1
|
Hu JY, Zhuang YB, Cheng J. Band alignment of CoO(100)-water and CoO(111)-water interfaces accelerated by machine learning potentials. J Chem Phys 2024; 161:134110. [PMID: 39360682 DOI: 10.1063/5.0224137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Cobalt monoxide (CoO) nanomaterials have drawn attention for their remarkable photocatalytic water splitting without an externally applied potential or co-catalyst. The success of overall water splitting is due to the appropriate band edge positions of the catalyst, which span the redox potentials of water splitting. Typically, CoO nanomaterials possess complex morphologies, which consist of multiple active surfaces. As a result, the precise roles of the surfaces in the overall water-splitting process remain to be elucidated. In this work, we have undertaken a thorough investigation into the band alignments at the CoO(100)-water and CoO(111)-water interfaces using ab initio molecular dynamics and machine learning accelerated molecular dynamics simulations. The results of band alignment reveal that CoO(100) supports both the Hydrogen Evolution Reaction (HER) and the oxygen evolution reaction, whereas CoO(111) only facilitates the HER. Moreover, the variance in band positions between CoO(100) and CoO(111) results in an intrinsic potential difference, facilitating the migration of electrons toward CoO(100), while holes accumulate on CoO(111). The separation of photoexcited carriers effectively promotes water splitting in CoO.
Collapse
Affiliation(s)
- Jin-Yuan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong-Bin Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
2
|
Hassen A, Moawed EA, Bahy R, El Basaty AB, El-Sayed S, Ali AI, Tayel A. Synergistic effects of thermally reduced graphene oxide/zinc oxide composite material on microbial infection for wound healing applications. Sci Rep 2024; 14:22942. [PMID: 39358395 PMCID: PMC11447095 DOI: 10.1038/s41598-024-73007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Infections originating from pathogenic microorganisms can significantly impede the natural wound-healing process. To address this obstacle, innovative bio-active nanomaterials have been developed to enhance antibacterial capabilities. This study focuses on the preparation of nanocomposites from thermally reduced graphene oxide and zinc oxide (TRGO/ZnO). The hydrothermal method was employed to synthesize these nanocomposites, and their physicochemical properties were comprehensively characterized using X-ray diffraction analysis (XRD), High-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared (FT-IR), Raman spectroscopy, UV-vis, and field-emission scanning electron microscopy (FE-SEM) techniques. Subsequently, the potential of TRGO/ZnO nanocomposites as bio-active materials against wound infection-causing bacteria, including Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, was evaluated. Furthermore, the investigated samples show disrupted bacterial biofilm formation. A reactive oxygen species (ROS) assay was conducted to investigate the mechanism of nanocomposite inhibition against bacteria and for further in-vivo determination of antimicrobial activity. The MTT assay was performed to ensure the safety and biocompatibility of nanocomposite. The results suggest that TRGO/ZnO nanocomposites have the potential to serve as effective bio-active nanomaterials for combating pathogenic microorganisms present in wounds.
Collapse
Affiliation(s)
- A Hassen
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt.
| | - E A Moawed
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
| | - Rehab Bahy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, El Fayoum, 63514, Egypt
| | - A B El Basaty
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
- Nanotechnoloy Center, Helwan University, Helwan Al Sharqia, Cairo, 11722, Egypt
| | - S El-Sayed
- Physics Department, Faculty of Science, Fayoum University, El Fayoum, 63514, Egypt
| | - Ahmed I Ali
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
- Department of Applied Physics, Institute of Natural Sciences, College of Applied Science, Kyung Hee University, Suwon, 446-701, Republic of Korea
| | - A Tayel
- Basic Science Department, Faculty of Technology and Education, Helwan University, Saraya El Koba, El Sawah Street, Cairo, 11281, Egypt
| |
Collapse
|
3
|
Malachosky EW, Ackerman MM, Stan L. Enhanced Thermal Stability of Conductive Mercury Telluride Colloidal Quantum Dot Thin Films Using Atomic Layer Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1354. [PMID: 39195392 DOI: 10.3390/nano14161354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Colloidal quantum dots (CQDs) are valuable for their potential applications in optoelectronic devices. However, they are susceptible to thermal degradation during processing and while in use. Mitigating thermally induced sintering, which leads to absorption spectrum broadening and undesirable changes to thin film electrical properties, is necessary for the reliable design and manufacture of CQD-based optoelectronics. Here, low-temperature metal-oxide atomic layer deposition (ALD) was investigated as a method for mitigating sintering while preserving the optoelectronic properties of mercury telluride (HgTe) CQD films. ALD-coated films are subjected to temperatures up to 160 °C for up to 5 h and alumina (Al2O3) is found to be most effective at preserving the optical properties, demonstrating the feasibility of metal-oxide in-filling to protect against sintering. HgTe CQD film electrical properties were investigated before and after alumina ALD in-filling, which was found to increase the p-type doping and hole mobility of the films. The magnitude of these effects depended on the conditions used to prepare the HgTe CQDs. With further investigation into the interaction effects of CQD and ALD process factors, these results may be used to guide the design of CQD-ALD materials for their practical integration into useful optoelectronic devices.
Collapse
Affiliation(s)
| | | | - Liliana Stan
- Argonne National Laboratory, Center for Nanoscale Materials, Lemont, IL 60439, USA
| |
Collapse
|
4
|
Podobiński J, Datka J. Characterisation of Basic Sites on Ga 2O 3, MgO, and ZnO with Preadsorbed Ethanol and Ammonia-IR Study. Molecules 2024; 29:3070. [PMID: 38999022 PMCID: PMC11243292 DOI: 10.3390/molecules29133070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The effect of adsorption of ethanol and ammonia on the basicity of Ga2O3, MgO, and ZnO was examined via IR studies of CO2 adsorption. Ethanol reacts with OH groups on Ga2O3, and MgO, forming ethoxyl groups. The substitution of surface hydroxyls by ethoxyls increases the basicity of the neighbouring oxygen. The ethoxyl groups that also form on ZnO do not contain surface OH groups, but the mechanism of their formation is different. On ZnO, ethoxy groups are formed by the reaction of ethanol with surface oxygens. The presence of ethoxyls on ZnO decreases the basicity because some surface oxygens are already engaged in the bonding of ethoxyl groups. The effect of ammonia adsorption on basicity is different for each oxide. For Ga2O3, ammonia adsorption increases the basicity of neighbouring oxygen sites. Ammonia is not adsorbed on MgO; therefore, it does not change the basicity of this oxide. Ammonia adsorbed on ZnO forms coordination bonds with Zn sites; it does not change the number of basic sites but changes how carbonate species are bonded to surface sites.
Collapse
Affiliation(s)
| | - Jerzy Datka
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| |
Collapse
|
5
|
Oshida K, Yuan K, Yamazaki Y, Tsukimura R, Nishio H, Nomoto K, Miura H, Shishido T, Jin X, Nozaki K. Hydrogen-Induced Formation of Surface Acid Sites on Pt/Al(PO 3) 3 Enables Remarkably Efficient Hydrogenolysis of C-O Bonds in Alcohols and Ethers. Angew Chem Int Ed Engl 2024; 63:e202403092. [PMID: 38415808 DOI: 10.1002/anie.202403092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
The hydrogenolysis of oxygenates such as alcohols and ethers is central to the biomass valorization and also a valuable transformation in organic synthesis. However, a mild and efficient catalyst system for the hydrogenolysis of a large variety of alcohols and ethers with various functional groups is still underdeveloped. Here, we report an aluminum metaphosphate-supported Pt nanoparticles (Pt/Al(PO3)3) for the hydrogenolysis of a wide variety of primary, secondary, and tertiary alkyl and benzylic alcohols, and dialkyl, aryl alkyl, and diaryl ethers, including biomass-derived furanic compounds, under mild conditions (0.1-1 atm of H2, as low as 70 °C). Mechanistic studies suggested that H2 induces formation of the surface Brønsted acid sites via its cleavage by supported Pt nanoparticles. Accordingly, the high efficiency and the wide applicability of the catalyst system are attributed to the activation and cleavage of C-O bonds by the hydrogen-induced Brønsted acid sites with the assistance of Lewis acidic Al sites on the catalyst surface. The high efficiency of the catalyst implies its potential application in energy-efficient biomass valorization or fine chemical synthesis.
Collapse
Affiliation(s)
- Kento Oshida
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kang Yuan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yukari Yamazaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rio Tsukimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hidenori Nishio
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Katsutoshi Nomoto
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Xiongjie Jin
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Viloria Angarita JE, Insuasty D, Rodríguez M JD, Castro JI, Valencia-Llano CH, Zapata PA, Delgado-Ospina J, Navia-Porras DP, Albis A, Grande-Tovar CD. Biological activity of lyophilized chitosan scaffolds with inclusion of chitosan and zinc oxide nanoparticles. RSC Adv 2024; 14:13565-13582. [PMID: 38665501 PMCID: PMC11043666 DOI: 10.1039/d4ra00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The constant demand for biocompatible and non-invasive materials for regenerative medicine in accidents and various diseases has driven the development of innovative biomaterials that promote biomedical applications. In this context, using sol-gel and ionotropic gelation methods, zinc oxide nanoparticles (NPs-ZnO) and chitosan nanoparticles (NPs-CS) were synthesized with sizes of 20.0 nm and 11.98 nm, respectively. These nanoparticles were incorporated into chitosan scaffolds through the freeze-drying method, generating a porous morphology with small (<100 μm), medium (100-200 μm), and large (200-450 μm) pore sizes. Moreover, the four formulations showed preliminary bioactivity after hydrolytic degradation, facilitating the formation of a hydroxyapatite (HA) layer on the scaffold surface, as evidenced by the presence of Ca (4%) and P (5.1%) during hydrolytic degradation. The scaffolds exhibited average antibacterial activity of F1 = 92.93%, F2 = 99.90%, F3 = 74.10%, and F4 = 88.72% against four bacterial strains: K. pneumoniae, E. cloacae, S. enterica, and S. aureus. In vivo, evaluation confirmed the biocompatibility of the functionalized scaffolds, where F2 showed accelerated resorption attributed to the NPs-ZnO. At the same time, F3 exhibited controlled degradation with NPs-CS acting as initiation points for degradation. On the other hand, F4 combined NPs-CS and NPs-ZnO, resulting in progressive degradation, reduced inflammation, and an organized extracellular matrix. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.
