklin J, Karumbaiah L, Boons GJ. Fully Synthetic Heparan Sulfate-Based Neural Tissue Construct That Maintains the Undifferentiated State of Neural Stem Cells. ACS Chem Biol 2019; 14:1921-1929. [PMID: 31389687 DOI: 10.1021/acschembio.9b00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparin and heparan sulfate (HS) are attractive components for constructing biomaterials due to their ability to recruit and regulate the activity of growth factors. The structural and functional heterogeneity of naturally derived heparin and HS is, however, an impediment for the preparation of biomaterials for regenerative medicine. To address this problem, we have prepared hydrogels modified by well-defined synthetic HS-derived disaccharides. Human induced pluripotent cell-derived neural stem cells (HIP-NSCs) encapsulated in a polyethylene glycol-based hydrogel modified by a pendent HS disaccharide that is a known ligand for fibroblast growth factor-2 (FGF-2) exhibited a significant increase in proliferation and self-renewal. This observation is important because evidence is emerging that undifferentiated stems cells can yield significant therapeutic benefits via their paracrine signaling mechanisms. Our data indicate that the HS disaccharide protects FGF-2, which has a very short biological half-live, from degradation. It is anticipated that, by careful selection of a synthetic HS oligosaccharide, it will be possible to control retention and release of specific growth factor, which in turn will provide control over cell fate.
Collapse
Affiliation(s)
- Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Meghan T. Logun
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 422 River Road, Athens, Georgia 30602, United States
| | - Evan M. White
- New Material Institute, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
| | - Weigang Lu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Jason Locklin
- New Material Institute, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 422 River Road, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Sarnaik A, Abernathy MH, Han X, Ouyang Y, Xia K, Chen Y, Cress B, Zhang F, Lali A, Pandit R, Linhardt RJ, Tang YJ, Koffas MA. Metabolic engineering of cyanobacteria for photoautotrophic production of heparosan, a pharmaceutical precursor of heparin. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Jin W, Li S, Chen J, Liu B, Li J, Li X, Zhang F, Linhardt RJ, Zhong W. Increased soluble heterologous expression of a rat brain 3-O-sulfotransferase 1 - A key enzyme for heparin biosynthesis. Protein Expr Purif 2018; 151:23-29. [PMID: 29894802 DOI: 10.1016/j.pep.2018.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022]
Abstract
Heparan sulfate (HS), is a glycosaminoglycan (GAG) involved in various biological processes, including blood coagulation, wound healing and embryonic development. HS 3-O-sulfotransferases (3-OST), which transfer the sulfo group to the 3-hydroxyl group of certain glucosamine residues, is a key enzyme in the biosynthesis of a number of biologically important HS chains. The 3-OST-1 isoform is one of the 7 known 3-OST isoforms and is important for the biosynthesis of anticoagulant HS chains. In this study, we cloned 3-OST-1 from the rat brain by reverse transcription-polymerase chain reaction (RT-PCR). After codon optimization and removal of the signal peptide, the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) to obtain a His tagged-3-OST-1 fusion protein. SDS-PAGE analysis showed that the expressed 3-OST-1 was mainly found in inclusion bodies. The 3-OST-1 was purified by Ni affinity column and refolded by dialysis. The activity of obtained 3-OST-1 was 0.04 U/mL with a specific activity of 0.55 U/mg after renaturation. Furthermore, a co-expressed recombinant plasmid pET-28a-3-OST-1 with the chaperone expression system (pGro7) was constructed and transferred to E. coli BL21 (DE3) to co-express recombinant strain E. coli BL21 (DE3)/pET-28a-3-OST-1 + pGro7. The soluble expression of 3-OST-1 was significantly improved in the co-expressed recombinant strain, with enzyme activity reaching 0.06 U/mL and having a specific activity of 0.83 U/mg. N-sulfo, N-acetylheparosan (NSNAH) was modified by the recombinant expressed 3-OST-1 and the product was confirmed by 1H NMR showing the sulfo group was successfully transferred to NSNAH.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shuai Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiale Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Bing Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jie Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xueliang Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
13
|
Xu D, Arnold K, Liu J. Using structurally defined oligosaccharides to understand the interactions between proteins and heparan sulfate. Curr Opin Struct Biol 2018; 50:155-161. [PMID: 29684759 DOI: 10.1016/j.sbi.2018.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 01/02/2023]
Abstract
Heparan sulfate (HS) is widely present on the animal cell surface and in the extracellular matrix. HS achieves its biological functions by interacting with proteins to change proteins' conformation, oligomerization state and cellular location. The challenging question to study HS is how to dissect the relationship between the structures of HS and the biological activities. In the past several years, crucial techniques have been developed to overcome this challenge. A novel chemoenzymatic method to synthesize structurally defined HS oligosaccharides has offered a key access to this class of sulfated carbohydrate molecules. Recent rapid progress of HS microarray technology allows screening of the interaction of a target protein with a large number of HS oligosaccharides. The improved availability of HS oligosaccharides and HS microarray analysis will undoubtedly accelerate the investigation of the contribution of the specific sulfated carbohydrate structures of HS in a wide range of biological contexts.
Collapse
Affiliation(s)
- Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, SUNY, Buffalo, NY 14214, USA.