Collapse
Affiliation(s)
- Jorge Eliecer Viloria Angarita
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia +57-5-3599-484
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte Km 5 Vía Puerto Colombia Barranquilla 081007 Colombia
| | - Juan David Rodríguez M
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre Km 5 Vía Puerto Colombia Barranquilla 081007 Colombia
| | - Jorge Iván Castro
- Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle Calle 13 No. 100-00 Cali 76001 Colombia
| | | | - Paula A Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago 9170020 Chile
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali Carrera 122 # 6-65 Cali 76001 Colombia
| | - Diana Paola Navia-Porras
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali Carrera 122 # 6-65 Cali 76001 Colombia
| | - Alberto Albis
- Grupo de Investigación en Bioprocesos, Universidad del Atlántico, Facultad de Ingeniería Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico Carrera 30 Número 8-49 Puerto Colombia 081008 Colombia +57-5-3599-484
| |
Collapse
|
7
|
Dastider A, Saha H, Anik MJF, Jamal M, Billah MM. Second phase Cu 2O boosted photocatalytic activity of fluorine doped CuO nanoparticles. RSC Adv 2024; 14:11677-11693. [PMID: 38605896 PMCID: PMC11007595 DOI: 10.1039/d3ra08790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
The photocatalytic activity of fluorine (F) doped CuO nanoparticles (NPs) prepared employing modified sol-gel process was investigated here in this study. Structural and elemental characterization using XRD and XPS data confirmed successful incorporation of F as dopant. F doping led to lattice distortion and reduced crystallinity with smaller crystallite size while promoting the emergence of Cu2O as the second phase. Morphological analysis showed irregularly shaped, fused particles with a decreasing particle size trend upon doping. Addition of hydrogen peroxide generated hydroxyl radicals (OH˙) under ultra-violet (UV) light, which effectively degrades pollutants by facilitating the photocatalytic kinetics. Photocatalytic activity of all the nanoparticles was examined against Rhodamine B (Rh B) dye and most efficient degradation (97.78%) was observed for 3 mol% F dopant concentration. The emergence of Cu2O phase for doping beyond 1 mol% F doped CuO might be the prime reason to enhance its degradation performance. Conversely, 5 mol% doping caused notable phase changes and decreased degradation rate (88.05%) due to increased recombination rate in presence of metallic copper. The ability of F doped CuO nanoparticles to disintegrate organic contaminants by producing reactive oxygen species when exposed to UV light suggests their potential effectiveness in applications such as dye degradation, water purification, and environmental sustainability.
Collapse
Affiliation(s)
- Ankita Dastider
- Department of Materials and Metallurgical Engineering (MME), Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh
| | - Hridoy Saha
- Department of Materials and Metallurgical Engineering (MME), Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh
| | - Md Jannatul Ferdous Anik
- Department of Materials and Metallurgical Engineering (MME), Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh
| | - Moniruzzaman Jamal
- Department of Materials and Metallurgical Engineering (MME), Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh
- Department of Materials Science and Engineering, University of California Berkeley CA 94720 USA
| | - Md Muktadir Billah
- Department of Materials and Metallurgical Engineering (MME), Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh
| |
Collapse
|
8
|
Evstafieva M, Redkin A, Roshchupkin D, Rudneva T, Yakimov EE. Influence of Exposure to a Wet Atmosphere on the UV-Sensing Characteristics of ZnO Nanorod Arrays. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1053. [PMID: 38473527 DOI: 10.3390/ma17051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Zinc oxide is a promising material for the creation of various types of sensors, in particular UV detectors. In this work, arrays of ordered nanorods were grown by chemical vapor deposition. The effect of environmental humidity on the sensing properties of zinc oxide nanorod arrays was investigated, and a prototype UV sensor using indium as an ohmic contact was developed. UV photoresponses were measured for the samples stored in dry and wet atmospheres. The increase in sensitivity and response of the ZnO nanorod arrays was observed after prolonged exposure to a wet atmosphere. A model was proposed to explain this effect. This is due to the formation of hydroxyl groups on the surface of zinc oxide nanorods, which is confirmed by FTIR spectroscopy data. For the first time, it has been shown that after storage in a wet atmosphere, the sensory properties of the structure remain stable regardless of the ambient humidity.
Collapse
Affiliation(s)
- Maria Evstafieva
- Institute of Microelectronics Technology RAS, 6 Academician Ossipyan Str., 142432 Chernogolovka, Russia
| | - Arcady Redkin
- Institute of Microelectronics Technology RAS, 6 Academician Ossipyan Str., 142432 Chernogolovka, Russia
| | - Dmitry Roshchupkin
- Institute of Microelectronics Technology RAS, 6 Academician Ossipyan Str., 142432 Chernogolovka, Russia
| | - Tatyana Rudneva
- Institute of Microelectronics Technology RAS, 6 Academician Ossipyan Str., 142432 Chernogolovka, Russia
| | - Eugene E Yakimov
- Institute of Microelectronics Technology RAS, 6 Academician Ossipyan Str., 142432 Chernogolovka, Russia
| |
Collapse
|
9
|
Hossain SM, Patnaik P, Sharma R, Sarkar S, Chatterjee U. Unveiling CeZnO x Bimetallic Oxide: A Promising Material to Develop Composite SPPO Membranes for Enhanced Oxidative Stability and Fuel Cell Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7097-7111. [PMID: 38296332 DOI: 10.1021/acsami.3c16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The incorporation of cerium-zinc bimetallic oxide (CeZnOx) nanostructures in sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) membranes holds promise in an enhanced and durable fuel cell performance. This investigation delves into the durability and efficiency of SPPO membranes intercalated with CeZnOx nanostructures by varying the filler loading of 1, 2, and 3% (w/w). The successful synthesis of CeZnOx nanostructures by the alkali-aided deposition method is confirmed by wide-angle X-ray diffraction spectroscopy (WAXS), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. CeZnOx@SPPO nanocomposite membranes are fabricated using a solution casting method. The intricate interplay of interfacial adhesion and coupling configuration between three-dimensional CeZnOx and sulfonic moieties of the SPPO backbone yields an enhancement in the bound water content within the proton exchange membranes (PEMs). This constructs simultaneously an extensive hydrogen bonding network intertwined with the proton transport channels, thereby elevating the proton conductivity (Km). The orchestrated reversible redox cycling involving Ce3+/Ce4+ enhances the quenching of aggressive radicals, aided by Zn2+, promoting oxygen deficiency and Ce3+ concentration. This synergistic efficacy ultimately translates into composite PEMs characterized by a mere 4% mass loss and a nominal 6% decrease in Km after rigorous exposure to Fenton's solution. Remarkably, an improved power density of 403.2 mW/cm2 and a maximum current density of 1260.6 mA/cm2 were achieved with 2% loading of CeZnOx (SPZ-2) at 75 °C and 100% RH. The fuel cell performance of SPZ-2 is 74% higher than its corresponding pristine SPPO membrane.
Collapse
Affiliation(s)
- Sk Miraz Hossain
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratyush Patnaik
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritika Sharma
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Sarkar
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uma Chatterjee
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Mohammadian S, Avan A, Khazaei M, Maghami P. The advancing of polymeric core-shell ZnO nanocomposites containing 5-fluorouracil for improving anticancer activity in colorectal cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:899-911. [PMID: 37530786 DOI: 10.1007/s00210-023-02643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
The study investigated the use of 5-fluorouracil-loaded ZnO nanocomposites (5-FU/Gd-ZnO NCs) as a potential treatment for cancer. 5-FU is a commonly used drug for cancer treatment but has undesirable side effects. The materials were characterized using various techniques, including PXRD, FTIR, FESEM, TEM, DLS, £-potential, and AFM. The data showed that the nanocomposites had a plate-like agglomeration with particle diameters ranging from 317.6 to 120.1 nm. The IC50 value of 5-FU-ZnO, which inhibits cell growth, was found to be 1.85 ppm. The effects of 5-FU-ZnO on inflammatory markers were also examined. While 5-FU increased the levels of TNF-a and IL-1b, the nanocomposites were able to reduce these levels. Additionally, the 5-FU/Gd-ZnO-NCs group showed an increase in thiol levels and a decrease in catalase and superoxide dismutase levels. Flow cytometry results showed that 5-FU, ZnO-NCs, and 5-FU/Gd-ZnO-NCs did not have any additive or synergistic effects on the suppression or eradication of cancer cells. In vivo, experiments showed that the 5-FU/Gd-ZnO NCs had similar necrotic characteristics and reduced fibrosis and collagen deposition compared to the free medication. The nanocomposites also exhibited higher antioxidative activity and lower inflammatory responses compared to the 5-FU group. It was shown that 5-FU/Gd-ZnO-NCs successfully inhibit cell proliferation. The in vivo results were comparable to those obtained with free 5-FU, suggesting the potential of these nanocomposites as therapeutic agents.
Collapse
Affiliation(s)
- Samaneh Mohammadian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Wu W, Zhou Y, Pan J, Wu Y, Goksen G, Shao P. Multibranched flower-like ZnO anchored on pectin/cellulose nanofiber aerogel skeleton for enhanced comprehensive antibacterial capabilities. Carbohydr Polym 2023; 322:121320. [PMID: 37839838 DOI: 10.1016/j.carbpol.2023.121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 10/17/2023]
Abstract
In this study, F-ZnO NPs were used as antibacterial agents, mussel bionic dopamine exerted its adhesive action to immobilize F-ZnO NPs on the pectin/CNF aerogel skeleton. Fruit and vegetable antimicrobial mats with safety, long duration of action and high efficiency were prepared and its potential application has been investigated. The results showed that a dopamine layer was deposited on the surface of the CNF, which promoted the tight adhesion of the F-ZnO NPs to the aerogel skeleton. The F-ZnO@D-CNF aerogel exhibited a slow release of zinc ions, with the first two days being 0.40 ± 0.16 and 1.01 ± 0.13 mg/mL. The aerogel was light, can stand on the petals without collapsing, has regular and uniform pore structure, good tensile/compressive properties and high antibacterial/anti-fungal properties. Strawberries packaged with F-ZnO@D-CNF aerogel exhibited an extended shelf life of 5 days. Additionally, the strawberries maintained a soluble solid content of 6.9 ± 0.82 % and a Vc content of 44.67 ± 3.51 mg/100 g. The weight loss, color and firmness were also notably superior to the other four groups. The final concentration of zinc ions in strawberries was 3.71 ± 0.28 μg/g, which is far below the recommended dietary intake.
Collapse
Affiliation(s)
- Weina Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Ying Zhou
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Jiefeng Pan
- Department of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Yingying Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| |
Collapse
|
12
|
Wang Y, Zhang Y, Liu Y, Wu Z. Photocatalytic Oxidative Coupling of Methane to Ethane Using Water and Oxygen on Ag 3PO 4-ZnO. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11531-11540. [PMID: 37471133 DOI: 10.1021/acs.est.3c01941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Photocatalytic oxidative coupling is an effective way of converting CH4 to high-value-added multi-carbon chemicals under mild conditions, where the breaking of the C-H bond is the main rate-limiting step. In this paper, the Ag3PO4-ZnO heterostructure photocatalyst was synthesized for photocatalytic oxidative coupling of methane (OCM) to C2H6. In addition, an excellent C2H6 yield (16.62 mmol g-1 h-1) and a remarkable apparent quantum yield (15.8% at 350 nm) at 49:1 CH4/Air and 20% RH are obtained, which is more than three times that of the state-of-the-art photocatalytic systems. Ag3PO4 improves the adsorption and dissociation ability of O2 and H2O, benefiting the formation of surface hydroxyl species. As a result, the C-H bond activation energy of CH4 on ZnO was obviously reduced. Meanwhile, the improved separation of photogenerated carriers on the Ag3PO4-ZnO heterostructure also accelerates the OCM process. Moreover, Ag nanoparticles (NPs) derived from Ag3PO4 reduction by photoelectrons promote the coupling of *CH3, which can inhibit the overoxidation of CH4 and increase C2H6 selectivity. This research provides a guide for the design of catalyst and reaction systems in the photocatalytic OCM process.
Collapse
Affiliation(s)
- Yuxiong Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yaoyu Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yue Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| |
Collapse
|
13
|
Abd-Elkader OH, Deraz NM, Aleya L. Rapid Bio-Assisted Synthesis and Magnetic Behavior of Zinc Oxide/Carbon Nanoparticles. CRYSTALS 2023; 13:1081. [DOI: 10.3390/cryst13071081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The biomimetic synthesis of a ZnO/C nanocomposite has been achieved using the egg white-assisted self-combustion method. The characterization of this composite has been carried out using different techniques, such as XRD, FTIR, Raman, SEM/EDS and TEM. A comparative study was conducted between ZnO in the form of this composite and pristine ZnO, which was prepared via the same procedures but without the egg white. The resulting ZnO had a hexagonal structure, similar to wurtzite, with a P63mc space group. When this egg white method was used to produce a ZnO-based material, a ZnO/C nanocomposite was developed, and the ZnO’s crystallite size was significantly decreased. The structural properties—including the unit cell volume, strain, atom displacement and dislocation density—of this ZnO crystal are increased as a result of the presence of a C atom. On the other hand, the length of the Zn–O bond is reduced by the presence of the C atom. Results derived from a combination of Raman, FTIR, and EDS demonstrate that the carbonaceous layers and ZnO nanoparticles were integrated with a close interfacial contact. The preparation method used here brought about obvious changes in the morphological and magnetic behaviors of the as-prepared materials. Using a small amount of egg white resulted in the transformation of the particle’s shape from a hexagonal cone-type structure to an ellipsoidal structure. Based on an analysis of diffuse reflectance, the ZnO and ZnO/C band gap values were revealed using UV–VIS spectra. ZnO and ZnO/C exhibit band gap energies of 3.09 and 2.60 eV, respectively. A phase transition from weakly ferromagnetic to completely diamagnetic magnetic was discovered.
Collapse
Affiliation(s)
- Omar H. Abd-Elkader
- Physics and Astronomy Department, Science College, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nasrallah M. Deraz
- Physical Chemistry Department, National Research Centre, Giza P.O. Box 12622, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, CEDEX, F-25030 Besançon, France
| |
Collapse
|
14
|
Xie Z, Hei J, Li C, Yin X, Wu F, Cheng L, Meng S. Constructing carbon supported copper-based catalysts for efficient CO 2 hydrogenation to methanol. RSC Adv 2023; 13:14554-14564. [PMID: 37188247 PMCID: PMC10177214 DOI: 10.1039/d3ra01502e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023] Open
Abstract
An activated carbon-supported Cu/ZnO catalyst (CCZ-AE-ox) was successfully obtained by the ammonia evaporation method for the hydrogenation of carbon dioxide to methanol, and the surface properties of the catalyst post-calcination and reduction were investigated. Activated carbon facilitated the increased dispersion of the loaded metals, which promote the CO2 space-time yield (STY) of methanol and turnover frequency (TOF) on the active sites. Furthermore, the factors affecting the catalyst in the hydrogenation of CO2 to methanol were in-depth investigated. The larger surface area and higher CO2 adsorption capacity are found to make possible the main attributions of the superior activity of the CCZ-AE-ox catalyst.
Collapse
Affiliation(s)
- Zhong Xie
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University 1 Bantang Road Chaohu 238000 P. R. China
| | - Jinpei Hei
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University 1 Bantang Road Chaohu 238000 P. R. China
| | - Chuan Li
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University 1 Bantang Road Chaohu 238000 P. R. China
| | - Xiaojie Yin
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University 1 Bantang Road Chaohu 238000 P. R. China
| | - Fengyi Wu
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University 1 Bantang Road Chaohu 238000 P. R. China
| | - Lei Cheng
- Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University 1 Bantang Road Chaohu 238000 P. R. China
| | - Sugang Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| |
Collapse
|
15
|
Zhou D, Li F, Zhao Y, Wang L, Zou H, Shan Y, Fu J, Ding Y, Duan L, Liu M, Sun L, Fan K. Mechanistic Regulation by Oxygen Vacancies in Structural Evolution Promoting Electrocatalytic Water Oxidation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Dinghua Zhou
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Yilong Zhao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, China
| | - Haiyuan Zou
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Shan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083 P. R. China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, China
| | - Lele Duan
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083 P. R. China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, China
| | - Ke Fan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
16
|
Lu S, Liu P, Yang J, Liu S, Yang Y, Chen L, Liu J, Liu Y, Wang B, Lan X, Zhang J, Gao L, Tang J. High-Performance Colloidal Quantum Dot Photodiodes via Suppressing Interface Defects. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12061-12069. [PMID: 36848237 DOI: 10.1021/acsami.2c22774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
PbS colloidal quantum dot (CQD) infrared photodiodes have attracted wide attention due to the prospect of developing cost-effective infrared imaging technology. Presently, ZnO films are widely used as the electron transport layer (ETL) of PbS CQDs infrared photodiodes. However, ZnO-based devices still suffer from the problems of large dark current and low repeatability, which are caused by the low crystallinity and sensitive surface of ZnO films. Here, we effectively optimized the device performance of PbS CQDs infrared photodiode via diminishing the influence of adsorbed H2O at the ZnO/PbS CQDs interface. The polar (002) ZnO crystal plane showed much higher adsorption energy of H2O molecules compared with other nonpolar planes, which could reduce the interface defects induced by detrimentally adsorbed H2O. Based on the sputtering method, we obtained the [002]-oriented and high-crystallinity ZnO ETL and effectively suppressed the adsorption of detrimental H2O molecules. The prepared PbS CQDs infrared photodiode with the sputtered ZnO ETL demonstrated lower dark current density, higher external quantum efficiency, and faster photoresponse compared with the sol-gel ZnO device. Simulation results further unveiled the relationship between interface defects and device dark current. Finally, a high-performance sputtered ZnO/PbS CQDs device was obtained with a specific detectivity of 2.15 × 1012 Jones at -3 dB bandwidth (94.6 kHz).