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Pomin VH, Wang X. Synthetic Oligosaccharide Libraries and Microarray Technology: A Powerful Combination for the Success of Current Glycosaminoglycan Interactomics. ChemMedChem 2018; 13:648-661. [PMID: 29160016 PMCID: PMC5895483 DOI: 10.1002/cmdc.201700620] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/15/2017] [Indexed: 11/08/2022]
Abstract
Glycosaminoglycans (GAGs) are extracellular matrix and/or cell-surface sulfated glycans crucial to the regulation of various signaling proteins, the functions of which are essential in many pathophysiological systems. Because structural heterogeneity is high in GAG chains and purification is difficult, the use of structurally defined GAG oligosaccharides from natural sources as molecular models in both biophysical and pharmacological assays is limited. To overcome this obstacle, GAG-like oligosaccharides of well-defined structures are currently being synthesized by chemical and/or enzymatic means in many research groups around the world. These synthetic GAG oligosaccharides serve as useful molecular tools in studies of GAG-protein interactions. In this review, besides discussing the commonest routes used for the synthesis of GAG oligosaccharides, we also survey some libraries of these synthetic models currently available for research and discuss their activities in interaction studies with functional proteins, especially through the microarray approach.
Collapse
Affiliation(s)
- Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
15
|
Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017; 10:E54. [PMID: 28608822 PMCID: PMC5490411 DOI: 10.3390/ph10020054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding 'promiscuity' means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
16
|
Schultz V, Suflita M, Liu X, Zhang X, Yu Y, Li L, Green DE, Xu Y, Zhang F, DeAngelis PL, Liu J, Linhardt RJ. Heparan Sulfate Domains Required for Fibroblast Growth Factor 1 and 2 Signaling through Fibroblast Growth Factor Receptor 1c. J Biol Chem 2017; 292:2495-2509. [PMID: 28031461 PMCID: PMC5313116 DOI: 10.1074/jbc.m116.761585] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/16/2016] [Indexed: 11/06/2022] Open
Abstract
A small library of well defined heparan sulfate (HS) polysaccharides was chemoenzymatically synthesized and used for a detailed structure-activity study of fibroblast growth factor (FGF) 1 and FGF2 signaling through FGF receptor (FGFR) 1c. The HS polysaccharide tested contained both undersulfated (NA) domains and highly sulfated (NS) domains as well as very well defined non-reducing termini. This study examines differences in the HS selectivity of the positive canyons of the FGF12-FGFR1c2 and FGF22-FGFR1c2 HS binding sites of the symmetric FGF2-FGFR2-HS2 signal transduction complex. The results suggest that FGF12-FGFR1c2 binding site prefers a longer NS domain at the non-reducing terminus than FGF22-FGFR1c2 In addition, FGF22-FGFR1c2 can tolerate an HS chain having an N-acetylglucosamine residue at its non-reducing end. These results clearly demonstrate the different specificity of FGF12-FGFR1c2 and FGF22-FGFR1c2 for well defined HS structures and suggest that it is now possible to chemoenzymatically synthesize precise HS polysaccharides that can selectively mediate growth factor signaling. These HS polysaccharides might be useful in both understanding and controlling the growth, proliferation, and differentiation of cells in stem cell therapies, wound healing, and the treatment of cancer.
Collapse
Affiliation(s)
| | | | - Xinyue Liu
- From the Departments of Chemistry and Chemical Biology
| | - Xing Zhang
- From the Departments of Chemistry and Chemical Biology
| | - Yanlei Yu
- From the Departments of Chemistry and Chemical Biology
| | - Lingyun Li
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Dixy E Green
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, and
| | - Yongmei Xu
- the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Fuming Zhang
- From the Departments of Chemistry and Chemical Biology
| | - Paul L DeAngelis
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, and
| | - Jian Liu
- the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Robert J Linhardt
- From the Departments of Chemistry and Chemical Biology,
- Biology
- Biomedical Engineering, and
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
17
|
Establishing a synergetic carbon utilization mechanism for non-catabolic use of glucose in microbial synthesis of trehalose. Metab Eng 2017; 39:1-8. [DOI: 10.1016/j.ymben.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/30/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022]
|
18
|
Paradigms in the structural biology of the mitogenic ternary complex FGF:FGFR:heparin. Biochimie 2016; 127:214-26. [DOI: 10.1016/j.biochi.2016.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/29/2016] [Indexed: 11/20/2022]
|
19
|
Krasnova L, Wong CH. Understanding the Chemistry and Biology of Glycosylation with Glycan Synthesis. Annu Rev Biochem 2016; 85:599-630. [DOI: 10.1146/annurev-biochem-060614-034420] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037;
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037;
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
20
|
Chandarajoti K, Liu J, Pawlinski R. The design and synthesis of new synthetic low-molecular-weight heparins. J Thromb Haemost 2016; 14:1135-45. [PMID: 26990516 PMCID: PMC4907857 DOI: 10.1111/jth.13312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
Low-molecular-weight heparin (LMWH) has remained the most favorable form of heparin in clinics since the 1990s owing to its predictable pharmacokinetic properties. However, LMWH is mainly eliminated through the kidney, which limits its use in renal-impaired patients. In addition, the anticoagulant activity of LMWH is only partially neutralized by protamine. LMWH is obtained from a full-length, highly sulfated polysaccharide harvested from porcine mucosal tissue. The depolymerization involved in LMWH production generates a broad distribution of LMWH fragments (6-22 sugar residues). This, combined with the various methods used to produce commercial LMWHs, results in variable pharmacological and pharmacokinetic properties. An alternative chemoenzymatic approach offers a method for the synthesis of LMWH that has the potential to overcome the limitations of current LMWHs. This review summarizes the application of a chemoenzymatic approach to generate LMWH and the rationale for development of a synthetic LMWH.