Collapse
Affiliation(s)
- Shuaicheng Lu
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology (HUST), Wenzhou, Zhejiang 325035, China
| | - Peilin Liu
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Junrui Yang
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Shijie Liu
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Yang Yang
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Long Chen
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jing Liu
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yuxuan Liu
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Bo Wang
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Xinzheng Lan
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jianbing Zhang
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology (HUST), Wenzhou, Zhejiang 325035, China
| | - Liang Gao
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology (HUST), Wenzhou, Zhejiang 325035, China
| | - Jiang Tang
- Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology (HUST), Wenzhou, Zhejiang 325035, China
| |
Collapse
|
17
|
Synthesis and Characterization of Zinc Oxide Nanoparticles Stabilized with Biopolymers for Application in Wound-Healing Mixed Gels. Gels 2023; 9:gels9010057. [PMID: 36661823 PMCID: PMC9857812 DOI: 10.3390/gels9010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
A method for the synthesis of ZnO nanoparticles (ZnO NPs) gels was developed. ZnO NPs were obtained through a sol-gel method with zinc acetate usage as a precursor. Optimization of the method of synthesis of ZnO NPs gel has been carried out. It was observed that the most stable ZnO NPs gels are formed at room temperature, pH = 8 and molar concentration of zinc C(Zn2+) = 0.05-0.2 M. It was shown that the addition of polysaccharide significantly affects the rheological properties and microstructure of ZnO NPs gels. We found that the optimal polysaccharide for the synthesis of ZnO NPs gels is hydroxyethyl cellulose. It is shown that the microstructure of a gel of ZnO NPs stabilized with hydroxyethyl cellulose is represented by irregularly shaped particles that are assembled into aggregates, with sizes ranging from 150 to 1400 nm. A significant hysteresis region is observed in a gel of ZnO NPs stabilized with hydroxyethyl cellulose. The process of interaction of ZnO NPs with polysaccharides was investigated. It was shown that the interaction of ZnO NPs with polysaccharides occurs through a charged hydroxyl group. In the experiment, a sample of a gel of ZnO NPs modified with hydroxyethyl cellulose was tested. It was shown that the gel of ZnO NPs modified with hydroxyethyl cellulose has a pronounced regenerative effect on burn wounds, which is significantly higher than that of the control group and the group treated with a gel of ZnO microparticles (MPs) and hydroxyethyl cellulose. It is also shown that the rate of healing of burn wounds in animals treated with gel of ZnO nanoparticles with hydroxyethyl cellulose (group 3) is 16.23% higher than in animals treated with gel of ZnO microparticles with hydroxyethyl cellulose (group 2), and 24.33% higher than in the control group treated with hydroxyethyl cellulose. The average rate of healing of burn wounds for the entire experimental period in experimental animals of group 3 is 1.26 and 1.54 times higher than in animals of group 2 and control group, respectively. An experimental study of a gel of ZnO NPs modified with hydroxyethyl cellulose has shown the effectiveness of its use in modeling the healing of skin wounds through primary tension.
Collapse
|
18
|
Cancer bioimaging using dual mode luminescence of graphene/FA-ZnO nanocomposite based on novel green technique. Sci Rep 2023; 13:27. [PMID: 36593329 PMCID: PMC9807650 DOI: 10.1038/s41598-022-27111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
Graphene based nanomaterials are explored in the field of cancer bioimaging and biomedical science and engineering. The luminescent nanostructures with a low toxicity and high photostability can be used as probes in bioimaging applications. This work is aimed to prepare graphene/folic acid-zinc oxide (GN/FA-ZnO) nanocomposite with dual-mode emissions (down-conversion and up-conversion) to be used in cancer bioimaging. The dual mode emissions offer long luminescence lifetime, multicolor emissions detected by the naked eyes after excitation and narrow band absorption and emission spectra. ZnO nanospheres and nanorods structures were prepared using co-precipitation technique and were conjugated with FA to separate the bulk graphite layers electrostatically into GN. The optical, morphological, surface charge and structural properties of the prepared nanostructures were investigated and discussed using different characterization techniques such as UV-visible spectroscopy, photoluminescence (PL) spectroscopy, scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), Zeta potential, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), and Fourier transform infrared (FTIR). GN/FA-ZnO nanocomposites were injected into Swiss albino mice implanted with Ehrlich Tumor and the bioimaging was investigated using photon imager and digital camera. The results showed clear fluorescence and confirmed that the green design of GN/FA-ZnO nanocomposite with targeting behavior was capable of selective bioimaging of the tumor. This study presented a novel dual mode emission nanocomposite for tumor targeting and is a promising strategy for the fabrication of a new design of spectral encoding.
Collapse
|
19
|
Ivanova T, Harizanova A, Koutzarova T, Vertruyen B, Closset R. Deposition of Sol-Gel ZnO:Mg Films and Investigation of Their Structural and Optical Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8883. [PMID: 36556689 PMCID: PMC9784732 DOI: 10.3390/ma15248883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
This work presents a facile sol-gel method for the deposition of ZnO and ZnO:Mg films. The films are spin coated on silicon and quartz substrates. The impact of magnesium concentrations (0, 0.5, 1, 2 and 3 wt%) and post-annealing treatments (300-600 °C) on the film's structural, vibrational and optical properties is investigated. Undoped ZnO films crystallize in the wurtzite phase, with crystallite sizes ranging from 9.1 nm (300 °C) to 29.7 nm (600 °C). Mg doping deteriorates the film crystallization and shifting of 002 peak towards higher diffraction angles is observed, indicating the successful incorporation of Mg into the ZnO matrix. ZnO:Mg films (2 wt%) possess the smallest crystallite size, ranging from 6.2 nm (300 °C) to 25.2 nm (600 °C). The highest Mg concentration (3 wt%) results into a segregation of the MgO phase. Lattice constants, texture coefficients and Zn-O bond lengths are discussed. The diminution of the c lattice parameter is related to the replacement of Zn2+ by Mg2+ in the ZnO host lattice. The vibrational properties are studied by Fourier transform infrared (FTIR) spectroscopy. IR lines related to Mg-O bonds are found for ZnO:Mg films with dopant concentrations of 2 and 3 wt%. The optical characterization showed that the transmittance of ZnO:Mg thin films increased from 74.5% (undoped ZnO) to about 89.1% and the optical band gap energy from 3.24 to 3.56 eV. Mg doping leads to a higher refractive index compared to undoped ZnO films. The FESEM (field emission scanning electron microscopy) technique is used for observation of the surface morphology modification of ZnO:Mg films. The doped ZnO films possess a smoother grained surface structure, opposite to the wrinkle-type morphology of undoped sol-gel ZnO films. The smoother surface leads to improved transparency of ZnO:Mg films.
Collapse
Affiliation(s)
- Tatyana Ivanova
- Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Antoaneta Harizanova
- Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Tatyana Koutzarova
- Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Benedicte Vertruyen
- GREENMAT, Institute of Chemistry B6, University of Liege, B6a Quartier Agora, Allee du Six Août, 13, 4000 Liège, Belgium
| | - Raphael Closset
- GREENMAT, Institute of Chemistry B6, University of Liege, B6a Quartier Agora, Allee du Six Août, 13, 4000 Liège, Belgium
| |
Collapse
|
20
|
Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Hu S, Yan G, Zhang L, Yi S, Zhang Z, Wang Y, Chen D. Highly Selective Colorimetric Detection of Cu 2+ Using EDTA-Complexed Chlorophyll-Copper/ZnO Nanorods with Cavities Specific to Cu 2+ as a Light-Activated Nanozyme. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37716-37726. [PMID: 35971946 DOI: 10.1021/acsami.2c08946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, chlorophyll-copper (ChlCu)-modified ZnO nanorods (ChlCu/ZnO) were prepared, and then sodium ethylenediamine tetraacetate (EDTA) was used to remove part of Cu2+ in ChlCu, leaving cavities with specific adsorption activity for Cu2+ in E-ChlCu/ZnO. Appropriate EDTA treatment improved the photoactivity of ChlCu/ZnO and the adsorption selectivity to Cu2+. However, excessive EDTA treatment might lead to the collapse of the ChlCu structure, resulting in a decrease in photoactivity. The E-ChlCu/ZnO sample with 8 h of ChlCu treatment and 2 h of EDTA treatment showed optimal photoactivity. The as-prepared E-ChlCu/ZnO exhibited activity as a light-activated nanozyme, which could oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to blue under illumination, but when Cu2+ was present in the solution, this colorimetric reaction was inhibited; therefore, E-ChlCu/ZnO could be used for colorimetric detection of Cu2+. Because of the existence of specific cavities, E-ChlCu/ZnO showed excellent detection selectivity, a wide linear detection range (0-1 and 1-15 μM), and a low detection limit (0.024 μM) in the colorimetric detection of Cu2+.