Collapse
Affiliation(s)
- K Chandarajoti
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Pawlinski
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Li X, Qi C, Wei P, Huang L, Cai J, Xu Z. Efficient chemoenzymatic synthesis of uridine 5'-diphosphate N-acetylglucosamine and uridine 5'-diphosphate N-trifluoacetyl glucosamine with three recombinant enzymes. Prep Biochem Biotechnol 2016; 47:852-859. [PMID: 27220687 DOI: 10.1080/10826068.2016.1188315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Uridine 5'-diphosphate N-acetylglucosamine (UDP-GlcNAc) is a natural UDP-monosaccharide donor for bacterial glycosyltransferases, while uridine 5'-diphosphate N-trifluoacetyl glucosamine (UDP-GlcNTFA) is its synthetic mimic. The chemoenzymatic synthesis of UDP-GlcNAc and UDP-GlcNTFA was attempted by three recombinant enzymes. Recombinant N-acetylhexosamine 1-kinase was used to produce GlcNAc/GlcNTFA-1-phosphate from GlcNAc/GlcNTFA. N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli K12 MG1655 was used to produce UDP-GlcNAc/GlcNTFA from GlcNAc/GlcNTFA-1-phosphate. Inorganic pyrophosphatase from E. coli K12 MG1655 was used to hydrolyze pyrophosphate to accelerate the reaction. The above enzymes were expressed in E. coli BL21 (DE3) and purified, respectively, and finally mixed in one-pot bioreactor. The effects of reaction conditions on the production of UDP-GlcNAc and UDP-GlcNTFA were characterized. To avoid the substrate inhibition effect on the production of UDP-GlcNAc and UDP-GlcNTFA, the reaction was performed with fed batch of substrate. Under the optimized conditions, high production of UDP-GlcNAc (59.51 g/L) and UDP-GlcNTFA (46.54 g/L) were achieved in this three-enzyme one-pot system. The present work is promising to develop an efficient scalable process for the supply of UDP-monosaccharide donors for oligosaccharide synthesis.
Collapse
Affiliation(s)
- Xiaoyan Li
- a Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou , P. R. China
| | - Chen Qi
- a Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou , P. R. China
| | - Peilian Wei
- b School of Biological and Chemical Engineering , Zhejiang University of Science & Technology , Hangzhou , P. R. China
| | - Lei Huang
- a Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou , P. R. China
| | - Jin Cai
- a Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou , P. R. China
| | - Zhinan Xu
- a Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou , P. R. China
| |
Collapse
|
22
|
Cao X, Lv Q, Li D, Ye H, Yan X, Yang X, Gan H, Zhao W, Jin L, Wang P, Shen J. Direct C5-Isomerization Approach tol-Iduronic Acid Derivatives. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xuefeng Cao
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Qingqing Lv
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Hui Ye
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Xu Yan
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Xiande Yang
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Hao Gan
- Chenxin Homes; Huaihe Road Tianjin 300410 PR China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Lan Jin
- National Glycoengineering Research Center; Shandong University; No.44 West Wenhua Road, Jinan Shandong 250012 PR China) address
| | - Peng Wang
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Jie Shen
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| |
Collapse
|
23
|
Pomin VH. A Dilemma in the Glycosaminoglycan-Based Therapy: Synthetic or Naturally Unique Molecules? Med Res Rev 2015; 35:1195-219. [DOI: 10.1002/med.21356] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/23/2015] [Accepted: 06/02/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Vitor H. Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, University Hospital Clementino Fraga Filho; Federal University of Rio de Janeiro; Rio de Janeiro RJ 21941-913 Brazil
| |
Collapse
|
24
|
Farrugia BL, Lord MS, Melrose J, Whitelock JM. Can we produce heparin/heparan sulfate biomimetics using "mother-nature" as the gold standard? Molecules 2015; 20:4254-76. [PMID: 25751786 PMCID: PMC6272578 DOI: 10.3390/molecules20034254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Heparan sulfate (HS) and heparin are glycosaminoglycans (GAGs) that are heterogeneous in nature, not only due to differing disaccharide combinations, but also their sulfate modifications. HS is well known for its interactions with various growth factors and cytokines; and heparin for its clinical use as an anticoagulant. Due to their potential use in tissue regeneration; and the recent adverse events due to contamination of heparin; there is an increased surge to produce these GAGs on a commercial scale. The production of HS from natural sources is limited so strategies are being explored to be biomimetically produced via chemical; chemoenzymatic synthesis methods and through the recombinant expression of proteoglycans. This review details the most recent advances in the field of HS/heparin synthesis for the production of low molecular weight heparin (LMWH) and as a tool further our understanding of the interactions that occur between GAGs and growth factors and cytokines involved in tissue development and repair.