Collapse
Affiliation(s)
- Shiyu Hu
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Guohao Yan
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Liying Zhang
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Shasha Yi
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Zongtao Zhang
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Yu Wang
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Deliang Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
22
|
Ling Y, Ran Y, Shao W, Li N, Jiao F, Pan X, Fu Q, Liu Z, Yang F, Bao X. Probing active species for CO hydrogenation over ZnCr2O4 catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Acetone to isobutene conversion on ZnxTiyOz: Effects of TiO2 facet. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Dong A, Lin L, Mu R, Li R, Li K, Wang C, Cao Y, Ling Y, Chen Y, Yang F, Pan X, Fu Q, Bao X. Modulating the Formation and Evolution of Surface Hydrogen Species on ZnO through Cr Addition. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aiyi Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Chao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yunjun Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yunjian Ling
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuxiang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fan Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
25
|
Yin M, Yun Z, Fan F, Pillai SC, Wu Z, Zheng Y, Zhao L, Wang H, Hou H. Insights into the mechanism of low-temperature H 2S oxidation over Zn-Cu/Al 2O 3 catalyst. CHEMOSPHERE 2022; 291:133105. [PMID: 34843834 DOI: 10.1016/j.chemosphere.2021.133105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Odor pollution caused by toxic chemicals with low human olfactory thresholds, such as hydrogen sulfide (H2S), has become a major cause of environmental grievance world-wide. Although the low-temperature (<180 °C) catalytic oxidation of H2S using metal oxides has received widespread attention, desulfurization performance is not ideal. Herein, a series of Zn-Cu/Al2O3 catalysts were developed using an impregnation method based on the Al2O3 hydrophilicity and the effects of zinc loading on the catalyst physicochemical properties and performance were systematically studied. The catalysts were characterized using inductively coupled plasma-optical emission spectrometry (ICP-OES), N2 adsorption-desorption isotherms, scanning electron microscopy with energy dispersive spectrometry (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR). It was found that optimization of zinc doping could improve the hydrophilicity of the catalyst, and hence its activity. Catalytic activity was also dependent on operational parameters such as temperature, humidity and space velocity. The Zn3Cu3 catalyst exhibited the highest breakthrough capacity of 353.91 mg/g at 50 °C and at a relative humidity of 50%. The excellent desulfurization performance was attributed to oxygen vacancies contributed by CuO, Cu2O and ZnO, which facilitated the conversion of H2O into hydroxyl radicals. Consequently, a hydroxyl radical-induced desulfurization mechanism over Zn-Cu/Al2O3 is proposed. This work provides a potential green and efficient catalyst for the selective oxidation of H2S.
Collapse
Affiliation(s)
- Mengxue Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhichao Yun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Feiyue Fan
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Suresh C Pillai
- Centre for Precision Engineering, Materials and Manufacturing Research & Nanotechnology and Bio-Engineering Research Division, Department of Environmental Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - Zhihao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Long Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
26
|
Sun Z, Rodríguez-Fernández J, Lauritsen JV. Water dissociation on mixed Co-Fe oxide bilayer nanoislands on Au(111). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:164004. [PMID: 35108698 DOI: 10.1088/1361-648x/ac513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
We investigate the hydroxylation behaviour of mixed Co-Fe oxide nanoislands synthesized on a Au(111) surface under exposure to water vapour at vacuum conditions. The pure Co and Fe bilayer oxides both become hydroxylated by water exposure in vacuum conditions, albeit to a very different extent. It is however an open question how mixed oxides, exposing sites with a mixed coordination to Fe and Co, behave. By forming surface O species with a mixed Fe/Co coordination, we can investigate the nature of such sites. By means of scanning tunnelling microscopy and x-ray photoelectron spectroscopy, we characterize a series of Co-Fe oxides samples with different Fe contents at the atomic scale and observe a scaling of the hydroxylation degree with the amount of Fe inside the Co-Fe oxides. Our results indicate that the Fe dopants within the Co-Fe oxides have opposing effects on edge and basal plane sites modifying the maximum hydroxylation degree of pure cobalt oxide, perturbing the original binding sites of H, releasing the absorbed H or blocking the diffusion pathway of H.
Collapse
Affiliation(s)
- Zhaozong Sun
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | | | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Younes S, Bahari A, Sliman H. Ambipolar Field Effect Transistor Based on ZnO/Anthracene Nanocomposite As an Active Single Layer for Balanced Hole and Electron Mobility. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Enhanced Photo Catalytic Activity of ZnO Nano Particles Co-doped with Rare Earth Elements (Nd and Sm) Under UV Light Illumination. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Analysis of the Nd dopant on optical, dielectric and biological properties of ZnO nanostructures. J Mech Behav Biomed Mater 2021; 126:105016. [PMID: 34871959 DOI: 10.1016/j.jmbbm.2021.105016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022]
Abstract
The effect of neodymium (Nd+3) on ZnO thin films has been studied with varying Nd doping percentage ranging from 1 to 5 wt%. XRD graphs confirmed that Nd ions have incorporated into the ZnO lattice without any structural modification. The increase of crystallite size was observed to vary from 27.5 to 31.90 nm with the increment in Nd amount. The optical spectra exhibited transparency in the visible region. The higher transmission was possessed at 1 wt at% Nd concentration. The band gap of Nd-doped ZnO thin films showed variation with the increase in Nd dopant concentration. The increment in dielectric constant and tangent loss was observed with the increase in Nd doping. The change in DC conductivity with frequency was measured by using Jonscher's power law while AC conductivity was explained with the hopping-barrier mechanism. The effects of Nd concentration on antibacterial efficiency against four different bacterial strains Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Klebsiella Pneumonia (K. Pneumonia), and Staphylococcus aureus (S. aureus) were investigated whereas antifungal activity of Nd-ZnO was done against Aspergillus fumigate by using agar disc-diffusion method. ZnO with 4 wt % Nd demonstrated the best photo-catalytic property.
Collapse
|
30
|
Shi H, Yuan H, Sun Y, Ma X, Li Z, Zhou D, Li Z, Shao X. Single Molecular Reaction of Water on a ZnO Surface. NANO LETTERS 2021; 21:9567-9572. [PMID: 34757758 DOI: 10.1021/acs.nanolett.1c03218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The dissociation of a single water molecule on a ZnO(101̅0) surface has been investigated at the atomic level by low temperature STM manipulation combined with DFT calculations. The positive pulses applied from the tip inject electrons into the system and break the bonding between water and the ZnO surface, thus leading to the hopping of water molecules. Negative pulses inject holes wherein the lower energy ones split the free O-H bond pointing out of the surface whereas the higher energy ones split the second O-H bond that is directed to the surface through hydrogen bonding. Moreover, the yielded proton and hydroxyl species present distinctly charged status through different reaction pathways, manifesting their unique impacts on tailoring the surface properties of the metal oxide.
Collapse
Affiliation(s)
- Hong Shi
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Hao Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Yuniu Sun
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Xinbo Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Zhe Li
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Dandan Zhou
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Xiang Shao
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| |
Collapse
|
31
|
Ivakin YD, Smirnov AV, Kurmysheva AY, Kharlanov AN, Solís Pinargote NW, Smirnov A, Grigoriev SN. The Role of the Activator Additives Introduction Method in the Cold Sintering Process of ZnO Ceramics: CSP/SPS Approach. MATERIALS 2021; 14:ma14216680. [PMID: 34772204 PMCID: PMC8587942 DOI: 10.3390/ma14216680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
The great prospects for introducing the cold sintering process (CSP) into industry determine the importance of finding approaches to reduce the processing time and mechanical pressure required to obtain dense ceramics using CSP. The introducing zinc acetate into the initial ZnO powder of methods, such as impregnation, thermovapor autoclave treatment (TVT), and direct injection of an aqueous solution into a die followed by cold sintering process using a spark plasma sintering unit, was studied. The effect of the introduction methods on the density and grain size of sintered ceramics was analyzed using SEM, dynamic light scattering, IR spectroscopy, and XRD. The impregnation method provides sintered samples with high relative density (over 0.90) and significant grain growth when sintered at 250 °C with a high heating rate of 100 °C/min, under a uniaxial pressure of 80 MPa in a vacuum, and a short isothermic dwell time (5 min). The TVT and aqueous solution direct injection methods showed lower relative densities (0.87 and 0.76, respectively) of CSP ZnO samples. Finally, the development of ideas about the processes occurring in an aqueous medium with CSP and TVT, which are subject to mechanical pressure, is presented.
Collapse
Affiliation(s)
- Yurii D. Ivakin
- Chemistry Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.D.I.); (A.N.K.)
- Mobile Solutions Engineering Center, MIREA-Russian Technological University, 119454 Moscow, Russia;
| | - Andrey V. Smirnov
- Mobile Solutions Engineering Center, MIREA-Russian Technological University, 119454 Moscow, Russia;
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, build. 1, 121205 Moscow, Russia
| | - Alexandra Yu. Kurmysheva
- Laboratory of Electric Current Assisted Sintering Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, 127055 Moscow, Russia; (N.W.S.P.); (A.S.); (S.N.G.)
- Correspondence:
| | - Andrey N. Kharlanov
- Chemistry Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.D.I.); (A.N.K.)
| | - Nestor Washington Solís Pinargote
- Laboratory of Electric Current Assisted Sintering Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, 127055 Moscow, Russia; (N.W.S.P.); (A.S.); (S.N.G.)
| | - Anton Smirnov
- Laboratory of Electric Current Assisted Sintering Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, 127055 Moscow, Russia; (N.W.S.P.); (A.S.); (S.N.G.)
| | - Sergey N. Grigoriev
- Laboratory of Electric Current Assisted Sintering Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, 127055 Moscow, Russia; (N.W.S.P.); (A.S.); (S.N.G.)
| |
Collapse
|
32
|
Nandy S, Wu Q, Tilley SD, Cui C. Improved water oxidation with metal oxide catalysts via a regenerable and redox-inactive ZnO xH y overlayer. Chem Commun (Camb) 2021; 57:10230-10233. [PMID: 34528032 DOI: 10.1039/d1cc03406e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a regenerable and redox-inactive ZnOxHy layer that was in situ deposited onto metal oxides MOz (M = Co, Fe, and Ni) in alkaline media containing [Zn(OH)4]2- species during water oxidation. An interface dipole was developed at the MOz/Zn interface, resulting in a decrease of the OER overpotential. Exemplified by the CoOz/ZnOxHy bilayer structure, it presented a 155 mV lower overpotential to deliver 10 mA cm-2 and long-term stability relative to the unmodified CoOz film.
Collapse
Affiliation(s)
- Swarnava Nandy
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China.,Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland.,Molecular Electrochemistry Laboratory, Institute of Fundamental & Frontier Sciences, University of Electronic Science & Technology of China, Chengdu 610054, P. R. China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental & Frontier Sciences, University of Electronic Science & Technology of China, Chengdu 610054, P. R. China
| | - S David Tilley
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Chunhua Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China.,Molecular Electrochemistry Laboratory, Institute of Fundamental & Frontier Sciences, University of Electronic Science & Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
33
|
Li H, Guo D, Ulumuddin N, Jaegers NR, Sun J, Peng B, McEwen JS, Hu J, Wang Y. Elucidating the Cooperative Roles of Water and Lewis Acid-Base Pairs in Cascade C-C Coupling and Self-Deoxygenation Reactions. JACS AU 2021; 1:1471-1487. [PMID: 34604856 PMCID: PMC8479772 DOI: 10.1021/jacsau.1c00218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Water plays pivotal roles in tailoring reaction pathways in many important reactions, including cascade C-C bond formation and oxygen elimination. Herein, a kinetic study combined with complementary analyses (DRIFTS, isotopic study, 1H solid-state magic angle spinning nuclear magnetic resonance) and density functional theory (DFT) calculations are performed to elucidate the roles of water in cascade acetone-to-isobutene reactions on a Zn x Zr y O z mixed metal oxide with balanced Lewis acid-base pairs. Our results reveal that the reaction follows the acetone-diacetone alcohol-isobutene pathway. Isobutene is produced through an intramolecular rearrangement of the eight-membered ring intermediate formed via the adsorption of diacetone alcohol on the Lewis acid-base pairs in the presence of cofed water. OH adspecies, formed by the dissociative adsorption of water on the catalyst surface, were found to distort diacetone alcohol's hydroxyl functional group toward its carbonyl functional group and facilitate the intramolecular rearrangement of diacetone alcohol to form isobutene. In the absence of water, diacetone alcohol binds strongly to the Lewis acid site, e.g., at a Zr4+ site, via its carbonyl functional group, leading to its dramatic structural distortion and further dehydration reaction to form mesityl oxide as well as subsequent polymerization reactions and the formation of coke. The present results provide insights into the cooperative roles of water and Lewis acid-base pairs in catalytic upgrading of biomass to fuels and chemicals.
Collapse
Affiliation(s)
- Houqian Li
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Dezhou Guo
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Nisa Ulumuddin
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Nicholas R. Jaegers
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99352, United States
| | - Junming Sun
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Bo Peng
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99352, United States
| | - Jean-Sabin McEwen
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99352, United States
- Department
of Physics and Astronomy, Washington State
University, Pullman, Washington 99164, United States
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Department
of Biological Systems Engineering, Washington
State University, Pullman, Washington 99164, United States
| | - Jianzhi Hu
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99352, United States
| | - Yong Wang
- The
Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
34
|
Bao SY, Li DZ, Gong XQ. Photo-induced hydrophilicity at the ZnO(112̄0) surface: an evolutionary algorithm-aided density functional theory study. Phys Chem Chem Phys 2021; 23:19790-19794. [PMID: 34525139 DOI: 10.1039/d1cp02542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evolutionary algorithm-aided density functional theory calculations were utilized to determine the stable adsorption structures of H2O at ZnO(112̄0) extensively under different coverages. By decomposing the adsorption energetics, we illustrate that H2O dissociation to a large extent is actually hampered by the barrier for induced distortion of the ZnO surface, and once the surface becomes less difficult to be distorted it will exhibit higher hydrophilicity or even superhydrophilicity. Specifically, photo-stimulation modelling suggests that the surface Zn-O bonds can be weakened by photo-excitation, and the layer of fully dissociated H2O can be then facilitated to form. Accordingly, a novel mechanism for photo-induced superhydrophilicity is proposed.
Collapse
Affiliation(s)
- Shen-Yuan Bao
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| | - Dong-Zhi Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| |
Collapse
|
35
|
Qi T, Zhao Y, Chen S, Li W, Guo X, Zhang Y, Song C. Bimetallic metal organic framework-templated synthesis of a Cu-ZnO/Al2O3 catalyst with superior methanol selectivity for CO2 hydrogenation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
de Souza RC, de Moraes JO, Haberbeck LU, de Araújo PHH, Ribeiro DHB, Carciofi BAM. Antibacterial Activity of Low-Density Polyethylene and Low-Density Polyethylene-co-maleic Anhydride Films Incorporated with ZnO Nanoparticles. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02684-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Czyżowska A, Barbasz A, Rudolphi-Szydło E, Dyba B. The cell membrane as the barrier in the defense against nanoxenobiotics: Zinc oxide nanoparticles interactions with native and model membrane of melanoma cells. J Appl Toxicol 2021; 42:334-341. [PMID: 34235764 DOI: 10.1002/jat.4216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 11/06/2022]
Abstract
Currently, we are dealing with ever-increasing pollution of the environment with metal and metal oxide nanoparticles. One type of these, zinc oxide nanoparticles (ZnO-NPs), are increasingly used in areas such as cosmetology, electrical engineering, medicine, and even in the food and textile industries. As a consequence, ZnO-NPs may enter the human body in many ways. Their influence on the body is still not clear. Here, we define the mechanism of the initial toxicity of ZnO-NPs to cells based on interaction with the lipid part of the native and model cell membrane. The selected cell lines react differently to contact with nanoparticles. We found a disruption of the native membranes of B16-F0 cells and to a lesser extent of COLO 679. In turn, the membrane of COLO 679 cells was more peroxidated, and cell viability was much lower. A model of the lipid part of the membrane was created for B16-F0 cells and compared with previously published studies on immune cells. On the basis of physicochemical parameters obtained for individual lipids and a mix representing the native membrane of the tested cells, we concluded that exposure to nanoparticles resulted in a change within the model membranes (specifically with the polar parts of lipids). The greatest interaction has been noticed between ZnO-NPs and zwitterionic phospholipids (PC and PE), cholesterol, and negatively charged phosphatidylglycerol. Assessing the interactions between the membrane and nanoparticles will help to better understand the first steps of its toxicity mechanism.
Collapse
Affiliation(s)
| | - Anna Barbasz
- Institute of Biology, Pedagogical University of Cracow, Cracow, Poland
| | | | - Barbara Dyba
- Institute of Biology, Pedagogical University of Cracow, Cracow, Poland
| |
Collapse
|
38
|
Borah R, Ninakanti R, Nuyts G, Peeters H, Pedrazo-Tardajos A, Nuti S, Vande Velde C, De Wael K, Lenaerts S, Bals S, Verbruggen SW. Selectivity in the Ligand Functionalization of Photocatalytic Metal Oxide Nanoparticles for Phase Transfer and Self-Assembly Applications. Chemistry 2021; 27:9011-9021. [PMID: 33880788 DOI: 10.1002/chem.202100029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 01/04/2023]
Abstract
The functionalization of photocatalytic metal oxide nanoparticles of TiO2 , ZnO, WO3 and CuO with amine-terminated (oleylamine) and thiol-terminated (dodecane-1-thiol) alkyl-chain ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO2 and WO3 , whereas dodecane-1-thiol binds stably only to ZnO and CuO. Similarly, polar-to-nonpolar solvent phase transfer of TiO2 and WO3 nanoparticles could be achieved by using oleylamine, but not dodecane-1-thiol, whereas the opposite holds for ZnO and CuO. The surface chemistry of ligand-functionalized nanoparticles was probed by attenuated total reflectance (ATR)-FTIR spectroscopy, which enabled the occupation of the ligands at the active sites to be elucidated. The photostability of the ligands on the nanoparticle surface was determined by the photocatalytic self-cleaning properties of the material. Although TiO2 and WO3 degrade the ligands within 24 h under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, because the ligand-functionalized nanoparticles are hydrophobic in nature, they can be self-assembled at the air-water interface to give nanoparticle films with demonstrated photocatalytic as well as anti-fogging properties.
Collapse
Affiliation(s)
- Rituraj Borah
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Rajeshreddy Ninakanti
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,Electron Microscopy for Material Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Gert Nuyts
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,Antwerp X-ray Analysis, Electrochemistry and Speciation (AXES), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hannelore Peeters
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Adrián Pedrazo-Tardajos
- Electron Microscopy for Material Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Silvia Nuti
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,Electron Microscopy for Material Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Christophe Vande Velde
- Intelligence in Processes, Advanced Catalysts and Solvents (iPRACS), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Karolien De Wael
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,Antwerp X-ray Analysis, Electrochemistry and Speciation (AXES), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Silvia Lenaerts
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Material Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
39
|
Mirikaram N, Pérez-Molina Á, Morales-Torres S, Salemi A, Maldonado-Hódar FJ, Pastrana-Martínez LM. Photocatalytic Perfomance of ZnO-Graphene Oxide Composites towards the Degradation of Vanillic Acid under Solar Radiation and Visible-LED. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1576. [PMID: 34203965 PMCID: PMC8232730 DOI: 10.3390/nano11061576] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023]
Abstract
Graphene oxide (GO) is used to enhance the photocatalytic activity of ZnO nanoparticles for the degradation of vanillic acid (VA) under simulated solar light and visible-LED (λ > 430 nm). ZnO-GO composites are prepared by a mixing and sonication process with different GO loadings (i.e., from 1.8 to 6.5 wt.%). The materials are extensively characterized by thermogravimetric analysis (TGA), physisorption of N2, X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy (SEM), point of zero charge (pHPZC), and UV-Vis diffuse reflectance spectroscopy (DRUV). The presence of GO increases the photocatalytic activity of all the prepared composites in comparison with the pristine ZnO. The highest photocatalytic activity is found for the composite containing 5.5 wt.% of GO (i.e., ZnO-GO5.5), reaching a VA degradation of 99% and 35% under solar light and visible-LED, respectively. Higher TOC removal/VA degradation ratios are obtained from the experiments carried out under visible-LED, indicating a more effective process for the mineralization of VA than those observed under simulated solar light. The influence of hole, radical, and non-radical scavengers is studied in order to assess the occurrence of the reactive oxygen species (ROS) involved in the photocatalytic mechanism. The study of the photo-stability during three reuse experiments indicates that the presence of GO in the composites reduces the photocorrosion in comparison with pristine ZnO.