Collapse
Affiliation(s)
- Brooke L Farrugia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- The Raymond Purves Research Labs, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, The Royal North Shore Hospital of Sydney, St. Leonards, NSW 2065, Australia.
| | - John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
25
|
Abstract
Heparan sulfate is a polysaccharide that plays essential physiological functions in the animal kingdom. Heparin, a highly sulfated form of heparan sulfate, is a widely prescribed anticoagulant drug worldwide. The heparan sulfate and heparin isolated from natural sources are highly heterogeneous mixtures differing in their polysaccharide chain lengths and sulfation patterns. The access to structurally defined heparan sulfate and heparin is critical to probe the contribution of specific sulfated saccharide structures to the biological functions as well as for the development of the next generation of heparin-based anticoagulant drugs. The synthesis of heparan sulfate and heparin, using a purely chemical approach, has proven extremely difficult, especially for targets larger than octasaccharides having a high degree of site-specific sulfation. A new chemoenzymatic method has emerged as an effective alternative approach. This method uses recombinant heparan sulfate biosynthetic enzymes combined with unnatural uridine diphosphate-monosaccharide donors. Recent examples demonstrate the successful synthesis of ultra-low molecular weight heparin, low-molecular weight heparin and bioengineered heparin with unprecedented efficiency. The new method provides an opportunity to develop improved heparin-based therapeutics.
Collapse
Affiliation(s)
- Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
26
|
Driguez PA, Potier P, Trouilleux P. Synthetic oligosaccharides as active pharmaceutical ingredients: lessons learned from the full synthesis of one heparin derivative on a large scale. Nat Prod Rep 2014; 31:980-9. [PMID: 24705477 DOI: 10.1039/c4np00012a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to November 2013. Heparin and heparan sulfate are natural polysaccharides with strong structural variations, which are responsible for their numerous specific biological properties. One key target of heparin, among others, is antithrombin, a serine protease inhibitor that, upon activation, mainly targets anticoagulation factors IIa and Xa. It is well documented that inhibition of the latter is due to a specific pentasaccharidic sequence, its synthetic analog being the registered drug fondaparinux. The replacement of hydroxyls by methoxy groups, N-sulfates by O-sulfonates and the modulation of the sulfation pattern gave rise to both idraparinux and its neutralizable form, idrabiotaparinux, two pentasaccharides with a significantly increased half-life compared to fondaparinux. Although numerous efforts have been devoted to improving the chemoenzymatic preparation of heparin fragments, enzymes are usually selective for their natural substrates, which limits the generation of some specific non-natural structures. Up to now, total synthesis has proved to be a valuable approach for the preparation of tailor-made and pure saccharides in the milligram to gram scale. This highlight will focus on the synthesis and the technical challenges associated with the development and the production of complex carbohydrates which will be exemplified with idrabiotaparinux. Particular attention will be paid to the process improvements needed in order to implement the production in a pilot plant, achieving batch generation on a multi-kilogram scale with a purity higher than 99.5%, and with no unknown impurity over 0.1%.
Collapse
Affiliation(s)
- Pierre-Alexandre Driguez
- Sanofi R&D, Early to Candidate Unit, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin Cedex, France
| | | | | |
Collapse
|
27
|
Chandarajoti K, Xu Y, Sparkenbaugh E, Key NS, Pawlinski R, Liu J. De novo synthesis of a narrow size distribution low-molecular-weight heparin. Glycobiology 2014; 24:476-86. [PMID: 24626379 DOI: 10.1093/glycob/cwu016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Heparin, a commonly used anticoagulant drug, is a mixture of highly sulfated polysaccharides with various molecular weights (MWs). The unique sulfation pattern dictates the anticoagulant activity of heparin. Commercial heparins are categorized into three forms according to their average MW: unfractionated heparin (UFH, MWavg 14,000), low-MW heparin (LMWH, MWavg 3500-6500) and the synthetic pentasaccharide (fondaparinux, MW 1508.3). UFH is isolated from porcine intestine while LMWH is derived from UFH by various methods of depolymerization, which generate a wide range of oligosaccharide chain lengths. Different degradation methods result in structurally distinct LMWH products, displaying different pharmacological and pharmacokinetic properties. In this report, we utilized a chemoenzymatic method to synthesize LMWH with the emphasis on controlling the size distribution of the oligosaccharides. A tetrasaccharide primer and a controlled enzyme-based polymerization were employed to build a narrow size oligosaccharide backbone. The oligosaccharide backbones were further modified by a series of sulfation and epimerization steps in order to obtain a full anticoagulation activity. Determination of the anticoagulation activity in vitro and ex vivo indicated that the synthetic LMWH has higher potency than enoxaparin, a commercial LMWH drug in clinical usage.
Collapse
Affiliation(s)
- Kasemsiri Chandarajoti
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, Rm 303, Beard Hall
| | | | | | | | | | | |
Collapse
|
28
|
Sterner E, Masuko S, Li G, Li L, Green DE, Otto NJ, Xu Y, DeAngelis PL, Liu J, Dordick JS, Linhardt RJ. Fibroblast growth factor-based signaling through synthetic heparan sulfate blocks copolymers studied using high cell density three-dimensional cell printing. J Biol Chem 2014; 289:9754-65. [PMID: 24563485 DOI: 10.1074/jbc.m113.546937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ~40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model.