Collapse
Affiliation(s)
- Neda Mirikaram
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, ES-18071 Granada, Spain; (N.M.); (Á.P.-M.); (S.M.-T.); (F.J.M.-H.)
- Environmental Sciences Research Institute, Shahid Beheshti University, Tehran 19839-63113, Iran;
| | - Álvaro Pérez-Molina
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, ES-18071 Granada, Spain; (N.M.); (Á.P.-M.); (S.M.-T.); (F.J.M.-H.)
| | - Sergio Morales-Torres
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, ES-18071 Granada, Spain; (N.M.); (Á.P.-M.); (S.M.-T.); (F.J.M.-H.)
| | - Amir Salemi
- Environmental Sciences Research Institute, Shahid Beheshti University, Tehran 19839-63113, Iran;
| | - Francisco J. Maldonado-Hódar
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, ES-18071 Granada, Spain; (N.M.); (Á.P.-M.); (S.M.-T.); (F.J.M.-H.)
| | - Luisa M. Pastrana-Martínez
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, ES-18071 Granada, Spain; (N.M.); (Á.P.-M.); (S.M.-T.); (F.J.M.-H.)
| |
Collapse
|
40
|
Qi T, Li W, Li H, Ji K, Chen S, Zhang Y. Yttria-doped Cu/ZnO catalyst with excellent performance for CO2 hydrogenation to methanol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Günther M, Blätte D, Oechsle AL, Rivas SS, Yousefi Amin AA, Müller-Buschbaum P, Bein T, Ameri T. Increasing Photostability of Inverted Nonfullerene Organic Solar Cells by Using Fullerene Derivative Additives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19072-19084. [PMID: 33861568 DOI: 10.1021/acsami.1c00700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic solar cells (OSCs) recently achieved efficiencies of over 18% and are well on their way to practical applications, but still considerable stability issues need to be overcome. One major problem emerges from the electron transport material zinc oxide (ZnO), which is mainly used in the inverted device architecture and decomposes many high-performance nonfullerene acceptors due to its photocatalytic activity. In this work, we add three different fullerene derivatives-PC71BM, ICMA, and BisPCBM-to an inverted binary PBDB-TF:IT-4F system in order to suppress the photocatalytic degradation of IT-4F on ZnO via the radical scavenging abilities of the fullerenes. We demonstrate that the addition of 5% fullerene not only increases the performance of the binary PBDB-TF:IT-4F system but also significantly improves the device lifetime under UV illumination in an inert atmosphere. While the binary devices lose 20% of their initial efficiency after only 3 h, this time is increased fivefold for the most promising ternary devices with ICMA. We attribute this improvement to a reduced photocatalytic decomposition of IT-4F in the ternary system, which results in a decreased recombination. We propose that the added fullerenes protect the IT-4F by acting as a sacrificial reagent, thereby suppressing the trap state formation. Furthermore, we show that the protective effect of the most promising fullerene ICMA is transferable to two other binary systems PBDB-TF:BTP-4F and PTB7-Th:IT-4F. Importantly, this effect can also increase the air stability of PBDB-TF:IT-4F. This work demonstrates that the addition of fullerene derivatives is a transferable and straightforward strategy to improve the stability of OSCs.
Collapse
Affiliation(s)
- Marcella Günther
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Dominic Blätte
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Anna Lena Oechsle
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
| | - Sergio Sánchez Rivas
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Amir Abbas Yousefi Amin
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany
- Heinz Maier-Leibnitz-Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, Garching 85748, Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Tayebeh Ameri
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
- Institute for Materials and Processes, Chemical Engineering, University of Edinburgh, Sanderson Building, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| |
Collapse
|
42
|
Marikutsa A, Rumyantseva M, Konstantinova EA, Gaskov A. The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials. SENSORS 2021; 21:s21072554. [PMID: 33917353 PMCID: PMC8061888 DOI: 10.3390/s21072554] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/28/2022]
Abstract
Development of sensor materials based on metal oxide semiconductors (MOS) for selective gas sensors is challenging for the tasks of air quality monitoring, early fire detection, gas leaks search, breath analysis, etc. An extensive range of sensor materials has been elaborated, but no consistent guidelines can be found for choosing a material composition targeting the selective detection of specific gases. Fundamental relations between material composition and sensing behavior have not been unambiguously established. In the present review, we summarize our recent works on the research of active sites and gas sensing behavior of n-type semiconductor metal oxides with different composition (simple oxides ZnO, In2O3, SnO2, WO3; mixed-metal oxides BaSnO3, Bi2WO6), and functionalized by catalytic noble metals (Ru, Pd, Au). The materials were variously characterized. The composition, metal-oxygen bonding, microstructure, active sites, sensing behavior, and interaction routes with gases (CO, NH3, SO2, VOC, NO2) were examined. The key role of active sites in determining the selectivity of sensor materials is substantiated. It was shown that the metal-oxygen bond energy of the MOS correlates with the surface acidity and the concentration of surface oxygen species and oxygen vacancies, which control the adsorption and redox conversion of analyte gas molecules. The effects of cations in mixed-metal oxides on the sensitivity and selectivity of BaSnO3 and Bi2WO6 to SO2 and VOCs, respectively, are rationalized. The determining role of catalytic noble metals in oxidation of reducing analyte gases and the impact of acid sites of MOS to gas adsorption are demonstrated.
Collapse
Affiliation(s)
- Artem Marikutsa
- Chemistry Department, Moscow State University, 119991 Moscow, Russia; (M.R.); (A.G.)
- Correspondence:
| | - Marina Rumyantseva
- Chemistry Department, Moscow State University, 119991 Moscow, Russia; (M.R.); (A.G.)
| | - Elizaveta A. Konstantinova
- Physics Department, Moscow State University, 119991 Moscow, Russia;
- Faculty of Nano-, Bio-, Information and Cognitive Technologies, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Alexander Gaskov
- Chemistry Department, Moscow State University, 119991 Moscow, Russia; (M.R.); (A.G.)
| |
Collapse
|
43
|
Santhanakrishnan H, Mani N, Jayaram A, Suruttaiyaudiyar P, Chellamuthu M, Shimomura M. Engineering of mono-dispersed mesoporous TiO 2 over 1-D nanorods for water purification under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18768-18777. [PMID: 32929671 DOI: 10.1007/s11356-020-10547-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Herein we synthesized a novel structure of mesoporous TiO2 decorated on 1D ZnO nanorods for environmental remediation. The effect of mesoporous TiO2 over 1D nanorods were investigated. The phase transitions of nanocomposite were confirmed by powder diffraction analysis. The morphological investigation of synthesized TiO2/ZnO catalyst revealed that the TiO2 are in porous in nature which covered the surface of 1D nanorods. The size of mesoporous TiO2 nanoparticles was about 10-15 nm. The chemical composition and elemental mapping results clearly evident that the presence of ZnO and TiO2 is distributed uniformly on ZnO nanorods. TiO2/ZnO nanocomposite shows enhanced activity which degrades in 14 min under visible light irradiation. TiO2/ZnO catalyst with 5 wt % exhibited the high photocatalytic activity (0.1882 min-1). It is proposed that a synergistic interaction between ZnO and TiO2 leads to a charge separation which leads to the enhanced activity.
Collapse
Affiliation(s)
- Harish Santhanakrishnan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka, 432-8011, Japan.
| | - Navaneethan Mani
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
- Nanotechnology Research Centre (NRC), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Archana Jayaram
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Ponnusamy Suruttaiyaudiyar
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Muthamizhchelvan Chellamuthu
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Masaru Shimomura
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka, 432-8011, Japan
| |
Collapse
|
44
|
Assaifan AK, Aijaz MO, Luqman M, Drmosh QA, Karim MR, Alharbi HF. Removal of cadmium ions from water using coaxially electrospun PAN/ZnO-encapsulated PVDF nanofiber membranes. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Otis G, Ejgenberg M, Mastai Y. Solvent-Free Mechanochemical Synthesis of ZnO Nanoparticles by High-Energy Ball Milling of ε-Zn(OH) 2 Crystals. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:238. [PMID: 33477493 PMCID: PMC7831064 DOI: 10.3390/nano11010238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/18/2022]
Abstract
A detailed investigation is presented for the solvent-free mechanochemical synthesis of zinc oxide nanoparticles from ε-Zn(OH)2 crystals by high-energy ball milling. Only a few works have ever explored the dry synthetic route from ε-Zn(OH)2 to ZnO. The milling process of ε-Zn(OH)2 was done in ambient conditions with a 1:100 powder/ball mass ratio, and it produced uniform ZnO nanoparticles with sizes of 10-30 nm, based on the milling duration. The process was carefully monitored and the effect of the milling duration on the powder composition, nanoparticle size and strain, optical properties, aggregate size, and material activity was examined using XRD, TEM, DLS, UV-Vis, and FTIR. The mechanism for the transformation of ε-Zn(OH)2 to ZnO was studied by TGA and XPS analysis. The study gave proof for a reaction mechanism starting with a phase transition of crystalline ε-Zn(OH)2 to amorphous Zn(OH)2, followed by decomposition to ZnO and water. To the best of our knowledge, this mechanochemical approach for synthesizing ZnO from ε-Zn(OH)2 is completely novel. ε-Zn(OH)2 crystals are very easy to obtain, and the milling process is done in ambient conditions; therefore, this work provides a simple, cheap, and solvent-free way to produce ZnO nanoparticles in dry conditions. We believe that this study could help to shed some light on the solvent-free transition from ε-Zn(OH)2 to ZnO and that it could offer a new synthetic route for synthesizing ZnO nanoparticles.
Collapse
Affiliation(s)
| | | | - Yitzhak Mastai
- Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel; (G.O.); (M.E.)
| |
Collapse
|
46
|
Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112866] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Khan M, Husain FM, Zia Q, Ahmad E, Jamal A, Alaidarous M, Banawas S, Alam MM, Alshehri BA, Jameel M, Alam P, Ahamed MI, Ansari AH, Ahmad I. Anti-quorum Sensing and Anti-biofilm Activity of Zinc Oxide Nanospikes. ACS OMEGA 2020; 5:32203-32215. [PMID: 33376858 PMCID: PMC7758897 DOI: 10.1021/acsomega.0c03634] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/04/2020] [Indexed: 05/25/2023]
Abstract
This study evaluates the impact of two separate incubation periods (4 and 6 weeks) on the morphology of sol-gel-fabricated ZnO nanospikes (ZNs), that is, ZN1 and ZN2, respectively. We further analyzed the inhibitory effects of ZN1 and ZN2 on quorum sensing (QS) and biofilm formation in Pseudomonas aeruginosa (PAO1) and Chromobacterium violaceum (strains 12472 and CVO26). The size of the synthesized ZNs was in the range of 40-130 nm, and finer nanoparticles were synthesized after an incubation period of 6 weeks. Treatment with ZNs decreased the production of violacein in the pathogen without affecting the bacterial growth, which indicated that ZNs inhibited the QS signaling regulated by N-acyl homoserine lactone. ZN2 had a higher inhibitory action on the virulence factor productivity than ZN1. Furthermore, ZN2-treated cells displayed a substantial decrease in azocasein-degrading protease activity (80%), elastase activity (83%), and pyocyanin production (85%) relative to untreated P. aeruginosa PAO1 cells. Treatment with ZN2 decreased swarming motility and exopolysaccharide production by 89 and 85%, respectively. ZN2 was effective against both the las & pqs systems of P. aeruginosa and exhibited broad-spectrum activity. Additionally, ZN2 was more efficient in inhibiting the biofilm formation at the attachment stage than ZN1. These findings revealed that in P. aeruginosa, ZN2 demonstrated inhibitory effects on QS as well as on the development of biofilms. Thus, ZN2 can be potentially used to treat drug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Mohd.
Farhan Khan
- Nano
Solver Lab, Department of Mechanical Engineering, Z. H. College of
Engineering & Technology, Aligarh Muslim
University, Aligarh 202002, India
- Department
of Science, Gagan College of Management
and Technology, Aligarh 202002, India
| | - Fohad Mabood Husain
- Department
of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Qamar Zia
- Health
and Basic Science Research Centre, Majmaah
University, Majmaah 11952, Saudi Arabia
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ejaz Ahmad
- Interdisciplinary
Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Azfar Jamal
- Health
and Basic Science Research Centre, Majmaah
University, Majmaah 11952, Saudi Arabia
- Department
of Biology, College of Science, Majmaah
University, Majmaah 11952, Saudi Arabia
| | - Mohammed Alaidarous
- Health
and Basic Science Research Centre, Majmaah
University, Majmaah 11952, Saudi Arabia
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Health
and Basic Science Research Centre, Majmaah
University, Majmaah 11952, Saudi Arabia
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
- Department
of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Md. Manzar Alam
- Regional
Research Institute of Unani Medicine (Under CCRUM, Ministry of AYUSH), Patna 800008, India
| | - Bader A. Alshehri
- Health
and Basic Science Research Centre, Majmaah
University, Majmaah 11952, Saudi Arabia
| | - Mohd. Jameel
- Department
of Zoology, Faculty of Life Sciences, Aligarh
Muslim University, Aligarh 202002, India
| | - Pravej Alam
- Department of Biology, Prince Sattam bin
Abdulaziz Univrsity, Alkharj 11942, Kingdom of Saudi Arabia
| | - Mohd Imran Ahamed
- Department of Chemistry, Aligarh
Muslim
University, Aligarh 202002, India
| | - Akhter H. Ansari
- Nano
Solver Lab, Department of Mechanical Engineering, Z. H. College of
Engineering & Technology, Aligarh Muslim
University, Aligarh 202002, India
| | - Iqbal Ahmad
- Department of
Agricultural Microbiology, Faculty of Agricultural
Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
48
|
Electrospun ZnO/Pd Nanofibers: CO Sensing and Humidity Effect. SENSORS 2020; 20:s20247333. [PMID: 33419349 PMCID: PMC7766188 DOI: 10.3390/s20247333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022]
Abstract
Variable air humidity affects the characteristics of semiconductor metal oxides, which complicates the reliable and reproducible determination of CO content in ambient air by resistive gas sensors. In this work, we determined the sensor properties of electrospun ZnO and ZnO/Pd nanofibers in the detection of CO in dry and humid air, and investigated the sensing mechanism. The microstructure of the samples, palladium content, and oxidation state, type, and concentration of surface groups were characterized using complementary techniques: X-ray fluorescent spectroscopy, XRD, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray (EDX) mapping, XPS, and FTIR spectroscopy. The sensor properties of ZnO and ZnO/Pd nanofibers were studied at 100-450 °C in the concentration range of 5-15 ppm CO in dry (RH25 = 0%) and humid (RH25 = 60%) air. It was found that under humid conditions, ZnO completely loses its sensitivity to CO, while ZnO/Pd retains a high sensor response. On the basis of in situ diffuse reflectance IR Fourier transform spectroscopy (DRIFTS) results, it was concluded that high sensor response of ZnO/Pd nanofibers in dry and humid air was due to the electronic sensitization effect, which was not influenced by humidity change.
Collapse
|
49
|
Lin LY, Liu C, Hsieh TT. Efficient visible and NIR light-driven photocatalytic CO2 reduction over defect-engineered ZnO/carbon dot hybrid and mechanistic insights. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Mullani SB, Dhodamani AG, Shellikeri A, Mullani NB, Tawade AK, Tayade SN, Biscay J, Dennany L, Delekar SD. Structural refinement and electrochemical properties of one dimensional (ZnO NRs) 1-x(CNs) x functional hybrids for serotonin sensing studies. Sci Rep 2020; 10:15955. [PMID: 32994507 PMCID: PMC7524834 DOI: 10.1038/s41598-020-72756-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Herein, the efficient serotonin (5-HT) sensing studies have been conducted using the (ZnO NRs)1-x(CNs)x nanocomposites (NCs) having appropriate structural and electrochemical properties. Initially, the different compositions of ZnO nanorods (NRs), with varying content of carbon nanostructures (CNs=MWCNTs and RGO), are prepared using simple in-situ wet chemical method and thereafter these NCs have been characterized for physico-chemical properties in correlation to the 5-HT sensing activity. XRD Rietveld refinement studies reveal the hexagonal Wurtzite ZnO NRs oriented in (101) direction with space group 'P63mc' and both orientation as well as phase of ZnO NRs are also retained in the NCs due to the small content of CNs. The interconnectivity between the ZnO NRs with CNs through different functional moieties is also studied using FTIR analysis; while phases of the constituents are confirmed through Raman analysis. FESEM images of the bare/NCs show hexagonal shaped rods with higher aspect ratio (4.87) to that of others. BET analysis and EIS measurements reveal the higher surface area (97.895 m2/g), lower charge transfer resistance (16.2 kΩ) for the ZCNT 0.1 NCs to that of other NCs or bare material. Thereafter, the prepared NCs are deposited on the screen printed carbon electrode (SPCE) using chitosan as cross-linked agent for 5-HT sensing studies; conducted through cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements. Among the various composites, ZCNT0.1 NCs based electrodes exhibit higher sensing activity towards 5-HT in accordance to its higher surface area, lower particle size and lower charge transfer resistance. SWV measurements provide a wide linear response range (7.5-300 μM); lower limit of detection (0.66 μM), excellent limit of quantification (2.19 μM) and good reproducibility to ZCNT 0.1 NCs as compared to others for 5-HT sensing studies.
Collapse
Affiliation(s)
- Sajid B Mullani
- Department of Chemistry, Shivaji University, Kolhapur, MS, 416004, India
| | - Ananta G Dhodamani
- Department of Chemistry, Shivaji University, Kolhapur, MS, 416004, India
| | - Annadanesh Shellikeri
- Department of Electrical and Computer Engineering, Florida A&M University-Florida State University, Tallahassee, FL, 32310-6046, USA
- Aero-Propulsion, Mechatronics and Energy Centre, Florida State University, Tallahassee, FL, 32310-6046, USA
| | - Navaj B Mullani
- Department of Advanced Materials and Chemical Engineering, Hanyang University (ERICA), Ansan, 15588, South Korea
| | - Anita K Tawade
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, MS, India
| | - Shivaji N Tayade
- Department of Chemistry, Shivaji University, Kolhapur, MS, 416004, India
| | - Julien Biscay
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Lynn Dennany
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Sagar D Delekar
- Department of Chemistry, Shivaji University, Kolhapur, MS, 416004, India.
| |
Collapse
|