Collapse
Affiliation(s)
- Eric Sterner
- From the Department of Chemical and Biological Engineering
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu P, Xu W, Dai Y, Yang Y, Yu B. Efficient synthesis of a library of heparin tri- and tetrasaccharides relevant to the substrate of heparanase. Org Chem Front 2014. [DOI: 10.1039/c4qo00039k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A robust glycosylation protocol was fixed to construct the GlcN–(1α→4)-GlcA/IdoA linkagesen routeto heparin oligosaccharides.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, China
| | - Weichang Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, China
| | - Yuanwei Dai
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, China
| | - You Yang
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, China
| |
Collapse
|
30
|
Nishimura Y, Shudo H, Seto H, Hoshino Y, Miura Y. Syntheses of sulfated glycopolymers and analyses of their BACE-1 inhibitory activity. Bioorg Med Chem Lett 2013; 23:6390-5. [DOI: 10.1016/j.bmcl.2013.09.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 12/11/2022]
|
31
|
Zulueta MML, Lin SY, Hu YP, Hung SC. Synthetic heparin and heparan sulfate oligosaccharides and their protein interactions. Curr Opin Chem Biol 2013; 17:1023-9. [DOI: 10.1016/j.cbpa.2013.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
|
32
|
Xiong J, Bhaskar U, Li G, Fu L, Li L, Zhang F, Dordick JS, Linhardt RJ. Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin. J Biotechnol 2013; 167:241-7. [PMID: 23835156 PMCID: PMC3780768 DOI: 10.1016/j.jbiotec.2013.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 12/11/2022]
Abstract
Heparin is a critically important anticoagulant drug that is prepared from pig intestine. In 2007-2008, there was a crisis in the heparin market when the raw material was adulterated with the toxic polysaccharide, oversulfated chondroitin sulfate, which was associated with 100 deaths in the U.S. alone. As the result of this crisis, our laboratory and others have been actively pursuing alternative sources for this critical drug, including synthetic heparins and bioengineered heparin. In assessing the bioengineering processing costs it has become clear that the use of both enzyme-catalyzed cofactor recycling and enzyme immobilization will be needed for commercialization. In the current study, we examine the use of immobilization of C₅-epimerase and 2-O-sulfotransferase involved in the first enzymatic step in the bioengineered heparin process, as well as arylsulfotransferase-IV involved in cofactor recycling in all three enzymatic steps. We report the successful immobilization of all three enzymes and their use in converting N-sulfo, N-acetyl heparosan into N-sulfo, N-acetyl 2-O-sulfo heparin.
Collapse
Affiliation(s)
- Jian Xiong
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
DeAngelis PL, Liu J, Linhardt RJ. Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains. Glycobiology 2013; 23:764-77. [PMID: 23481097 PMCID: PMC3671772 DOI: 10.1093/glycob/cwt016] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 02/03/2023] Open
Abstract
Glycosaminoglycans (GAGs) are complex polysaccharides composed of hexosamine-containing disaccharide repeating units. The three most studied classes of GAGs, heparin/heparan sulfate, hyaluronan and chondroitin/dermatan sulfate, are essential macromolecules. GAGs isolated from animal and microbial sources have been utilized therapeutically, but naturally occurring GAGs are extremely heterogeneous limiting further development of these agents. These molecules pose difficult targets to construct by classical organic syntheses due to the long chain lengths and complex patterns of modification by sulfation and epimerization. Chemoenzymatic synthesis, a process that employs exquisite enzyme catalysts and various defined precursors (e.g. uridine 5'-diphosphosphate-sugar donors, sulfate donors, acceptors and oxazoline precursors), promises to deliver homogeneous GAGs. This review covers both theoretical and practical issues of GAG oligosaccharide and polysaccharide preparation as single molecular entities and in library formats. Even at this early stage of technology development, nearly monodisperse GAGs can be made with either natural or artificial structures.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma Center for Medical Glycobiology, Oklahoma City, OK 73126, USA.
| | | | | |
Collapse
|
34
|
Production methods for heparosan, a precursor of heparin and heparan sulfate. Carbohydr Polym 2013; 93:38-47. [DOI: 10.1016/j.carbpol.2012.04.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/17/2012] [Accepted: 04/17/2012] [Indexed: 11/23/2022]
|
35
|
Bojarová P, Rosencrantz RR, Elling L, Křen V. Enzymatic glycosylation of multivalent scaffolds. Chem Soc Rev 2013; 42:4774-97. [DOI: 10.1039/c2cs35395d] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Zhao X, Yang B, Linkens K, Datta P, Onishi A, Zhang F, Linhardt RJ. Microscale separation of heparosan, heparan sulfate, and heparin. Anal Biochem 2012; 434:215-7. [PMID: 23262074 DOI: 10.1016/j.ab.2012.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
The separation and quantification of glycosaminoglycan (GAG) chains with different levels of sulfation from cells and media, and prepared through chemoenzymatic synthesis or metabolic engineering, pose a major challenge in glycomics analysis. A method for microscale separation and quantification of heparin, heparan sulfate, and heparosan from cells is reported. This separation relies on a mini strong anion exchange spin column eluted stepwise with various concentrations of sodium chloride. Disaccharide analysis by LC-MS was used to monitor the chemical structure of the various GAG chains that were recovered.
Collapse
Affiliation(s)
- Xue Zhao
- College of Food Science and Technology, Ocean University of China, Qingdao 266003, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Hu YP, Zhong YQ, Chen ZG, Chen CY, Shi Z, Zulueta MML, Ku CC, Lee PY, Wang CC, Hung SC. Divergent synthesis of 48 heparan sulfate-based disaccharides and probing the specific sugar-fibroblast growth factor-1 interaction. J Am Chem Soc 2012; 134:20722-7. [PMID: 23240683 DOI: 10.1021/ja3090065] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Several biological processes involve glycans, yet understanding their ligand specificities is impeded by their inherent diversity and difficult acquisition. Generating broad synthetic sugar libraries for bioevaluations is a powerful tool in unraveling glycan structural information. In the case of the widely distributed heparan sulfate (HS), however, the 48 theoretical possibilities for its repeating disaccharide call for synthetic approaches that should minimize the effort in an undoubtedly huge undertaking. Here we employed a divergent strategy to afford all 48 HS-based disaccharides from just two orthogonally protected disaccharide precursors. Different combinations and sequence of transformation steps were applied with many downstream intermediates leading up to multiple target products. With the full disaccharide library in hand, affinity screening with fibroblast growth factor-1 (FGF-1) revealed that four of the synthetic sugars bind to FGF-1. The molecular details of the interaction were further clarified through X-ray analysis of the sugar-protein cocrystals. The capability of comprehensive sugar libraries in providing key insights in glycan-ligand interaction is, thus, highlighted.
Collapse
Affiliation(s)
- Yu-Peng Hu
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chappell EP, Liu J. Use of biosynthetic enzymes in heparin and heparan sulfate synthesis. Bioorg Med Chem 2012; 21:4786-92. [PMID: 23313092 DOI: 10.1016/j.bmc.2012.11.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 01/21/2023]
Abstract
Heparan sulfate and heparin are highly sulfated polysaccharides consisting of repeating disaccharide units of glucuronic acid or iduronic acid that is linked to glucosamine. Heparan sulfate displays a range of biological functions, and heparin is a widely used anticoagulant drug in hospitals. It has been known to organic chemists that the chemical synthesis of heparan sulfate and heparin oligosaccharides is extremely difficult. Recent advances in the study of the biosynthesis of heparan sulfate/heparin offer a chemoenzymatic approach to synthesize heparan sulfate and heparin. Compared to chemical synthesis, the chemoenzymatic method shortens the synthesis and improves the product yields significantly, providing an excellent opportunity to advance the understanding of the structure and function relationships of heparan sulfate. In this review, we attempt to summarize the progress of the chemoenzymatic synthetic method and its application in heparan sulfate and heparin research.
Collapse
Affiliation(s)
- Elizabeth P Chappell
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | | |
Collapse
|
39
|
Peterson S, Liu J. Deciphering mode of action of heparanase using structurally defined oligosaccharides. J Biol Chem 2012; 287:34836-43. [PMID: 22893710 DOI: 10.1074/jbc.m112.390161] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide that serves many biological functions, including regulating cell growth and inflammatory responses as well as the blood coagulation process. Heparanase is an enzyme that cleaves HS and is known to display a variety of pathophysiological effects in cancer, diabetes, and Alzheimer disease. The link between heparanase and diseases is a result of its selective cleavage of HS, which releases smaller HS fragments to enhance cell proliferation, migration, and invasion. Despite its importance in pathological diseases, the structural cues in HS that direct heparanase cleavage and the steps of HS depolymerization remain unknown. Here, we sought to probe the substrate specificity of heparanase using a series of structurally defined oligosaccharide substrates. The sites of heparanase cleavage on the oligosaccharide substrates were determined by mass spectrometry and gel permeation chromatography. We discovered that heparanase cleaves the linkage of glucuronic acid linked to glucosamine carrying 6-O-sulfo groups. Furthermore, our findings suggest that heparanase displays different cleavage modes by recognizing the structures of the nonreducing ends of the substrates. Our results deepen the understanding of the action mode of heparanase.
Collapse
Affiliation(s)
- Sherket Peterson
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
40
|
Xu Y, Pempe EH, Liu J. Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities. J Biol Chem 2012; 287:29054-61. [PMID: 22773834 DOI: 10.1074/jbc.m112.358523] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) and heparin are highly sulfated polysaccharides. Heparin is a commonly used anticoagulant drug that inhibits the activities of factors Xa and IIa (also known as thrombin) to prevent blood clot formation. Here, we report the synthesis of a series of size-defined oligosaccharides to probe the minimum size requirement for an oligosaccharide with anti-IIa activity. The synthesis was completed by a chemoenzymatic approach involving glycosyltransferases, HS sulfotransferases, and C(5)-epimerase. We demonstrate the ability to synthesize highly purified N-sulfo-oligosaccharides having up to 21 saccharide residues. The results from anti-Xa and anti-IIa activity measurements revealed that an oligosaccharide longer than 19 saccharide residues is necessary to display anti-IIa activity. The oligosaccharides also exhibit low binding toward platelet factor 4, raising the possibility of preparing a synthetic heparin with a reduced effect of heparin-induced thrombocytopenia. The results from this study demonstrate the ability to synthesize large HS oligosaccharides and provide a unique tool to probe the structure and function relationships of HS that require the use of large HS fragments.
Collapse
Affiliation(s)
- Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
41
|
Pempe EH, Burch TC, Law CJ, Liu J. Substrate specificity of 6-O-endosulfatase (Sulf-2) and its implications in synthesizing anticoagulant heparan sulfate. Glycobiology 2012; 22:1353-62. [PMID: 22692045 DOI: 10.1093/glycob/cws092] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heparan sulfate (HS) 6-O-endosulfatase (Sulf) catalyzes the hydrolysis of 6-O-sulfo groups from HS polysaccharides. The resultant HS has reduced sulfation levels and displays altered biological activities. The Sulfs have been associated with several cancers and developmental problems and could function as a tool for editing specific HS structures. Here, we characterize the substrate specificity of human Sulf-2 using site-specifically radiolabeled synthetic polysaccharides. The enzyme was expressed and harvested from the conditioned medium of Chinese hamster ovary cells transfected with Sulf-2 expression plasmids. The uniquely [(35)S]sulfated polysaccharides were prepared using purified recombinant HS biosynthetic enzymes. We found that Sulf-2 is particularly effective in removing the 6-O-sulfo group residing in the trisulfated disaccharide repeating unit comprising 2-O-sulfated uronic acid and N-sulfated 6-O-sulfo glucosamine, but can also hydrolyze sulfo groups from N- and 6-O-sulfated disaccharides. In addition, we found that Sulf-2 treatment significantly decreases HS's ability to bind to platelet factor 4 (PF4), a chemokine, while binding to antithrombin is maintained. Because HS-PF4 complexes are the initiating cause of heparin-induced thrombocytopenia, this finding provides a promising strategy for developing heparin therapies with reduced side effects. Further understanding of Sulf-2 activity will help elucidate HS structure-function relationships and provide a valuable tool in tailoring HS-based anticoagulant drugs.
Collapse
Affiliation(s)
- Elizabeth H Pempe
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | |
Collapse
|
42
|
Zulueta MML, Lin SY, Lin YT, Huang CJ, Wang CC, Ku CC, Shi Z, Chyan CL, Irene D, Lim LH, Tsai TI, Hu YP, Arco SD, Wong CH, Hung SC. α-Glycosylation by d-Glucosamine-Derived Donors: Synthesis of Heparosan and Heparin Analogues That Interact with Mycobacterial Heparin-Binding Hemagglutinin. J Am Chem Soc 2012; 134:8988-95. [DOI: 10.1021/ja302640p] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Medel Manuel L. Zulueta
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City
1101, Philippines
| | - Shu-Yi Lin
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Ya-Ting Lin
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Ching-Jui Huang
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Chun-Chih Wang
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Chiao-Chu Ku
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Zhonghao Shi
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chia-Lin Chyan
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Ta-Hsueh
Road, Shoufeng, Hualien 974, Taiwan
| | - Deli Irene
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Ta-Hsueh
Road, Shoufeng, Hualien 974, Taiwan
| | - Liang-Hin Lim
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Ta-Hsueh
Road, Shoufeng, Hualien 974, Taiwan
| | - Tsung-I Tsai
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Yu-Peng Hu
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Susan D. Arco
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City
1101, Philippines
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
- Department of Applied Chemistry, National Chiao Tung University, No. 1001, Ta-Hsueh Road, Hsinchu 300, Taiwan
| |
Collapse
|
43
|
Zhou X, O'Leary TR, Xu Y, Sheng J, Liu J. Chemoenzymatic synthesis of heparan sulfate and heparin. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.681852] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Pempe EH, Xu Y, Gopalakrishnan S, Liu J, Harris EN. Probing structural selectivity of synthetic heparin binding to Stabilin protein receptors. J Biol Chem 2012; 287:20774-83. [PMID: 22547069 DOI: 10.1074/jbc.m111.320069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
As one of the most widely used drugs worldwide, heparin is an essential anticoagulant required for surgery, dialysis, treatment of thrombosis, cancer, and general circulatory management. Stabilin-2 is a scavenger clearance receptor with high expression in the sinusoidal endothelium of liver. It is believed that Stabilin-2 is the primary receptor for the clearance of unfractionated and low molecular weight heparins in the liver. Here, we identify the modifications and length of the heparin polymer that are required for binding and endocytosis by both human Stabilin receptors: Stabilin-2 and its homolog Stabilin-1 (also found in liver endothelium). Using enzymatically synthesized (35)S-labeled heparan sulfate oligomers, we identified that sulfation of the 3-OH position of N-sulfated glucosamine (GlcNS) is the most beneficial modification for binding and endocytosis via both Stabilin receptors. In addition, our data suggest that a decasaccharide is the minimal size for binding to the Stabilin receptors. These findings define the physical parameters of the heparin structure required for efficient clearance from blood circulation. These results will also aid in the design of synthetic heparins with desired clearance rates.
Collapse
Affiliation(s)
- Elizabeth H Pempe
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | | | | | | |
Collapse
|
45
|
Li P, Sheng J, Liu Y, Li J, Liu J, Wang F. Heparosan-derived heparan sulfate/heparin-like compounds: one kind of potential therapeutic agents. Med Res Rev 2012; 33:665-92. [PMID: 22495734 DOI: 10.1002/med.21263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heparan sulfate (HS) is a highly sulfated glycosaminoglycan and exists in all animal tissues. HS and heparin are very similar, except that heparin has higher level of sulfation and higher content of iduronic acid. Despite the fact that it is a century-old drug, heparin remains as a top choice for treating thrombotic disorders. Pharmaceutical heparin is derived from porcine intestine or bovine lung via a long supply chain. This supply chain is vulnerable to the contamination of animal pathogens. Therefore, new methods for manufacturing heparin or heparin-like substances devoid of animal tissues have been explored by many researchers, among which, modifications of heparosan, the capsular polysaccharide of Escherichia coli K5 strain, is one of the promising approaches. Heparosan has a structure similar to unmodified backbone of natural HS and heparin. It is feasible to obtain HS or heparin derivatives by modifying heparosan with chemical or enzymatic methods. These derivatives display different biological activities, such as anticoagulant, anti-inflammatory, anticancer, and antiviral activities. This review focuses on the recent studies of synthesis, activity, and structure-activity relationship of HS/heparin-like derivatives prepared from heparosan.
Collapse
Affiliation(s)
- Pingli Li
- Institute of Biochemical and Biotechnological Drug & National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Hung SC, Lu XA, Lee JC, Chang MDT, Fang SL, Fan TC, Zulueta MML, Zhong YQ. Synthesis of heparin oligosaccharides and their interaction with eosinophil-derived neurotoxin. Org Biomol Chem 2011; 10:760-72. [PMID: 22143347 DOI: 10.1039/c1ob06415k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A convenient route for the synthesis of heparin oligosaccharides involving regioselective protection of D-glucosamine and a concise preparation of rare L-ido sugars from diacetone α-D-glucose is described. Stereoselective coupling of a D-glucosamine-derived trichloroacetimidate with a 1,6-anhydro-β-L-idopyranosyl 4-alcohol gave the desired α-linked disaccharide, which was used as repeating unit for dual chain elongation and termination. Stepwise assembly from the reducing to the non-reducing end with a D-glucosamine-derived monosaccharide as starting unit furnished the oligosaccharide skeletons having different chain lengths. A series of functional group transformations afforded the expected heparin oligosaccharides with 3, 5 and 7 sugar units. Interaction of these oligosaccharides with eosinophil-derived neurotoxin (EDN), a cationic ribonuclease and a mediator produced by human eosinophils, was further investigated. The results revealed that at 5 μg mL(-1), the heptasaccharide has sufficiently strong interference to block EDN binding to Beas-2B cells. The tri- and pentasaccharides have moderate inhibitory properties at 50 μg mL(-1) concentration, but no inhibition has been observed at 10 μg mL(-1). The IC(50) values of the tri-, penta- and heptasaccharides are 69.4, 47.2 and 0.225 μg mL(-1), respectively.
Collapse
|
48
|
Hsu CH, Hung SC, Wu CY, Wong CH. Toward automated oligosaccharide synthesis. Angew Chem Int Ed Engl 2011; 50:11872-923. [PMID: 22127846 DOI: 10.1002/anie.201100125] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Indexed: 12/16/2022]
Abstract
Carbohydrates have been shown to play important roles in biological processes. The pace of development in carbohydrate research is, however, relatively slow due to the problems associated with the complexity of carbohydrate structures and the lack of general synthetic methods and tools available for the study of this class of biomolecules. Recent advances in synthesis have demonstrated that many of these problems can be circumvented. In this Review, we describe the methods developed to tackle the problems of carbohydrate-mediated biological processes, with particular focus on the issue related to the development of the automated synthesis of oligosaccharides. Further applications of carbohydrate microarrays and vaccines to human diseases are also highlighted.
Collapse
Affiliation(s)
- Che-Hsiung Hsu
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
49
|
Hsu CH, Hung SC, Wu CY, Wong CH. Auf dem Weg zur automatisierten Oligosaccharid- Synthese. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Xu Y, Masuko S, Takieddin M, Xu H, Liu R, Jing J, Mousa SA, Linhardt RJ, Liu J. Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 2011; 334:498-501. [PMID: 22034431 PMCID: PMC3425363 DOI: 10.1126/science.1207478] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultralow molecular weight (ULMW) heparins are sulfated glycans that are clinically used to treat thrombotic disorders. ULMW heparins range from 1500 to 3000 daltons, corresponding from 5 to 10 saccharide units. The commercial drug Arixtra (fondaparinux sodium) is a structurally homogeneous ULMW heparin pentasaccharide that is synthesized through a lengthy chemical process. Here, we report 10- and 12-step chemoenzymatic syntheses of two structurally homogeneous ULMW heparins (MW = 1778.5 and 1816.5) in 45 and 37% overall yield, respectively, starting from a simple disaccharide. These ULMW heparins display excellent in vitro anticoagulant activity and comparable pharmacokinetic properties to Arixtra, as demonstrated in a rabbit model. The chemoenzymatic approach is scalable and shows promise for a more efficient route to synthesize this important class of medicinal agent.
Collapse
Affiliation(s)
- Yongmei Xu
- Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sayaka Masuko
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Majde Takieddin
- Pharma-ceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Haoming Xu
- Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Renpeng Liu
- Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Juliana Jing
- Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shaker A. Mousa
- Pharma-ceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
- College of Medicine, King Saud University, Riyadh, Saudia Arabia
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|